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Abstract
To forestall loss of ecological values associated with forests, land managers need to con-
sider where and when to prioritize active reforestation following major disturbance events. 
To aid this decision-making process, we summarize recent research findings pertaining to 
the Sierra Nevada region of California, USA to identify contexts in which active reforesta-
tion or passive recovery may best promote desirable post-fire ecological trajectories. Based 
on our synthesis, we suggest conceptual frameworks for assessing landscape conditions 
and determining areas that may be the highest priorities for tree planting to avoid persistent 
loss of conifer forests. Field studies have shown that some large patches of high sever-
ity burn can have relatively low levels of natural regeneration, especially among desired 
pine species. The accumulation of fuels and competition with shrubs and resprouting hard-
woods may hinder the reestablishment of mature conifer trees. However, severe fires could 
also play a restorative role, by promoting non-conifer forested communities, such as mead-
ows, shrubfields, and open forests with significant hardwood components. Such communi-
ties were historically rejuvenated and maintained by fire but have been replaced by conifer 
forest due in part to fire suppression. Reforestation in such areas may run counter to restor-
ing ecological function and the ecosystem services that are provided by non-conifer com-
munities. Through this framework, managers and stakeholders may better understand the 
contexts in which planting and passive recovery may better support ecological restoration.

Keywords Natural regeneration · Succession · Meadow restoration · Shrub competition · 
Biodiversity · Landscape restoration · Planting

Introduction

Loss of forests is a global concern because they provide many valuable services includ-
ing wood products, carbon sequestration, wildlife habitat, and watershed protection 
(Jacobs et al. 2015). Societies around the world are choosing between strategies of assisted 
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restoration and unassisted natural regeneration to restore such services following forest 
degradation (Chazdon 2008). The justification for active intervention to ameliorate such 
declines depends on how quickly forests can naturally recover. In the Sierra Nevada of 
California, this question has been raised following extreme wildfires in recent years (Jones 
et al. 2016; Young et al. 2017). Active reforestation efforts in this region generally focus 
on planting conifer seedlings, but often include control of non-tree vegetation as well as 
other practices intended to accelerate reestablishment of forest cover. Understanding the 
ecological contexts in which passive recovery may be sufficient or desirable may help focus 
interventions where they are most needed for ecological restoration (Peterson et al. 2009; 
Johnstone et al. 2016; Shive et al. 2018), as well as how to craft such interventions to better 
achieve objectives (Jones 2018).

Most forested ecosystems of the Western USA have evolved with fire, but decades of fire 
exclusion have resulted in widespread densification, increases in fuels, and shifts toward 
less fire-adapted species, rendering many forests less resilient to disturbances (Mallek et al. 
2013; Miller and Safford 2012; Scholl and Taylor 2010). As wildfires in the interior moun-
tains of California have overwhelmed suppression efforts in recent decades (North et  al. 
2015), they have produced increasingly large patches of dead trees (Steel et al. 2018; Ste-
vens et  al. 2017). Projected warming and drying are expected to exacerbate such trends 
through increases in large wildfires (Barbero et al. 2015) and large drought-induced mor-
tality events (Young et al. 2017). Reforestation following large-scale tree mortality events 
such as wildfires has long been a high priority for the U.S. Forest Service, which man-
ages the national forests, and planting nursery-grown trees has been one of the established 
means for achieving that goal (Dumroese et al. 2005; Nave et al. 2018). Planting may have 
objectives other than restoration, including promoting various wood production and other 
services that are important to societies regardless of former ecological conditions (Silva 
et  al. 2018). Understanding complex landscape dynamics can help managers and stake-
holders meet any of those objectives by weighing benefits and risks of alternative strategies 
(Johnstone et al. 2016; Jones 2018).

Active reforestation efforts are motivated by concerns that conifer forests would not 
recover, or would recover too slowly to sustain key services, without interventions. Studies 
in the Sierra Nevada in particular have found that natural regeneration was often too low 
to achieve desired levels of reforestation. For example, Collins and Roller (2013) reported 
that more than 50% of the patches and approximately 80% all plots lacked tree regenera-
tion 2–11 years after five fires in the Northern Sierra Nevada. Similarly, Welch et al. (2016) 
investigated conifer regeneration in 14 fires that burned with high severity effects across 
10 national forests in the Sierra Nevada between 1999 and 2007 and found that 43% of 
their plots had no conifer regeneration. Both of those studies found that where regeneration 
did occur, it was dominated by more shade-tolerant species than pines, especially white 
fir (Abies concolor), Douglas- fir (Pseudotsuga menziesii) and incense cedar (Calocedrus 
decurrens). The reduction in pine regeneration is of particular concern, as yellow pine 
forests (Pinus ponderosa and P. jeffreyi) have declined substantially from historical peri-
ods in many parts of the Sierra Nevada (Knapp et al. 2013; McIntyre et al. 2015; Thorne 
et al. 2008). Harris and Taylor (2015) attributed the decline of formerly dominant yellow-
pine systems to the loss of seed trees and altered vegetation-fire dynamics. Concerns over 
declines in dry yellow pine forests following wildfires are consistent with studies in Ari-
zona and New Mexico (Ouzts et al. 2015) and in Colorado (Rother and Veblen 2016).

Managers also plant seedlings where natural regeneration may be present but they are 
concerned that it will be insufficient to meet objectives. Young seedlings often experience 
high levels of mortality, from 50 to 80% or higher (Shive et al. 2018). To increase growth 
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of planted trees, managers have often controlled understory vegetation to reduce competi-
tion (Helms and Tappeiner 1996; McGinnis et al. 2010; Peterson et al. 2009). Snag man-
agement is also an important consideration in reforestation, because salvage logging often 
goes hand-in-hand with conifer replanting for safety reasons (to avoid risks to planting 
crews from falling snags) and to reduce the future fire risk in planted stands. While areas 
that are not salvaged can be reseeded or replanted with conifer trees, land managers may be 
reticent to invest planting resources where they perceive conditions to be highly vulnerable 
to fire.

Dynamics of non‑conifer vegetation communities

Tree mortality and shifts to non-forested states are natural parts of the dynamic landscape 
of mountain areas such as the Sierra Nevada. While generally accounting for only a small 
portion of the montane region (Thorne et al. 2008), non-conifer communities collectively 
support important ecosystem services such as providing food and structural resources that 
promote biodiversity (Betts et al. 2010; McCullough et al. 2013), regulating fire (Kobziar 
and McBride 2006), promoting resilience to drought, and fixing nitrogen (Oakley et  al. 
2006). Although many of these communities may have been relatively short-lived and spa-
tially variable within the landscape due to the unpredictable nature of fire, other patches, 
including wet meadows and some hardwood groves, were likely long-lived and relatively 
stable in particular landscape positions associated with relatively deep and mesic soils 
(Ratliff 1985; Shepperd et al. 2006). Extensive forest homogenization and degradation of 
formerly diverse vegetation patches could lead to disproportionate losses in forest diversity 
(Kelt et al. 2017; Shepperd et al. 2006; Sollmann et al. 2015).

Many non-conifer communities can be maintained by low-severity fire, but once over-
topped by conifers, shade-intolerant species are competitively excluded in the absence of 
further canopy opening disturbances (Berrill et al. 2017; Knapp et al. 2013). Conifers gen-
erally become more resistant to fire as they grow taller and develop thicker bark, although 
a variety of factors influence fire resistance across different species (Hood and Lutes 2017). 
Consequently, stand-replacing disturbances, such as high severity fire, may be necessary 
to restore non-conifer vegetation (Cocking et  al. 2014). Therefore, rather than focusing 
solely on how high-severity fire can shift conifer stands into a non-conifer state [a pathway 
described by Johnstone et al. (2016)], conceptual models need to recognize how fire exclu-
sion has also shifted meadows, shrubfields, and open forests with significant hardwood 
components to conifer forests (Fig. 1). Planting conifer trees in these areas after fire may 
be contrary to restoring historical or desired non-conifer communities and their associated 
ecosystem services.

Wetland‑associated communities

Riparian communities, including aspen

Riparian zones connect terrestrial and aquatic ecosystems and are complex and dynamic 
microhabitats that support heterogeneous biological communities that are more diverse 
than upland habitats (Dwire and Kauffman 2003; Naiman et al. 1993). Fire plays an impor-
tant role in maintaining and rejuvenating riparian communities by consuming fuels and 
killing non-resprouting conifers (Arkle and Pilliod 2010; Bêche et al. 2005; Berrill et al. 
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2017). For example, quaking aspen (Populus tremuloides) is a particularly important hard-
wood tree in montane riparian areas, supporting understory plant biodiversity, forage, 
riparian soil moisture, and many wildlife species (Jones et al. 2005; Kuhn et al. 2011; Rich-
ardson and Heath 2004). Changes in the historic fire regime and grazing pressure have 
threatened aspen stands in many places (Jones et  al. 2005) and long-term restoration of 
aspen stands appears to depend on aggressively removing conifers (Berrill et  al. 2017; 
Jones et  al. 2005). Although some studies indicate that riparian areas burned with simi-
lar or less frequency than adjacent uplands (Dwire and Kauffman 2003), others suggest a 
more frequent fire regime, perhaps due to Native American burning to stimulate growth of 
desired understory species (Van de Water and North 2010). Exclusion of fire from riparian 
areas may allow fuels to accumulate and encourage high severity fire (Pettit and Naiman 
2007; Safford et al. 2009). Such fires can reduce conifer encroachment by fire-intolerant 
species such as lodgepole pine (Pinus contorta), while hardwood species such as black cot-
tonwood (Populus trichocarpa), willow (Salix spp.), and aspen are likely to be top-killed 
but can vigorously resprout (Kobziar and McBride 2006; Krasnow and Stephens 2015).

Montane meadows

Meadows are productive and diverse ecosystems that cover less than 2% of the Sierra 
Nevada and southern Cascade ranges of California (Ratliff 1985). Fire suppression and 
grazing have facilitated conifer encroachment in lower elevation meadows (Norman and 
Taylor 2005), while warming temperatures and reduced snowpack have made conditions 
more favorable for conifer establishment in higher elevation meadows (Lubetkin et  al. 
2017; Maher et al. 2017). The removal of conifers can lead to increases in the water table 
that are necessary to sustain meadow communities (Sanford 2016). However, Frenzel 
(2012) found that late fall prescribed burns in seven meadows in the central Sierra Nevada 

Fig. 1  A “ball and cup” diagram representing how the interactions of tree growth (rightward force) and fires 
(leftward force) influence alternative forest states. Path 1A represents how frequent, low-intensity fires kill 
smaller trees and encourage open conditions with large hardwood trees such as oaks and aspens. Path 1B 
and 2 represents succession to dense conifer forest in the absence of fire. Path 3 represents stand-replacing 
fires that return to the early successional state without mature trees
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had little efficacy in removing conifers and suggested that more intense burns or cutting 
may be needed to restore such areas. Boisramé et al. (2017a) found an increase in meadow 
communities and a decrease in conifer communities in an area that experienced repeated 
wildland fires in Yosemite National Park. While they described this phenomenon as large-
scale conversion, it may represent a return to historical conditions.

Upland non‑conifer communities

Complex early‑successional communities

High-severity fire induces the development of early successional communities character-
ized by young shrubs and resprouting hardwoods, and forbs, as well as standing dead trees 
and other biological “legacies” that are not destroyed by the disturbance. Although such 
legacies may impart significant structural and compositional diversity, these communities 
may be mapped from remote sensing simply as annual or perennial grasslands. Vertical and 
horizontal heterogeneity in complex, early-successional habitats is important, as it is in late 
seral forests (Tarbill et al. 2015; Tingley et al. 2016; White et al. 2016). Woodpeckers and 
other cavity-associated species depend on standing dead trees for food (Nappi et al. 2010) 
and nesting structures (Tarbill et al. 2015). As snags decay and fall, they provide habitat 
for small mammals, which in turn, are an important food source for forest predators. In the 
understory, post-fire response to severe burns often includes a flush of understory plant and 
fungal growth (Keeley et al. 2003; Larson et al. 2016). Such habitats in the Sierra Nevada 
are relatively short-lived, as most snags will fall and shrubs will dominate within the 1st 
decade post-fire (Bohlman et al. 2016; Ritchie et al. 2013).

Montane chaparral

Shrubfields, also called montane chaparral, historically ranged in size from tens to hun-
dreds of hectares (Nagel and Taylor 2005; Skinner and Chang 1996). Shrubs provide nest-
ing habitat for breeding landbirds, as well as foraging habitat for the California spotted owl 
(Gutiérrez et al. 1992) and other species of concern. Although very few studies from the 
Sierra Nevada have focused on the specific area requirements of shrub associated wildlife 
species, studies in the eastern USA have demonstrated that most shrub specialists avoided 
mature forest (Rodewald and Vitz 2005). In the Sierra Nevada, some shrub-associated spe-
cies, such as the fox sparrow, tend to avoid areas near forest edges and attain their highest 
abundance in the interior of patches (Campos and Burnett 2014).

Shrub species in the Sierra Nevada are well-adapted to high-severity fire because they 
can disperse long distances, and many vigorously resprout following fire and/or reestab-
lish via a persistent seed bank (Pausas and Keeley 2014). Like many other non-conifer 
dominated communities, montane chaparral had a distinct fire regime characterized by 
slower production of dead fuels and greater live fuel moisture than adjacent forests (Nagel 
and Taylor 2005; Skinner and Chang 1996). Chaparral shrub seeds are widely distributed 
throughout mixed-conifer forest (Knapp et  al. 2012), indicating that shrub patches are 
dynamic and may exist in locations that are edaphically suited for trees (Biswell 1974). 
Shrub patches also occur in relatively fixed positions due to topographic and edaphic fac-
tors and associated fire behavior. For example, more xeric, south- and southeast-facing 
slopes are predisposed to high severity fire (Nagel and Taylor 2005). Fire exclusion dur-
ing the last century has contributed to the conversion of chaparral to forests, reducing 
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heterogeneity both within and between forest stands (Knapp et  al. 2012; Lauvaux et  al. 
2016; Thorne et al. 2008). For example, Knapp et al. (2013) reported an order of magni-
tude decrease in shrub cover from 28.6% in 1929 to 2.5% in 2008 in the Stanislaus Experi-
ment Forest, while densities of small and intermediate trees increased three-fold. Similarly, 
Nagel and Taylor (2005) found that chaparral patches decreased by 62% due to conifer 
encroachment in the Lake Tahoe Basin. Some evidence shows that fires can lead to recov-
ery of that historical diversity, as Boisramé et al. (2017b) found that shrub area increased 
by 35% in the Yosemite National Park following 40 years of repeated managed wildfire. 
The study authors noted that a relatively homogeneous forested patch differentiated into 
patches of more diverse vegetation composition after fire was restored (Boisramé et  al. 
2017a). They concluded that a return of a more reference fire regime was consistent with 
greater resilience to a variety of disturbances.

Montane hardwoods

As with shrubs, species such as California black oak (Quercus kelloggii), tanoak (Notho-
lithocarpus densiflorus), Pacific madrone (Arbutus menziesii), and other species have a 
long history of being derided as weedy because they occupied space where more valuable 
conifers could grow (Bolsinger 1988). Such hardwood species were systematically reduced 
using herbicides in the mid-twentieth century to promote conifer growth on national for-
est lands (Long et al. 2016). Within mixed-conifer forests, oaks have tended to decline in 
recent decades (Thorne et al. 2008). Cocking et al. (2012) suggested that wildfires could be 
restorative, as California black oak may need high-severity fire to overcome encroachment 
by relatively large conifers. Baker (2014) contended that infrequent, severe fires maintained 
high heterogeneity and abundant and large patches (up to 9400 ha) of montane chaparral 
and early-successional forest, including oak-dominated areas. He contended that displace-
ment of oaks by conifers in such areas represented natural succession in the absence of fire 
rather than “encroachment”. Baker’s model of infrequent disturbance facilitating a gradual 
succession to conifer might fit with some areas of the landscape; however, his findings 
have been challenged as overestimating areas of high-severity fire due to methodological 
artifacts (Levine et al. 2017). In areas where fires were frequent, they likely maintained an 
alternative state that included open groves dominated by large, shade-intolerant hardwoods 
as well as pines (Fig. 1). Such landscape conditions are consistent with conditions desired 
by Native Americans (Long et al. 2016) and understandings of aspen ecology (Shepperd 
et al. 2006).

Considerations to guide restorative reforestation

Many of the conifer-dominated forests of interior California evolved with patches of 
high severity fire limited to small areas, averaging less than 10  ha and generally less 
than 100  ha (Safford and Stevens 2017; Stevens et  al. 2017). Such small patches are 
believed to have been recolonized relatively quickly by seed fall from nearby surviving, 
mature trees. Under this fire regime, some communities would shift between forested 
and non-forested states due to more frequent fire and successional dynamics (Fig.  1) 
resulting in both fine and coarse scale heterogeneity within and between vegetative 
communities. In contrast, large areas of deciduous- or shrub-dominated states created 
by high-severity patches may be self-reinforcing (Bowman et  al. 2015; Scheffer et  al. 
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2001). For instance, large quantities of dead woody biomass and resprouting shrubs 
form fuels that can favor future high-intensity reburns (Coppoletta et al. 2016; Lauvaux 
et al. 2016) and delay expected succession to forested states.

Landscape restoration efforts increasingly highlight the need for a more natural fire 
regime outside of developed areas (Lindenmayer 2018; North et  al. 2015). However, 
large fires such as the Rim Fire (Harris and Taylor 2017) have shown a tendency for 
severe burns to be self-reinforcing by maintaining heavy fuels and low-statured vegeta-
tion. Extensive areas of young trees, whether natural or planted, pose a challenge to 
restoring fire as a disturbance, because young plantations are highly susceptible to fire 
(Kobziar et al. 2009). Many areas that burned at high severity in the recent large wild-
fires coincide with areas that were replanted following previous wildfires; for example, 
in a recent study of a highly mixed private and public forests in Oregon, Zald and Dunn 
(2018) suggested that the young plantations were a more important contributor to high 
burn severity than fire suppression in old forests.

As mixed-conifer forests continue to experience large, stand-replacing fires, land 
managers may consider where, when, and how to promote the return of conifer forest 
that will increase future landscape resilience to disturbances. In this section, we con-
sider factors that may help to identify places where targeted interventions may be par-
ticularly important in advancing ecological restoration. However, we acknowledge that 
planning specific interventions demands consideration of a variety of social and eco-
nomic factors, including organizational capability, access, costs, and other constraints 
(Long et  al. 2014). Furthermore, although our framework suggests how to consider 
where active reforestation might be appropriate or not, it is important to consider how 
to customize interventions to particular contexts in more subtle ways (North 2012). For 
example, different tactical approaches to planting, such as even spacing versus cluster 
spacing, and variable densities, could better align treatments with restoration goals. Tar-
geting favorable microclimates might guide restoration at fine scales, although it may 
be challenging for planting crews to implement such guidance. Strategies need to con-
sider temporal factors, because timing after disturbance and weather factors exert strong 
influence on reforestation outcomes (North et  al. 2005). In particular, managers have 
stressed that planting soon after a disturbance can reduce the need for more costly treat-
ments, including herbicides, to encourage development of planted seedlings (McGin-
nis et al. 2010). Consequently, advance planning of interventions could yield both eco-
nomic and ecological benefits.

While studies have highlighted low stocking rates as a particular need driving replant-
ing following major disturbances (Welch et  al. 2016; Safford and Stevens 2017), several 
other factors besides the numbers of young trees are also important considerations. These 
factors include redressing shifts in species composition, especially the reductions in pines 
mentioned earlier, and promoting resistance to climate change and introduced disease by 
encouraging particular species and/or genotypes. Planting of trees with genetic resistance 
to threatening diseases may be a particularly important tool of restoration, as in the case of 
introduced white pine blister rust (Sessions et al. 2004), which has impacted important spe-
cies in the Sierra Nevada region such as sugar pine (Pinus lambertiana) and western white 
pine (Pinus monticola). Promoting sugar pine regeneration is a priority for restoration in 
the Sierra Nevada, as it has experienced high mortality in field studies examining planting 
(Lanini and Radosevich 1986) and prescribed burning (Bellows et al. 2016). Anticipation 
of climate change has encouraged managers to consider “assisted migration” strategies that 
would accelerate the expected movement of trees that might be better adapted for future 
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climates, although such policies have not been adopted for national forests (Long et  al. 
2014).

Prioritizing areas for passive reforestation

Managers needing to procure and plant nursery-grown seedlings after wildfires may lack 
time to conduct detailed analyses of reference conditions. Instead, they may rely on pre-
fire vegetation maps, which are readily available at fine scales. Yet, such maps may not 
necessarily be a good indication of departure from ecological references, as they are likely 
to underrepresent the historical extent of non-conifer forest areas due to the shifts result-
ing from fire suppression discussed previously. While such areas often have potential to 
support conifers, reforestation may better achieve restoration objectives by targeting areas 
that have been dominated by conifer forest for longer periods. In addition, more ephemeral 
non-forested patches are also important to consider for restoring biodiversity and other ser-
vices (Fig. 2). By embracing the concept of a “shifting mosaic” at large landscape scales 
(Borman and Likens 1979), management can be designed to sustain the extent of diverse 
vegetation communities, even as they shift their locations over time, while maintaining 
connectivity between the persistent patches and the more ephemeral ones.

The historical extent and locations of these communities prior to Euro-American settle-
ment are likely to reflect topography, moisture, and soils, so soil surveys and models based 
upon elevation, moisture, and disturbance regime (including the Biophysical Setting prod-
uct from LANDFIRE www.landfi re.gov/bps.php) provide useful guidance for restoration 
in addition to historical maps. Figure 3 provides a simple model for considering edaphic 
factors based upon an idealized cross-sectional view of a valley going from a steep slope 

Fig. 2  Hypothetical landscape with grey patches representing non-conifer communities such as meadows 
within a conifer-dominated landscape. Dark grey patches are relatively fixed in the landscape due to topog-
raphy and edaphic conditions. Light grey patches represent ephemeral habitat, existing in both non-conifer 
states and conifer-dominated areas (grey outline) depending on the level of disturbance and the conditions 
following a disturbance. Ephemeral patches not only contribute to the amount of available habitat, but also 
play a role in habitat connectivity. Without disturbance, ephemeral patches succeed to conifer-dominated 
habitat thereby reducing the amount and connectivity of non-conifer patches

http://www.landfire.gov/bps.php
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to a more productive bottomland. Historical studies indicate how species composition var-
ied with moisture, with upper and more xeric slopes often dominated by montane chap-
arral and hardwood trees (Nagel and Taylor 2005; Taylor and Skinner 2003) and where 
tree survival is often poor (Rother and Veblen 2016). Steep slopes may also be avoided 
for interventions due to operational constraints, in which case practical considerations may 
align with ecological objectives to restore non-conifer communities. Planting might also 
be discouraged in moist bottomlands where natural regeneration, particularly by desirable 
hardwood species, is expected. National forest policy under the Sierra Nevada Forest Plan 
Amendment has restricted planting of any conifers closer than 6.1 m from the crown edge 
of oaks; although it may be important to consider broader strategies for facilitating growth 
of hardwoods especially where mature trees are scarce (Long et al. 2016). Although Welch 
et al. (2016) emphasized that Forest Service silvicultural goals are tied to conifer regen-
eration, managers can also certify that regeneration objectives have been met based upon 
hardwoods (R. Tompkins, U.S. Forest Service, personal communication).

Prioritizing areas for active reforestation

Targeted interventions may be important for ensuring the growth of large conifer trees on 
the landscape to support wood products, wildlife habitat, and other ecological services. 
Where desired tree species are able to resprout, replanting may not be warranted, but for 
the Sierra Nevada, hardwoods are the predominant resprouting trees. Consequently, conifer 
planting (alongside other management practices to address fuel loads and shrub removal) 
may be important for restoring reference composition and large trees. While many wild-
life and plant species may depend upon or thrive upon early-successional conditions, rees-
tablishment of large conifers is important to sustaining wildlife habitat for the long term. 
Large trees are a key habitat feature of California spotted owl habitat (North et al. 2017). 

Fig. 3  Conceptual representation of how landscape moisture relationships may influence post-fire reforesta-
tion decisions. Conifer planting is more likely to be avoided on steeper, dry slopes where tree survival is 
likely to be poor, but planting may also be avoided in moist bottomlands where natural regeneration, par-
ticularly by desirable non-conifer species, is expected
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Stephens et al. (2016) suggest that spotted owl habitat is likely to experience a long-term 
decline due to future high-severity wildfires. Although planting in bottomlands may be dis-
couraged for other reasons (see above), North et al. (2017) suggested focusing management 
to conserve spotted owl by cultivating tall trees in more productive riparian areas. Large 
conifers close to streams are important habitat for wildlife such as northern flying squirrel 
(Meyer et al. 2005). Abundance of such prey animals, combined with large trees, snags, 
and closed canopies contribute to such areas being preferred habitat for spotted owls and 
fisher (Underwood et  al. 2010). Similarly, for species that depend upon patches of large 
snags, it is important to consider how long it will take for large trees to develop that can 
form such habitat.

Planting, as well as shrub control, may also be important for facilitating the devel-
opment of conifer trees that can survive fires in the frequent fire regimes of California. 
Fires kill trees particularly when the tree crowns are damaged (Hood and Lutes 2017), so 
raising the height of the crown is particularly important for increasing tree survival (Bel-
lows et al. 2016). Accelerated growth could also speed the production of seeds, to enable 
“founder” stands to help naturally reforest larger patches. Lanini and Radosevich (1986) 
demonstrated that control of shrubs accelerated conifer growth in the Sierra Nevada, find-
ing that shrub canopy volume affected tree canopy volume, although it did not influence 
tree survival. McDonald and Abbott (1997) found that on a poor site at Mount Shasta, early 
shrub control afforded ponderosa pines planted an additional 5 m in height after 25 years, 
yielding trees that were 7.6 m tall on average versus 2.1 m tall. Such findings suggest that 
trees planted without associated shrub removal may make it harder to restore a more fre-
quent fire regime. McIver and Ottmar (2018) found that planted trees (without follow-up 
treatments such as prescribed burning or shrub control) did not survive a 12-year reburn, 
likely due to their small size and abundant fuels. Yet, recent research suggests that fire may 
be reintroduced to planted stands that are as young as 12 years old without causing wide-
spread mortality, especially by raking litter away from the boles to reduce scorch, and pos-
sibly even pruning low branches (Bellows et al. 2016). If conifer plantings can withstand 
reintroduction of fire within such a frequent return interval, there is potential for meeting 
goals of restoring low-severity fire as an ecological process while also regenerating coni-
fers, despite the problem that historical plantations have been associated with increased fire 
severity.

Thinking beyond the high‑severity burn patches

Resilience theory asserts that post-fire environments represent a “back loop” stage marked 
by high unpredictability and often receiving less attention than the growth and conserva-
tion phases of resource management (Berkes and Folke 2002). That theory suggests sev-
eral strategies to avoid shifts in systems by maintaining natural disturbances at smaller 
scales through intentionally using fire, creating clearings and other kinds of fire breaks, 
and encouraging patchy landscape. To be more consistent with such thinking, post-fire 
restoration can move beyond immediate emergency treatments and time-sensitive matters 
of “salvage” of wood products in severely burned areas, toward reducing the impacts of 
future burns through promoting heterogeneous vegetation and fuel conditions across the 
landscape. Many areas that have not yet burned severely are still afflicted by high densi-
ties of live trees and heavy accumulations of fuels, including more pieces of small downed 
wood than occurred historically (Knapp 2015; Knapp et  al. 2013). Even areas that burn 
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moderately may still experience an increase in fuels as small fire-killed trees fall. There-
fore, the guidance of limiting post-fire harvest only to severely burned areas or only to fire-
killed trees, as suggested by Lindenmayer et al. (2006) and Beschta et al. (2004), may not 
effectively promote landscape restoration.

Unlike many other natural disturbances, land managers can have significant influence 
on the timing and severity of fire disturbances, and they can recreate and regulate natu-
ral wildfires through prescribed fires. In particular, areas adjacent to severe burns may 
offer key opportunities for leading systems toward more reference conditions, by using 
recently burned areas as fire breaks or “anchors” for managed wildland fires (North 
et al. 2015). For a short period of time, such recent burns can act as an important barrier 
to fire spread, allowing for controlled low severity fires that are particularly effective at 
moderating future fire severity (Harris and Taylor 2017; Parks et al. 2015). This oppor-
tunity closes as older, high-severity fires often are at risk for high-severity reburns as 
vegetation regrows and fuels accumulate (Harris and Taylor 2017).

Conclusions

The increase in the size and occurrence of stand-replacing disturbances and limited 
resources for landscape restoration require forest managers to critically evaluate where 
fire has moved forest conditions both toward and away from more resilient conditions. 
Prioritizing areas that have long been occupied by conifer-dominated forests, histori-
cally experienced frequent fires, and burned recently in large high severity patches, can 
promote restoration objectives by avoiding shifts into large, persistent non-conifer com-
munities while recognizing that fire-induced recovery of non-conifer communities also 
supports restoration. Some of those non-conifer communities may be relatively fixed 
based upon edaphic qualities, while others may be more ephemeral and could occur in 
a variable, mosaic arrangement over time. While many of the approaches suggested by 
our framework have been incorporated into management plans, the application of such 
ideas will remain a topic of active debate for managers and stakeholders.

Continued evolution of silvicultural approaches through consideration of broad land-
scape dynamics will be important to address restoration challenges. Breaking the cycle 
of increasing loss of mature forest to wildfires will depend upon on strategic consid-
eration of fire dynamics as well as promoting heterogeneity that naturally increases the 
resilience of these landscapes to fire. In particular, managers striving to promote overall 
landscape resilience may focus more on the “green forests” that surround the “black” 
areas of high tree mortality, both by using burned areas to contain managed fires in 
the short-term and by ensuring that fuel conditions within green forests are managed 
to mitigate threats to nearby, highly vulnerable young forests. Such an emphasis on 
broad landscape contexts should not discount the value of smaller-scale interventions to 
address local areas of recreational and cultural significance and concerns as well as the 
survival of large trees. The general patterns outlined in our framework still leave a broad 
middle ground where the tradeoffs between intervention and passive regeneration may 
be highly uncertain. Designing post-fire intervention strategies to advance ecological 
restoration goals, and then evaluating their performance through long-term monitoring 
and experimentation will be important to reduce uncertainty about outcomes and build 
support for post-fire strategies.
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