CLIMATE MODERATED RESPONSES TO WILDFIRE BY PERIPHERYTON & INVERTEBRATES IN MONTANE WILDERNESS STREAMS

G. Wayne Minshall
Idaho State University

&

Amanda Rugenski
Arizona State University
Big Creek

FCW

Mortar Creek

YNP
Introduction

Shift to warmer climate has resulted in drier summers & increased fire frequency and severity

In Intermountain West, effect of warming has been:
- less precipitation falling as snow
- earlier snowmelt & drying of vegetation

- resulting in the suppression of snow-melt runoff & occurrence of several large fires since the mid 1980s
Climatic Variables

A. Temperature
- $R^2 = 0.15$
- $p = 0.056$

B. Precipitation
- $R^2 = 0.009$
- $p = 0.65$

Graphs:
- **Temperature** graph showing data points from 1988 to 2010.
- **Precipitation** graph showing data points from 1988 to 2010.
Long Term Monitoring: Study Sites

6 Sites
4 focus
3 burned
1 not
Pre-climate change: Fire often altered amount & timing of runoff
PRE CLIMATE CHANGE
Commonly Observed Results of Post-fire
Snow-melt Runoff

Cutting & Widening
Scouring
Depositing
PRE CLIMATE CHANGE

Biotic Index vs. Time (log years)

- Pre-fire
- Fire

Time (log years): 1, 2, 3, 10, 100, 300
Comparing Pre- versus Post-fire
No significant change in any of the 4

Some increase about the time of the fire
Cougar - unburned & started before the fire
Cliff - sufficient to affect the biota

Therefore – no fire effect in 2 of the 3
Results: Chlorophyll a
Results: Density
Results: *Baetis* + Chironomidae
Results: Richness

Macroinvertebrate Taxon Richness

- **Unburned (COU)**: $r=0.57$, $p=0.002$
- **Burned (PIO)**: $r=0.68$, $p=0.0005$
- **Burned (CLI)**: $r=0.47$, $p=0.006$
- **Burned (CAV)**: $r=0.43$, $p=0.009$
Results: NMDS biomass

Black = post-fire years

stress = 0.17
Using NMDS in a separate analysis of individual streams, we found:

Significant correlations between invertebrate community structure and precipitation, temperature, & discharge in all streams

Higher chlorophyll concentrations were significantly associated with post-fire years in unburned Cougar & burned Pioneer & Cave
Conclusion

A shift in climate away from snowmelt runoff reduced adverse effects of wildfire on periphyton & macroinvertebrates.

Rare species became less so, leading to increased richness w/ no apparent effect of fire.

Standing crops of periphyton increased post-fire as did macroinvertebrate abundance & biomass; apparently enhanced by fire.
Acknowledgments

Colden Baxter, Jeff Barger, Jeff Davis, Paul Dey, Kate Harris, Jessica Hopkins, Pam Hulet, Adam Kleven, Peter Koetsier, Deron Lawrence, Justin Mann, Tim Mihuc, Judy Minshall, Mike Monaghan, Jim Morris, Dave Moser, Cary Myler, Sara Owen, Aaron Prussian, Heather Ray, Christina Relyea, Scott Relyea, Chris Robinson, Todd Royer, Jesse Schomberg, Eric Snyder, Reuben Snyder, Lynn VanEvery, Robin Vannote, Jeff Varricchione