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SUMMARY 

 

Eulerian chemical transport models are extensively used to steer environmental 

policy, forecast air quality and study atmospheric processes. However, the ability of these 

models to simulate concentrated atmospheric plumes, including fire-related smoke, may 

be limited. Wildland fires are important sources of air pollutants and can significantly 

affect air quality. Emissions released in wildfires and prescribed burns have been known 

to substantially increase the air pollution burden at urban locations across large regions.  

Air quality forecasts generated with numerical models can provide valuable 

information to environmental regulators and land managers about the potential impacts of 

fires. Eulerian models present an attractive framework to simulate the transport and 

transformation of fire emissions. Still, the limitations inherent to chemical transport 

models when applied to replicate smoke plumes must be identified and well understood 

to adequately interpret results and further improve the models' predictive skills. Through 

this work, the capability of current chemical transport models to replicate fire-related air 

quality impacts was evaluated, key research needs to achieve effective simulations were 

identified, and numerical tools designed to improve model performance were developed. 

A modeling framework centered on the Community Multiscale Air Quality 

modeling system (CMAQ) was used to simulate several fire episodes that occurred in the 

Southeastern U.S. and investigate the sensitivity of fine particulate matter concentration 

(PM2.5)  predictions to various model inputs and parameters. Significant uncertainties 

associated with fire emissions estimates and their distribution on gridded modeling 

domains were identified. PM2.5 concentrations predicted by a regional-scale air quality 
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model in simulations attempting to replicate fire-related episodes were highly sensitive to 

plume rise and responsive to the horizontal and temporal distribution of fire emissions. In 

addition to realistic estimates of emitted mass, effectively modeling smoke transport with 

chemical transport models depends on an accurate spatiotemporal allocation of 

emissions. The predictions from a regional-scale air quality model also proved to be 

extremely sensitive to meteorological fields. Normalized errors in model predictions 

attempting to forecast the regional impacts of fires on PM2.5 levels could be as high as 

100% due to inaccuracies in wind data, suggesting that fire-related regional-scale air 

quality simulations are limited by the performance of existing numerical weather models. 

To investigate the influence of grid resolution on model predictions, adaptive grid 

modeling is explored as a strategy to simulate fire-related plumes. An adaptive version of 

CMAQ, capable of dynamically restructuring the grid on which solution fields are 

estimated and providing refinement at the regions where accuracy is most dependent on 

resolution was developed. In an evaluation simulation aiming to reproduce smoke 

transport from two prescribed fires, the adaptive grid algorithm reduced artificial 

diffusion, produced better defined plumes and led to more accurate PM2 5 concentration 

predictions. Additionally, a three-dimensional adaptive grid algorithm capable of 

simultaneously refining horizontal and vertical grid resolution is presented. Extremely 

high levels of grid resolution can be achieved using this grid refinement method. The 

fully adaptive three-dimensional modeling technique can be applied to gain insight into 

plume dynamics unattainable with static grid models.
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CHAPTER 1 

INTRODUCTION 

 

Atmospheric pollution is a major global concern. The most recent Global Burden 

of Disease Study finds that in 2010 over 3 million deaths and nearly 80 million disability-

adjusted life-years were attributable to ambient particulate matter and ozone pollution 

(Lim et al., 2012). Accordingly, ambient particulate matter pollution ranked ninth among 

risk factors by attributable burden of disease in 2010. Multiple studies have identified 

associations between air pollution and increased mortality (Pope and Dockery, 2006).  

For instance, one study finds that a 10 µg m
-3

 decrease in fine particulate matter 

concentration is associated with an increase in mean life expectancy of approximately 0.6 

years (Pope et al., 2009). Furthermore, no consensus has been reached regarding the 

existence of a threshold for major pollutants under which concentrations would cease to 

have health effects (Brunekreef and Holgate, 2002).  

Anthropogenic emissions have significantly increased the air pollution burden 

across vast regions, impacting public health and leading to a diverse set of problems 

which include damage to property, disruption of ecosystems and climate change. In 

response, legislation has been enacted throughout the world setting standards and 

regulations designed to limit the emissions of atmospheric pollutants and pollutant 

precursors and maintain pollution below concentrations selected to protect public health 

and welfare. In the United States, for example, the Clean Air Act was promulgated to 

protect air quality. The benefits and costs associated with implementing the legislation 

are significant. For the 1990 Clean Air Act Amendments alone, the annual costs and 

benefits of implementation, relative to a baseline maintained at the control levels defined 

by the 1970 and 1977 Clean Air Act Amendments, are estimated to reach approximately 

$65 billion and $2 trillion respectively in 2020 (2006 dollars) (U.S. Environmental 
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Protection Agency, 2011). Not surprisingly, extensive scientific research has centered on 

better understanding the sources, transport, and transformations of pollutants in the 

atmosphere.   

The complexity of the physical processes and reaction kinetics associated with air 

pollution make its understanding highly dependent on computational models. Air quality 

modeling is the computational science of developing mathematical models that describe 

the behavior of pollutants in the atmosphere. Pollutants are emitted from various sources, 

including natural and anthropogenic. Once introduced into the atmosphere, they are 

subject to dynamics and chemistry that transport and transform them continuously. 

Among the transport processes are advection, turbulent diffusion, convection, and 

deposition. Transformation processes include gas and aqueous phase chemistry, phase 

changes, and particle nucleation and growth. Additionally, transformation processes can 

couple pollutants to each other and create secondary pollutants that are not emitted but 

formed in the atmosphere from other precursor species that are emitted. Air quality 

models aim to represent all these processes in the most comprehensive manner. Initially, 

analysis of control strategies designed to manage air quality stimulated the development 

of air quality models. However, at present air quality models serve much broader 

purposes and are vital to advance our understanding of atmospheric processes.  

Different approaches exist to modeling air pollution, including Lagrangian 

dispersion models, Eulerian chemical transport models, and statistical receptor models. 

The applicability of each method depends on a simulation’s scale, chemical species of 

interest, and computational resources. The transport and transformation of emissions are 

best described by Lagrangian or Eulerian models. Additionally, these models provide an 

opportunity to forecast the air quality resulting from specific emission scenarios, making 

them important tools in air quality management. Between them, Eulerian air quality 

models are the most powerful and least restricted by assumptions (Russell, 1997). They 

are also the most complex air quality models and have the highest computational demand. 
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However, as the power of computational systems has continued to escalate, most current 

operational photochemical air quality models have adopted the Eulerian framework and 

are capable of providing multi-pollutant predictions across complete regional domains. 

Today Eulerian regional air-quality models are extensively applied in North America and 

Europe to design environmental policy, generate air quality forecasts, and study 

atmospheric chemistry and processes (Rao et al., 2010).  

Nevertheless, comprehensive Eulerian air quality models continue to be restricted 

by computational resources. Their limitations become apparent as simulations call for 

increasing levels of grid resolution to adequately replicate atmospheric phenomena. 

Computational requirements typically restrict regional-scale chemical transport models to 

a few kilometers. Still, emissions can be released by localized sources into concentrated 

plumes with dimensions below the grid resolutions typically used in chemical transport 

models. Eulerian air quality models have been applied to simulate concentrated plumes 

from a diverse set of emissions sources, including industrial point sources, biomass 

burning, dust and volcanoes, among others (e.g., Colette et al., 2011; Galanter et al., 

2000; Tang et al., 2004; Zhou et al., 2012). In chemical transport models, the assumption 

of complete mixing within each grid cell may lead to artificial dilution and errors in 

chemical transformation rates. Upon injection into a coarse grid, small-scale features of 

pollutant plumes may be immediately lost. In spite of these shortcomings, the detailed 

treatments of atmospheric processes and spatiotemporal coverage available to Eulerian 

air quality models make gridded chemical transport models an attractive choice to 

simulate atmospheric plumes.  

In this work, air quality simulations are undertaken to explore whether existing 

regional-scale chemical transport models operating with high spatial resolution are able 

to effectively replicate the transport and dispersion of atmospheric plumes without 

embedded subgrid scale models. Specifically, the study centers on smoke plumes from 

wildland fires. The influence of wildland fires on atmospheric pollutant concentrations 
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and the potential of fires to bring about acute air pollution episodes are further discussed 

in Chapter 2. Fire-related smoke plumes are an important example of an atmospheric 

phenomenon that involves relatively fine-scale characteristics and air quality impacts that 

may transition into larger, regional scales downwind. For emissions from industrial 

stacks, operational Eulerian grid models may offer subgrid scale plume treatments 

(Karamchandani et al., 2011). However, these are generally not available for fire-related 

plumes. In addition, as the resolution of current chemical transport models continues to 

increase, it may be possible to adequately simulate the transport and transformation of 

fire-related emissions within a single modeling framework without the restrictions 

imposed by embedded subgrid-scale models. Here, the ability of a present-day 

operational regional-scale air quality model to replicate smoke plumes is examined. 

Simulations of past air quality events and systematic evaluations of model predictions are 

discussed. Sources of uncertainty and important research needs to better replicate fire-

related air quality impacts with regional Eulerian models are identified. Significant 

attention is given to the influence of spatial resolution in simulations focused on smoke 

plumes. A brief description of the objectives for each ensuing chapter is given below. 

Chapter 2: Modeling smoke transport from wildland fires with chemical transport 

models 

The modeling framework used to simulate the air quality impacts of wildland fires 

within this work is presented. Simulations aiming to reproduce smoke transport from 

fires are carried out to evaluate the modeling system described. The simulations cover 

particularly different spatial and temporal scales to assess the system’s performance and 

diagnose modeling results. Important research needs to better simulate the air quality 

impacts of wildland fires with regional-scale Eulerian chemical transport models are 

identified.  
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Chapter 3: Simulating smoke transport from wildland fires with a regional-scale air 

quality model: sensitivity to spatiotemporal allocation of fire emissions 

The sensitivity of fine particulate matter (PM2.5) concentrations predicted with a 

regional-scale Eulerian air quality model to the spatial and temporal allocation of fire-

related emissions is explored.  A fire-related urban smoke event which severely impacted 

air quality throughout the Atlanta metropolitan area is simulated to assess the potential 

uncertainties associated with the distribution of fire emissions on gridded modeling 

domains. A series of sensitivity analyses were completed to evaluate the influence of 

emissions distributions among a model’s vertical layers, along the horizontal plane, and 

into hourly inputs on predicted PM2.5 concentrations at downwind locations.   

Chapter 4: Simulating smoke transport from wildland fires with a regional-scale air 

quality model: sensitivity to uncertain wind fields 

 Within simulations attempting to reproduce smoke plumes with chemical 

transport models, the sensitivity of predicted PM2.5 concentrations to wind field inputs is 

investigated. Using a simulation of the air quality impacts of two fires on an urban area, 

brute-force sensitivity analyses are undertaken to weigh the responsiveness of modeled 

pollutant concentrations to variations in wind speed and direction. Additionally, wind 

fields produced with the Weather Research and Forecasting model (WRF) are evaluated 

against surface and upper air meteorological observations to assess potential uncertainty 

in model predictions.  

Chapter 5: Adaptive grid use in air quality modeling 

Adaptive gridding as a strategy to improve the accuracy of air quality simulations 

with chemical transport models is reviewed. Reported adaptive grid methods in air 

quality models are analyzed and categorized. Common challenges faced by adaptive grid 
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algorithms and findings shared by developers are discussed. The use of adaptive grids in 

weather and climate models and connections to air quality modeling are also examined.  

Chapter 6: An adaptive grid version of CMAQ for improving the resolution of 

plumes 

An adaptive grid version of the Community Multiscale Air Quality Model 

(CMAQ) is presented. The adaptation algorithm used to achieve dynamic grid refinement 

is described and implementation into CMAQ’s chemical transport model is discussed.  

The adaptive grid model is evaluated by simulating an air quality incident in which air 

quality at an urban location was impacted by a fire-related smoke plume. PM2.5 

concentrations predicted by adaptive and fixed grid simulations are compared to 

monitoring station observations during the incident.  

Chapter 7: A three-dimensional refinement adaptive grid algorithm for Eulerian air 

quality models 

A full three-dimensional adaptive grid algorithm intended for Eulerian regional-

scale air quality models is introduced. The algorithm enables horizontal and vertical 

refinement of the modeling grid while retaining its original structure. Tests evaluating the 

functionality of the algorithm and exploring its potential to reduce numerical diffusion 

due to coarse grid resolution in chemical transport models are discussed. 

Recommendations to achieve full three-dimensional adaptation in existing operational air 

quality models are presented. 

Chapter 8: Summary of conclusions and future research 

The principal conclusions of the dissertation are summarized. Future research 

directions are identified and discussed.   
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CHAPTER 2 

MODELING SMOKE TRANSPORT FROM WILDLAND FIRES 

WITH CHEMICAL TRANSPORT MODELS  

 

Abstract 

Wildland fires can significantly deteriorate air quality and lead to unhealthy air 

pollution levels. Eulerian air quality models are an attractive option to simulate the 

impacts of fire-related emissions. A modeling framework to simulate the air quality 

impacts of fires based on the Community Air Quality modeling system is presented. The 

system’s ability to replicate smoke transport is evaluated by simulating the emissions 

from a prescribed burn and a series of wildfires. Large discrepancies between predicted 

and observed pollutant concentrations indicate that ability of current regional-scale air 

quality modeling systems to forecast the impacts of fire-related smoke may be limited. 

Components of the modeling system significantly contributing to the error in model 

predictions are identified, including emission estimates, meteorological drivers, grid 

resolution, and plume rise representations.   

2.1 Introduction 

Wildland fires have been identified as important emissions sources which can 

significantly impact air quality (DeBell et al., 2004; Wotawa and Trainer, 2000). The 

emissions released by wildfires have been known to substantially increase the air 

pollution burden at urban locations across extensive regions downwind (Amiridis et al., 

2012; Lee et al., 2005a; Miranda et al., 2009; Phuleria et al., 2005; Witham and Manning, 

2007). Similarly, controlled prescribed burns can heavily influence local and regional air 
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quality (Reisen et al., 2013; Zeng et al., 2008). The impacts of fires on atmospheric 

composition are apparent in the concentrations of trace gases and aerosols, including 

carbon monoxide, nitrogen oxides, ozone, black carbon, and particulate matter. 

 Increased pollution from wildland fires may pose a significant threat to public 

health. The adverse effects of smoke from wildfires and prescribed burns on air pollution 

concentrations and visibility have been investigated in several studies (Fox and Riebau, 

2009; Johnston et al., 2012). Several epidemiological analyses exploring the health 

impacts of wildland fires have identified statistically significant associations between 

fire-related smoke and respiratory- and asthma-related hospital admissions (Kochi et al., 

2010). The influence of fires on fine particulate matter (PM2.5) concentrations deserves 

special attention; fire-related impacts on monitored air pollutants are strongest for PM2.5 

and may lead to unhealthy air quality (Delfino et al., 2009; Henderson et al., 2011; 

Rappold et al., 2011). Significant reductions to visibility brought about by wildland fires 

can also be important (Park et al., 2006; Wise, 2008).  

Wildland fires can account for a substantial fraction of PM2.5 pollution (Mueller 

and Mallard, 2011). In the U.S. for instance, Park et al. (2007) estimate that wildland 

fires contribute 10-24% of total PM2.5 concentrations. Wildfires largely drive the 

variability in summertime organic carbon aerosol concentrations in the western U.S. 

(Spracklen et al., 2007). In the southeast U.S., prescribed burning can be a major 

contributor to PM2.5 pollution (Tian et al., 2009). As air quality standards become more 

stringent and emissions from anthropogenic sources are better controlled, the significance 

of fires to air pollution concentrations is expected to grow. Furthermore, wildfire activity 

may strengthen under a changing climate. Studies suggest that a warmer and drier climate 

will increase the area burned by wildfires and their severity (Flannigan et al., 2005; 

Rogers et al., 2011; Westerling et al., 2011). As a result, considerable increases to organic 

and elemental carbon aerosol concentrations have been predicted to occur by midcentury 

as fire-related emissions intensify (Spracklen et al., 2009).  
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In the U.S., controlled forest fires, or prescribed burns, are used as a land 

management strategy. Prescribed burns are frequently carried out throughout the 

southeastern U.S. and have proven to be effective towards accomplishing different 

objectives, such as habitat restoration, wildfire prevention, endangered species protection, 

site preparation for seeding and planting, disease control, and appearance enhancement, 

among others. However, pollutants and pollution precursors emitted by prescribed burns 

may be transported and transformed, contributing to poor air quality at downwind urban 

areas. In the southeastern U.S., prescribed burns are a major source of primary PM2.5 and 

gaseous pollutants (Lee et al., 2005b). The popularity of prescribed burning as a land 

management practice is also on the rise. Over the past ten years, more than 30% of the 

area burned by fires within the contiguous U.S. corresponded to prescribed burns (NIFC, 

2013).  

Air quality forecasts produced with numerical models can provide valuable 

information to environmental regulators and land-managers about the potential impacts of 

fires on pollutant concentrations. Commonly, fire-related smoke plumes have been 

simulated using various dispersion models. Simple Gaussian plume models have been 

developed to assist land managers in planning prescribed burns, such as VSMOKE and 

the Simple Approach Smoke Estimation Model (Lavdas et al., 1996; Riebau et al., 1988).  

Puff models, which simulate fire emissions as a series of continuously emitted parcels, 

can be used to model dispersion under space- and time-varying meteorological fields over 

detailed terrain. Calpuff is a widely used puff model that has been previously applied to 

simulate smoke transport (Henderson et al., 2010; Jain et al., 2007). The Hybrid Single 

Particle Lagrangian Integrated Trajectory Model (HYSPLIT) is a component of the 

Smoke Forecasting System used by the U.S. National Weather Service to produce daily 

smoke forecasts (Rolph et al., 2009). Additionally, Lagrangian particle models, such as 

FLEXPART, have been used to simulate fire pollution plumes (Lapina et al., 2008; Stohl 
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et al., 2006; Warneke et al., 2006). In this work, Daysmoke (Achtemeier et al., 2011), a 

Lagrangian particle model, is used to generate vertical plume structures.   

 While less commonly used than plume models, Eulerian chemical transport 

models are an attractive option to simulate the transport and transformation of fire 

emissions. The multiscale capabilities of gridded three-dimensional air quality models 

allow the transition of fire-related air pollution from local scales into larger regional 

scales to be adequately reproduced. Complex atmospheric transformations affecting fire 

emissions can be simulated through state-of-the science representations of chemical and 

physical processes included in chemical transport models. Additionally, comprehensive 

emissions inventories and weather inputs available for these models facilitate more 

representative reproductions of pollutants’ interactions with complex meteorological 

fields and the background atmosphere. Simulations aimed at reproducing the effects of 

wildland fires with chemical transport models have been previously reported (Chen et al., 

2008; Hodzic et al., 2007; Strand et al., 2012). Greater insight into the atmospheric 

transformation of fire-related emissions is often achieved with Eulerian air quality 

models.  

However, there are limitations associated with applying the current generation of 

chemical transport models to simulate smoke transport and atmospheric plumes in 

general. A number of these stem from the coarse grid resolution normally used in gridded 

air quality models. Eulerian chemical transport models operate by dividing an 

atmospheric domain into a number of discrete cells and simulating atmospheric processes 

for every cell. Emissions are immediately diluted upon injection into a cell, potentially 

losing information about the subgrid-scale structure of a plume. As pollutants are 

dispersed within the modeling domain, coarse grid resolution causes numerical diffusion 

by uniformly mixing pollutants within each cell. The numerical diffusion can lead to a 

loss of accuracy in the nonlinear transformations included in the model. Processes 

occurring at scales smaller than those captured by grid resolution must be parameterized. 
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Additionally, plume-rise algorithms must be included to account for the buoyancy of fire-

related emissions.  

The objective of this chapter is to describe the modeling framework and process 

applied within this work to simulate the air quality impacts of wildland fires. The 

modeling system is evaluated by simulating fire plumes occurring on vastly different 

spatial and temporal scales. A diagnostic assessment of the modeling results is 

undertaken to better understand the system’s ability to simulate regional-scale transport 

of fire-related smoke and identify important areas of research that must be investigated to 

attain accurate air quality forecasts with chemical transport models. Research needs 

identified are further explored in subsequent chapters.  

2.2 Modeling Framework 

In this section the components of the numerical modeling system used to carry out 

the simulations included in this work are briefly described. In simulations attempting to 

replicate the transport and transformation of fire-related emissions, multiple tools must be 

applied to model the processes related to the phenomenon, including pollutant emission 

rates, plume rise, meteorology, smoke transport, and emissions transformations. The tools 

included in the modeling framework described below vary in complexity and scope. 

However, each element models key processes that must be included in atmospheric 

simulations aimed at reproducing fire-related plumes. Figure 2.1 shows the most 

important modeling components applied, as well as their interconnections. 
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Figure 2.1. Major components of the modeling framework used to simulate fire-related 

emissions.   

 

 

2.2.1 Community Multiscale Air Quality Modeling System  

Air quality simulations undertaken as part of this work used the Community 

Multiscale Air Quality (CMAQ) modeling system  (Byun and Schere, 2006). CMAQ is a 

third-generation air quality model maintained by the U.S. Environmental Protection 

Agency which has been widely applied for regulatory and policy analysis purposes, as 

well as atmospheric research. The principal components of the modeling system are a 

numerical weather prediction system, an emissions processor, and a chemical transport 

model. Meteorological and emissions fields generated by the system are used as inputs to 

CMAQ, which includes state-of-the-science representations of the chemical and physical 

processes that determine gaseous and particulate air pollutant concentrations. CMAQ 

considers several processes that are necessary to model the transport and transformation 

of fire-related emissions including three-dimensional advection and diffusion, 

atmospheric chemistry and aerosol dynamics. In addition, the system was designed with 

multiscale capabilities, enabling air quality simulations that range from urban to regional 

spatial scales and extend across a few days or multiple years. 
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2.2.2 Weather Research and Forecasting Model  

The Weather Research and Forecasting Model (WRF)  is a mesoscale numerical 

weather prediction system extensively used for atmospheric research and forecasting 

purposes (Skamarock et al., 2008). The model has been previously applied to simulate 

weather at scales varying from less than a kilometer to thousands of kilometers. The 

model is fully compressible and nonhydrostatic, and includes different physics options to 

simulate the planetary boundary layer, land-surface processes, atmospheric and surface 

radiation, microphysics, and cumulus convection. Meteorological fields produced with 

WRF are treated with interface processors to prepare CMAQ-ready inputs used to drive 

air quality modeling in the chemical transport model. In the past, the CMAQ modeling 

system has generally been operated using one-way coupling between WRF and the 

system’s chemical transport model. Under this methodology, meteorological modeling is 

completed offline without feedback from the air quality simulations. In this work, 

atmospheric simulations were carried out using the traditional, one-way coupling 

approach. Recently, CMAQ version 5 was designed to allow online meteorological 

modeling by implementing two-way coupling between WRF and the system’s chemical 

transport model (Wong et al., 2012). The ability to include the effects of atmospheric 

aerosol and gaseous concentrations estimated within CMAQ in WRF’s numerical 

weather predictions may be of great interest in simulations attempting to replicate fire-

related plumes and should be further explored.  

2.2.3 Sparse Matrix Operator Kernel Emissions Modeling System 

The Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE)  is a 

processor developed to simulate the emission rates used by Eulerian air quality models 

(Coats, 1996). In this work, SMOKE is used to process emissions from all sources with 

the exception of emissions released by the wildland fires specifically targeted in the 

simulations. Emissions considered by SMOKE include area, mobile, biogenic, and point 
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sources and are derived from emissions inventories and land use data. In addition, 

processing of biogenic emissions, mobile sources, and plume rise for point sources 

requires meteorological inputs, which are typically derived from the same weather fields 

used to drive the chemical transport model.  

2.2.4 Fire Emission Production Simulator 

The Fire Emission Production Simulator (FEPS) is an emissions model designed 

to replicate emissions, heat release, and fuel consumption patterns for prescribed burns 

and wildland fires (Anderson et al., 2004). FEPS can be used to generate hourly emission 

and heat release data from prescribed and wildland fires involving a large variety of 

forest, shrub, and grassland types. The model simualtes fire emission rates by processing 

user-supplied fire characteristics including burn area, fuel type, moisture, and weather. 

Fuels can be selected from a database of typical fuels included within the model. FEPS 

uses this data to estimate flaming and smoldering phase fire-related emissions, as well as 

fuel consumption rates. Although hourly emissions rates are only provided for a few 

pollutants (CO, CH4, and PM2.5), emission factors available for different species along 

with the fuel consumption estimates provided by FEPS can be used to calculate a larger 

array of fire-related emissions. In addition, plume rise is also calculated by the model 

based on theoretical and empirical formulations. 

2.2.5 Daysmoke 

Daysmoke is an empirical-statistical fire impact model developed by the U.S. 

Forest service to simulate plume rise and dispersion of smoke from prescribed burns 

(Achtemeier et al., 2011). Daysmoke simulates fire emissions as a series of dimensionless 

smoke particles, and uses an array of parameters to model their transport while 

attempting to capture the stochastic nature of the fire plume processes. The model relies 

on meteorological fields generated by a numerical weather prediction system and fire 
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emissions provided by an emissions processor. In addition, Daysmoke can be used as a 

subgrid-scale model to inject fire emissions into regional-scale chemical transport 

models. Here, smoke plume structures simulated by Daysmoke are used to vertically 

distribute fire-related emissions among the chemical transport model’s vertical layers. 

Vertical smoke profiles are taken from Daysmoke after a plume reaches full development 

and used to inject and distribute fire-related emissions within the modeling domain at the 

appropriate locations and heights. 

2.3 Smoke Plume Simulations 

In this section, two simulations attempting to replicate smoke transport from 

wildland fires with an Eulerian chemical transport model are described. The simulations 

focus on smoke plumes from markedly different fires. The first simulation described 

below seeks to reproduce a single weak plume formed from a short-lived prescribed burn. 

The burn’s impact on air quality is mostly local and relatively brief. In contrast, a 

simulation attempting to model a series of large wildfires which burned for over a month 

and consumed several thousand square kilometers was also completed. In this case, the 

fires affected air quality at regional scale and their impacts were observed throughout the 

southeastern U. S. The fire episodes were selected to evaluate CMAQ’s multiscale 

abilities applied to reproduce smoke transport over significantly different temporal and 

spatial scales. 

2.3.1 Fort Benning Prescribed Burn: April 9, 2008 

In this air quality modeling application, the impacts of a prescribed burn at the 

Fort Benning, GA military base on PM2.5 concentrations on April 9, 2008 are simulated. 

During this day, 300 acres of wildland were treated by prescribed burning. Ignition 

occurred at 12:30 local time (LT) and flaming lasted until 14:45 LT, smoldering 

emissions continuing thereafter. This episode is of special interest as a large increase in 
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PM2.5 concentrations, likely due to the impact from the burn, was recorded at the 

Columbus, GA airport air quality monitoring site. The burning episode provides an 

opportunity to compare modeled results to pollutant concentrations observed at a 

regulatory air quality monitoring station. 

Hourly emissions from the prescribed burn were estimated with FEPS, using 

information provided by land managers at the site. Non-fire emissions for the CMAQ 

simulation were prepared using SMOKE and a 2002 “typical year” emissions inventory 

(MACTEC, 2008) projected to 2008 using growth factors generated from the Economic 

Growth Analysis System (Bollman, 2001). Meteorological fields were generated using 

WRF at 1.33 km horizontal grid resolution and 34 vertical layers of increasing in depth 

from the surface upwards. Initialization, boundary conditions constraining, and nudging 

at 6-hour intervals were performed using analysis products from the North American 

Mesoscale (NAM) model. The CMAQ domain covered 120 × 124 km over southwestern 

Georgia and southeastern Alabama with 1.33 km horizontal grid spacing and 34 vertical 

layers, analogous to the meteorological modeling.  

Daysmoke simulations were undertaken using 6 updraft cores. For injection into 

CMAQ, the plume profile estimated by Daysmoke 4 km downwind of the fire was used 

to vertically distribute fire emissions at the location of the fire within the CMAQ domain. 

This downwind distance provided sufficient time for full plume development without 

becoming excessively separated from the source (3 grid cells downwind). The vertical 

distribution of PM2.5 fire emissions for the entire episode is shown in Figure 2.2. The 

largest fraction of emissions is injected into layer 8, which ranges from approximately 

500 to 680 m above the ground. Nearly 70 % of fire emissions were distributed into 

layers 6, 7, and 8, extending from 335 to 680 m above the ground.  
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Figure 2.2. Vertical distribution of prescribed burn PM2.5 emissions by layer used in 

CMAQ simulations. 

 

 

Figure 2.3 shows the evolution of CMAQ-predicted PM2.5 concentrations at the 

Columbus Airport monitoring site, 30 km from the location of the prescribed burn, along 

with the station’s recorded pollutant concentrations. A sharp increase in PM2.5 

concentration is apparent from the observations after 17:00 LT. Similarly, a rapid 

increment is evident in the concentration predictions, although occurring at an earlier 

time. CMAQ overestimates the maximum PM2.5 concentration by approximately 4 µg 

m
-3

. A mismatch in the timing of observed and modeled peak pollutant concentrations is 

also clear. The fact that emissions estimates generated by FEPS are hourly, while in 

reality fire ignition occurred 30 minutes past 12:00 LT, may partially explain the 

discrepancy.   
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Figure 2.3. Hourly averaged PM2.5 concentrations (μg m
-3

) observed at the Columbus 

airport air quality monitoring site and predicted by fixed and adaptive grid CMAQ 

simulations on April 9, 2008 (LT). 

 

 

A major concern related to modeling atmospheric plumes with chemical transport 

models is the adequacy of a model’s spatial resolution to simulate the phenomenon. As 

plumes are transported within gridded modeling domains, emissions are numerically 

diluted due to coarse grid resolution and the assumption of perfect mixing within each 

cell’s volume. Here, a simulation completed with an adaptive grid algorithm in CMAQ 

was carried out to assess the influence of horizontal grid resolution on concentration 

predictions. The adaptive grid version of CMAQ is described in depth in Chapter 5. In 

brief, the algorithm is designed to dynamically increase grid resolution at the locations by 

clustering grid nodes at the locations where solution accuracy most heavily depends on 

grid spacing. By doing so, grid resolution in the vicinity of the smoke plume targeted by 

the simulation is refined well below 1 km.  

Concentration predictions generated with the adaptive grid are included in Figure 

2.3 along with the results of the 1.33 km fixed grid simulation. Although at 1.33 km grid 

spacing the fixed grid simulation was carried out using a resolution close to the finest 

0

5

10

15

20

25

30

P
M

2
.5

(µ
g 

m
-3

)

Fixed Grid

Adaptive Grid

Observations



 20 

resolutions typically applied in CMAQ, significant differences are apparent between the 

static and adaptive simulations. The finest horizontal resolution attained by the adaptive 

grid was approximately 100 m. In contrast to the fixed grid prediction, the adaptive grid 

simulation, underestimates the maximum PM2.5 concentration at the Columbus airport 

with respect to observations, although the magnitude of the error is similar for both 

simulations. However, modeled PM2.5 concentrations fall abruptly after peaking in the 

static grid simulation, while the decrease is gentler when the adaptive grid is applied and 

more closely resembles the observations. Overall, the mean fractional error in the 

modeled results relative to station observations was reduced by 17 % with the adaptive 

grid compared to the fixed grid simulation.   

A better understanding of the modeling results can be attained by visualizing 

pollutant concentration fields for each simulation. The PM2.5 surface-level concentration 

fields depicted in Figure 2.4 correspond to the time when maximum concentrations were 

predicted at the Columbus airport by both simulations. The smoke plume generated by 

the static grid simulation undergoes greater diffusion compared to the one obtained using 

grid adaptation. It is also apparent that the predicted impact at the airport site is not direct, 

but rather a tangential plume hit. In the adaptive grid simulation, the PM2.5 concentration 

field displays a concentrated smoke plume with high concentrations at the plume’s core 

persisting longer into the simulation. Figure 2.5 further contrasts the plumes produced 

with static and adaptive grids. The iso-surfaces included in Figure 2.5, show three-

dimensional plume volumes defined by PM2.5 concentrations equal to 30 μg m
-3

. The 

viewer position has been rotated in the figure to better appreciate the plume volumes. The 

three-dimensional visualizations reflect the differences in plume structure brought about 

by significantly increasing grid resolution beyond the levels typically applied to regional-

scale chemical transport models.   
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Figure 2.4. CMAQ-predicted PM2.5 concentrations (μg m
-3

) on April 9, 2008 at 15:45 LT 

generated using (A) 4-km fixed grid CMAQ simulation; and (B) adaptive grid CMAQ 

simulation. Locations of the prescribed fire at Ft. Benning and the Columbus airport air 

quality monitoring site are indicated by red and white circles respectively. 

 

 

 

Figure 2.5. Three-dimensional iso-surfaces defined by PM2.5 concentration equal to 30 μg 

m
-3

 on April 9, 2008 at 15:15 LT generated using (A) 4-km fixed grid CMAQ simulation 

and (B) adaptive grid CMAQ simulation. 

 

 

2.3.2 Georgia-Florida Wildfires: May, 2007 

The simulation described in this section attempts to model smoke transport from a 

series of wildfires which occurred in southeast Georgia and northeast Florida during the 

spring of 2007.  The wildfires burned for several months, beginning as two separate fires 

in Georgia and Florida which converged and became the Georgia Bay Complex. The 
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magnitude of the wildfires was unprecedented in these states, burning over 500,000 acres 

(GFC, 2007). Severe drought and excessive accumulation of forest fuels led to favorable 

fire conditions. The event would later prompt wider use of prescribed burning, such as 

the fire described in section 2.2.1, as a land management strategy to reduce the risk of 

uncontrolled wildfires. Smoke from the fires impacted air quality at urban areas 

throughout Georgia, Alabama, and Florida, leading to health warnings and road closures.  

In contrast to the Fort Benning prescribed burn simulation previously discussed, 

the simulation attempting to model the smoke plumes from the Georgia-Florida wildfires 

of 2007 involved significantly larger spatial and temporal scales. CMAQ was used to 

model air quality across the southeastern U.S. during the entire month of May. A nested 

domain covering the state of Georgia and fractions of Florida, Alabama, and South 

Carolina was used to simulate smoke transport using 4 km horizontal grid resolution. As 

in the Fort Benning simulation, emissions from all sources other than the wildfires of 

interest were estimated through SMOKE and a projected 2002 “typical year” emissions 

inventory. Meteorological fields were prepared with WRF using 4 km grid resolution and 

34 vertical layers. Due to the characteristics and extent of the wildfires, modeling fire 

emissions and plume rise with FEPS and Daysmoke was unfeasible. Here wildfire 

emissions were estimated using the Satellite Mapping Automated Reanalysis Tool for 

Fire Incident Reconciliation (SMARTFIRE) information system and the Bluesky 

modeling framework (Sullivan et al., 2008). SMARTFIRE combines fire-related field 

observations with satellite-derived fire data to estimate burn areas and locations which 

were processed with the Bluesky framework to quantify pollutant emissions.  

To assess CMAQ’s ability to simulate smoke transport from the Georgia-Florida 

wildfires, a series of stations in which air quality recorded by observational networks at 

urban locations was clearly impacted by fire-related emission were selected to evaluate 

and diagnose model performance. The episodes selected include smoke-related air quality 

impacts recorded at Macon, Atlanta, and Savannah in Georgia, as well as Birmingham, 
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Alabama. During these days maximum hourly PM2.5 concentrations recorded at air 

quality monitoring stations within these cities ranged from 80 to 340 µg m
-3

. Figure 2.6 

shows the date and location of the periods selected for model evaluation along with peak 

PM2.5 concentrations observed and the approximate location of the Georgia Bay 

Complex. 

 

 

Figure 2.6. Location of Georgia Bay Complex and urban smoke episodes selected for 

model evaluation. Incident dates and maximum observed hourly PM2.5 concentrations are 

also included.  

 

Figure 2.7 shows the surface-level PM2.5 concentrations predicted by CMAQ on 

May 17
th

 at the time high PM2.5 concentrations were observed in Savannah. During this 

period, a smoke plume extending from the location of the wildfires to the city of 

Savannah is apparent in the modeled pollutant concentrations. Moreover, the simulated 

smoke plume followed a trajectory corresponding to the increase in pollutant 

concentrations observed within the city. Similarly, for most of the smoke episodes 

Macon, GA 
5/12 (340 µg m-3)

Birmingham, AL 
5/15 (80 µg m-3)
5/23 (155 µg m-3)

Atlanta, GA 
5/16 (125 µg m-3)
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Georgia Bay 
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analyzed, CMAQ produced relatively accurate plume trajectories, predicting well‐timed 

hits at the expected locations. However, the Macon, GA incident on May 12 was an 

exception. On this day the simulation did not predict any significant impact on pollutant 

concentrations that would match the increase in observed PM2.5 concentrations of almost 

350 µg m
-3

. In this case, the trajectory traveled by the smoke plume narrowly missed the 

city of Macon. 

 

Figure 2.7. Predicted surface-level PM2.5 concentrations (µg m
-3

) over the southeastern 

U.S. during the Savannah smoke incident of May 17, 2007 at 14:00 LT. The location of 

Savannah is indicated by the black marker.  

 

 

Although CMAQ-predicted smoke trajectories largely agreed with the timing of 

recorded peaks in monitored pollutant concentrations, the simulation usually 

underestimated the maximum PM2.5 impacts. Figure 2.8 shows CMAQ-predicted and 

observed PM2.5 concentrations at Savannah on May 17. Compared to observations, 

simulated concentrations reflect a substantial underestimation of high pollutant 

concentrations at Savannah. In all smoke incidents analyzed, peak PM2.5 concentrations 
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were significantly underestimated by the model. Additionally, the discrepancies between 

observed and modeled concentrations heightened as distance between the wildfires and 

receptors increased.  

 

 

Figure 2.8. Hourly PM2.5 concentrations observed and predicted by CMAQ with 4, 12, 

and 36 km resolutions at the Savannah-Lathrop Monitoring Site on May 17, 2007 (UT).  

 

 

To assess the influence of grid resolution on modeled concentrations, predictions 

from the 4 km simulation were compared to those obtained using 12 and 36 km grid 

spacing. Figure 2.8 includes PM2.5 concentrations simulated at each level of horizontal 

grid resolution and exposes a significant sensitivity in CMAQ predictions to grid spacing. 

At Savannah, the maximum PM2.5 concentrations predicted using a 4 km grid was over 

twice as large as that produced under 36 km resolution. In all smoke episodes explored, 

significant sensitivity in concentration predictions to grid resolution was demonstrated. In 

general, higher resolution led to less diffusion, better structured plumes, and higher 

pollutant concentrations.  

Three-dimensional visualization of modeled plumes reveals additional details 

related to smoke transport in the simulations. Figure 2.9A shows the structure of the 

plume that impacted air quality in Savannah on May 17 when the maximum PM2.5 

concentration was observed within the city. In Figure 2.9, smoke plumes are depicted as 

0

50

100

150

200

250

300

5/17 0:00 5/17 12:00 5/18 0:00

P
M

2
.5

(u
g 

m
-3

) 

Observations

4 km

12 km

36 km



 26 

iso-surfaces defined by PM2.5 concentrations equal to 50 µg m
-3

. The visualization shows 

that during the Savannah incident a significant fraction of the fire-related PM2.5 is 

transported aloft in the models upper layers. Surface concentrations were unaffected by a 

substantial amount of PM2.5 concentrated at higher altitudes. Similarly, the visualization 

of the smoke plume that impacted air quality in Atlanta on May 16 (Figure 2.9B) exposes 

significant PM2.5 transport within the model’s upper layers. During the Macon and 

Birmingham episodes, only weak and highly diffused smoke plumes were present in the 

simulation. In these cases, the three-dimensional visualizations of smoke transport 

suggest an underestimation of fire-related emissions.  

 

Figure 2.9. Three-dimensional iso-surfaces defined by PM2.5 concentration equal to50 μg 

m
-3

: (A) Savannah smoke incident of May 17, 2007 and (B) Atlanta smoke incident of 

May 16, 2007. Viewer position is from the upper north-west corner of the domain in (A) 

and from the eastern domain boundary in (B).  

 

2.4 Discussion  

At a local-scale, the modeling system was able to predict the impact of a single 

prescribed burn smoke plume on air quality at a downwind receptor with reasonable 

accuracy. However, when applied to simulate regional-scale smoke transport from 

multiple wildfires over a prolonged period the system did not perform as well for 
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simulating air quality. Specifically, CMAQ severely underestimated the impact of 

wildfires on PM2.5 concentrations at urban locations downwind. Similarly,Yang et al. 

(2011) found in their simulation of the 2007 Georgia-Florida wildfires that CMAQ was 

able to capture smoke transport reasonably well but systematically underestimated 

observed PM2.5 concentrations during the fires. Several elements of the modeling system 

likely contribute to the underprediction of pollutant concentrations. However, in the 

Georgia Bay Complex simulation weak plumes and large discrepancies between modeled 

and observed PM2.5 concentrations strongly suggest a significant underestimation of fire-

related emissions in the satellite-derived estimates. Emission rates generated by fire 

emission processors such as FEPS seem more reliable but require a substantial amount of 

information describing a fire’s characteristics and may be limited to smaller and better 

controlled events. In addition, studies have recommended the inclusion of fire-related 

secondary organic aerosol production in air quality simulations (Lee et al., 2008). 

However, improved emissions estimates of secondary organic aerosol precursors and 

formation mechanisms are needed to realistically simulate the process within the model.  

The simulated plumes also reflect the importance of meteorological drivers in 

modeling applications attempting to reproduce the transport of fire-related smoke. The 

influence of wind fields on predicted pollutant concentrations is evident in the long-range 

transport of fire-relate emissions within the Georgia-Florida wildfires simulation. 

Although predicted smoke trajectories agreed with observed concentration peaks during 

most of the urban air quality incidents explored, in at least one of the locations selected 

sizable discrepancies between observed and modeled pollutant concentrations seem to be 

mainly attributable to errors in wind-driven smoke transport. Even at considerably 

smaller spatial and temporal scales, such as those pertaining to the Fort Benning 

simulation, a strong  influence of meteorological inputs on air quality modeling results is 

apparent; the severity of predicted impacts at downwind receptors is largely dependent on 

the meteorological fields used to drive dispersion. If models are used to forecast fire-
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related air quality, it is important to recognize that the ability of chemical transport 

models to predict the air quality impacts of wildland fires is significantly constrained by 

the uncertainties inherent to numerical weather modeling. Additionally, the vertical 

distribution of fire emissions appears to be an essential component of air quality 

simulations centered on smoke transport. Plume rise has been previously identified as an 

important model input (Liu et al., 2008). Subgrid scale models may be a practical method 

to vertically allocate buoyant emissions in chemical transport models operating on 

predetermined flow fields. The accumulation of fire-related emissions above the 

atmospheric boundary layer observed in the Georgia-Florida wildfires simulation signals 

a need to accurately represent the vertical structure of smoke plumes and the fraction of 

emissions penetrating into the free troposphere.  

Finally, the effect of grid resolution on predicted pollutant concentrations was 

demonstrated in both simulations. By increasing horizontal grid resolution, simulated 

plumes from the Georgia Bay Complex were subjected to significantly less numerical 

diffusion and produced substantially larger air quality impacts at downwind receptors. 

The influence of grid resolution was also appreciable at a local scale in the prescribed 

burn plume simulation.  In this case, a fixed grid simulation was carried out at relatively 

fine resolution. Still, the air quality predictions obtained at higher resolution through an 

adaptive grid proved to be appreciably different to those estimated under a 1.33 km grid.  

The results of the simulations included in this chapter and the performance of the 

modeling system call for additional research exploring the sources of error and 

uncertainty in fire-related simulations with Eulerian regional-scale models. Key features 

of the modeling process used to simulate the impacts of fires on air quality identified 

from the simulations described herein are further explored in subsequent chapters. 

Chapter 3 centers on fire-related emissions and specifically analyzes the spatiotemporal 

allocation of emissions on gridded domains, including representations of plume rise. 

Chapter 4 explores the sensitivity of model predictions to meteorological fields in the 
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context of fire-related air quality modeling. Chapter 6 describes the development of the 

adaptation algorithm used to carry out the adaptive grid simulation described in Section 

2.2.1 and further explores the influence of grid resolution in atmospheric simulations of 

smoke plumes from wildland fires. 
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CHAPTER 3 

SIMULATING SMOKE TRANSPORT FROM WILDLAND FIRES 

WITH A REGIONAL-SCALE AIR QUALITY MODEL: 

SENSITIVITY TO SPATIOTEMPORAL ALLOCATION OF FIRE 

EMISSIONS 

 

Abstract 

Air quality simulations produced with comprehensive atmospheric chemistry and 

transport models can provide valuable information about the impacts of fires on pollutant 

concentrations. However, significant uncertainties are associated with fire-related 

emissions estimates as well as their distribution on gridded modeling domains. In this 

study, we explore the sensitivity of fine particulate matter (PM2.5) concentrations 

simulated with a three-dimensional gridded air quality model to the spatial and temporal 

allocation of fire emissions. The assessment was completed by using the Community 

Multiscale Air Quality modeling system (CMAQ) to simulate a fire-related urban smoke 

event which severely impacted air quality throughout the Atlanta metropolitan area on 28 

February 2007. Sensitivity analyses were undertaken to evaluate the significance of 

emissions distribution among a model’s vertical layers, along the horizontal plane, and 

into hourly inputs. Results show that predicted PM2.5 concentrations are highly sensitive 

to emissions injection altitude relative to planetary boundary layer height. Simulations 

were responsive to the horizontal allocation of fire emissions and their distribution into 

single or multiple grid cells. Additionally, modeled PM2.5 concentrations proved to be 

greatly sensitive to the temporal distribution of fire-related emissions. The analyses 

completed in this study demonstrate that, in addition to representative estimates of 
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emitted mass, successfully modeling the impacts of wildland fires on air quality with 

gridded models depends on an accurate spatiotemporal allocation of emissions. 

3.1 Introduction 

Air quality simulations produced with numerical models can provide valuable 

information to environmental regulators and land-managers about the potential impacts of 

fires on pollution levels. Comprehensive chemical transport models are well-suited to 

simulate the atmospheric dispersion and transformation of emissions released in wildland 

fires across different spatial scales. Previous studies have attempted to simulate the air 

quality impacts of wildland fires using chemical transport models (Junquera et al., 2005; 

Konovalov et al., 2011; Zeng et al., 2008). Only a few of these simulations attempted to 

replicate distinct smoke plumes and evaluated model predictions against measured or 

satellite-derived pollutant concentrations. Such evaluations have reported mixed results 

when aiming to reproduce observed particle loads downwind of specific fires. Often, 

gridded air quality models significantly underpredict PM2.5 concentrations (Liu et al., 

2009; Strand et al., 2012; Yang et al., 2011). A considerable amount of research 

pertaining to the effects of wildland fires on air pollution has focused on determining 

accurate fire-related emissions and emission factors (Akagi et al., 2011; Lee et al., 2005; 

Wiedinmyer et al., 2006). However, the distribution of fire emissions in space and time 

on gridded modeling domains is also subject to significant uncertainty (Tian, 2006). 

Beyond evaluating the magnitude of fire-related emissions inputs, the methodologies 

applied to include fire emissions in air quality simulations must be assessed. 

Sensitivity analyses can be used to quantify the responsiveness of modeling 

results to specific inputs or parameters. By doing so, they provide information about the 

relative importance of each input variable to select model outputs. Furthermore, 

sensitivity analyses are a key step in the process of improving model performance and 

achieving successful simulations. In this study, we explore the sensitivities of PM2.5 
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concentrations simulated with a three-dimensional gridded air quality model to the spatial 

and temporal allocation of fire emissions for a severe urban smoke event. Sensitivity 

analyses were performed to evaluate the significance of plume rise approximations, or the 

distribution of fire emissions among a model’s vertical layers. The implications of 

emissions allocation along the horizontal plane are also assessed by comparing PM2.5 

concentration sensitivities to injection into discrete grid cells and assessing the effect of 

treating fires as point sources or distributing fire-related emissions into multiple cells. 

Additionally, a sensitivity analysis of simulated pollutant concentrations to the temporal 

partitioning of fire emissions into hourly model inputs is presented. Numerical 

simulations were performed with CMAQ and a “brute-force” method was applied to 

complete the necessary sensitivity analyses. The results of this study weigh the potential 

benefits of better characterizing fire emissions in gridded air quality models beyond the 

traditional emphasis placed on emissions strength.  

3.2 Methods 

3.2.1 Air Quality Modeling Framework 

Numerical air quality simulations undertaken as part of this work were done 

through the modeling framework described in Chapter 2. Meteorological fields were 

produced with the Weather Research and Forecasting model (WRF version 2.2, 

http://www.wrf-model.org/index.php). WRF modeling was carried out using 3 nested 

domains with increasing horizontal grid resolutions of 36, 12, and 4 km. Analysis 

products from the North American Mesoscale model (nomads.ncdc.noaa.gov) were used 

to initialize weather simulations, constrain boundary conditions, and nudge 

meteorological fields at 6-hour intervals. Additional details about the WRF configuration 

applied are included in Chapter 4.  
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Pollutant emission rates for non-fire sources were prepared through the Sparse 

Matrix Operator Kernel Emissions modeling system (SMOKE version 2.1, 

http://www.smoke-model.org/index.cfm). Emissions were projected from a 2002 “typical 

year” emissions inventory (MACTEC, 2005). Fire-related emissions were estimated with 

the Fire Emission Production Simulator (FEPS version 1.1.0, 

http://www.fs.fed.us/pnw/fera/feps/). Distribution of fire emissions into vertical layers 

was derived from plume rise estimates produced with the Daysmoke model (Achtemeier 

et al., 2011). 

Chemical transport modeling was done with the Community Multiscale Air 

Quality modeling system (CMAQ version 4.5, http://www.cmaq-model.org/). For all 

CMAQ simulations, modeling domains were divided into 34 sigma-pressure vertical 

layers increasing in depth from the ground up. Layer thickness increases from 

approximately 20 m at the surface to over 3 km at the domain’s upper edge 

approximately 20 km above ground. The first 1000 m of the atmosphere are contained 

within the lower 10 vertical layers. Analogous to the WRF simulations, CMAQ air 

quality modeling was performed using 3 levels of nested grids at 36, 12, and 4 km 

horizontal resolutions. Coarser-resolution simulations were carried out to define initial 

and boundary conditions for fine-resolution modeling. All sensitivity analyses and 

necessary air quality simulations were done at 4 km grid resolution. 

3.2.2 Base Case Simulation 

Fire-related smoke severely impacted air quality across metro Atlanta on 28 

February 2007. The dramatic increase in pollutant concentrations was caused by two 

prescribed burns roughly 80 km southwest of Atlanta at the Oconee National Forrest and 

Piedmont National Wildlife Refuge (henceforth referred to as Oconee and Piedmont). 

Approximately 12 km
2
 of wildland were affected by these fires. Hourly PM2.5 

concentrations observed throughout Atlanta escalated to around 150 µg m
-3

 a few hours 

http://www.smoke-model.org/index.cfm
http://www.cmaq-model.org/
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after ignition. Figure 3.1 shows the locations of prescribed burns and air quality 

monitoring stations considered in this study. 

 

 

Figure 3.1 Location of Oconee and Piedmont fires, and Confederate Ave. (CFA), South 

DeKalb (SDK), Jefferson St. (JFS), and McDonough (MCD) air quality monitoring 

stations. 

 

 

This smoke incident was selected as a case study and is the focus of this work. 

The episode has also been modeled with CMAQ in previous studies. Hu et al. (2008) 

compared an air quality forecast executed with preburn information to a series of 

“hindcasts” that incorporated additional details about fire evolution and observed 

meteorology. Liu et al. (2009) analyzed smoke transport from these prescribed burns and 

compared simulated trajectories to satellite observations. In Chapter 6, an adaptive grid 

version of CMAQ capable of dynamically refining grid resolution is used to simulate this 



 39 

smoke episode and demonstrate the significance of horizontal grid resolution in 

atmospheric plume modeling.  

Figure 3.2 shows hourly PM2.5 emissions estimates for each burn. Emissions 

processing with FEPS requires approximations of burned area and fuel consumption, as 

well as appropriate emission factors. Reported uncertainties for bottom-up estimates of 

PM2.5 emissions from fires in the Southeastern U.S. such as these range from 15-50% 

(Odman, 2011; Tian, 2006). One recent study, for instance, quantified emissions from a 

series of prescribed burns in northern Florida using the same approach applied here found 

PM2.5 emissions estimates were underpredicted by 15% with respect to field 

measurements (Odman, 2012). Hourly plume structures simulated by Daysmoke were 

used to distribute fire emissions among the CMAQ domain’s vertical layers. Figure 3.3 

shows PM2.5 injected into each layer from the Oconee and Piedmont fires for the entire 

simulation. Generally, upper layer injection corresponds to flaming combustion while 

emissions distributed closer to the surface correspond to the fire’s smoldering phase. 

 

 

Figure 3.2 Total fire-related PM2.5 emissions by vertical layer for Oconee and Piedmont 

fires. Approximate full layer heights (m AGL) are also included. 
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Figure 3.3 Total fire-related PM2.5 emissions by vertical layer for Oconee and Piedmont 

fires. Approximate full layer heights (m AGL) are also included. 

 

3.2.3 Sensitivity Analyses 

Sensitivities of CMAQ-modeled concentrations to emission inputs were 

quantified by calculating the difference between two simulations in which a parameter 

was perturbed, 

 
x

CC
s xxxx

x



 

2
 (3.1) 

where sx is the first-order sensitivity coefficient of concentration C response to parameter 

x, and Cx+∆x and Cx-∆x are the concentrations resulting from simulations under +∆x and 

-∆x perturbations to x. These sensitivity estimates, also known as “brute-force” 

sensitivities, can be applied to any simulated variable and model parameter or input 

(Hwang et al., 1997). Similar to first-order sensitivity approximations, higher-order 

sensitivity coefficients can also be estimated using finite differencing methods. Extending 

on Equation (3.1), second-order sensitivity coefficients can be approximated from three 

simulations as 

 
2

2

x

CCC
s xxxxx

x



   (3.2) 

where sx
2
 is the second-order sensitivity coefficient and base-case concentration Cx is 

included. In this study, first-order sensitivity analyses were used to quantify the response 

of modeled PM2.5 concentrations to variations in the temporal and spatial allocation of 

fire emissions. Each sensitivity estimate requires two additional CMAQ simulations 
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beyond the base case. With the exception of fire-related emissions, model configuration 

and other inputs in the sensitivity runs remain identical to those used in the base case 

simulation. In the sensitivity simulations, fire emissions are perturbed by increasing and 

decreasing base-line emissions by an equal percentage. When sensitivities are intended to 

quantify the response to emissions from a specific grid cell, vertical layer, or period of 

time, only emissions within that subset are perturbed. 

Using the brute-force method to estimate sensitivities of modeled concentrations 

and project air quality impacts entails several considerations. First, brute-force sensitivity 

estimates may be heavily influenced by numerical errors if small perturbations are used 

(Hakami et al., 2004). Equation (3.1) provides first-order sensitivity coefficients 

estimated from the model’s response to specific perturbations. The ability of these 

sensitivity coefficients to replicate response to larger or smaller perturbations is 

dependent on the response’s linearity. Although many atmospheric aerosol-phase 

processes included in CMAQ are linear, some, such as thermodynamic aerosol 

interactions, cloud processes, and secondary aerosol formation, are not (Napelenok et al., 

2006). For concentrations involving significant nonlinearities, higher-order sensitivity 

coefficients are required to accurately reproduce model response across a broad range of 

perturbations. The analyses of PM2.5 concentration sensitivity to fire emissions conducted 

for this study focus on primary carbonaceous emissions. While secondary formation may 

contribute to fire-related PM2.5, most of the impacts can typically be attributed to primary 

fine particle emissions (Tian et al., 2009). For many primary pollutants, the response of 

atmospheric concentrations to emissions perturbations can be expected to be mostly 

linear (Cohan et al., 2005). Previous sensitivity analyses have in fact shown a nearly 

linear source-receptor relationship for primary emissions (Koo et al., 2009). Furthermore, 

although fire-related PM2.5 impacts may not be entirely linear, the response to fire 

emissions in air quality modeling applications commonly is (Liu et al., 2009; Tian et al., 

2008). Limited information about fire-associated emission of secondary aerosol 
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precursors and nonlinear atmospheric transformations affecting fire-related particle 

pollution generally constrains smoke simulations to primary sources and linear response. 

The adequacy of linear extrapolation for this study is discussed in Section 3.3.2. 

Additionally, PM2.5 sensitivity estimates can be scaled to other primary pollutants 

dominated by advection and diffusion, and provide information about the dispersion-

related response of all species. 

3.3 Results and Discussion 

3.3.1 Base Case Model Performance 

CMAQ performance was evaluated for the base case simulation by comparing 

predicted PM2.5 concentrations to concurrent observations at air quality monitoring 

stations downwind of fires where evident increases in PM2.5 concentrations were 

recorded during the smoke episode. Sites used for evaluation and sensitivity analyses are 

operated by the Georgia Department of Natural Resources (Confederate Ave., South 

DeKalb, and McDonough stations) and Southeastern Aerosol Research and 

Characterization (Jefferson St. station) networks. Figure 3.4a shows a visualization of the 

smoke plume simulated by CMAQ.  
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Figure 3.4 (a) CMAQ predicted PM2.5 ground-level concentrations at 1900 LT on 28 

February 2007. Black and white circles indicate monitoring station and fire locations 

respectively. (b) Observed 1-hour average and CMAQ-predicted PM2.5 concentrations at 

the Jefferson St. monitoring site on 28 February 2007. 

 

Figure 3.4b compares modeled and observed PM2.5 concentrations at the Jefferson 

St. monitoring station in downtown Atlanta. A large underprediction in simulated PM2.5 

concentrations compared to measurements is evident. Similarly, CMAQ-estimated PM2.5 

concentrations are lower than recorded observations at all monitoring sites significantly 

impacted by smoke. At sites within Atlanta’s urban core (Confederate Ave., Jefferson St., 

and South DeKalb) CMAQ underestimates maximum observed 1-hour average PM2.5 

concentrations by 58-67%. For these locations, the model’s mean fractional error 

(2|Cmodeled-Cobserved|/(Cobserved+Cmodeled)) ranges from 64-73% during the 8-hour interval 

with the highest observed PM2.5 concentrations. However, the simulation does result in 

relatively well-timed peaks at downwind receptors and produces a reasonable pollutant 

plume trajectory. At the McDonough station, about halfway between downtown Atlanta 

and the prescribed burns, CMAQ underpredicts the maximum observed PM2.5 

concentration by 33%. Still, an 8-hour mean fractional error of 67% for modeled PM2.5 

could indicate that the error at the site is due to poor timing relative to observations.  

Additional CMAQ performance metrics are included in Chapter 6 for a similar 

simulation. The analyses included therein also showed that increasing horizontal grid 

resolution may lead to substantially higher PM2.5 concentration predictions; by applying 

an adaptive grid version of CMAQ that dynamically refines grid resolution at the smoke 

plumes to less than 1km, peak simulated PM2.5 concentrations in Atlanta were increased 

by up to 40%. Still, underpredictions persist in the adaptive grid simulations. Other 

studies have also reported CMAQ-modeled PM2.5 concentrations far lower than ground-

based observations when attempting to simulate fire-related air quality impacts. For 

instance, Yang et al. (2011) modeled a series of wildfires occurring along the Georgia-

Florida boundary using CMAQ and found that predicted PM2.5 concentrations were 
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underestimated when compared to monitoring station observations even after increasing 

fire emissions by a factor of three. Assessing the contribution of uncertainty in 

spatiotemporal allocation of fire emissions to this error is the objective of the sensitivity 

analyses undertaken below. 

3.3.2 Linear Response to Fire Emissions 

As previously discussed, linearity is an important assumption if the brute-force 

sensitivity approximations are used to estimate model response across a range of 

perturbations. Linear response enables accurate approximations of impacts and source 

contributions using first-order sensitivity coefficients as 

 xsCC x 0
 (3.3) 

where C0 is a base case concentration and C is the concentration resulting from ∆x. For 

the air quality simulations included in this study, the response of PM2.5 concentrations to 

fire emissions can be expected to be predominantly linear. Fire-related particle emissions 

are determined from PM2.5 emission factors and speciated mostly into primary organic 

aerosol (90%) and primary elemental carbon (6%). For these species, no significant 

indirect effects are anticipated.  

To evaluate the accuracy of the linear response assumption several tests were 

carried out. First, a series of CMAQ simulations were performed varying the magnitude 

of base case fire emissions by ±10%, ±30%, and ±50%. Throughout the full simulation, 

linear response was evident for predicted PM2.5 concentrations at all downwind receptors. 

Additionally, the relationship between concentrations and emissions intensity was nearly 

linear across the complete variation range from -50% to +50%. As expected, first-order 

sensitivity coefficients to fire emissions estimated using Equation (3.1) proved to be 

practically equal whether applying ±10%, ±30%, or ±50% perturbations. Next, second-

order sensitivity coefficients were estimated for the base case simulation and compared to 

first-order coefficients. The importance of higher-order sensitivity coefficients to 
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replicate the response of pollutants affected by nonlinearities was discussed in Section 

3.2.3. Second-order coefficients calculated using Equation (3.2) proved to be minor 

compared to first-order ones. In fact, inclusion of second-order coefficients into response 

calculations only changed total estimated PM2.5 impacts by less than 2%. The results 

further demonstrate that for the analyses included in this study modeled PM2.5 

concentration response to fire emissions can be effectively captured by first-order 

sensitivity coefficients. 

3.3.3 Fire Contributions to PM2.5 Concentrations 

Fire contributions to modeled PM2.5 concentrations at each downwind site were 

quantified using brute-force sensitivity estimates. Figure 3.5a shows the first-order 

sensitivity coefficient for PM2.5 concentration response to fire emissions at South DeKalb 

during the smoke episode. The sensitivity coefficient quantifies change in modeled 

concentration per ton of fire-emitted PM2.5 as a function of time. It is important to 

mention that estimates at each instant represent sensitivity to all prior PM2.5 emissions 

(i.e. cumulative fire-emitted PM2.5). Fire and non-fire contributions to simulated PM2.5 

concentrations at South DeKalb are shown in figure 3.5b. The non-fire contribution, 

which includes all sources other than the two fires of interest, was estimated from a 

CMAQ simulation without Oconee and Piedmont fire emissions. The fire contribution to 

PM2.5 concentrations was calculated using the first-order sensitivity coefficients. Figure 

3.5b also includes results from a simulation including all emission sources and shows 

these concentrations closely match the sum of estimated fire and non-fire contributions. 

A significant fraction of the CMAQ-predicted PM2.5 pollution is attributable to fire 

emissions. For sites near downtown Atlanta, fire-attributable PM2.5 impact increases to 

20-31 µg m
-3

 and can contribute up to 56-67% of total modeled PM2.5. At McDonough, 

the maximum fire contribution to modeled PM2.5 concentration is 78% and the largest 

impact from fires is 70 µg m
-3

. However, contributions from non-fire sources are also 
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significant throughout the simulation and display large variations characteristic of the 

daily fluctuation in urban pollutant concentrations. The importance of non-fire 

contributions to simulated PM2.5 concentrations has been acknowledged in previous air 

quality modeling efforts exploring the air quality impacts of wildland fires (Christopher 

et al., 2009; Yang et al., 2011). 

 

 

Figure 3.5. (a) Brute-force first-order sensitivity coefficient for PM2.5 concentration 

response to fire emissions and (b) fire and non-fire contributions to modeled PM2.5 

concentrations at South DeKalb on 28 February 2007 (LT). Base-case CMAQ predictions 

are also included in (b). 

 

 

First-order sensitivity coefficients were also used to determine the increase to fire 

emissions that would match maximum simulated PM2.5 concentrations and peak 

observations. Figure 3.6 shows the effect, approximated with Equation (3.3), of 

intensifying base-line fire emissions by a factor of 5.1 at Jefferson St. and 3.7 at South 

DeKalb (additional results are included in the auxiliary material). Overall, base-line fire 

emissions would have to be increased by a factor of 4-6 for CMAQ predictions to reach 

the highest observed concentrations within Atlanta. Increments of this magnitude seem 

unrealistic and suggest that underpredicted downwind impacts cannot be fully explained 

by underestimated emissions. The projections also indicate that while modeled maxima 

are generally well-timed relative to peak observations, important differences exist 

between the complete evolution of predicted fire impacts and observed PM2.5 increments 

throughout the episode. As discussed in Chapter 2, and later in this thesis, the 
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underestimate is found to be due not only to emission rates, but model resolution and 

plume dynamics. 

 

 

Figure 3.6. Base-case and projected PM2.5 concentrations along with monitoring site 

observations on 28 February 2007 (LT). Projections estimate the effect of increasing fire 

emissions by factors of 5.1 (Jefferson St.) and 3.7 (South DeKalb). 

 

 

Sensitivity coefficients were calculated for each individual prescribed burn and 

used to quantify and compare PM2.5 concentration contributions specific to the Oconee 

and Piedmont fires. PM2.5 impacts broken down by fire at South DeKalb are included in 

Figure 3.7a. Although contributions from both fires are significant, at all sites considered 

about 75% of the total fire-related PM2.5 impact is attributable to the Oconee burn. The 

disparity in contributions is brought about by unequal emissions and differences in 

concentration sensitivities to each fire. Figure 3.7b shows hourly first-order sensitivity 

coefficients for each burn. It is clear that stronger emissions from the Oconee burn 

largely drive pollution impacts. However, it is interesting to note that sensitivity 

coefficients can be significantly higher for Piedmont burn emissions. While the added 

impact of Oconee emissions is larger, on average each ton of PM2.5 emitted by the 

Piedmont burn leads to a greater increase in concentrations at downwind locations. 

Moreover, the timing of peak sensitivity coefficients for the Piedmont fire better agrees 

with maximum simulated and observed concentrations. Sensitivity coefficients for 

individual fires are different because of dissimilar spatial and temporal emissions 
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distribution for each. The difference corroborates that allocation of fire emissions into 

hourly rates and gridded three-dimensional domains may significantly influence 

predicted pollutant concentrations. Sensitivities related to emissions allocation are further 

explored in Section 3.3.4. 

 

 

Figure 3.7. (a) Contributions to modeled PM2.5 concentrations at South DeKalb from the 

Oconee and Piedmont fires on 28 February 2007 (LT). Non-fire contribution and base-

case CMAQ predictions are also included. (b) First-order sensitivity coefficients for 

PM2.5 concentration response to fire emissions from each fire at South DeKalb (left axis) 

and site observations (right axis). 

 

 

3.3.4 Sensitivity Analyses 

3.3.4.1 Horizontal allocation of fire emissions 

It is common to treat fires as point sources, with all of the emissions in the same 

horizontal grid cell, in episodic air quality simulations with gridded regional-scale 

models. This assumption may limit accuracy by injecting fire emissions into a single 

horizontal grid cell and ignoring details about burned area and fire spread. In our base-

case air quality simulation, emissions from each fire were horizontally allocated to a 

single cell at the centroid of burned areas. Errors associated with this simplification grow 

as grid resolution is increased. The Oconee and Piedmont fires each consumed 

approximately 6.2 and 5.9 km
2
 of wildland, an area roughly equivalent to a 2.5 km × 2.5 

km quadrilateral. On a 4 km horizontal resolution grid, it is possible that each fire might 
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extend across multiple cells. Furthermore, fire locations may include significant 

uncertainties. Information on fire extent and evolution may be limited, especially for 

wildfires. Satellite-based methods of determining fire locations and sizes may introduce 

additional uncertainty (Giglio et al., 2006; Henderson et al., 2010). Hu et al. (2008) 

determined that modifying the horizontal allocation of fire emissions had a small effect 

on predicted downwind concentrations. For major events, satellite information has also 

been used to spatially refine coarse fire characterizations (Roy et al., 2007). The 

sensitivity analysis described below was completed to assess the potential gains of more 

accurately pinpointing fires or distributing their emissions across multiple grid cells.  

For the Oconee and Piedmont burns, sensitivity estimates were used to compare 

PM2.5 concentration impacts at downwind receptors for all 4 km × 4 km grid cells 

horizontally adjacent to the cell into which fire-related emissions were originally injected. 

Figure 3.8 shows total PM2.5 contributions at Jefferson St. attributable to the Oconee fire 

relative to the base-case fire location (center cell). Additionally, simulated peak PM2.5 

concentrations are compared to the base-case maximum (54 µg m
-3

) across the nine cell 

area. It is evident from Figure 3.8 that small changes to the horizontal allocation of fire 

emissions may significantly affect modeled PM2.5 concentrations downwind. For the 

urban sites considered, reallocation of emissions from the Oconee fire into a neighboring 

grid cell can increase total PM2.5 impact up to 28% or lower it by as much as 21%. A 

single cell shift in the horizontal allocation of Oconee fire emissions, which only account 

for a fraction of total PM2.5 pollution, can also cause peak concentrations at these 

receptors to escalate or fall by up to 20%. At McDonough, closer to the prescribed burns, 

the sensitivity of PM2.5 concentration to horizontal allocation of fire emissions is even 

larger. 
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Figure 3.8. Change in (a) Oconee fire PM2.5 contribution and (b) maximum simulated 

PM2.5 concentration relative to base-case at Jefferson St. after relocating Oconee fire 

emissions into grid cells adjacent to original injection cell. 

 

 

Changes in total PM2.5 impacts brought about by reallocating fire emissions do 

not necessarily correspond to changes in peak concentrations. For example, shifting 

emissions from the Oconee burn one cell northeast will increase total fire-attributable 

PM2.5 at Confederate Av. by 8%, but decrease the maximum simulated PM2.5 

concentration by 12%. Furthermore, the response may be completely different for 

individual downwind receptors close to each other; while the reallocation operation 

described above leads to an 8% increase in fire-related PM2.5 impact at Confederate Av., 

it causes a concurrent 20% reduction at South DeKalb 7 km away. Sensitivities are also 

markedly dissimilar for the Oconee and Piedmont burns. Figure 3.9 is equivalent to 

Figure 3.8, but shows the effects of altering emissions injection for the Piedmont fire. 

Significant differences exist between the magnitudes and patterns of PM2.5 concentration 

response to equivalent changes in horizontal distribution of Oconee and Piedmont fire 

emissions. However, the sensitivities of CMAQ-predicted PM2.5 pollution concentrations 

to the horizontal allocation of emissions from the Piedmont fire are also large; a single 

cell shift can change total PM2.5 contribution and peak concentration at Atlanta sites by 

up to 35% and 9% respectively. 
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Figure 3.9. Change in (a) Piedmont fire PM2.5 contribution and (b) maximum simulated 

PM2.5 concentration relative to base-case at Jefferson St. after relocating Piedmont fire 

emissions into grid cells adjacent to original injection cell. 

 

 

Additional uncertainty regarding the horizontal positioning of fire emissions 

stems from the plume rise representations applied to account for buoyancy. In the air 

quality simulations completed, plume structure was modeled to distribute fire emissions 

across the domain’s vertical layers. Using a subgrid scale dispersion model, plume rise 

was approximated as the vertical distribution of fire-related particulate matter at a fixed 

downwind distance for a fully developed plume. For the episode simulated, vertical 

plume structure was determined 10 km downwind of fires but used to vertically distribute 

fire emissions at the source. To evaluate the implications of applying a downwind plume 

rise estimate at the original fire location, PM2.5 impacts were compared for emissions 

injection into cells 10 km downwind of fires (i.e. two grid cells northwest). Figure 3.10 

shows how contributions to PM2.5 at Jefferson St. would change if Oconee and Piedmont 

fire emissions were injected downwind of the burns. Again, it is clear that reallocating 

emissions can have an important effect on predicted concentrations. Relocating emissions 

10 km downwind can alter fire-attributable PM2.5 impacts and maximum simulated 

concentrations at the sites near downtown Atlanta by up to 15%. As before, there is no 

evident correspondence between total PM2.5 contributions and peak concentrations, 

different downwind sites, or the Oconee and Piedmont burns. 
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Figure 3.10. Change in (a) Oconee fire PM2.5 contribution and (b) Piedmont fire PM2.5 

contribution relative to base-case at Jefferson St. after relocating each fire’s emissions 

into grid cells downwind (northwest) of fire location. 

 

 

3.3.4.2 Vertical allocation of fire emissions 

Plume rise approximations are an important component of air quality simulations 

involving buoyant emissions. As previously discussed, when fires are included in gridded 

domains, their emissions must be distributed among the domain’s vertical layers. 

Frequently, vertical distribution profiles for fire-related emissions are determined from 

simplified theoretical or empirical plume rise approximations (Hodzic et al., 2007; 

Junquera et al., 2005). Fire emissions processors (e.g. FEPS) or subgrid scale models may 

be able to provide hourly maximum and minimum plume height estimates (Freitas et al., 

2007; Sessions et al., 2011). Emissions can then be uniformly distributed among vertical 

layers from the maximum plume height down to the ground or minimum height. Fire 

emissions have also been simply homogeneously distributed within the planetary 

boundary layer (PBL) or below a fixed altitude (Hu et al., 2008; Yang et al., 2011). 

Alternatively, Lagrangian particle models can produce complete vertical plume structures 

that may also be used to allocate fire emissions on gridded domains and provide 

additional information about the true vertical distribution of pollutants (Liu et al., 2008). 

As previously described in Section 3.2.2, the hourly vertical distributions of fire 

emissions used in this study were determined with Daysmoke, a pollutant transport model 

developed for prescribed burns. To assess the significance of vertical emissions allocation 

a b

7.4%

-0.6%

0.0%

-10.9%

-6.7%

0.0%



 53 

in successfully modeling the air quality impacts of wildland fires, brute-force sensitivities 

of CMAQ-predicted PM2.5 concentrations to fire emissions were compared for each 

vertical layer included in our base-case simulation. Sensitivity approximations were then 

used to quantify the PM2.5 impacts attributable to each layer. Figure 3.11 shows estimated 

fire contributions to PM2.5 concentration at South DeKalb by vertical layer. In the base-

case simulation emissions were injected into the lower eleven layers. The contribution 

from non-fire  sources, determined from a simulation without fire emissions, and base-

case CMAQ concentrations are also included. The strongest fire contributions come from 

layers 8-10, accounting for over 65% of the fire-related impact on PM2.5 concentrations. 

Not surprisingly, these layers also receive the largest fractions of fire emissions. 

Additionally, Figure 3.11 shows that the sum of non-fire and individual contributions to 

PM2.5 closely matches base-case predicted concentrations. This agreement, observed at 

all downwind sites, further supports a linear response to fire emissions and the adequacy 

of brute-force sensitivities in this analysis. 

 

 

Figure 3.11. Fire contributions to modeled PM2.5 concentrations at South DeKalb by 

vertical CMAQ layer on 28 February 2007 (LT). Non-fire contribution and base-case 

CMAQ results are also included. 
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Layer-specific contributions to simulated PM2.5 concentrations are largely 

dependent on the magnitude of emissions injected into each layer. Sensitivity estimates, 

which quantify the response of concentration predictions per unit of emitted mass, are of 

greater value to determine the significance of vertical distribution profiles in air quality 

modeling. 3.12 compares PM2.5 concentration sensitivities to fire emissions from each 

vertical layer at South Dekalb and includes hourly-averaged monitoring station 

observations. Sensitivity coefficients vary significantly between different vertical layers 

at all the sites considered. As observed concentrations peak at South DeKalb, the 

sensitivity to fire emissions is clearly largest for layer 10. These results might seem to 

indicate that CMAQ-predicted PM2.5 concentrations are significantly sensitive to the 

vertical allocation of fire emissions. However, it is important to note that two distinct 

components of individual vertical layer emissions make sensitivities to them differ: 

injection altitude and emissions timing. If time-varying vertical profiles are applied, 

simulated concentrations may be more responsive to emissions from a specific vertical 

layer due to the timing of injection rather that layer altitude. To isolate the influence of 

spatial or temporal allocation in brute-force sensitivity calculations, only a single 

component of fire emissions should be perturbed. Sensitivity to temporal allocation of 

emissions is discussed in Section 3.3.4.3. 
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Figure 3.12. Brute-force first-order sensitivity coefficients for PM2.5 concentration 

response to fire emissions by vertical CMAQ layer at South DeKalb (left axis) and site 

observations (right axis) on 28 February 2007 (LT). 

 

 

To remove the temporal variability between different layers, brute-force 

sensitivities were quantified using a constant vertical emissions profile. An accurate 

assessment of the sensitivity of modeled PM2.5 concentrations to injection height was 

achieved by equally dividing fire emissions into all layers considered throughout the full 

episode. Further, allocating the same amount of hourly fire emissions to each layer allows 

for a fair comparison of their respective impacts. Figure 3.13 shows PM2.5 concentration 

sensitivities to fire emissions by vertical layer at South DeKalb after applying a constant 

and layer-uniform vertical emissions distribution covering the lower 16 layers. Contrary 

to the comparison previously presented in Figure 3.12, these results indicate that after 

eliminating the temporal variation in layer emissions, sensitivities are similar for all 

vertical layers below layer 10. Sensitivity to layer 10 emissions is markedly lower and 

modeled PM2.5 concentrations are not responsive at all to emissions injected above layer 

10 or approximately 1000 m. The same conclusions can be drawn from sensitivity 

estimates at other downwind sites. 
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Figure 3.13. Brute-force first-order sensitivity coefficients for PM2.5 concentration 

response to fire emissions by vertical CMAQ layer at South DeKalb for uniform 

distribution into 16 lowest  layers (left axis), and site observations (right axis) on 28 

February 2007 (LT). 

 

 

The analysis reveals that CMAQ-predicted PM2.5 concentrations are not 

exceedingly sensitive to the vertical distribution of fire emissions other than injection 

above or below a specific altitude. These results can be explained by analyzing the 

evolution of PBL height in meteorological input data. Figure 3.14 shows WRF-predicted 

PBL height during the episode at the Oconee fire location along with full-layer heights 

for the lower 11 vertical layers. In Section 3.3.4.3 below, we demonstrate that simulated 

PM2.5 concentrations at South DeKalb are mostly sensitive to fire emissions released 

between 1200 and 1600 LT. During this lapse the PBL partially extends into layer 10 for 

only a fraction of the time and does not reach layers above. The analysis indicates that 

modeled PM2.5 concentrations respond similarly to all fire emissions injected within the 

PBL and are not affected by emissions released into the free atmosphere. Previous studies 

have reported similar findings. Yang et al. (2011) conclude that modifying the vertical 

distribution of fire emissions injection did not significantly affect performance for their 

CMAQ simulations. Sensitivity analyses performed on the National Oceanic and 

Atmospheric Administration’s Smoke Forecasting System determined that model 

effectiveness is dependent on accurately determining whether smoke injection height 
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occurred within or above the PBL (Stein et al., 2009). Although Liu et al. (2008) assert 

that CMAQ PM2.5 predictions are highly sensitive to plume rise approximations, 

concentration differences are most evident between their simulations with emissions 

distributed within the PBL and that with injection at much higher altitudes. The results 

may change for plumes concentrated at the top of the PBL. 

 

 

Figure 3.14. PBL height and full-layer altitudes for lower 11 vertical layers at Oconee fire 

site on 28 February 2007 (LT). 

 

 

3.3.4.3 Temporal allocation of fire emissions 

While important uncertainties related to the spatial allocation of fire emissions on 

gridded domains may exist, additional uncertainty associated with the temporal allocation 

of emissions may affect an air quality model’s ability to simulate the impacts of wildland 

fires. Emissions are generally input into comprehensive air quality models as hourly 

emission rates.  Similarly, fire emissions processors typically provide hourly estimates. 

Partitioning of fire emissions into hourly rates may be complicated by limited 

information about ignition time, duration, and evolution.  
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In this study, hourly rates for all fire emissions were prepared through FEPS. 

Hourly PM2.5 emissions were previously shown in Figure 3.2. To compare the 

responsiveness of CMAQ-predicted PM2.5 concentrations at Atlanta sites to hour-by-hour 

fire emissions, brute-force sensitivities were estimated for each hour. Perturbations were 

applied to single hour emissions in order to quantify first-order sensitivity coefficients 

and individual contributions to PM2.5 concentrations at downwind receptors. Figure 3.15 

shows estimated fire contributions to PM2.5 concentration at South DeKalb for each hour 

of emissions. At this site, it is clear that most of the fire-related PM2.5 pollution is 

attributable to fire emissions released during a 4 hour span. Emissions released from 1200 

to 1600 LT are accountable for over 85% of the simulated fire contribution to PM2.5 

concentration. 

 

 

Figure 3.15. Fire contributions to modeled PM2.5 concentration at South DeKalb by hour 

of emissions on 28 February 2007 (LT). Emissions are labeled at the start of the hour. 

Non-fire contribution and base-case CMAQ results are also included. 
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responsiveness to fire emissions are more informative. However, an objective comparison 

between sensitivities to hour-by-hour emission rates must account for the temporal 

variation in vertical distribution of emissions as described in Section 3.3.4.2. Here again, 

a constant vertical emissions distribution was applied to remove the influence of time-

varying plume rise profiles and allow sensitivity calculations to solely focus on the 

temporal allocation of fire emissions. Figure 3.16 shows PM2.5 concentration sensitivities 

to hour-by-hour fire emissions at South DeKalb after equally distributing fire emissions 

into the lower 10 vertical layers during the entire simulation. Results at all sites 

considered demonstrate that sensitivities of modeled PM2.5 concentrations to hour-

specific emissions can be substantially different. In Atlanta, PM2.5 concentrations are 

influenced to varying degrees by emissions released between 1000 and 1800 LT with 

specific locations responding more intensely to emissions from distinct hours. The 

analysis also shows that each hour’s fire-related emissions only influence concentrations 

at downwind receptors during a 2-3 hour period starting approximately 3 hours after 

release. Overall, sensitivity estimates illustrate that altering the temporal allocation of fire 

emissions can significantly change the timing of fire-related impacts and peak simulated 

concentrations. Hu et al. (2008) conclude from their “hindcast” simulations of this same 

episode that enhanced CMAQ performance is more readily achieved by improving hourly 

emissions profiles rather than refining fire location or emitted mass. The sensitivity 

analysis of modeling results to diurnal variability in wildfire emissions reported by 

Hodzic et al. (2007) finds that hourly resolved smoke emissions can greatly improve 

simulations compared to daily emissions inventories. Additionally, satellite information 

has been applied to temporally refine coarse fire emissions data and achieve superior 

model predictions (Roy et al., 2007). 
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Figure 3.16. Brute-force first-order sensitivity coefficients for PM2.5 concentration 

response to fire emissions by hour of emissions at South DeKalb for uniform distribution 

into 10 lower layers (left axis), and site observations (right axis) on 28 February 2007 

(LT). Emissions are labeled at the start of the hour. 
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expected from applying more detailed representations of vertical plume structure unless 

the approach also accounts for warm plume caught at the top of the PBL. 

Sensitivity estimates related to the horizontal allocation of emissions on a gridded 

domain indicate that model performance could significantly benefit from more accurately 

positioning emissions. Predicted PM2.5 concentrations are sensitive to the horizontal 

allocation of emissions. Additionally, model results are clearly responsive to whether fire 

emissions are horizontally distributed into single or multiple grid cells.  Improving the 

horizontal allocation of fire emissions may be especially important in relation to plume 

rise approximations. Using downwind ascent approximations but then injecting fire 

emissions at the initial position of release is clearly an error that may significantly affect 

results. Optimum model performance necessitates injection at the correct downwind 

location. The responsiveness of predicted PM2.5 concentrations to small variations in the 

horizontal allocation of fire emissions also reflects a strong influence from 

meteorological inputs. Sensitivities may be primarily driven by variability in 

meteorological fields. Yang et al. (2011) find that errors in CMAQ predictions of the air 

quality impacts of wildfires may be dominated by uncertainty in wind fields. The degree 

to which simulations are constrained by uncertainties in meteorological fields produced 

by weather forecasting models is further investigated in Chapter 4.  

Perhaps the largest potential gains in model accuracy lie in better characterizing 

the temporal distribution of fire-related emissions. For the smoke episode simulated 

sensitivity analysis show that fire-related PM2.5 impacts are primarily attributable to 

emissions injected within a specific time frame. The analyses also demonstrate that each 

individual hour’s fire emissions produce a response at downwind receptors lasting 2-3 

hours. Reducing the uncertainties associated with distributing emissions into 

discontinuous inputs and better approximating the timing and progression of pollutant 

releases is a practical approach to improve model performance. Here again ensuring the 

adequacy of meteorological inputs is essential. 
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Beyond spatiotemporal allocation of emissions, additional concerns must be 

considered to successfully simulate the air quality impacts of wildland fires with 

comprehensive modeling systems. Grid resolution may be especially significant in smoke 

plume modeling. Fire-related emissions estimates must still be further improved. 

Representative estimates of secondary aerosol formation and precursor emissions may 

also be important. Furthermore, the response of pollutants subject to strong nonlinearities 

may be different to the dispersion-related response explored in this study.  A substantial 

improvement in the ability of photochemical air quality models to forecast the impacts of 

wildland fires would require jointly addressing these research needs. 

3.5 References 

 

Achtemeier, G.L., Goodrick, S.A., Liu, Y., Garcia-Menendez, F., Hu, Y., Odman, M.T. 

(2011) Modeling smoke plume-rise and dispersion from southern United States 

prescribed burns with Daysmoke. Atmosphere 2, 358-388. 

Akagi, S.K., Yokelson, R.J., Wiedinmyer, C., Alvarado, M.J., Reid, J.S., Karl, T., 

Crounse, J.D., Wennberg, P.O. (2011) Emission factors for open and domestic 

biomass burning for use in atmospheric models. Atmospheric Chemistry and 

Physics 11, 4039-4072. 

Christopher, S.A., Gupta, P., Nair, U., Jones, T.A., Kondragunta, S., Wu, Y.L., Hand, J., 

Zhang, X.Y. (2009) Satellite remote sensing and mesoscale modeling of the 2007 

Georgia/Florida fires. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing 2, 163-175. 

Cohan, D.S., Hakami, A., Hu, Y.T., Russell, A.G. (2005) Nonlinear response of ozone to 

emissions: Source apportionment and sensitivity analysis. Environmental Science 

& Technology 39, 6739-6748. 

Freitas, S.R., Longo, K.M., Chatfield, R., Latham, D., Silva Dias, M.A.F., Andreae, 

M.O., Prins, E., Santos, J.C., Gielow, R., Carvalho Jr, J.A. (2007) Including the 

sub-grid scale plume rise of vegetation fires in low resolution atmospheric 

transport models. Atmospheric Chemistry and Physics 7, 3385-3398. 

Giglio, L., van der Werf, G.R., Randerson, J.T., Collatz, G.J., Kasibhatla, P. (2006) 

Global estimation of burned area using MODIS active fire observations. 

Atmospheric Chemistry and Physics 6, 957-974. 



 63 

Hakami, A., Odman, M.T., Russell, A.G. (2004) Nonlinearity in atmospheric response: A 

direct sensitivity analysis approach. Journal of Geophysical Research 109, 

D15303. 

Henderson, S.B., Ichoku, C., Burkholder, B.J., Brauer, M., Jackson, P.L. (2010) The 

validity and utility of MODIS data for simple estimation of area burned and 

aerosols emitted by wildfire events. International Journal of Wildland Fire 19, 

844-852. 

Hodzic, A., Madronich, S., Bohn, B., Massie, S., Menut, L., Wiedinmyer, C. (2007) 

Wildfire particulate matter in Europe during summer 2003: meso-scale modeling 

of smoke emissions, transport and radiative effects. Atmospheric Chemistry and 

Physics 7, 4043-4064. 

Hu, Y.T., Odman, M.T., Chang, M.E., Jackson, W., Lee, S., Edgerton, E.S., Baumann, 

K., Russell, A.G. (2008) Simulation of air quality impacts from prescribed fires 

on an urban area. Environmental Science & Technology 42, 3676-3682. 

Hwang, D., Byun, D.W., Talat Odman, M. (1997) An automatic differentiation technique 

for sensitivity analysis of numerical advection schemes in air quality models. 

Atmospheric Environment 31, 879-888. 

Junquera, V., Russell, M.M., Vizuete, W., Kimura, Y., Allen, D. (2005) Wildfires in 

eastern Texas in August and September 2000: Emissions, aircraft measurements, 

and impact on photochemistry. Atmospheric Environment 39, 4983-4996. 

Konovalov, I.B., Beekmann, M., Kuznetsova, I.N., Yurova, A., Zvyagintsev, A.M. 

(2011) Atmospheric impacts of the 2010 Russian wildfires: integrating modelling 

and measurements of an extreme air pollution episode in the Moscow region. 

Atmospheric Chemistry and Physics 11, 10031-10056. 

Koo, B., Wilson, G.M., Morris, R.E., Dunker, A.M., Yarwood, G. (2009) Comparison of 

source apportionment and sensitivity analysis in a particulate matter air quality 

model. Environmental Science & Technology 43, 6669-6675. 

Lee, S., Baumann, K., Schauer, J.J., Sheesley, R.J., Naeher, L.P., Meinardi, S., Blake, 

D.R., Edgerton, E.S., Russell, A.G., Clements, M. (2005) Gaseous and particulate 

emissions from prescribed burning in Georgia. Environmental Science & 

Technology 39, 9049-9056. 

Liu, Y., Achtemeier, G., Goodrick, S. (2008) Sensitivity of air quality simulation to 

smoke plume rise. Journal of Applied Remote Sensing 2, 021503. 

Liu, Y., Goodrick, S., Achtemeier, G., Jackson, W.A., Qu, J.J., Wang, W. (2009) Smoke 

incursions into urban areas: simulation of a Georgia prescribed burn. Int. J. 

Wildland Fire 18, 336-348. 



 64 

MACTEC, (2005) Documentation of the revised 2002 base year, revised 2018, and initial 

2009 emission inventories for VISTAS. Visibility Improvement State and Tribal 

Association of the Southeast, Forest Park, GA. 

Napelenok, S.L., Cohan, D.S., Hu, Y.T., Russell, A.G. (2006) Decoupled direct 3D 

sensitivity analysis for particulate matter (DDM-3D/PM). Atmospheric 

Environment 40, 6112-6121. 

Odman, M.T., (2011) Evaluation of smoke models and sensitivity analysis for 

determining their emission related uncertainties. Joint Fire Science Program, 

Atlanta, GA. 

Odman, M.T., (2012) Characterization of emissions and air quality modeling for 

predicting the impacts of prescribed burns at DoD lands. Strategic Environmental 

Research and Development Program, Atlanta, GA. 

Roy, B., Pouliot, G.A., Gilliland, A., Pierce, T., Howard, S., Bhave, P.V., Benjey, W. 

(2007) Refining fire emissions for air quality modeling with remotely sensed fire 

counts: A wildfire case study. Atmospheric Environment 41, 655-665. 

Sessions, W.R., Fuelberg, H.E., Kahn, R.A., Winker, D.M. (2011) An investigation of 

methods for injecting emissions from boreal wildfires using WRF-Chem during 

ARCTAS. Atmospheric Chemistry and Physics 11, 5719-5744. 

Stein, A.F., Rolph, G.D., Draxler, R.R., Stunder, B., Ruminski, M. (2009) Verification of 

the NOAA Smoke Forecasting System: Model sensitivity to the injection height. 

Weather and Forecasting 24, 379-394. 

Strand, T.M., Larkin, N., Craig, K.J., Raffuse, S., Sullivan, D., Solomon, R., Rorig, M., 

Wheeler, N., Pryden, D. (2012) Analyses of BlueSky Gateway PM2.5 predictions 

during the 2007 southern and 2008 northern California fires. J. Geophys. Res. 

117. 

Tian, D., (2006) Evaluation of emission uncertainties and their impacts on air quality 

modeling: applications to biomass burning. Georgia Institute of Technology, 

Atlanta, GA. 

Tian, D., Hu, Y.T., Wang, Y.H., Boylan, J.W., Zheng, M., Russell, A.G. (2009) 

Assessment of biomass burning emissions and their impacts on urban and 

regional PM2.5: A Georgia case study. Environmental Science & Technology 43, 

299-305. 

Tian, D., Wang, Y.H., Bergin, M., Hu, Y.T., Liu, Y.Q., Russell, A.G. (2008) Air quality 

impacts from prescribed forest fires under different management practices. 

Environmental Science & Technology 42, 2767-2772. 



 65 

Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X.Y., O'Neill, 

S., Wynne, K.K. (2006) Estimating emissions from fires in North America for air 

quality modeling. Atmospheric Environment 40, 3419-3432. 

Yang, E.S., Christopher, S.A., Kondragunta, S., Zhang, X.Y. (2011) Use of hourly 

Geostationary Operational Environmental Satellite (GOES) fire emissions in a 

Community Multiscale Air Quality (CMAQ) model for improving surface 

particulate matter predictions. Journal of Geophysical Research 116, D04303. 

Zeng, T., Wang, Y.H., Yoshida, Y., Tian, D., Russell, A.G., Barnard, W.R. (2008) 

Impacts of Prescribed Fires on Air Quality over the Southeastern United States in 

Spring Based on Modeling and Ground/Satellite Measurements. Environmental 

Science & Technology 42, 8401-8406. 

 

 



 

 

*A modified version of this chapter has been published in Simulating smoke transport 

from wildland fires with a regional‐scale air quality model: Sensitivity to uncertain wind 

fields, Journal of Geophysical Research: Atmospheres 2013, 118, 6493–6504. 

CHAPTER 4 

SIMULATING SMOKE TRANSPORT FROM WILDLAND FIRES 

WITH A REGIONAL-SCALE AIR QUALITY MODEL: 

SENSITIVITY TO UNCERTAIN WIND FIELDS 

 

Abstract 

Uncertainties associated with meteorological inputs which are propagated through 

atmospheric chemical transport models may constrain their ability to replicate the effects 

of wildland fires on air quality. Here we investigate the sensitivity of predicted fine 

particulate matter (PM2.5) concentrations to uncertain wind fields by simulating the air 

quality impacts of two fires on an urban area with the Community Multiscale Air Quality 

modeling system (CMAQ). Brute-force sensitivity analyses show that modeled 

concentrations at receptors downwind from the fires are highly sensitive to variations in 

wind speed and direction. Additionally, uncertainty in wind fields produced with the 

Weather Research and Forecasting model (WRF) was assessed by evaluating 

meteorological predictions against surface and upper air observations. Significant 

differences between predicted and observed wind fields were identified. Simulated PM2.5 

concentrations at urban sites displayed large sensitivities to wind perturbations within the 

error range of meteorological inputs. The analyses demonstrate that normalized errors in 

CMAQ predictions attempting to model the regional impacts of fires on PM2.5 

concentrations could be as high as 100% due to inaccuracies in wind data. Meteorological 

drivers may largely account for the considerable discrepancies between monitoring site 

observations and predicted concentrations. The results of this study demonstrate that 
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limitations in fire-related air quality simulations cannot be overcome by solely improving 

emission rates. 

4.1 Introduction 

Wildland fires may greatly impact air quality and pose a significant threat to 

public health. Air quality models can serve as tools to quantify exposure to fire-related 

pollution and provide important information to fire and land managers. However, the 

limitations inherent to numerical models when used to replicate the air quality impacts of 

fires must be identified and well understood to adequately interpret results and further 

improve the models’ predictive skills. Multiscale atmospheric chemical transport models 

provide an appealing framework to simulate the effects of wildland fires on air quality: 

complex chemical and physical processes are represented; local and regional scales can 

be jointly treated; and detailed emissions and meteorological fields can be used to drive 

air quality modeling. Multiple attempts to replicate the impacts of fires on air quality with 

Eulerian models have been reported (Goodrick et al., 2012). Commonly, model 

performance in these simulations, assessed by comparing modeled and observed pollutant 

concentrations, has been unsatisfactory and a need to improve predictions has been 

recognized.     

Air quality models require two fundamental inputs: meteorological fields and 

emission rates. The importance of meteorological input fields in air quality simulations 

has long been acknowledged (Seaman, 2000). However, prior studies seeking to simulate 

the impacts of wildland fires with Eulerian air quality models have generally focused on 

better characterizing fire-related emissions as a strategy to strengthen model performance 

(Konovalov et al., 2011; Tian et al., 2009; Yang et al., 2011). In contrast, little attention 

has been given to the implications uncertain meteorological inputs may have on model 

predictions. Still, weather conditions determine the principal physical driving forces in 

the atmosphere, making gridded representations of meteorology the foundation of all 
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three-dimensional air quality simulations. While enhanced fire emissions estimates can 

improve the accuracy of air quality simulations, errors associated with weather data 

continue to affect model results. Therefore, determining the degree to which uncertainties 

in meteorological inputs might hinder fire-related simulations is an important step 

towards successfully modeling the impacts of wildland fires on pollutant concentrations 

with atmospheric chemical transport models. 

Sensitivity analyses are an important diagnostic tool to evaluate the influence 

individual inputs may have on specific model outputs. Here we use a regional-scale 

chemical transport model to simulate smoke transport from wildland fires in an urban 

smoke episode which severely deteriorated air quality throughout the Atlanta 

metropolitan area in 2007. The simulation results show a significant response in predicted 

PM2.5 concentrations to small variations in the spatial allocation of fire emissions, 

suggesting a potentially strong influence from wind inputs. In fact, errors in model-

predicted PM2.5 concentrations could be dominated by the uncertainty in wind fields 

rather than emission estimates (Yang et al., 2011). In this chapter, the Atlanta 2007 

simulation is used as a base case episode to investigate the sensitivities of model 

predictions to the meteorological fields used to drive air quality simulations.  

A series of sensitivity analyses were applied to explore the responsiveness of 

PM2.5 concentrations predicted by the air quality model to uncertainties in three-

dimensional wind fields. We focus on primary fine carbonaceous particle emissions from 

fires, the main component of fire-related smoke, and wind, the meteorological variable 

most clearly associated with fire-attributable impacts on PM2.5 concentrations. The results 

of this work indicate the extent to which simulations may be constrained by inaccuracies 

in meteorological data produced by numerical weather prediction models. Additionally, 

the analysis described in this study investigates whether the errors in predicted 

concentrations can be abated by exclusively focusing on better estimation of fire-related 

emissions. The air quality modeling framework used is described in Section 4.2. Section 
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4.3 presents the methodology applied to carry out the sensitivity analyses and evaluate 

the wind field inputs. The results of the sensitivity analyses and wind field uncertainty 

assessment are included in Section 4.4. Finally, our conclusions are presented in Section 

4.5. 

4.2 Numerical Modeling Framework 

4.2.1 Meteorology 

Meteorological data are used to capture atmospheric conditions throughout 

modeling domains and play a vital role in determining pollutant concentrations predicted 

by air quality models. Although air quality simulations, particularly those performed with 

plume or puff models, can rely on observed or simplified weather data, comprehensive 

Eulerian models require detailed three-dimensional meteorological fields. Meteorological 

fields used by atmospheric chemical transport models are typically prepared with 

mesoscale numerical weather prediction systems such as the fifth-generation 

Pennsylvania State University/National Center for Atmospheric Research Mesoscale 

Model (MM5) (Grell et al., 1994) and the Weather Research and Forecasting model 

(WRF) (Skamarock et al., 2008). For retrospective air quality simulations, reanalysis 

fields and data assimilation of observed meteorology can be applied.  

Most reported simulations attempting to replicate the impacts of wildland fires on 

air quality with Eulerian models have relied on meteorological fields produced with 

MM5 (Chen et al., 2008; Junquera et al., 2005; Strand et al., 2012). The choice is 

consistent with the initial application of current models, originally designed to use MM5-

derived meteorological inputs. More recently, air quality modeling has incorporated 

meteorological fields generated with WRF (Appel et al., 2010). Studies comparing MM5 

and WRF performance and assessing the sensitivity of air quality predictions to weather 

model selection indicate that, although differences exist in model results, meteorological 
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and air quality fields based on either are of comparable qualities (Appel et al., 2010; 

Gilliam and Pleim, 2010).   

For this study, meteorological fields produced with WRF (version 2.1.2) were 

used to drive all air quality modeling. Meteorology was simulated on three nested 

domains with 36, 12, and 4 km horizontal grid spacing and 34 vertical layers extending 

up to 50 hPa. The simulations used the Yonsei University (YSU) planetary boundary 

layer scheme (Hong et al., 2006), Noah land surface model (Ek et al., 2003), Dudhia 

shortwave radiation scheme (Dudhia, 1989), Rapid Radiative Transfer Model (RRTM) 

longwave radiation scheme (Mlawer et al., 1997), Kain-Fritsch cumulus parameterization 

scheme (Kain, 2004), and the Lin et al. microphysics scheme (Chen and Sun, 2002; Lin 

et al., 1983; Rutledge and Hobbs, 1984). The options selected correspond to the 

configuration of an operational air quality forecasting system in Atlanta which has been 

used by forecasters in the state of Georgia (USA) since 2006 (Hu et al., 2010). 

Simulations were initialized, constrained at the boundaries, and nudged at 6-hour 

intervals using reanalysis fields from the North American Mesoscale model 

(nomads.ncdc.noaa.gov). 

4.2.2 Air Quality 

A description of the emissions of and chemical transport models used to 

numerically simulate the transport and transformation of pollutant emissions is included 

in Chapter 3. Briefly, the Multiscale Air Quality Modeling system (CMAQ version 4.5, 

http://www.cmaq-model.org/) was used to simulate fire-related emissions. Sensitivity 

analyses relied on CMAQ simulations carried out with 4 km resolution. Emission inputs 

from non-fire sources were processed with the Sparse Matrix Operator Kernel Emission 

processor (SMOKE version 2.1, http://www.smoke-model.org/index.cfm), while the 

emission rates for featured wildland fires were prepared through the Fire Emissions 

Production Simulator (FEPS version 1.1.0, http://www.fs.fed.us/pnw/fera/feps/). Plume 

http://www.smoke-model.org/index.cfm
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rise estimates from the Daysmoke model (Achtemeier et al., 2011) were used to vertically 

distribute fire emissions. 

4.3 Methodology 

4.3.1 Base case simulation 

The sensitivity analyses performed were based on a CMAQ simulation of a fire-

related smoke episode which occurred on 28 February 2007 and was previously described 

in Chapter 3. The base case air quality simulation intends to replicate the impact of two 

prescribed burns on PM2.5 concentrations throughout the Atlanta metropolitan area. The 

fires occurred at the Oconee National Forest and Piedmont National Wildlife Refuge 

(henceforth referred to as Oconee and Piedmont), approximately 80 km southeast of 

Atlanta. Transport of fire-related emissions by southeasterly winds throughout the day is 

believed to have led to large increases in pollutant concentrations recorded at urban 

monitoring sites.  

Measured PM2.5 concentrations from the Georgia Department of Natural 

Resources’ Ambient Monitoring Program and the Southeastern Aerosol Research and 

Characterization (SEARCH) Network were used to assess model performance. Air 

quality records from three Atlanta sites (Confederate Ave., Jefferson St., and South 

DeKalb) and one additional site (McDonough), located approximately midway between 

Atlanta and the Oconee and Piedmont fires, were considered. Figure 4.1 shows observed 

and CMAQ-predicted PM2.5 concentrations at the Confederate Ave. station. Simulated 

PM2.5 concentrations were much lower than observed peaks at monitoring sites. It should 

be noted that a simulation without the fires predicts about 20 µg m
-3

 of PM2.5 at the 

Atlanta sites considered, leaving only about 30 µg m
-3

 associated with the burns. 

Consistent with previously reported efforts to replicate the air pollution impacts of 

wildland fires with Eulerian chemical transport models, the base case CMAQ simulation 
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significantly underpredicts the impacts of prescribed burns on PM2.5 concentrations 

observed at urban monitoring stations (Liu et al., 2009; Strand et al., 2012; Yang et al., 

2011). For predicted PM2.5 concentrations to match maximum observed concentrations 

throughout Atlanta fire emissions would have to be increased by more than 400%, as 

demonstrated in the sensitivity analyses related to fire emissions included in Chapter 2. 

Uncertainties in fire-related emission rates may play a significant role in the 

underestimation of PM2.5 concentrations. However, an increment of this magnitude does 

not seem reasonable. In addition, significant sensitivities of CMAQ predictions to the 

spatiotemporal allocation of fire-related emissions on gridded domains were observed. 

These are suggestive of potentially important sensitivities to meteorological inputs and in 

particular to wind fields. 

 

 

Figure 4.1. Observed 1-hour average and CMAQ-predicted 15-minute PM2.5 

concentrations at the Confederate Ave. monitoring site on 28 February 2007 (LT). 
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4.3.2 Brute-force sensitivity analyses 

A brute-force method was applied to carry out sensitivity analyses. The method 

relies on successively simulating the same system of interest while varying a specific 

model input and holding others constant to observe the response of model outputs 

(Hwang et al., 1997). In air quality modeling, brute-force sensitivity analyses have been 

frequently used to quantify the responsiveness of simulated concentrations to changes in 

emissions. The response of modeled PM2.5 concentrations to changes in primary 

emissions should be nearly linear (Koo et al., 2009). Here, the brute-force method is used 

to assess the sensitivity of simulated PM2.5 concentrations to perturbations in wind inputs, 

namely wind speed and direction. In this case, the response of concentrations to changes 

in winds is not expected to be linear as there are complex nonlinear relationships between 

the winds and concentrations at downwind receptors. Nevertheless, sensitivity analyses 

were performed to observe the degree to which simulations are affected by variations, or 

uncertainty, in wind fields. 

A series of simulations under perturbed wind fields were carried out to examine 

the responsiveness of CMAQ-predicted PM2.5 concentrations at specific downwind 

receptors. Wind fields were modified within the Meteorology-Chemistry Interface 

Processor (MCIP, version 3.4.1) (Otte and Pleim, 2010) used to convert WRF output 

fields into CMAQ-compatible inputs. The magnitude and direction of wind vectors read 

in from WRF-generated fields were perturbed to varying extents to produce modified 

CMAQ inputs, as illustrated in Figure 4.2. In this manner, perturbations are reflected in 

all wind-associated variables included in the meteorological input data used to drive the 

air quality model. It is also important to note that in CMAQ 4.5, mass conservation is 

ensured by adjusting vertical winds (Hu et al., 2006). Perturbations to wind direction and 

wind speed are accompanied by changes to the vertical winds as mass conservation is 

obeyed within the model. In general we find that perturbing horizontal wind speeds leads 
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to proportional changes in the vertical speeds, while the effect of altering wind direction 

on the vertical wind field is nonlinear and spatially complex. 

 

 

Figure 4.2. Representation of perturbations applied to (a) wind direction and (b) wind 

speed in brute-force sensitivity analysis. 

 

 

4.3.3 Meteorological uncertainty 

Meteorological model performance was evaluated to assess the level of 

uncertainty in weather fields used to drive air quality simulations. Hourly surface 

observations from the Research Data Archive of the National Center for Atmospheric 

Research (http://rda.ucar.edu/datasets/ds472.0/) were used to compute model 

performance metrics by comparing surface-layer observations and predictions. Bias and 

error in WRF-derived ground-level predictions were estimated for wind direction, wind 

speed, temperature, and humidity. Additionally, upper air model predictions were 

evaluated against atmospheric soundings launched from Peachtree City, GA, 

approximately 45 km southwest of Atlanta and 80 km northwest from the Oconee and 

Piedmont fires. Sounding observations were available every 12 hours at 0000 and 1200 

UT. 
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4.4 Results 

4.4.1 Sensitivity Analyses 

4.4.1.1 Wind Direction 

To examine the sensitivity of CMAQ-predicted PM2.5 concentrations to wind 

direction, the Atlanta 2007 smoke episode was modeled under a series of perturbed wind 

fields. Modified fields were produced by uniformly perturbing wind direction by ±5°, 

±15°, and ±30° across the entire domain. The changes were applied at each grid point by 

rotating all wind vectors from WRF by the same angle during MCIP processing, as 

described in Section 4.3.2. At selected downwind monitoring sites, predicted PM2.5 

concentrations for each perturbed wind field and the base case were compared to observe 

the responsiveness to variations in wind direction. Figure 4.3 shows PM2.5 concentrations 

simulated by CMAQ at the Jefferson St. monitoring site with both perturbed and 

unperturbed fields. The sensitivity of predicted PM2.5 concentrations to wind direction is 

extremely high at Jefferson St., as well as at all other sites considered. The results 

indicate that small variations in wind direction can lead to large changes in predicted 

pollutant concentrations at specific receptors downwind. At Jefferson St., for instance, a 

-5° rotation to wind vectors increases the maximum predicted PM2.5 concentration by 

more than 13 µg m
-3

, a 26% increase. At different urban locations, sensitivities to wind 

direction are likewise large and nonlinear. Peak PM2.5 concentrations predicted at sites 

within Atlanta increased by as much as 8 to 30% with perturbed wind fields, although 

remaining well below observed levels. However, the effect of the wind direction 

variations at each receptor may vary significantly. Figure 4.4 shows the change in 

predicted PM2.5 concentrations relative to the base case simulation at different monitoring 

sites after applying a -5° perturbation to wind direction. Although the responses are quite 

similar at the Confederate Ave. and Jefferson St. sites 8 km apart, appreciable differences 
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exist between the sensitivities at these locations and South DeKalb, 7 km from 

Confederate Ave., where the maximum change in predicted PM2.5 concentration is 

significantly lower. At McDonough, approximately 40 km closer to the fires, the 

response is larger and, compared to the Atlanta sites, appears to reflect a 2-hour advance 

consistent with expected differences in transport time.  

 

 

Figure 4.3. CMAQ-predicted PM2.5 concentrations at the Jefferson St. monitoring site 

using wind direction perturbations on 28 February 2007 (LT). Base case simulation 

results are also included. 
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Figure 4.4. Change in CMAQ-predicted PM2.5 concentrations on 28 February 2007 (LT) 

relative to base case simulation at the Confederate Ave., Jefferson St., South DeKalb, and 

McDonough monitoring sites after applying a -5° perturbation to wind direction. 
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-3
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attempting to replicate the impacts of fires and accurate wind directions are essential to 

produce realistic predictions. 

 

 

Figure 4.5. CMAQ-predicted PM2.5 concentrations (μg m
-3

) over northern Georgia at 

1900 LT on 28 February 2007 using -5° and +5° perturbations to wind direction. Black 

shaded circles indicate monitoring station locations. The Oconee and Piedmont fire sites 

are denoted by white shaded markers. 

 

 

4.4.1.2 Wind Speed 

The methodology previously described in Section 4.3.2 was also used to explore 

the sensitivity of CMAQ-predicted PM2.5 concentrations to wind speed. Similarly to the 

perturbations on wind direction, modified wind fields were produced by uniformly 

changing wind speeds by ±10%, ±20%, and ±30% across meteorological inputs. Large 

differences exist between predicted concentrations at downwind receptors under different 

modified fields. In Figure 4.6, simulated PM2.5 concentrations at the South DeKalb 

monitoring site are shown for each perturbation. A strong response to variations in wind 

speed is evident: at South DeKalb a 30% decrease in wind speed elevated the peak PM2.5 

concentration by more than 40 µg m
-3

, an increase of nearly 75% with respect to the base 

case simulation. The responses are similar at all receptors considered; PM2.5 

concentrations significantly increased and experienced a growing delay with decreasing 

wind speeds. Unlike the response to wind direction, response to wind speed can be 
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relatively linear. Figure 4.7 shows maximum PM2.5 concentrations predicted by CMAQ 

at different downwind receptors as wind speed is perturbed from -50% to +50%. 

Response to wind speed is highly linear for negative perturbations but flattens out as 

magnitude is increased beyond a +10% perturbation.  

 

 

Figure 4.6. CMAQ-predicted PM2.5 concentrations on 28 February 2007 (LT) at the 

South DeKalb monitoring site with wind speed perturbations. Base case simulation 

results are also included. 
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Figure 4.7. Maximum CMAQ-predicted PM2.5 concentrations at the Confederate Ave., 

Jefferson St., South DeKalb, and McDonough monitoring sites with wind speed 

perturbations ranging from -50% to +50%. 
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smoke plume and change the likelihood that it will directly impact a specific downwind 

receptor. Another factor leading to differences in predicted concentrations is the PBL 

height at the time of smoke arrival to the receptor. Finally, it is apparent that wind speed 

perturbations may also influence the dispersion of emissions from non-fire sources, 

including urban emissions. Therefore, the changes to PM2.5 concentrations predicted 

under modified wind fields are due to the combined response of both fire-related impacts 

and the impacts from all other sources included in the simulation.    

 

 

Figure 4.8. Modeled pollution plumes on 28 February 2007 (LT) shown as three-

dimensional iso-surfaces bounded by PM2.5 concentration equal to 35 μg m
-3

 for base 

case and simulations carried out with ±30% perturbations to wind speed. Ground-level 

PM2.5 concentrations (μg m
-3

) are also shown. Air quality monitoring sites are indicated 

by black markers. 
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Although errors related to wind speed cannot fully explain the difference between 

modeled and observed PM2.5 concentrations, the sensitivity analyses suggest that 

uncertain wind speed estimates may play an important role in the underpredictions 

commonly associated with simulations attempting to replicate the air quality impacts of 

fires. In the smoke episode simulated for this study, reduced wind speeds led to higher 

peak PM2.5 concentrations and prolonged air quality impacts, consistent with 

observations at downwind receptors. At the Atlanta locations considered, a 30% decrease 

in wind speed significantly improved model performance, reducing RMSE, estimated 

from the differences between modeled and observed PM2.5 concentrations,  at 

Confederate Ave., Jefferson St., and South DeKalb by 37%, 12%, and 36% respectively. 

No gains in model performance were achieved at McDonough, GA, indicating that the 

prediction error at this location closer to the fires is more likely related to wind direction 

or the spatiotemporal allocation of fire emissions. 

4.4.1.3 Relation to grid resolution 

The importance of grid resolution in simulations attempting to replicate the air 

quality impacts of fires with chemical transport models was closely investigated using the 

base case considered for this study in Chapter 6. The analyses described therein showed 

that CMAQ-predicted PM2.5 concentrations at sites downwind of fires are significantly 

affected by horizontal grid resolution of the model domain. In assessing the 

responsiveness of modeled concentrations to wind field inputs, it is important to consider 

the influence of model resolution on sensitivity estimates. Increased grid resolution can 

reduce numerical diffusion and produce better defined atmospheric plumes. Additionally, 

simulations carried out with coarser resolution become less sensitive to the spatial 

allocation of fire emissions on a gridded domain. This is especially true if emissions are 

allocated into a single coarse cell and concentration gradients are spatially smoothed 
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immediately upon injection. Under these conditions, the sensitivities of air quality model 

predictions to uncertain wind fields may be greatly enhanced.  

To explore the relationship between grid resolution and the sensitivities of 

CMAQ-predicted PM2.5 concentrations, the Atlanta 2007 smoke episode was modeled 

under coarser 12 km horizontal grid resolution. Sensitivities to wind direction and speed 

were then evaluated by repeating the simulations under modified wind fields using the 

same perturbations described in Sections 4.4.1.1 and 4.4.1.2. The analyses showed that 

simulated PM2.5 concentrations at the downwind receptors considered were significantly 

less sensitive to wind field perturbations under coarser grid resolution. Figure 4.9 

compares the standard deviation of predicted PM2.5 concentrations at Confederate Ave. 

for all simulations carried out under perturbed wind fields using 12 km horizontal grid 

resolution to that of simulations using 4 km resolution, after fire-related emissions have 

begun. The values reflect the spread of CMAQ predictions within the perturbation range 

applied to wind direction (±5°, ±15°, ±30°, and base case) and wind speed (±10%, ±20%, 

and ±30%, and base case). At Confederate Ave. the average standard deviation for PM2.5 

concentrations within both the wind direction and wind speed simulation sets decreases 

by approximately 35% when horizontal grid resolution is coarsened from 4 to 12 km. 

Maximum hourly standard deviations fall by nearly 50% when grid spacing is increased. 

The impact of coarser resolution is similar at other sites within the city of Atlanta; 

average standard deviation decreases by 25% and 38% at Jefferson St. and South DeKalb 

respectively, while peak values drop by more than 40% at both locations. The effect is 

stronger at McDonough where reductions greater than 50% and 70% to average and the 

maximum standard deviations, respectively, are observed after coarsening resolution. At 

this site the enhanced impact of grid resolution is brought about by decreased diffusion at 

shorter range and how denser smoke plumes react to changes in winds.  
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Figure 4.9. Standard deviation of PM2.5 concentration from CMAQ predictions on 28 

February 2007 (LT) at Confederate Ave. for all simulations within the perturbation range 

applied to wind direction (±5°, ±15°, ±30°, and base case) and wind speed (±10%, ±20%, 

and ±30%, and base case) under 4 km and 12 km horizontal grid resolutions. 
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related emissions as a key element of smoke forecasting (Stein et al., 2009). In CMAQ 

4.5, the similarity theory option was used to parameterize eddy diffusivity according to 

the PBL data produced by meteorological models. PBL heights influence the wind flow 

used to transport fire-related emissions and may significantly affect the predictions of air 

quality models. However, large discrepancies between PBL heights estimated by 

different meteorological models and observational data have been reported (Vautard et 

al., 2012). Uncertainty in PBL height fields may propagate in model results and influence 

their sensitivity to winds.   

To explore the sensitivity of CMAQ-predicted PM2.5 concentrations at downwind 

receptors to PBL height, the Atlanta 2007 smoke episode was simulated with modified 

meteorological inputs. Similar to the sensitivity analyses centered on wind fields, PBL 

heights produced by WRF were perturbed by ±10%, ±20%, and ±30% to evaluate the 

responsiveness of predicted PM2.5 concentrations to these variations. Significant 

sensitivities to PBL heights were evident at all downwind receptors considered. Figure 

4.10 shows modeled PM2.5 concentrations at Jefferson St. for each simulation carried out 

under perturbed PBL heights. Initially, and for much of the simulation, PM2.5 

concentrations at all sites are inversely related to PBL height. However, the correlation is 

not permanently negative and reflects the continual interaction between PBL height, 

plume rise, and emissions transport. While lowering the PBL height constrains pollutants 

within to a smaller volume, therefore increasing ground-level concentrations, it may also 

allow a greater fraction of the fire emissions to reach the free troposphere and be 

transported above the PBL, reducing their impact on surface air quality. In Figure 4.11, 

the standard deviation of predicted PM2.5 concentrations at Confederate Ave. is shown for 

all simulations carried out with different PBL height fields. Also included are the base 

case PBL height predicted by WRF at the site and the fire-related contribution to PM2.5 

concentration estimated by comparing the results of simulations with and without fire 

emissions. Figure 4.11 shows how the sensitivity of PM2.5 concentrations to PBL height, 
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reflected in the standard deviation, evolves throughout the episode. At Confederate Ave., 

the strongest sensitivity to PBL height occurs at the confluence of elevated PBL height 

and large fire-attributable PM2.5 impacts. Similarly, at all receptors considered, the 

variation among model predictions is greatest when fire-related emissions contribute 

significantly to PM2.5 concentrations and their injection into the atmospheric boundary 

layer is most susceptible to changes in PBL height. 

 

 

Figure 4.10. CMAQ-predicted PM2.5 concentrations on 28 February 2007 (LT) at the 

Jefferson St. monitoring site under perturbed PBL heights. Base case simulation results 

are also included. 
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Figure 4.11. Standard deviation (σ) of CMAQ-predicted PM2.5 concentrations on 28 

February 2007 (LT) at Confederate Ave. for all simulations carried out under different 

PBL heights (±10%, ±20%, and ±30%, and base case) and base case PBL height 

prediction at Confederate Ave. (right  vertical axis). The estimated fire-related 

contribution to PM2.5 concentration (ΔPM2.5) is also included. 
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2010; Hu et al., 2010). However, the evaluation does expose a significant positive bias in 

ground-level wind speed predictions that is outside the recommended range. 

   

Table 4.1.  Daily performance benchmarks for air quality modeling applications 

suggested by Emery et al. (2001) and episode-mean performance metrics for the base 

case meteorological modeling. 

 

Recommended 

Benchmark 

Base case 

Simulation 

Temperature  Bias (K) ±0.5  -0.6 

Temperature  Error (K) 2.0   1.5 

Mixing Ratio Bias (g/kg) ±1.0 1.0 

Mixing Ratio Error (g/kg) 2.0  1.0 

Wind Direction Bias (°) ±10 ° 8.5 

Wind Direction Error (°) 30 ° 9.6 

Wind Speed Bias (m s
-1

) ±0.5 1.3 

Wind Speed RMSE (m s
-1

) 2 2.1 

 

To focus on the meteorology driving fire emissions transport, observations and 

predictions were compared spatially and temporally within a 150 km x 150 km window 

centered over plume trajectories for the Atlanta 2007 smoke episode. The window 

includes hourly weather observations from a subset of 12 weather stations. Figure 4.12 

compares mean predicted and observed temperature, humidity, wind direction, and wind 

speed within the evaluation window from the initial release of fire-related emissions until 

the end of the simulation. During fire emissions transport, the mean bias and error in 

temperature predictions compared to observation were -1.5 K and 1.6 K respectively. 

Simulated humidity displayed a consistent positive bias equal to 1.3 g kg
-1

.  The 

uncertainties associated with predicted wind fields are of greater significance to 

simulations attempting to replicate the impacts of fires on downwind PM2.5 

concentrations. The mean bias and error in wind direction predictions with respect to 

observations were +5.8° and 6.9° respectively. Nevertheless, the maximum hourly wind 

direction error is nearly 15°. During the episode, the mean bias and error in simulated 
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wind speeds were +1.1 m s
-1

 and 1.2 m s
-1

 respectively. Wind speed predictions closely 

agree with observations during the first half of the episode and exhibit a positive bias of 

approximately 2 m s
-1

 thereafter. Similarly, discrepancies between surface-layer 

observations and WRF-predicted wind speed and direction have been reported by other 

studies (Borge et al., 2008; de Foy et al., 2009). The uncertainties in WRF-generated 

surface-layer winds, especially wind speeds , are relevant to air quality modeling 

involving smoke plume transport given the large sensitivities to variations in winds 

described in Sections 4.4.1.1 and 4.4.1.2. However, fire-related emissions are largely 

transported above the surface-layer and a stronger response to wind flow at higher 

altitude should be expected. 
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Figure 4.12. Mean observed and WRF-predicted ground-level temperature, humidity, 

wind direction, and wind speed over northern Georgia for 15 hours starting at 1000 LT on 

28 February 2007. 

 

 

 

 

 

275

280

285

290

295

300

2/28 10:00 2/28 13:00 2/28 16:00 2/28 19:00 2/28 22:00 3/1 1:00

K

Temperature Observed Predicted

0

1

2

3

4

5

6

2/28 10:00 2/28 13:00 2/28 16:00 2/28 19:00 2/28 22:00 3/1 1:00

g 
kg

-1

Humidity

0

60

120

180

240

300

360

2/28 10:00 2/28 13:00 2/28 16:00 2/28 19:00 2/28 22:00 3/1 1:00

D
e

gr
e

e
s

Wind Direction

0

1

2

3

4

5

2/28 10:00 2/28 13:00 2/28 16:00 2/28 19:00 2/28 22:00 3/1 1:00

m
 s

-1

Windspeed



 91 

4.4.2.2 Atmospheric soundings and model comparison 

Atmospheric soundings provide an opportunity to evaluate upper air 

meteorological predictions. Within the simulation domain used for this study, sounding 

balloons were launched every 12 hours from Peachtree City, GA, approximately 45 km 

southeast of Atlanta. Sounding data was paired spatially and temporally with WRF 

predictions to assess uncertainty in the meteorological fields used to drive the 

simulations. Figure 4.13 compares wind speed and wind direction data from the 

rawinsonde launched at 1900 LT on 28 February 2007 with WRF-predicted wind fields. 

This sounding provides the closest available record of upper air measurements, spatially 

and temporally, to the peak PM2.5 concentrations observed in Atlanta during the 2007 

smoke episode. Across the full vertical modeling domain, WRF-predicted wind fields 

display good agreement with the sounding observations. Overall, wind speed predictions 

compared to observations show a +0.5 m/s mean bias, a 7.4% mean normalized bias, and 

a mean normalized error equal to 14.1%. Model performance is similarly strong for wind 

direction. When compared to sounding data across the vertical plane, WRF wind 

direction predictions show a mean bias of +1.82° and a mean error equal to 5.4°.  

 

 

Figure 4.13. Wind speed and direction predicted by WRF (red) upper air observations 

(black) from the rawinsonde launched from Peachtree City, GA at 1900 LT on 28 

February 2007. 

 

 

0

4000

8000

12000

16000

20000

0 20 40 60

A
lt

it
u

d
e

 (m
 A

G
L)

Wind speed (m/s)

0 90 180 270 360

Wind direction (°)

Sounding

WRF



 92 

However, fire emissions transport only occurs within a fraction of the modeling 

domain. In our base case simulation, fire-related emissions are injected into the modeling 

domain up to 1300 m above ground-level (AGL) and pollutant concentrations at 

downwind receptors are most sensitive to emissions released and transported within the 

PBL. Likewise, other studies suggest that low and middle PBL winds dominate the local 

and regional transport of fire related emissions (Stohl, 1998). Figure 4.14 focuses on the 

lower domain and again compares WRF-predicted winds to sounding observations. It 

becomes clear that at lower altitudes, where wind flow drives the transport of fire-related 

emissions, the model significantly overpredicts wind velocity. A bias in wind direction 

persists in the lower layers as well. Within the lowest 1500 m of the modeling domain, 

the WRF simulation overestimates wind speed by 40.2% with respect to sounding 

observations and displays a 6.8° bias in wind direction.  

 

 

Figure 4.14. WRF-predicted wind speed and direction and observations from the 

rawinsonde launched from Peachtree City, GA at 1900 LT on 28 February 2007 for lower 

2000 m of the atmosphere. 

 

 

The discrepancies between sounding data and WRF-generated wind fields 

demonstrate that significant uncertainties exist in the meteorological inputs used to drive 

air quality modeling. During the full 36-hour CMAQ base case simulation, modeled wind 

speed and direction can differ significantly with concurrent upper air soundings within 

the lower levels of the modeling domain. Wind speeds near the surface are consistently 

0

400

800

1200

1600

2000

0 5 10 15

A
lt

it
u

d
e

 (m
 A

G
L)

Wind speed (m/s)

90 180 270

Wind direction (°)

Sounding

WRF



 93 

overestimated by WRF. Discrepancies between predicted and observed wind directions 

are mostly lower than 10° and do not reflect a clear model bias for this episode. 

Similarly, other comparisons of WRF-predicted boundary layer winds speed and 

direction to wind profiler and aircraft observations have identified significant 

discrepancies (Gilliam and Pleim, 2010). Furthermore, systematic positive biases for 

boundary-layer wind speed were also revealed in a collective evaluation of mesoscale 

meteorological models within the framework of the Air Quality Model Evaluation 

Initiative (Vautard et al., 2012). 

4.4.3 Wind-associated error in PM2.5 predictions 

Meteorological fields are a key driver in air quality modeling. Errors associated 

with meteorological inputs propagate through air quality models and affect the accuracy 

of pollutant concentration predictions. Therefore, it is essential to evaluate the extent to 

which the performance of air quality models may be limited by uncertain meteorological 

input data. The process entails (1) determining the output variables most relevant to the 

modeling application, (2) identifying the input variables that significantly influence the 

values of the outputs of interest, (3) assessing the range of uncertainty in these model 

inputs, and (4) quantifying the sensitivity of output variables to input variable 

perturbations within their uncertainty range. In simulations attempting to replicate the 

impacts of wildland fires on air quality, ground-level pollutant concentrations at 

downwind locations are the output variables of greatest interest. Furthermore, in this 

study we focus on PM2.5, the atmospheric pollutant most commonly associated with fire-

related air quality impacts. Typically, a few input variables control the value of specific 

model outputs. For air quality simulations involving wildland fires, wind inputs are 

clearly among the variables dominating predicted PM2.5 concentration. Here, 

uncertainties in wind inputs were explored by comparing meteorological predictions and 
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observations. Finally, brute force sensitivity analyses were used to determine the 

potential response of modeled PM2.5 concentrations to errors in wind field inputs.  

The sensitivity analyses described in Section 4.4.1 show that CMAQ-predicted 

PM2.5 concentrations could respond strongly to wind field variations well within their 

uncertainty bounds. Previous studies have compared pollutant trajectories projected from 

wind profiler observations and model predictions and have revealed that large deviations 

(100-200 km) may develop over a 24-hour period within the lower 1000 m of the 

atmosphere (Gilliam et al., 2006; Godowitch et al., 2011). These transport errors, largely 

attributed to wind speed differences, could significantly influence air quality predictions. 

In this study’s base case simulation, we revealed a positive bias in wind speed predictions 

with respect to both ground-level and upper air observations. The comparisons to weather 

data also revealed errors in wind direction predictions, generally smaller than 10°. The 

uncertainties in weather forecasts should not come as a surprise. However, it is clear that 

even small errors in wind flow can lead to large variations in PM2.5 concentration 

predictions. Across the lowest 1500 m of the modeling domain, wind speed in 

meteorological inputs would need an average reduction of 27% to match observed values 

from the available atmospheric sounding. Likewise, an average adjustment of -6.8° to 

wind direction is needed to equate predicted and observed values across the same vertical 

range.  

Figure 4.15 compares base case PM2.5 concentration predictions at Atlanta to 

results from simulations in which wind speed was systematically reduced by 27% and 

wind direction was uniformly modified by -6.8°. The differences among predictions 

exemplify how errors associated with wind fields in meteorological inputs propagate into 

the output fields thereby limiting model performance. The reduction in wind speed 

increased the maximum predicted PM2.5 concentrations within Atlanta by 47-52 µg m
-3

 

(82-103%) and delayed peak concentrations by approximately 1 hour. Modifying wind 

direction resulted in earlier peak PM2.5 concentrations and an 8-24 µg m
-3

 (15-47%) 
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increase to maximum predicted concentrations. Additionally, Figure 4.15 shows the 

combined effect of simultaneously modifying wind speed and wind direction in 

meteorological input fields. The impacts of different perturbations on simulated 

concentrations are not additive, but rather each wind field produces a unique solution. 

Under specific conditions, the influence of errors associated with either wind speed or 

wind direction can dominate concentration estimates. Nevertheless, the analyses show 

that CMAQ-predicted PM2.5 concentrations in simulations attempting to replicate the air 

quality impacts of fires may carry normalized errors as high as 100% due to uncertain 

wind inputs. 

 

 

Figure 4.15. PM2.5 concentration predictions on 28 February 2007 (LT) at Atlanta 

monitoring sites for base case CMAQ simulation,  simulations with perturbed wind speed 

(-27%) and wind direction (-6.8°), and simulation with combined wind speed and wind 

direction perturbations. Monitoring station observations are also included. 
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concentrations. Overestimated wind speeds in the lower atmosphere may be especially 

significant.  

However, shortcomings in model performance can only be partially explained by 

meteorology. Additional parameters and inputs have been identified as sources of error. 

Fire-related emissions remain uncertain, especially for precursors of secondary organic 

aerosol. The spatiotemporal allocation of fire emissions on gridded domains may also 

impact model predictions. The significance of grid resolution in air quality simulations 

involving wildland fires is ascertained in Chapter 6. However, in the episode modeled for 

this study, the influence of uncertainty in wind inputs on concentration predictions 

substantially outweighed the effect all other sources of error identified, including 

uncertain emission rates. This suggests that fire-related simulations with chemical 

transport models are limited by the performance of existing numerical weather prediction 

systems. Additionally, as air quality modeling moves towards finer grid resolution, errors 

associated with meteorological inputs can be expected to constrain model accuracy even 

further.   

The response of PM2.5 concentration predictions to wind flow perturbations 

signals a need to include meteorological inputs in any strategy designed to improve fire-

related air quality simulations. Furthermore, it is important to recognize the limitations 

inherent to weather forecasts in the context of air quality modeling. Uncertain wind fields 

are an intrinsic component of numerical weather prediction and mitigating errors in short 

term and small scale wind forecasts produced by existing models is a challenging task. 

Concerns about the ability of meteorological models to capture intraday wind variations 

have been previously raised (Hogrefe et al., 2001). Additionally, substantial variability 

exists in meteorological predictions from different models and different configurations of 

the same model (Vautard et al., 2012). In light of this, air quality forecasts predicting the 

impact of fires on air quality produced by atmospheric chemistry and transport models 
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must be considered substantially uncertain. These uncertainties must be considered when 

air quality modeling is used to steer fire management decision-making.  
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Quality Modeling, Atmosphere 2011, 2, 484-509. 

CHAPTER 5 

ADAPTIVE GRID USE IN AIR QUALITY MODELING 

 

Abstract 

The predictions from air quality models are subject to many sources of 

uncertainty; among them, grid resolution has been viewed as one that is limited by the 

availability of computational resources. A large grid size can lead to unacceptable errors 

for many pollutants formed via nonlinear chemical reactions. Further, insufficient grid 

resolution limits the ability to perform accurate exposure assessments. To address this 

issue in parallel to increasing computational power, modeling techniques that apply finer 

grids to areas of interest and coarser grids elsewhere have been developed. Techniques 

using multiple grid sizes are called nested grid or multiscale modeling techniques. These 

approaches are limited by uncertainty in the placement of finer grids since pertinent 

locations may not be known a priori, loss in solution accuracy due to grid boundary 

interface problems, and inability to adjust to changes in grid resolution requirements.  

A different approach to achieve local resolution involves using dynamic adaptive 

grids. Various adaptive mesh refinement techniques using structured grids as well as 

mesh enrichment techniques on unstructured grids have been explored in atmospheric 

modeling. Recently, some of these techniques have been applied to full blown air quality 

models. In this chapter, adaptive grid methods used in air quality modeling are reviewed 

and categorized. The advantages and disadvantages of each adaptive grid method are 

discussed. Advances made in air quality simulation owing to the use of adaptive grids are 

summarized. Relevant connections to adaptive grid modeling in weather and climate 

modeling are also described. 
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5.1 Introduction 

Air quality modeling provides a valuable means to reproduce the behavior of 

atmospheric pollutants. Air quality models are either of Eulerian grid type or Lagrangian 

models with underlying grids. Cell size is the measure of the scales that can be explicitly 

resolved by a grid model. Smaller-scale phenomenon can only be represented through 

subgrid scale parameterizations. The dynamic and chemical processes involved in the 

transport and transformation of atmospheric pollutants encompass a wide range of scales. 

Complex interactions between processes occurring at different scales make it necessary 

to resolve the finest relevant scales. For example, it is well known that emissions from 

urban and industrial centers are responsible for regional or global air quality problems. 

On the other hand, if emission plumes are injected into relatively coarse grid cells in a 

regional or global scale model, they are immediately diluted with the contents of the cell 

and the details of their chemical interaction with the surrounding atmosphere are lost. In 

the early days of regional modeling 100 km resolution was typical; today, models are 

pushing the 1 km barrier and the quest for higher resolution continues. With higher grid 

resolution come increased resolution of complex terrain topography, land use, land cover, 

cloud cover, and other data used in subgrid scale parameterizations, enabling an increase 

to the overall resolution of the models. 

Historically, the motivation for air pollution modeling has been air quality 

management. Development of control strategies has been the initial driving force behind 

modeling research and advancement. With the confidence gained in describing historic 

pollution events, models were applied in air quality forecasting. Today, models are used 

for much broader purposes that connect air quality to other fields. The feedback of 

pollution on meteorology is receiving more attention with a focus on problems such as 

smoke from wildfires and volcanic ash, leading to the coupling of air quality models with 

numerical weather prediction models that were historically used to provide 

meteorological inputs only. Along with the study of climate and global-scale air quality 
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problems, air quality models are beginning to merge with global circulation and global 

chemistry models. These trends considerably expand the domains of the models from 

their original dimensions. 

Modeling large geographic regions with high resolution is a challenging 

computational problem. The models’ demand for computational resources escalates 

rapidly with increasing resolution. For example, consider the changes to the operation 

count in a model that uses an explicit numerical scheme. An explicit scheme advances a 

system from its current state Y(t) to a future state Y(t + Δt) at time t + Δt as follows: 

 ))(()( tYFttY  . (5.1) 

Y(t + Δt) can be obtained by direct substitution of the current state Y(t) into the right-

hand-side of this equation. The operation count in substitution is O(N) where N is the 

number of grid cells. If N increases, the operation count and computational resource 

demands, such as memory and CPU time, increase linearly with it. Doubling the 

horizontal grid resolution (e.g., reducing linear grid size from 1 km to 500 m) quadruples 

the number of grid cells. If the number of vertical layers is also doubled, the total number 

of grid cells increases by a factor of 8. In addition, there is a computational cost 

experienced with explicit schemes related to time-stepping; as N is increased, the length 

scales decrease and a smaller time step, Δt, is required due to stability considerations 

encountered with explicit schemes. Advancing the system using shorter time steps makes 

the overall increase in computational cost super-linear and typically further augments it 

by another factor of two when the resolution is doubled. 

For models that use implicit schemes, the computational resource demand grows 

more rapidly with increasing resolution. In an implicit scheme, both the current and 

future states of the system appear in an equation of the following form: 

 0))(),((  ttYtYG . (5.2) 

This equation can be solved directly or iteratively. Direct solutions involve a matrix 

inversion and are typically more expensive than iterative solutions. Depending on the 
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selected solution method, the operation count of an implicit scheme is generally between 

O(N log N) and O(N
2
). Therefore, doubling the resolution, which increases the number of 

grid cells by a factor of 8 as described above, may result in an operation count 64 times 

larger. One advantage of implicit schemes is that they are not subject to stability limits; 

thus, it is not necessary to decrease the time step if N is increased. However, it may still 

be desirable to reduce the time steps, as characteristic times of certain processes are 

shortened (e.g., the time it takes to advect emissions by the winds over the length scale 

∆x). This obviously increases the computational cost even further. 

Multiscale modeling techniques emerged as a solution to this gargantuan 

computational challenge. The goal is to develop models capable of applying the 

appropriate scale or sufficient resolution where and when it is needed. The goal of 

multiscale models is to encompass different scales (e.g., local, urban, regional, global) in 

a unified modeling system to better capture the interactions among the processes relevant 

at each scale. There are various multiscale modeling techniques; two methods applied in 

air quality models are described here. The first features grids that can be nested multiple 

levels deep for better resolution of finer scale processes. The second involves grid 

adaptation in response to the needs of a particular simulation, either by refining a 

structured mesh or by locally enriching an unstructured mesh with added cells. This 

chapter will focuses on the adaptive grid method and continues with a review of its use in 

air quality modeling. It ends with remarks on the prospect of growing use of adaptive 

grids in atmospheric modeling. 

5.2 Nested Grid Methods 

Nested-grid modeling techniques have been and still are very popular in 

atmospheric modeling (e.g., (Clark and Farley, 1984; Jones, 1977; Miyakoda and Rosati, 

1977; Phillips and Shukla, 1973; Pleim et al., 1991; Zhang et al., 1986)). In static grid 

nesting, finer grids (FGs) are placed or “nested” inside coarser grids (CGs). The domain 
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and resolution of each nest are specified prior to the simulation and remain fixed 

throughout. The nested grid method targets higher resolution for domain features that 

remain stationary (e.g., terrain, coastline, the location of a power plant or urban area). A 

fixed FG near such features is a simple and practical solution to locally increase 

resolution. The grid size of the CG is usually an integer multiple of the FG’s grid size. 

Typically, the temporal resolution of the FG is also higher, as its time step is set to be 

shorter than that of the CG. It is customary, although not necessary, to set the time step 

ratio equal to the grid size ratio.   

While static grid nesting is a practical multiscale modeling technique, it has 

limitations. The domains and resolutions of nests are selected either arbitrarily or based 

on conceptual models that may not be very accurate. The quality and accuracy of the 

solution obtained greatly depends on the initial selections. Once the grids are set, it may 

not be simple to change them since input data must be reprocessed for the new grid 

settings. This is the case, for example, in forecasting operations. A common problem 

associated with grid nesting methods is that they often lead to spurious oscillations at grid 

interfaces. This is particularly problematic when an interface coincides with an area of 

large physical gradients because the filters used to remove the oscillations can also 

reduce the amplitudes of resolvable waves. Large refinement ratios between CG and FG 

amplify the oscillations and necessitate more vigorous filtering (Odman and Russell, 

1994). 

5.3 Adaptive Grid Methods 

The objective of an adaptive grid method is to increase solution accuracy by 

providing dynamic refinement at regions and instances where accuracy is most dependent 

on resolution. This can be achieved by restructuring the grid on which solution fields are 

estimated to better fit the needs of the system being numerically described. Adaptive 
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gridding techniques can be classified as h-refinement or r-refinement depending on the 

type of grid restructuring employed.  

H-refinement relies on increasing the total number of grid elements (e.g., nodes or 

cells) within a base grid for which the original structure remains fixed. The technique, 

also known as mesh enrichment or local refinement, modifies the grid at regions tagged 

for increased resolution. Frequently, the method is carried out by subdividing grid 

elements into smaller self-similar components. In Figure 5.1, the example depicting h-

refinement shows a single refinement level. A second level of refinement could involve 

subdividing the refined cells at the center of the domain into four even smaller cells. 

Generally, a maximum number of refinement levels allowed must be defined. 

 

 

Figure 5.1. Uniform grid (left) and examples of h-refinement (center) and r-refinement 

(right). 

 

 

H-refinement can be realized by applying two distinct methodologies. One 

approach is to include added grid elements directly into the original base grid; all 

elements are solved on a single grid throughout the simulation. This method requires data 

storage procedures and solvers capable of handling unstructured grids. Alternatively, h-

refinement can be achieved by considering the additional elements at increased resolution 

levels as distinct grids that are dynamically created or removed. In this manner, each 

refined grid can remain structured and be individually solved using algorithms developed 
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exclusively for uniform or rectangular grids. Here, communication among different levels 

of refinement takes the form of boundary and initial conditions setting for the different 

grids.  

R-refinement techniques, commonly referred to as mesh moving or global 

refinement, relocate mesh nodes to regions warranting increased resolution and 

subsequently increase grid element concentration at the areas with the greatest 

inaccuracies. However, the total number of grid points is maintained constant. Unlike h-

refinement, r-refinement around a region is necessarily accompanied by coarsening at 

another. Figure 5.1 shows simple schematics of h-refinement and r-refinement at the 

center of a simple nine element quadrilateral grid. 

Both adaptive gridding techniques have advantages and drawbacks associated 

with them. An advantageous distinguishing feature of r-refinement is smoother 

transitions in grid resolution. In contrast, h-refinement ordinarily operates on grids with 

abrupt discontinuities among the different refinement levels allowed. Acute disruptions in 

resolution are undesirable and may lead to interface problems. The constant number of 

grid elements maintained throughout a simulation using r-refinement could prove 

beneficial; a fixed number of elements simplifies solution algorithms and is helpful in 

parallel computing implementations. It could appear that the achievable improvement to 

solution accuracy with r-refinement is limited by the total number of grid elements or 

nodes, and that such a restraint is not inherent to h-refinement. However, it is important 

to note that the available computational resources, and not the number of nodes, are the 

true limitation to accuracy. At the limit of computational capacity, both h- and r-

refinement can only increase local refinement at the expense of coarsening elsewhere. 

More accurately, r-refinement’s disadvantage lies in its need to determine global 

resolution (i.e., total number of grid elements) a priori. A poorly selected domain-wide 

number of elements will limit solution accuracy if too low and hinder efficiency if overly 

large. The requirement may be especially important when dealing with multiple and 
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concurrent calls for increased resolution within different regions of a domain. This 

prerequisite is not essential to h-refinement. Additionally, h-refinement can guarantee a 

minimum solution accuracy level for all fields throughout the full domain by disallowing 

coarsening beyond a base grid resolution. R-refinement can be thought of as an 

optimization problem; the technique attempts to determine the best grid configuration 

possible under user-defined computational constraints. In h-refinement an optimal grid is 

not necessarily sought or possible. Typically, the discrete and bounded refinement levels 

used for adaptation with h-refinement schemes negate optimization. H-refinement is 

more frequently applied as a simple technique to identify regions that would likely 

benefit from increased resolution and readily refine at these locations if additional 

computational resources are available. The procedure may lead to an acceptable increase 

in solution accuracy by utilizing simpler adaptive algorithms that may be significantly 

less burdensome than those invoked by r-refinement methods. Neither refinement 

technique can be labeled as superior. While mesh movement seems better equipped to 

optimize resolution and computational workload, achieving an optimal grid may not be 

straightforward. Under such conditions the advantages of mesh enrichment could be of 

greater value. 

5.3.1. Grid Structuring 

Grid structures applied in numerical modeling may be categorized as structured or 

unstructured. The distinguishing feature between them refers to the data structure 

associated with each, rather than visual traits. Data on a structured grid can be arranged 

into a rectangular matrix; cells and nodes can be identified through integer indices (e.g., i, 

j, k). The requirement brings forth regular grid patterns and most often quadrilateral or 

hexahedral elements. Additionally, the data arrangement in structured grids reduces 

memory requirements compared to unstructured ones.  
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In contrast to structured grids, data from unstructured grids cannot be arranged by 

applying simple integer indexing and full connectivity must be defined and stored for 

each node. Unstructured grid cells are defined as a group of nodes that encompass an 

element of any geometry. These grids can be built using triangles, quadrilaterals, 

tetrahedra, hexahedra, or any polygon or polyhedron, including combinations of elements 

with different geometries. The irregularity of unstructured grids allows greater versatility 

in their assembly compared to structured grids. This flexibility in domain discretization 

has made unstructured meshes popular in simulations dealing with complex geometries 

and a common choice to model fluid mechanics (Morgan and Peraire, 1998).  

Typically, finite-difference methods are used with structured grids and finite-

element (or finite-volume) methods are used with unstructured grids. Both methods are 

well developed for the solution of hyperbolic partial differential equations of the type 

encountered in atmospheric models. Higher-order spatial approximations are available for 

both types of methods; therefore, the desired level of accuracy can be achieved with 

either. In general, higher-order methods in atmospheric models must be used together 

with flux-correction or filtering algorithms to avoid the generation of spurious 

oscillations that may lead to undesirable effects such as nonmonotonic and unphysical 

solutions (e.g., negative concentrations in air quality models) or even instabilities. Using 

higher-order difference approximations or higher-order elements is known as p-

refinement, an alternative to the adaptive grid h- or r-refinement techniques described 

above for increasing solution accuracy. The decision of using an explicit or an implicit 

scheme must be made for time integration; it does not depend on the spatial grid and 

whether it is structured or unstructured. Hence, either option is available both with finite-

difference and finite-element methods. 

Mesh enrichment (i.e., h-refinement) can be implemented into both structured and 

unstructured grids. Often, refinement involves subdividing cells into equal self-similar 

elements; quadrilaterals and hexahedra are divided into four or eight smaller elements 
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respectively. Likewise, techniques are available to systematically divide triangular and 

tetrahedral grid elements. For structured grids, mesh enrichment may decimate the 

regularity in grid elements and render original solution algorithms inapplicable, unless 

refinements are treated as distinct grids, similar to nested grid methods. H-refinement is 

more compatible with unstructured grids. Given the arbitrary arrangement of cells within 

an unstructured domain, initial solution algorithms will generally also be applicable to the 

refined grid. 

Mesh movement (i.e., r-refinement) can also be achieved regardless of grid 

structure. The technique is clearly well suited to structured grids; despite node movement, 

the regularity and connectivity of grid elements remains intact. Nevertheless, solution 

algorithms designed for structured grids may have been also developed assuming 

uniformity and be invalid under a nonuniform grid. Solver incompatibility can be 

addressed by applying a coordinate transformation to the governing equations and grid, 

from nonuniform in physical space to uniform in computational space. The 

transformation must be applied each time the grid is restructured and may significantly 

increase the method’s overhead. Mesh movement on unstructured grids can be simpler if 

the solution algorithms available are capable of handling irregular, nonuniform grids 

from the start. 

5.3.2. Error Estimation 

The objective of increasing solution accuracy through adaptive gridding can only 

be met if adaptation is driven by an efficient indicator of the solution error in a spatial 

field. The concept of error equidistribution has been used to describe the adaptive grid 

process; grids are reconfigured to result in an equal amount of error for all grid elements 

(Baker, 1997). However, directly quantifying error is not a straightforward task. 

Quantitative analysis of resolution-induced error in advection algorithms has been 

previously investigated. For advection schemes, a Fourier method can estimate error (i.e., 
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numerical diffusion) as a function of grid resolution (Odman, 1997). The estimation 

becomes much more complex after integrating other physical and chemical processes into 

the system, particularly nonlinear transformations. Additionally, exact error 

quantification cannot be used as a refinement driver a priori, as the error itself depends 

on grid structure after adaptation.  

Typically, adaptive grids use an error indicator in place of solution error to drive 

refinement. The error indicator may be a rudimentary calculation related to the error. For 

instance, estimates of the truncation or interpolation error may be applied. It is also 

common to rely on physical features that are known to efficiently signal locations where 

the error is most sensitive to grid resolution. In air quality modeling, for example, 

concentration gradients or curvatures can be used to trigger refinement and effectively 

increase solution accuracy. The selection of an error indicator to drive refinement is more 

critical to r-refinement than h-refinement. For mesh moving refinement, adaptation acts 

as an optimization processes by which error is minimized with a fixed amount of 

available resolution. Since refinement at one region necessitates coarsening at another, 

effective adaptation criteria truly representative of solution error are crucial. In mesh 

enrichment, base-level solution accuracy is generally guaranteed. Refinement augments 

resolution at selected locations and increases total grid resolution. An optimal grid 

configuration is not necessarily achieved nor pursued. Instead, mesh enrichment may 

simply allocate additional resolution in an attempt to sufficiently increase solution 

accuracy. 

5.4. Antecedents of Adaptive Grid Air Quality Modeling 

Research efforts investigating adaptive gridding in meteorological modeling 

precede those exploring the technique as an option for air quality simulation. The 

motivations and methodologies for adaptive grid refinement in both atmospheric realms 

are very much alike. The earliest attempt to simulate atmospheric flows using an adaptive 
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grid was reported by Jones (1977). In the model described, two levels of nested grids 

were allowed to move within a larger domain while tracking a tropical cyclone identified 

from the surface pressure field.  

Subsequent applications of adaptive gridding in atmospheric modeling were 

described by Skamarock et al.(Skamarock et al., 1989; Skamarock and Klemp, 1993). In 

these simulations, grid refinement was based on the method of Berger and Oliger (1984). 

This approach to adaptive gridding achieves dynamic refinement by nesting rectangular 

subgrids of arbitrary orientation at regions necessitating enhanced resolution within a 

coarse-resolution base grid. Subgrids may overlap and multiple grid levels with 

increasing resolution can coexist. Estimates of truncation error at each grid point are used 

to flag the locations requiring improved resolution. Flagged points are clustered and 

rectangular subgrids encompassing each cluster are created. The procedure is performed 

at each level of resolution until no further refinement is required or a user-defined 

maximum level is reached. 

An alternative strategy to adaptive gridding in meteorological modeling was 

reported by Dietachmayer and Droegemeier (Dietachmayer, 1992; Dietachmayer and 

Droegemeier, 1992). This method utilizes r-refinement driven by a weight function 

calculated from the spatial fields of selected physical properties, typically based on 

gradients and curvatures. Similar to other r-refinement algorithms, a coordinate 

transformation from irregular physical space to uniform computational space is applied to 

the governing system of equations. 

5.5. Adaptive Grids in Air Quality Models 

Application of adaptive grids in air quality modeling has been explored for over 

10 years. Three distinct efforts to implement adaptive gridding techniques into Eulerian 

air pollution models can be identified. These undertakings can each be traced back to 

Tomlin et al. (1997), Srivastava et al. (2000), and Constantinescu et al. (2008). The 
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techniques presented by Tomlin et al. (1997) and Srivastava et al. (2000) have undergone 

substantial development thereafter, and evolved from simple exercises designed to prove 

the worthiness of adaptive gridding in air pollution modeling to elements of regional air 

quality models applied to realistic simulations. The aforementioned approaches to 

adaptive grid modeling are vastly different; methods applied to achieve improved results 

are unique to each. However, the goal and many of the conclusions reached from analysis 

of modeled results are common to all. In this section the main characteristics of each of 

these adaptive grid modeling techniques are described, as well as common challenges 

encountered and shared conclusions. A summary of the methods’ characteristics is also 

presented in Table 5.1. 

 

Table 5.1. Adaptive Grid Methods in Air Quality Modeling. 

Original 

Publication 
Grid Structure 

Refinement 

method 

Refinement criteria 

applied 

Implementation 

into operational  

air quality model 

Vertical 

adaptivity 

Tomlin et al. 

(1997) 

Unstructured 

triangular or 

tetrahedral 

Single grid  

h-refinement 

1st and 2nd order 

solution difference; 

concentration gradient 

Eulerian grid model Yes 

Srivastava et 

al. (2000) 

Structured 

quadrilateral 
R-refinement 

Interpolation error; 

concentration curvature 
CMAQ No 

Constantinescu 

et al. (2008) 

Uniform 

quadrilateral 

with nested 

refinements 

Multigrid  

h-refinement 
Concentration curvature STEM No 

 

 

5.5.1. Reported Adaptive Grid Methods in Air Quality Modeling 

An adaptive grid method applicable to air pollution modeling using unstructured 

grids is described by Tomlin et al. (1997). The method is applied to an unstructured 

triangular grid model which solves the discretized atmospheric diffusion equation using a 

finite-volume approach. Grid refinement is achieved through mesh enrichment (i.e., h-
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refinement). Original grid nodes remain fixed and refinement is accomplished by splitting 

each triangle into 4 smaller, similar triangles. The process can be extended to any user-

determined level of refinement and derefinement simply involves merging elements 

contained within the same parent triangle. The refinement technique is illustrated in 

Figure 5.2. Adaptation is driven by the spatial error estimated as the difference between 

solutions calculated using first- and second-order methods. A test case simulated 

dispersion of a concentrated NOx plume within background atmospheres with varying 

degrees of pollution. The NO concentration field was selected to estimate spatial error 

and drive refinement limited to a maximum of two levels. In the simulation, refinement 

winds up concentrated around pronounced spatial gradients. The adaptive grid captures 

features in the ozone and NO2 concentration structures unseen in a simulation without 

refinement, near the point source and further downwind. Additionally, a significant 

difference in total NO2 mass is observed between adapted and unadapted simulations. 

The authors attribute the discrepancy to nonlinear chemistry, which renders ozone and 

NOx concentrations grid resolution dependent. 
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Figure 5.2. Refined unstructured triangular grid covering the United Kingdom. Reprinted 

with permission from Tomlin et al. (2000). 

 

 

The adaptive gridding method of Tomlin et al. (1997) has been subsequently 

applied to model the dispersion of nuclear contamination (Lagzi et al., 2004) and air 

pollution formation across central Europe (Lagzi et al., 2009). These simulations 

extended into the regional scale and incorporated vertical layering and mixing, space-

and-time-varying three-dimensional meteorological fields, dry deposition, and pollutant 

transformations (e.g., nuclear decay or chemical reactivity). In these studies, 

concentrations estimated using adaptive grids exhibited closer agreement to 

concentrations calculated under fine resolution than those attainable using coarse grids or 

nested grids placed over main pollutant sources. Furthermore, adaptive grids required 

only a fraction of the computer time necessary for the fine resolution simulations. 
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Implementation of adaptive gridding along the vertical domain has also been reported 

(Ghorai et al., 2000; Tomlin et al., 2000). The three-dimensional adaptive grid method 

uses an unstructured tetrahedral grid. Refinement is based on the same strategy 

previously described for the horizontal adaptation and is achieved by subdividing 

tetrahedral elements into 6 to 14 smaller tetrahedra depending on cell location and the 

number of edges tagged for refinement. In one test case, the adaptive grid method was 

used to model an elevated NO point source under conditions representative of different 

stability classes (Ghorai et al., 2000). Adaptation was driven by node-to-node 

concentration gradients. The results demonstrate the significance of vertical resolution in 

estimating accurate pollutant concentrations. This is especially true downwind of sources 

and under neutral-to-stable atmospheric conditions, which frequently lead to limited 

mixing and large gradients at inversion layers. 

The use of mesh movement (r-refinement) as an adaptive grid strategy in air 

quality modeling was first reported by Srivastava et al. (2000). The proposed adaptive 

grid algorithm maintains the number of grid cells fixed throughout the simulation and 

operates on a structured grid. Nodes are allowed to relocate across the domain in an 

attempt to minimize solution error. However, grid topology remains unaltered. Use of 

nonuniform grid elements requires that a transformation from Cartesian to curvilinear 

coordinates be applied to governing equations and node positions. This transforms the 

grid from nonuniform in physical space to uniform in computational space, and allows 

the finite-volume solution procedures designed for a physically uniform grid to be 

applied to a nonuniform dynamic grid. Adaptation (i.e., grid movement) is controlled by 

a weight function based on an error estimate defined as the difference between the values 

at each cell and those obtained by interpolation of values in neighboring cells. A 

combination of species’ concentrations may be selected as values used in the weight 

estimation. Weights are normalized, smoothed, and integrate several parameters that can 

be used to control the degree of adaptation. During adaptation, grid nodes are relocated 
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and clustered around areas bearing large weights. After the grid is modified, it is 

necessary to reorganize solution fields onto the new grid applying a redistribution 

procedure. The newly generated solution fields can then be used to recalculate spatial 

error (i.e., weights) in an iterative procedure that continues until a grid convergence 

criterion, defined as a maximum node movement relative to initial grid spacing, is met. 

Several tests were performed using this adaptive grid algorithm to evaluate its 

performance including simulations of rotating conical concentration distributions 

(Srivastava et al., 2000), a reacting pollutant puff (Srivastava et al., 2000, 2001a), and 

dispersion of a power plant plume (Srivastava et al., 2001b). The simulation of single and 

multiple rotating conical distributions confirmed a significant increase in solution 

accuracy compared to static grid simulations and demonstrated the adaptive grid’s ability 

to better resolve features involving steep gradients or discontinuities. An important 

observation is mentioned by the authors; while the adaptive grid provides an 

improvement over fixed grids, solution accuracy may still be limited by the total number 

of grid nodes in the simulation. A closer approximation to the exact solution may require 

that the number of grid nodes (i.e., cells) be increased, especially if multiple features 

simultaneously require increased resolution to be well resolved. The results from tests 

that modeled a reactive pollutant puff demonstrated that the adaptive grid algorithm 

better simulates nonlinear chemical transformations of pollutant distributions compared 

to static grid models. Srivastava et al. (2001b)  modeled a plume from an elevated point 

source resembling a power plant stack with a simplified chemical mechanism using 

adaptive and static grids. The authors find that the adaptive grid method decreases plume 

dispersion and has a significant effect on modeled ozone concentrations. The adaptive 

simulation was able to capture the small scale ozone plume structure near the source as 

well as high ozone concentrations at large distances downwind. These features are not 

observed when using a static grid. The test further demonstrates that the transport and 

nonlinear chemical processes relevant to an ozone plume’s “early”, “intermediate”, and 
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“mature” stages can only be adequately modeled by adaptive gridding or drastically 

increasing the number of cells in a much more computationally expensive simulation. 

To demonstrate the computational expense and accuracy gained, CPU times with 

static and adaptive grids were compared for the reactive pollutants puff test (Srivastava et 

al., 2000). The solution with an adaptive grid took 9 times longer than the solution on a 

static grid with the same number of grid cells. However, the accuracy of the adaptive grid 

solution was far superior as the minimum grid cell size around the puffs was 30–40 times 

smaller than the static grid cell size. The CPU time of a refined static grid solution using 

9 times more cells was also measured. Note that this solution falls short of providing the 

minimum cell size and the accuracy achieved by the adaptive grid solution, yet its CPU 

time was 63 times longer than the adaptive grid’s. These comparisons show that adaptive 

grids have the potential to offer accurate solutions at significant cost savings. 

Implementation of r-refinement into a comprehensive regional chemical-transport 

model was first reported by Odman et al. (2002). Later, Garcia-Menendez et al. (2010) 

developed an adaptive grid version of the Community Multiscale Air Quality modeling 

system (CMAQ) (Byun and Schere, 2006) using the adaptive grid algorithm proposed by 

Srivastava et al. (2000). This model is extensively discussed in Chapter 6. CMAQ 

integrates advection, diffusion, deposition, gas-phase chemistry, aqueous-phase reactions, 

aerosol dynamics, and cloud processes into air quality modeling. The adaptive grid 

version of CMAQ (AG-CMAQ) performs a transformation of the original governing 

equations in curvilinear coordinates, which allows the existing numerical schemes to be 

applied on a nonuniform grid. Two-dimensional grid refinement is driven by a weight 

function estimated from a numerical approximation of the curvature in selected model 

variables. The weight function can incorporate concentrations of different species or 

alternative atmospheric variables and adjust the relative importance of each.  

AG-CMAQ performance was evaluated by applying the model to simulate the air 

pollution impacts from an actual biomass burning event affecting air quality over a large 
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urban area. Figure 5.3 illustrates the application. The focus was placed on fine particulate 

matter. This differs from most adaptive grid plume simulations previously reported, 

centered on ozone photochemistry. Additionally, results were compared to measurements 

at air quality monitoring sites, an assessment approach that had only been previously 

reported for adaptive grids by Lagzi et al. (2009). Three-dimensional meteorological and 

emissions data were prepared by a numerical weather prediction model and emissions 

processors. The evaluation showed that AG-CMAQ reduced diffusion and produced 

better refined plumes compared to fixed grid CMAQ results. The mean fractional error 

relative to measurements was also reduced when using AG-CMAQ. Furthermore, the 

developers believe that AG-CMAQ may provide insight into atmospheric processes 

beyond that which can be gained from fixed grid CMAQ simulations. 

The adaptive grid method described by Constantinescu et al. (2008) has also been 

implemented into a comprehensive chemical and transport model. The authors developed 

a mesh enrichment (i.e., h-refinement) technique based on a structured quadrilateral grid 

and limited to the horizontal plane. The technique is illustrated in Figure 5.4. In this 

method, coarse level cells are grouped into equilateral blocks, each containing an equal 

number of cells. Refinement is achieved by subdividing a block into smaller blocks. Each 

refined block maintains the same structure and number of cells as the original block from 

which they were derived. Refinement can continue up to a specified maximum level; 

smaller cells are produced and the total number of cells across the domain is increased. 

Derefining involves merging several blocks into a single coarser-level block. The block 

structure and number of cells enclosed within each block, remain constant throughout the 

simulation. Adaptation is driven by the curvature in horizontal concentration fields. The 

normalized root mean square concentration curvature is estimated for each block, and the 

maximum estimate among all vertical layers is compared to user-defined tolerances to 

indicate refinement or derefinement. Simplified tests simulating atmospheric dispersion 
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indicated that the adaptive grid is capable of producing more accurate results than coarse 

and nested grids. 

 

 

Figure 5.3. Adapted grid during a biomass burning plume simulation with AG-CMAQ. 

 

 

 

Figure 5.4. Block-structured dynamically refined grid over East Asia. Reprinted with 

permission from Constantinescu et al. (2008). 
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The adaptive grid methodology of Constantinescu et al. (2008) was integrated into 

the Sulfur Transport and dEposition Model (STEM) (Carmichael et al., 1991). STEM 

includes three-dimensional representations of dispersion, deposition, chemical 

transformation, and cloud processes. An adaptive grid simulation focused on ozone 

formation over East Asia during one week was carried out using four levels of 

refinement. Over 100 chemical species and 200 chemical reactions are considered in the 

model. Yearly averaged emissions inventories and prognostic weather simulation results 

were included as inputs. Different species were used to estimate concentration curvature 

and drive adaptation. The curvature in ozone proved least useful, while curvature 

estimates accounting for ozone precursors (NO, NO2, and HCHO) produced better 

results. An increase in accuracy was observed when applying an adaptive grid relative to 

coarse resolution results. Two interesting observations are also discussed: (1) the increase 

in solution accuracy is highly dependent on the user defined refinement tolerances, and 

(2) the total number of grid cells decreases with time until becoming fairly stable. Special 

attention was given to implementation of the adaptive grid method into parallel 

computing systems, facilitated by the domain’s division into self-similar blocks. A 

computational cost is acknowledged for adaptive gridding. However, the computational 

requirements were significantly lower than those necessary for simulations performed at 

the finest grid resolution allowed in the adaptive grid application. For the application 

described, wall-clock times of STEM runs with static and adaptive grids were compared. 

An adaptive grid run of comparable accuracy required only a quarter of the time spent in 

a static fine grid run. 

5.5.2. Common Challenges 

The methodologies described in Section 5.5.1 follow different approaches to 

adaptive grid integration into air pollution modeling. However, all attempts have 
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encountered common challenges. These common obstacles and the strategies applied to 

overcome them merit attention and are discussed in this subsection. 

5.5.2.1. Refinement Criterion 

We have previously mentioned that an essential component of any grid 

refinement technique is an error estimation that serves as a refinement criterion. All 

applications of adaptive gridding to air quality modeling previously reported have relied 

on atmospheric concentration spatial fields. An error estimate calculated from the 

difference in first-order and second-order approximations of local concentrations was 

described in Tomlin et al. (1997). A simpler error calculation based on the gradient 

between neighboring concentration values was applied in Ghorai et al. (2000). A 

numerical approximation of the curvature of concentration fields was introduced by 

Srivastava et al. (2000) and has been used in later studies (Constantinescu et al., 2008; 

Garcia-Menendez et al., 2010). The different error estimations have all proven adequate. 

For simulations analyzing secondary pollutant fields, results indicate that spatial error 

calculations that consider precursor species outperform those that focus solely on the 

secondary pollutant. 

5.5.2.2. Refinement Control 

A need to constrain refinement intensity has also been identified in all previous 

investigations. Uncontrolled adaptation may lead to excessive refinement. Control 

parameters are implemented into the refinement criteria estimates previously described to 

normalize and smooth spatial error calculations. Mesh enrichment methods additionally 

require that user-defined upper and lower tolerances be set to trigger adaptation, directly 

controlling the degree to which grids are reconfigured. Furthermore, mesh enrichment 

techniques constrain adaptation to a maximum number of refinement levels. In the 

iterative mesh moving method previously described, a maximum number of relocation 
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operations and minimum node movement relative to initial grid spacing are defined to 

stop adaptation. 

Some concern about abrupt transitions in grid resolution has been expressed in 

past adaptive gridding exercises. The existence of neighboring grid elements refined to 

very different degrees may lead to errors and the loss of features resolved under the fine 

resolution if advection transports the features into coarse resolution regions prior to 

adaptation. A safety layer encompassing high resolution regions is proposed as a solution 

by Tomlin et al. (2000). The problem has also been addressed by significantly smoothing 

the error estimation driving adaptation (Srivastava et al., 2000). In r-refinement no 

boundaries between different resolution levels are created and smoothing can guarantee 

changes in grid size are gradual. Special care must be given to refinement along domain 

borders, as boundary conditions are generally only available at coarser resolution. 

Domain design should consider maintaining features that will call forth considerable 

refinement distanced from the domain edges. The moving mesh algorithm developed by 

Srivastava et al. (2000) only allows node movement along the lateral domain boundaries, 

limiting the refinement attainable along these edges. The same strategy is applied in AG-

CMAQ. In the adaptive grid model developed by Constantinescu et al. (2008) the cell 

blocks along lateral domain boundaries are maintained at the coarsest level throughout 

the simulation, and each subsequent cell block is only allowed to adapt to one additional 

refinement level. 

5.5.2.3. Adaptation Frequency 

As adaptability is integrated into more complex atmospheric systems, the grid 

refinement process may become increasingly taxing, especially when applied to 

comprehensive chemical-transport models. Therefore, it may be necessary or desirable to 

apply grid adaptation at intervals greater than solution frequency. Ghorai et al. (2000) 

found that performing grid adaptation every 20 minutes is sufficient to produce accurate 
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results and reduces the computational requirements of a three-dimensional elevated 

plume simulation. A 5 minute adaptation interval is used in the regional air quality case 

presented in Lagzi et al. (2009). In their simulation of air quality over East Asia, 

Constantinescu et al. (2008) tested adaptation intervals from 1 to 6 hours and determined 

that 3 hours provided an adequate balance between solution accuracy and computational 

cost. The reactive plume simulation of Srivastava et al. (2001b) applies grid adaptation at 

a frequency equivalent to every 4 solution time steps. The adaptive grid version of 

CMAQ developed by Garcia-Menendez et al. (2010), carries out adaptation once every 

output time step, set to 15 minutes in the application described. A related concern is the 

existing lag between adaptation and solution; error calculations that drive adaptation are 

estimated using the solution at the end of a time step, but the grid generated is applied 

towards solution of the following time step. To address this issue, quadratic interpolants 

have been used to predict the evolution of spatial error at a future time step and determine 

refinement (Tomlin et al., 1997). Such an approach may become increasingly useful as 

adaptability is implemented into more complex models and the frequency of adaptation 

must be reduced. 

5.5.2.4. Preadaptation 

Preadaptation has also been identified as a process that might be important in 

effective grid refinement. The strategy is of particular relevance to point sources which 

might immediately dilute into coarse cells and lose plume features prior to any 

adaptation. The plume simulation carried out by Tomlin et al. (2000) addressed the issue 

by placing the modeled stack within a subdomain and using the subdomain concentration 

as an internal boundary condition, an approach similar to grid nesting. Subsequent 

applications of this adaptive grid method have commenced from grids initially refined 

around major pollutant sources (e.g., point sources (Ghorai et al., 2000), cities (Lagzi et 

al., 2004; Lagzi et al., 2009)). A grid preadaptation step was proposed by Srivastava et al. 
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(2000). Under this procedure, a grid is adapted from the initial concentration field using 

the same error weight function estimation applied throughout the simulation. For sources 

that begin to emit at the start of the simulation, emissions are assumed to occur prior to 

initiating the run. Although preadaptation was not considered in the simulations discussed 

in Constantinescu et al. (2008), the authors acknowledge that a transient phase 

characterized by heavier refinement and observed during the initial stages of all runs 

might be attributable to coarse resolution around major sources at the onset. 

5.5.2.5. Interpolation 

Interpolation of coarse or uniformly distributed data onto adapted grids is an 

important component of all adaptive air quality modeling methods reported. The 

operation is essential during three processes of an adaptive grid air quality model: 

emissions, meteorology, and solution redistribution. The procedure for processing 

emissions must be applied after each grid adaptation operation. Different interpolation 

schemes have been used to interpolate area sources onto adapted nonuniform grids. 

Additionally, point sources must be relocated to appropriate cells after grid 

reconfiguration. Emissions processing can become taxing, especially for mesh moving 

methods that use cells with irregular geometries (Garcia-Menendez et al., 2010). 

Meteorological inputs, whether from numerical weather prediction models or synoptic 

observations, are typically uniformly spaced and provided at a resolution coarser than 

that of refined grids. Ideally, meteorological inputs should be provided on the same 

adaptive grids. A system with adaptive grid capability that attempts to couple simple air 

pollutant dispersion models with meteorology models was reported by Bacon et al. 

(2000) and is further described in Section 5.6. Mapping of meteorological fields onto 

required locations on an adapted grid is necessary and can be achieved through 

interpolation techniques. Nonetheless, the interpolation should ensure conservation and 

produce minimally modified fields (Tomlin et al., 2000). The most recurrent interpolation 
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operation in an adaptive grid algorithm is redistribution of solution fields onto modified 

grids after applying adaptation. Here, conservation is paramount. With grid enrichment 

methods, the operation may be as simple as linear interpolation (Constantinescu et al., 

2008). More elaborate interpolation techniques have been applied to solution 

interpolation onto unstructured triangular and tetrahedral based grids, including a 

conservative rezoning algorithm and cell-vertex method (Tomlin et al., 2000). Under 

mesh moving techniques, the movement of nodes over solution fields can be considered 

as equivalent to advective fluxes crossing cell boundaries. Solution redistribution 

procedures using a conservative interpolation equation or monotonic advection scheme 

have been previously described (Garcia-Menendez et al., 2010; Srivastava et al., 2000). It 

is likely that a significant fraction of the computational cost associated with adaptive grid 

air quality modeling is attributable to solution redistribution operations. This is especially 

true for iterative procedures. The overhead from adaptation must be kept in check by 

defining appropriate adaptation intervals and refinement parameters. Finding an adequate 

balance between adaptation efficiency and computational workload is important to 

achieve an effective operational model. 

5.5.2.6. Time-Stepping 

One characteristic of adaptive grid air quality models that can severely hinder 

performance is excessively small process time steps applied uniformly throughout the 

domain. It is common practice in air pollution models to apply the domain-minimum time 

step, typically fixed by the characteristic time for advection, at every point 

(Constantinescu et al., 2008; Ghorai et al., 2000). Therefore, the domain-wide solution 

time step is determined by the grid cells subjected to the highest resolution and greatest 

wind speeds. This guarantees that the Courant stability condition is met. However, as 

grids are refined solution time steps become increasingly small. Applying the minimum 

solution time step across the entire grid regardless of the individual needs at each location 
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is an inefficiency typically encountered in air quality models that may render adaptive 

gridding prohibitive. This concern is especially relevant when applying adaptive grid 

algorithms to comprehensive air quality models. The problem can be controlled by 

constraining the degree of refinement allowed as previously described. Alternatively, a 

variable time step algorithm was implemented into the adaptive grid version of CMAQ to 

address the issue (Garcia-Menendez et al., 2010). Under this technique, a local solution 

time step is assigned to each grid cell and the computational cost associated with adaptive 

gridding can be notably reduced. The local time steps are all integer divisors of a 

synchronization time step used to advance in time a synchronized global solution (Hu and 

Odman, 2010). 

5. 5.2.7. Subgrid Scale Parameterizations 

Finally, an especially significant concern about adaptive grid air quality modeling 

is the applicability of subgrid parameterizations to grids with nonuniform resolution and 

highly refined regions. The issue has not yet been addressed in reported research efforts. 

Parameterizations for physical processes (e.g., turbulence, cloud processes) must be valid 

for the refined grid. The dependence of these parameterizations on grid resolution may 

bring into question their validity across the entire domain if considerable differences in 

grid resolution are allowed. Furthermore, if resolution is sufficiently increased, some 

parameterizations might not be required and their inclusion could adversely affect 

solution accuracy. The concern is also relevant to adaptive grid modeling in other 

atmospheric realms. For instance, one adaptive grid weather prediction model assigns an 

adjustment factor, determined by cell area, to each cell and uses this factor to regulate the 

degree to which the convective parameterization is applied at individual cells (Bacon et 

al., 2000). Similarly, techniques that integrate dependence on grid resolution into the 

parameterizations of adaptive grid air quality models may have to be considered. 
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5.5.3. Shared Conclusions 

All adaptive grid air quality modeling applications previously described find that 

dynamic mesh refinement significantly increases the accuracy of results. Observed 

differences in simulated concentration fields using adaptive and static grids demonstrate a 

legitimate need for increased resolution in air quality modeling. Adaptive gridding has 

consistently proven to be an adequate and highly attractive option to meet increased 

resolution requirements. Additionally, the different adaptive grid methods reported 

outperform grid nesting and increase computational efficiency compared to high 

resolution simulations capable of providing the same level of accuracy. Adaptive grids 

significantly decrease numerical diffusion while revealing detailed pollutant 

concentration structures and features that cannot be resolved with static grids, uniform or 

nested, using comparable computational resources. Decreased errors associated with 

pollutant levels modeled using adaptive grids can be perceived near emissions sources as 

well as at considerable downwind distances. 

In the adaptive grid applications described, the largest spatial error, and therefore 

the highest degree of refinement needed to reduce this error, is typically observed at 

regions with pronounced concentration gradients. Large gradients can be usually found 

near pollutant sources and along plume edges further downwind. The nonlinear nature of 

atmospheric chemical transformations further strengthens the case for adaptive gridding. 

Studies have repeatedly determined that pollutant concentrations subjected to nonlinear 

chemistry (e.g., ozone, nitrogen oxides) are mesh dependent. Under these circumstances, 

integrated pollutant concentrations can change significantly when applying grid 

refinement techniques that can better resolve the chemical processes. As chemical 

transport models incorporate detailed secondary organic aerosol processes, nonlinear as 

well, the advantages of adaptive grids may become even more apparent.  

Vertical grid adaptation has only been fully incorporated into a single adaptive 

grid model. Tomlin et al. (2000) find that vertical resolution may be important to resolve 
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vertical profiles of pollutant sources and consequently determine accurate ground-level 

concentrations further downwind. Higher resolution may be warranted near inversion 

heights under unstable conditions. Since increased resolution is typically provided near 

the surface and mixing heights vary greatly throughout the day, vertical adaptivity may 

be helpful in capturing relevant concentration gradients above ground (Ghorai et al., 

2000). Although refinement is limited to the horizontal plane within the adaptive grid 

methods implemented into comprehensive chemical transport models, the authors 

describe extension of the methods along the vertical direction as a plausible and attractive 

undertaking (Constantinescu et al., 2008; Garcia-Menendez et al., 2010). 

Finally, all developers agree that the power of adaptive gridding will become 

more apparent as resolution of model inputs is increased to better match refined grids. 

This includes emissions, meteorological fields, and boundary conditions. Accuracy has 

been seen to improve when applying high resolution emissions (Constantinescu et al., 

2008). The significance of coupling adaptive grid air quality models to high resolution 

weather data has also been mentioned (Constantinescu et al., 2008; Garcia-Menendez et 

al., 2010; Lagzi et al., 2004). A potential alternative is to operate meteorological and air 

quality models under the same adapted grid. The coupled modeling approach would 

allow a weight function determined by any combination of both meteorological and air 

quality variables to drive grid refinement for both models simultaneously (Garcia-

Menendez et al., 2010). 

5.6 Additional Applications of Adaptive Grid Modeling in Atmospheric Sciences 

As adaptive grid modeling is being explored in air quality modeling, concurrent 

efforts to integrate the technique into weather prediction and global circulation models 

have been reported. Attempts to apply adaptive grids in comprehensive meteorological 

models have been limited with few recent developments. A noteworthy application is the 

Operational Multiscale Environmental model with Grid Adaptivity (OMEGA) (Bacon et 
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al., 2000). This numerical weather prediction model operates on a three-dimensional 

unstructured grid constructed from triangular prisms. Adaptation is carried out by adding 

or removing vertices at the centroids of cells tagged for refinement, subdividing cells, and 

restructuring node connections to minimize aspect ratio. An interesting feature of the 

model is the addition of dispersion modeling. Three distinct atmospheric dispersion 

techniques are integrated into OMEGA: Eulerian, Lagrangian particle, and probabilistic 

puff modeling. The techniques simplify pollutant transport by relying on averaged wind 

fields, parameterizing turbulent diffusion, and neglecting chemical transformation 

processes. Although these methodologies are not new, their incorporation into an 

adaptive grid meteorological model is of interest. With their inclusion, OMEGA allows 

embedded dispersion models to operate under high resolution meteorological fields. 

Furthermore, adaptation of the meteorological model can be driven by the pollutant 

plume itself (Bacon et al., 2000). Figure 5.5 illustrates grid adaptation to a plume in 

OMEGA. In this manner, a coupled meteorological-air-quality model that continuously 

exchanges data to drive the adaptation is established. 

 

 

Figure 5.5. OMEGA grid dynamically adapted to a pollutant plume. Reprinted with 

permission from Bacon et al. (2000). 
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Much of the progress recently reported pertaining to adaptive grid modeling in 

atmospheric science involves incorporation of the technique into general circulation 

models. The motivation to integrate adaptive gridding into global models is largely 

analogous to that driving incorporation into air quality and weather models: models 

simulate atmospheric processes covering a wide range of scales and available 

computational resources are unable to explicitly resolve all processes involved. 

Therefore, it is not surprising to find that adaptive gridding techniques explored in 

climate models are frequently equivalent to those applied to air pollution modeling. 

However, the spatial and temporal scales of interest are very different to those in air 

quality simulations. In addition, the spherical nature of the global modeling domain and 

differences in simulated processes result in very different grid refinement requirements.  

Nonetheless, future applications of adaptive gridding in air quality modeling may 

benefit from previous and ongoing efforts to integrate the technique into global models. 

Hubbard and Nikiforakis (2003) applied the grid refinement technique of Berger and 

Oliger (1984) previously explored in regional weather modeling, to global atmospheric 

modeling. Adaptive grid climate modeling on unstructured triangular or tetrahedral based 

grids has been explored by Behrens et al. (Behrens, 2005; Behrens et al., 2000; Behrens 

et al., 2005; Lauter et al., 2007). Here, adaptation is achieved by bisecting triangular or 

tetrahedral elements. Jablonowski et al. explored block-structured adaptive gridding 

within a global atmospheric model (Jablonowski et al., 2006; Jablonowski et al., 2009; 

St-Cyr et al., 2008). The grid refinement technique implemented in these applications is 

similar to that applied to air quality modeling by Constantinescu et al. (2008) and is 

illustrated in Figure 5.6. Refinement is achieved by organizing the domain into a block 

structured two-dimensional grid and further dividing blocks tagged for refinement into 

smaller self-similar units containing a fixed number of cells. Adaptation is allowed to 

proceed for several levels and each block is solved independently. A refinement 
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technique applicable to three-dimensional grids based on any geometric element was 

described by Weller and Weller (2008). The method has been explored on reduced 

latitude-longitude and hexagonal icosahedral grids (Weller and Weller, 2008), cubed 

sphere and triangular icosahedral grids (Weller et al., 2009), and polygon based grids 

(Weller, 2009). Moreover, an interesting approach to adaptation was presented by Weller 

(2009) where future refinement requirements are predicted at each adaptation step, 

allowing less frequent grid restructuring and diminished costs associated with 

restructuring the grid. Predictions are attained by advancing the solution by one 

adaptation time step on a coarse grid and estimating refinement criteria from this solution 

to generate a refined grid effective for the entire adaptation step. Additional research 

efforts exploring atmospheric modeling with unstructured Voronoi tessellations and C-

grid discretization have been recently reported (Ringler et al., 2010; Thuburn et al., 

2009). These grid generation techniques provide a natural framework for multiscale 

modeling and could effortlessly incorporate adaptive gridding in the future. 

 

 

Figure 5.6. Block-structured adaptive grid on a global domain. Reprinted with permission 

from St-Cyr et al. (2008). 
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5.7. Concluding Remarks 

Adaptive grid methods have not been fully explored in atmospheric modeling. 

Early attempts in weather prediction did not flourish and this field remained dominated 

by static nested grid methods. There have been a few recent attempts to integrate adaptive 

grids into air quality modeling but once again these attempts did not enjoy wide 

acceptance. Future undertakings should consider several key factors if greater interest in 

the technique is sought. The prevalence of community-driven models in atmospheric 

sciences today makes compatibility with existing model frameworks an indispensible 

requirement for increased use of adaptive gridding methodologies. Additional 

applications that go beyond typical power plant plume and ozone chemistry simulations 

are necessary to further demonstrate the worth of dynamic grid refinement. Finally, 

adaptive grid air quality models will have to be accompanied by equivalent increases to 

the resolution of emissions and meteorological inputs to truly reach their full potential.  

What looks promising for adaptive grids is the presence of a vibrant support by 

the global climate community who acknowledge reaching a plateau after years of 

improvement in accuracy, mainly driven by progress in high performance computing. 

Adaptive grid methods are viewed as a means to reignite model advancement and a long 

term solution for dealing with the multiscale nature of the climate system (Slingo et al., 

2009). The potential benefits of adaptive grid methods in global-scale modeling have 

been recognized (Weller et al., 2010). The range of scales covered by climate models is 

vast. For this reason, adaptive gridding might prove most crucial to future climate 

modeling.  

The potential returns of adaptive grids are considerable while the risks are 

relatively small. The methods have matured through advancements in computational fluid 

dynamics and wide use, for example, in aerospace engineering applications. Difficulties 

could be encountered in developing parameterizations for processes that cannot be 

resolved by adaptive gridding. The problem may eventually dissipate as adaptive grids 
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continue to provide increased grid resolution. Nonetheless, the issue must be dealt with in 

the interim. The wide range of scales provided by adaptive grids will necessitate 

resolution dependent parameterizations and this may appear as a daunting task. However, 

what is faced by increasing grid resolution uniformly or through grid nesting is the same 

problem: parameterizations that made sense for coarse grid resolution must be rethought 

as grid resolution increases. A culture of designing resolution-dependent 

parameterizations upfront instead of revising the parameterizations every time model 

resolutions change must develop. For these reasons, development of adaptive grid models 

is a worthwhile investment. 
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*A modified version of this chapter has been published in An adaptive grid version of 

CMAQ for improving the resolution of plumes, Atmospheric Pollution Research 2010, 1, 

239-249. 

CHAPTER 6 

AN ADAPTIVE GRID VERSION OF CMAQ FOR IMPROVING THE 

RESOLUTION OF PLUMES 

 

Abstract 

Atmospheric pollutant plumes are not well resolved in current air quality models 

due to limitations in grid resolution. Examples of these include power plant and biomass 

burning plumes. Adequate resolution of these plumes necessitates multiscale air quality 

modeling at much finer scales than currently employed and adaptive grids may be the 

best approach to accurate fine-scale modeling of air pollution dynamics and chemistry. 

An adaptive grid version of the Community Multiscale Air Quality Model (CMAQ) with 

all necessary functions for tracking gaseous pollutants and particulate matter has been 

developed. The model incorporates a dynamic, solution-adaptive grid algorithm and a 

variable time step algorithm into CMAQ, while retaining the original functionality, 

concept of modularity, and grid topology. 

The adaptive model was evaluated by comparing its performance to that of the 

standard, static grid CMAQ in simulating particulate matter concentrations from a 

biomass burning air pollution incident affecting a large urban area. The adaptive grid 

model significantly reduced numerical diffusion, produced better defined plumes, and 

exhibited closer agreement with monitoring site measurements. The adaptive grid also 

allows impacts at specified locations to be attributed to a specific pollutant source and 

provides insight into air pollution dynamics unattainable with a static grid model. 

Potential applications of adaptive grid modeling need not be limited to air quality 

simulation, but could be useful in meteorological and climate models as well. 
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6.1 Introduction 

The dynamic and chemical processes of air pollution involve a wide range of 

scales. While the initial transformation of emissions and dispersion of plumes occur on 

relatively small scales, long-range transport engages much larger scales. Air quality 

models rely on their grids for explicit resolution of processes involved; the processes that 

occur on sub-grid scales are parameterized. Modeling large geographic regions with 

uniform resolution at the finest relevant scale is beyond the realm of current computers; 

therefore, regional models generally settle for coarser grid resolution. When emissions or 

plumes are injected into grid cells coarser in size than characteristic plume dimensions, 

they instantaneously mix with the contents of the grid cell. Such mixing is unrealistic; it 

dilutes the plumes and the details of the near-field chemistry are lost. Multiscale models 

have been proposed to surpass the limitations of single-scale models. Conceptually, a 

multiscale model blends small scales with large scales and assigns the most appropriate 

scales to the phenomenon being modeled.  

The approaches to multiscale air quality modeling generally fall into one of the 

following two categories. The first category features static grids that can be nested 

multiple levels deep for better resolution of finer scale processes. This is the approach 

taken in the Community Multiscale Air Quality Model (CMAQ) (Byun and Schere, 

2006). The second approach involves grids whose resolutions continuously adapt to the 

needs of a particular phenomenon throughout the simulation. Note that this classification 

does not distinguish sub-grid modeling as a separate category. Embedding a subgrid scale 

model into the grid model (e.g., plume-in-grid modeling) is a multiscale modeling 

technique that can be used both with static grid nesting and dynamic grid adaptations. 

In static grid nesting, finer grids (FGs) are nested inside coarser ones (CGs). 

Multilevel nests can be placed to resolve the plumes of interest; however, as wind 

direction can change during the simulation, fine resolution must cover the entire area 

surrounding the emission source (e.g., power plant or industrial facility). There are two 
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types of grid nesting: one-way and two-way. In one-way nesting, the CG provides 

boundary conditions to the FG and no feedback is allowed from the FG to the CG; 

therefore, the CG and FG can be modeled sequentially. CMAQ uses one-way nesting. In 

two-way nesting, there is full interaction between the grids and all grids must be modeled 

simultaneously. The biggest limitation of static grid nesting is that resolution and the 

extent of each grid must be determined a priori and remain fixed throughout the 

simulation. The right choices of scale and coverage must be made at the beginning of the 

simulation. 

In dynamic grid adaptations, the grid resolution changes continuously and 

automatically to improve the ability of the model to capture detailed dynamics or follow 

the chemical evolution of plumes. For example, refining the grid where chemical 

reactivity is high can lead to better characterization of the interactions of pollutant plumes 

with ambient atmospheres. Similarly, the passage of a front, clouds, and other relevant 

dynamic features can be better resolved if dynamic adaptations are used. Dynamic 

adaptive grids were suggested for use in atmospheric modeling a few decades ago, but 

did not gain widespread acceptance. The use of adaptive grids in air quality modeling is 

thoroughly discussed in Chapter 5. 

Several adaptive grid algorithms were developed specifically for air quality 

modeling during the last decade. Although these algorithms did not necessarily make 

their way into functional air quality models, they were quite useful in determining the 

limitations of alternative approaches. For example, Tomlin et al. developed an 

unstructured grid algorithm for the purpose of resolving pollutant plumes in the boundary 

layer (Ghorai et al., 2000; Tomlin et al., 1997; Tomlin et al., 2000). This algorithm could 

have been linked with an adaptive grid meteorology model that also employs 

unstructured grids (e.g., (Bacon et al., 2000)) and developed into a transport-chemistry 

coupled with dynamics modeling system. However, the former did not occur. The reason 

may be the difficulties involved in transferring existing air pollution modeling 



 141 

technologies to unstructured grids. On the other hand, the adaptive grid algorithm 

developed by Srivastava et al. (Srivastava et al., 2000, 2001a, b) is based on structured 

grids and may be easier to implement in an air quality modeling system. 

Although some adaptive grid air pollution models were developed 

(Constantinescu et al., 2008; Odman et al., 2001; Odman et al., 2002), they were limited 

to gas-phase chemistry. Prior to this study, no effort has been reported towards the 

development of an adaptive grid chemical transport model for particulate matter (PM) or 

the incorporation of any adaptive grid capability into community models. However, 

dynamic grid adaptations in a community model such as CMAQ can significantly 

improve modeling of plumes from emission sources such as power plants or biomass 

burns, and hence the assessment of their air quality impacts. 

This chapter continues with a description of how an adaptive grid version of the 

CMAQ model has been developed based on the adaptive grid algorithm by Srivastava et 

al. (2000) and the adaptive grid air pollution model by Odman et al. (2001). This is 

followed by a brief account of the model code testing. The adaptive grid version of 

CMAQ is then applied to simulate a biomass burning plume and compared to the 

standard, static grid version in terms of plume resolution and agreement with ground-

level observations. 

6.2 Model Development Methodology 

The purpose of this work is to obtain more accurate solutions from the CMAQ 

modeling system to better assess the air quality impacts of plumes. The accuracy of the 

solution of a numerical model can be increased by either using higher order 

approximations (p-refinement) or by refining the modeling grid. There are two common 

grid refinement methods: (1) increasing the number of grid elements (h-refinement) and 

(2) maintaining the same number of grid elements but refining the grid by repositioning 
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the nodes (r-refinement). In adaptive grid refinement, h- or r-, the objective is to generate 

an optimal grid with available computational resources for the most accurate solution. 

The adaptive grid refinement method used here falls into the r-refinement 

category. It employs a constant number of grid nodes. An important characteristic of the 

algorithm is that it utilizes a structured grid that partitions a rectangular domain into N by 

M quadrilateral cells. The nodes move throughout the simulation but the topology of the 

grid remains the same. Each grid node is still connected to the same neighboring nodes 

and each cell retains the same neighboring cells after movement. However, the length of 

the links between nodes and the area of the grid cells change. One advantage of retaining 

the structure of the grid is that the nonuniform grid in the physical space can be mapped 

onto a uniform grid in the computational space through a coordinate transformation. The 

solution of partial differential equations that govern atmospheric diffusion is simpler on a 

uniform grid. Another advantage that cannot be achieved by an unstructured grid is 

compatibility with CMAQ. Not only can the numerical solution schemes developed for 

CMAQ be used after the coordinate transformation, but the subgrid parameterizations in 

CMAQ can be adopted as well (as long as they remain valid within the range of adaptive 

grid scales). Since these parameterizations assume a certain grid topology, they are 

generally incompatible with unstructured grids. 

The time integration of the governing equations on a dynamic adaptive grid can 

be viewed as a two-step operation. In the first step, the solution step, the grid movement 

is frozen in time and the equations are solved on this stationary grid. In the second step, 

the adaptation step, the grid nodes are moved through the solution fields obtained from 

the first step. As a result of the movement of the grid nodes to new locations, it will 

appear as if fluxes are crossing the faces of the grid cells. Ideally, the adaptation step 

should be repeated after each solution step owing to the change in resolution 

requirements. However, since frequent adaptations may be computationally restrictive, it 

may be practical to apply the adaptation step less frequently than the solution step. A 
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logical choice was to perform grid adaptation once every output time step as, in CMAQ, 

the partial solutions for different processes are guaranteed to synchronize before the 

solution is outputted. However, considering that CMAQ’s typical one-hour output time 

step may be excessively long to achieve efficient adaptation, the output time step was 

reduced to 15 minutes. 

Development of the adaptive grid CMAQ (AG-CMAQ) involved four major 

tasks: (1) reformulation of governing equations in general curvilinear coordinates; (2) 

implementation of spatially varying time steps; (3) incorporation of the adaptive grid 

algorithm; and, (4) consideration of meteorological data and emissions. The first two 

tasks are related to the solution step. The third and fourth tasks belong to the adaptation 

step. These four tasks will be described next. The following section ends with a brief 

account of the code verification procedure. 

6.2.1 Governing equations and coordinate transformation 

CMAQ is based on the species continuity equation that relates the rate of change 

of the concentration of species n, cn, to transport and chemistry as follows: 
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, (6.1) 

where X and Y are the coordinates on a conformal map of Earth and σ is a terrain-

following normalized vertical coordinate. Hence, the spherical shape of Earth and the 

irregularity of its surface already necessitate coordinate transformations, and γ is the 

Jacobian of these transformations: 
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. (6.2) 

Here m is the scale factor of a conformal map projection, i.e., the ratio of the distance on 

map to distance on Earth. A popular normalized vertical coordinate is sigma-p (pressure) 
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which is related to the altitude coordinate z as ∂z/∂σ = p*/ρg, where p* is the pressure 

difference between the surface and the top of the domain, ρ is the air density, and g is the 

gravitational acceleration. In Equation (6.1), U and V are the wind velocity components 

in the X and Y directions after scaling by m, and  ̇ is a nondimensional velocity 

component in the σ direction. K
XX

, K
YY

 and K
σσ

 are the elements of the diagonal turbulent 

diffusivity tensor with K
σσ

 related to vertical diffusivity K
zz

 as:  
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Rn and Sn are the chemical reaction and emission terms for species n.  

One more coordinate transformation was necessary to develop AG-CMAQ, the 

transformation of the horizontal space from the (X,Y) coordinate system to a curvilinear 

coordinate system (ξ,η): 
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Through this transformation, the adaptive grid that is nonuniform in (X,Y) space becomes 

a uniform grid in (ξ,η) space. The governing equations in (ξ,η,σ) space can be derived 

from Equation (6.1) above through the use of the chain rule for derivatives: 
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In this equation, the new Jacobian, J, is related to γ as 
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and v
ξ
 and v

η
 are the non‐dimensional components of the wind velocity vector in the ξ 

and η directions related to U and V as 
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The elements of the turbulent diffusivity tensor K
ξξ

 and K
ηη

 can be expressed as 
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Now that the grid is uniform in (ξ,η) space, it is much easier to solve the Equation 

(6.5). In fact, since the finite difference stencils in the ξ and η directions are the same as 

the stencils used in the X and Y directions in CMAQ, the solution algorithms can be taken 

directly from CMAQ. In addition, the parameterizations that only involve the vertical 

direction (e.g., cumulus parameterization) are directly applicable if the vertical coordinate 

is not transformed. The metric derivatives in Equations (6.6), (6.7) and (6.8) are 

calculated after each grid adaptation step using finite differences at the most appropriate 

locations (e.g. at the grid nodes or at the centers of the grid cells), stored as global 

variables, and then passed to various process modules that need them. 

6.2.2 Variable time-step algorithm 

In CMAQ, Equation (6.1) is solved using a method called process splitting where 

the rate of change of concentrations in one time step is broken into components 

associated with each process. These processes, which include advection, diffusion, 

chemistry, aerosol processes and cloud processes, are applied to the concentration fields 

sequentially. After all processes are applied for one time step, the solution is complete. 

The time step used for advancing split processes in CMAQ is determined by the 

characteristic time for advection. The goal is to complete the process cycle before any 

material is advected by more than one grid cell distance. This is ensured by selecting a 
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time step smaller than the grid size divided by the wind speed. This also satisfies the 

Courant stability condition for explicit advection schemes. Since the grid size is uniform 

in CMAQ, the maximum wind speed determines the time step for the entire domain. Note 

that using a time step much smaller than a cell’s characteristic time step does not make 

the solution more accurate; therefore, having a single global time step is computationally 

inefficient. In AG-CMAQ, the grid size is not uniform and the minimum ratio of grid size 

to wind speed (i.e. a relatively small grid size and a relatively large wind speed) 

determines the time step. Since the smallest and largest grid sizes can differ by orders of 

magnitude, the inefficiency becomes a serious bottleneck. Odman and Hu (2007) 

developed an algorithm that overcomes the global time step limitation by allowing the 

use of local time steps. 

In the variable time step algorithm, VARTSTEP (Odman and Hu, 2010), every 

cell is assigned its own local time step, which must be an integer multiple of the smallest 

time step in the domain and a whole divisor of the model’s output time step. For example, 

if the smallest time step in the domain is 1 minute and the output time step is 15 minutes, 

the allowable local time steps are 1, 3, 5, and 15 minutes. Considering that the length 

scales may be as small as 10 m in AG-CMAQ, and with a 10 m s
-1

 wind speed a time step 

of 1s may be necessary, the lower bound for local time steps was decreased to 1 second. 

With this adjustment, there is now a much wider range of possible local time steps than in 

the above example. The model clock time, t, is advanced by the minimum time step in the 

domain. When the clock strikes a multiple of the local time step, the grid concentration is 

advanced by the local time step by applying the changes resulting from different 

processes. 

Greatest computational savings can be expected in chemistry and aerosol 

processes that are independent from neighboring cell concentrations because the changes 

due to those processes can be computed at the frequency of the local time steps. On the 

other hand, transport processes involve neighboring cell concentrations; therefore, they 
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must be computed more frequently than the local time step. The transport fluxes from 

neighboring cells must be kept in reservoirs until the concentrations are updated. This 

increases the memory requirements with respect to CMAQ by an array equal in size to 

the concentration array. Horizontal advection in all grid cells is computed at the 

frequency of the minimum time step in the domain. Chemistry and aerosol processes are 

computationally more intensive than horizontal advection in CMAQ (Odman and Hu, 

2010). As a result, the local time stepping enabled by VARTSTEP makes AG-CMAQ 

much more computationally efficient than its predecessors (Odman et al., 2001; Odman 

et al., 2002). 

6.2.3 Adaptive grid algorithm 

As mentioned before, a simulation with AG-CMAQ has two fundamental steps: 

the solution step, described above, and the grid adaptation step. The purpose of grid 

adaptation is to locally increase or decrease grid resolution such that a more accurate 

solution can be obtained in the following solution step. The solution fields (e.g. 

concentration) remain unchanged during the adaptation step. However, grid nodes are 

clustered in regions where finer resolution is needed for an accurate solution. 

The grid adaptation methodology used here is based on the Dynamic Solution 

Adaptive Grid Algorithm described in Srivastava et al. (2000). In the algorithm, the 

movement of the grid nodes is controlled by a weight function. Grid resolution is 

increased by clustering the grid nodes around regions where the weight function bears 

large values. Since the number of nodes is constant, refinement of the grid in some 

regions of the domain is accompanied by coarsening in other regions where the weight 

function has smaller values. In this manner, a multiscale grid is obtained where the scales 

change gradually. Unlike nested grids, there are no fine-to-coarse grid interfaces, which 

may introduce numerical difficulties due to the abrupt change or discontinuity of grid 

scales. In practice, the number of grid nodes is selected according to the computational 
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resources available. By automatically distributing the grid nodes throughout the modeling 

domain the adaptive grid algorithm attempts to optimize the use of computational 

resources during the simulation.  

The weight function must be able to determine where grid should be clustered for 

a more accurate solution. A linear combination of the errors in concentrations of various 

chemical species makes an ideal weight function because it will assume large values 

where the errors are large. Adaptation weight scan be estimated as 

  
n

nn cw 2 , (6.9) 

where w is the weight function, ∇2
 , the Laplacian, is a measure for the numerical error in 

cn, and αn is a coefficient that adjusts the weight of the numerical error in species n with 

respect to the others. The different chemical mechanisms used in CMAQ all have a large 

number of species. Each one of these species may have very different resolution 

requirements. Therefore, no single set of αn can guarantee accurate solutions for all 

applications. Here, the focus was on PM emissions from biomass burning; consequently, 

all αn terms were set to zero, except for those from primary PM species. In applications 

involving secondary pollutants, such ozone or secondary organic aerosols, the proper 

choice of αn may not be as obvious and may require some experimentation. For example, 

a weight function combining nitrogen oxides (NOx), volatile organic compounds (VOCs) 

and ozone is likely to produce the best grid for capturing ozone formation. Odman et al. 

(2002), Khan (2003), and Constantinescu et al. (2008) tried weight functions with 

different combinations of αn for NOx, VOC, and ozone, in applications to urban and 

power plant plumes. For two-dimensional grid adaptation, such as that described in this 

chapter, concentrations at the surface, or any other layer, as well as vertical column totals 

may be used in Equation (6.9).  

Using the weight function, the new position of the grid node i, 
new

iP


, is calculated 

as follows: 
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Here, 
new

iP


, k = 1,…,4 are the original positions of the centroids of four grid cells that 

share the grid node i in the horizontal plane and wk is the value of the weight function at 

each centroid. New grid coordinates are stored into a three-dimensional array and passed 

as an argument to all process modules. 

The movement of grid nodes in a steady concentration field results in fluxes 

crossing the boundaries of the grid cells. In this respect, grid adaptation is similar to 

advection where the grid boundaries are fixed but the field is moving due to wind 

velocity. Alternatively, the problem can be approached by observing that after adaptation 

each grid cell encloses a different portion of the domain, hence a different plot of the 

concentration field. Therefore, cell-average concentrations must be recomputed. This is 

similar to interpolation. Since interpolation is numerically equivalent to advection 

(Smolarkiewicz and Grell, 1992), either way of thinking is acceptable. Here, a high-order 

accurate and monotonic advection scheme known as the piecewise parabolic method 

(Colella and Woodward, 1984) was used to determine the concentrations of grid cells 

after adaptation. 

Grid adaptation is an iterative process that continues until an optimal grid is 

found. Note that the concentration field must be redistributed (i.e., interpolated as 

described above using the advection scheme) to the new grid locations and the weight 

function must be recalculated after every iteration. The grid is considered to have 

converged when the new node positions in Equation (6.10) are the same, within a preset 

tolerance, as the original positions. A very small tolerance may lead to a large number of 

iterations. On the other hand, a large tolerance may not yield adequate grid resolution to 

minimize numerical error. After testing with alternative tolerance levels, the decision to 

stop iterating was applied when the movement of any grid node was less than 5% of the 
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minimum distance between the node in question and the four nodes to which it is 

connected along the horizontal plane. 

6.2.4. Meteorological data and emissions 

 After the grid adaptation, meteorological data and emissions are needed on the 

new grid locations for the next solution step. For meteorological data, an ideal solution 

would be to have a meteorological model that can operate on the same adaptive grid 

and run in parallel with AG-CMAQ. The weight function that drives grid adaptations can 

include functions of meteorological variables such as vorticity. Such an adaptive grid 

meteorological model could also resolve local circulations that cannot be detected by 

static grid meteorological models, even at very fine grid resolutions. An adaptive grid 

version of the Penn State/NCAR Mesoscale Model (MM5) has been developed based on 

the Dynamic Solution Adaptive Grid Algorithm to predict optical turbulence in the upper 

atmosphere (Xiao et al., 2006). However, at the time of this study, that model was still 

under evaluation for applications within the boundary layer. In the absence of an adaptive 

grid meteorological model, the best available option was to obtain weather data from a 

high-resolution, static-grid model, store it in a uniform grid input file at 15-minute 

frequency and, when needed in AG-CMAQ, interpolate onto the adaptive grid. The 

interpolation weights were calculated after each grid adaptation step and stored as global 

variables, in the same manner as the metric derivatives. 

The processing of emissions is computationally expensive, requiring relocation of 

various emission sources in the adapted grid cells. Khan et al. (2005) developed efficient 

search and intersection algorithms for emissions processing. Here, all emissions are 

treated either as foreground or background emissions. For example, if AG-CMAQ is 

being used to resolve a biomass burning plume, the emissions from that burn are 

considered to be in the foreground, while all other emissions (e.g. power plant, industrial, 

traffic, and biogenic emissions) are in the background. If the foreground emissions are 
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from a stack (e.g., a power plant), the position of the stack must be relocated on the grid 

as the cell containing the stack may have changed after grid adaptations. For foreground 

emissions from an area source (e.g. a forest fire) the area of the source must be 

intersected with the adaptive grid. Since the focus is usually on a few foreground sources, 

these search and intersection operations are not very intensive. In order to avoid higher 

computational costs associated with processing of emissions, background emissions are 

all merged and mapped onto a uniform high-resolution emissions grid. Each adaptive grid 

cell intersects with a number of emissions grid cells. The polygonal intersections of 

emissions grid cells with adaptive grid cells are calculated and stored as global variables 

after the grid adaptation step. When emissions are needed during the solution step, the 

fluxes are read from the emissions input file and apportioned to the adaptive grid cells 

using these polygonal intersections as described in Odman et al. (2002). 

6.2.5 Code verification 

The development of AG-CMAQ was a major undertaking. In addition to adding 

the adaptive grid related modules, important modifications had to be made to the base 

CMAQ code. However, special care was taken to remain faithful to the original 

modularity concept. Several rounds of reviews were conducted critically examining the 

code and confirming it reflected the intent of the methodology. Finally, carefully 

designed tests were executed to complete the verification of the AG‐CMAQ code. 

Two of those code verification tests were most useful. In the first test, results from 

a standard, static grid CMAQ simulation were compared to those obtained from AG-

CMAQ without activating any grid adaptation. The measure of success in this test would 

be the similarity of results from the adaptive grid simulation to the benchmark. Emissions 

data and model inputs corresponding to a prescribed burn performed at Ft. Benning, 

Georgia on April 9, 2008 were used in the simulations. Further details about this fire are 

included in Chapter 2. The results from the application of AG-CMAQ without adaptation 
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were practically the same to those from the static grid CMAQ, except for very small and 

random differences, mostly in biogenic organic and nitrate aerosol concentrations (< 0.1 

μg m
-3

). A second verification test was carried out to observe the performance of AG-

CMAQ with grid adaptation in a simulation of the same prescribed burn. In this test, to 

refine the grid around the fire plume in AG-CMAQ, fine particulate matter (PM2.5) 

concentration was used as the adaptation variable. Modeled surface-level PM2.5 

concentration fields are shown in Figure 6.1. The results from AG‐CMAQ were as 

expected: grid resolution was increased in the regions of highest PM2.5 concentration. In 

the area of highest resolution, grid cell size was reduced down to approximately 100 m × 

100 m from the initial grid dimensions of 1.3 km × 1.3 km. A reduction in the artificial 

dispersion of the plume, typical of photochemical models, was also evident in the 

adaptive grid simulation. 

 

 

Figure 6.1 Comparison of PM2.5 concentrations (μg m
-3

) at Fort Benning, Georgia 

(U.S.A.) during a prescribed burn on April 9, 2008: (a) standard CMAQ with 1.33 km 

grid resolution, (b) with a dynamically adapting mesh, AG-CMAQ. Reprinted with 

permission from Odman et al. (2010). 

 

 

 

 

 

 (a)  (b) 
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6.3. Model Evaluation Results and Discussion 

 In previous studies, the adaptive grid algorithm was evaluated using problems 

with increasing complexity and relevance to air quality modeling. Starting with pure 

advection tests (Srivastava et al., 2000), idealized reactive flow (Srivastava et al., 2001a) 

and plume dispersion cases (Srivastava et al., 2001b) were simulated using the Dynamic 

Solution Adaptive Grid Algorithm. The ability of the algorithm to track multiple urban 

and power plant plumes was also demonstrated (Khan et al., 2005). In all these 

applications, the adaptive grid solution was more accurate than the static, uniform grid 

solution with the same number of grid nodes. Here, the algorithm was evaluated in AG-

CMAQ with a regional‐scale air quality simulation that involves a biomass burning 

event. 

Pollution plumes caused by prescribed burning are excellent examples of highly 

concentrated events occurring at a finer, local scale with an impact that transitions into a 

larger, regional scale downwind. In prescribed burns, smoke plumes typically develop at 

scales below those suitable for existing photochemical models due to limitations in grid 

resolution. In the AG-CMAQ application described in the following section a large 

prescribed burn affecting a large urban area is simulated. However, AG-CMAQ can be 

applied to any type of pollution plume and is not limited to those resulting from 

prescribed burns or forest fires. The model evaluation included in this work compares the 

performance of AG-CMAQ and a standard static grid version of CMAQ. Differences in 

the simulations were determined from surface-level pollutant concentrations and three-

dimensional visualizations of modeled plumes. Additionally, modeled concentrations are 

compared to measurements from 6 monitoring stations affected during the smoke 

incident. 
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6.3.1. Modeling application 

To evaluate model performance, the Atlanta smoke incident of February 28, 2007 

was simulated on fixed and adaptive grids. The episode is further described in Chapter 3. 

In short, air quality in the Atlanta metropolitan area was impacted by heavy smoke from 

prescribed burns on this day with hourly PM2.5 concentrations recorded at monitoring 

sites throughout the area escalating to nearly 150 μg m
-3

 and hourly ozone concentrations 

increasing by up to 30 ppb (Lee et al., 2008). The dramatic increase in pollution levels 

has been mainly attributed to two prescribed burns approximately 80 km southeast of 

Atlanta at the Oconee National Forest and Piedmont National Wildlife Refuge. The 

smoke episode was initially simulated at 4 km resolution in Hu et al. (2008). Subsequent 

simulations are discussed in Chapters 3 and 4. Since smoke from prescribed burns was 

detected at multiple monitoring sites, this event provides a unique opportunity to evaluate 

AG-CMAQ and compare its performance to a standard CMAQ simulation.  

The modeling framework described in Chapter 2 was applied to complete air 

quality simulations. The evaluation simulation is similar to the base case simulation 

considered in the sensitivity analyses included in Chapters 3 and 4. The Weather 

Research and Forecasting model (WRF, version 2.2) was used to simulate meteorology. 

A 12 km resolution WRF simulation covering the Southeastern U.S. was completed and 

used to provide boundary conditions to a nested 4 km grid simulation over Georgia. The 

modeling domains included 13 vertical layers. A projected 2002 “typical year” inventory 

developed for the Southeastern U.S. was processed with the Sparse Matrix Operator 

Kernel Emissions model (SMOKE, version 2.1) to prepare emissions from non-fire 

sources. Biomass burning emissions were estimated by the Fire Emission Production 

Simulator (FEPS) using information collected and after the burns, including area burned, 

fuel moisture and fuel consumption characteristics. Local meteorology and fire data were 

used to estimate plume rise with the Daysmoke model. The number of updraft cores in 

Daysmoke was set to 6 despite the large area of the burns, primarily because of the mass 
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ignition techniques employed and hot burning temperatures. Fire-related emissions were 

vertically injected into CMAQ grid cells using hourly layer-fraction estimates. At the 

hour when burn emissions peaked, about 75% of the plume fell into layer 8 of CMAQ 

(out of 13 total), between 1,090 and 1,865 m above the ground. 

6.3.2. Results 

The simulation was initiated at 21:00 UT on February 27 and finalized at 5:00 UT 

on March 1. Grid adaptation commenced at 15:00 UT on February 28 consistent with 

initial emissions from the Oconee National Forrest and Piedmont National Wildlife 

Refuge fires. Grid refinement in AG-CMAQ was driven by PM2.5 concentrations. Figure 

6.2 shows PM2.5 concentrations throughout the modeling domain at 4:45 UT on March 1 

after full plume development from both the AG-CMAQ and standard CMAQ 

simulations. Visual inspection of the modeled PM2.5 surface-level concentration fields 

provides evidence of significant differences between the adaptive grid and static grid 

simulations. The artificial dilution effect commonly present in gridded photochemical 

models appears to decrease when applying the adaptive grid. The smoke plumes drawn 

with AG-CMAQ appear better defined and pollutant concentrations remain higher near 

plume cores. Most significantly perhaps, plumes from the two ongoing prescribed burns 

can be distinctly observed when applying an adaptive grid. By using a static grid, the 

plumes cannot be distinguished from each other and appear as a single thicker plume. In 

this case the results from AG-CMAQ provide a clearer prediction of changes to local air 

quality and pollutant dispersion. 
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Figure 6.2. Simulated surface-level PM2.5 concentrations (μg m
-3

) over Georgia at 4:45 

UT on March 1, 2007 using A) static grid CMAQ and B) AG-CMAQ. The location of 

Atlanta is denoted by the white circle. 

 

 

The analysis of simulated results was extended beyond surface layer 

concentrations to include pollutant concentrations and plume dynamics aloft. Figure 6.3 

shows a three-dimensional plot of PM2.5 concentrations which includes concentrations at 

the surface-level and domain boundaries, as well as the three-dimensional iso-surfaces 

defined by a constant PM2.5 concentration equal to 50 μg m
-3

. The viewer position in the 

plots is facing the northwestern corner of the domain with plumes blowing in the 

direction of Atlanta. A comparison of the results produced by CMAQ and AG-CMAQ 

with the use of three-dimensional visualizations provides insight into differences between 

the simulations not evident from simple surface-level concentration fields. Two 

differences between both model simulations are most striking. As was observed from the 

surface-level concentrations plots, the plumes from both targeted prescribed burns are 

undistinguishable and appear as a single merged plume using CMAQ results. However, 

the results from AG-CMAQ allow plumes from each prescribed burn to be distinctly 

observed. Unlike the static grid simulation, AG‐CMAQ allows impacts from smoke 

plumes at specified locations to be attributed to a specific prescribed burn. It is also 

apparent that with the static grid simulation a significant portion of the smoke plume 

initially bifurcates from the main body of the plume directed towards Atlanta due to 

 A) B) 
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upper-level wind shear and heads north at a higher altitude (Figure 6.3A). This 

bifurcation is not perceived from surface-level concentration fields and more importantly 

is not present in the AG-CMAQ simulation. The detachment of a plume fragment could 

partially explain CMAQ’s under-prediction of pollutant concentrations at monitoring 

sites. 

 

Figure 6.3. Three-dimensional visualization of smoke plumes and PM2.5 concentrations 

(μg m
-3

) on March 1, 2007 at 0:30 UT using A) static grid CMAQ and B) AG-CMAQ, 

and at 2:15 UT using C) static grid CMAQ and D) AG-CMAQ. 

 

 

Modeled concentrations from both static grid CMAQ and AG-CMAQ simulations 

were compared to observations at several air quality monitoring sites in the Atlanta 

metropolitan area that experienced a significant increase in PM2.5 concentrations during 
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the event. Results from both simulations are plotted along with hourly measurements at 

six monitoring sites in Figure 6.4. All sites are concentrated around the city of Atlanta 

with exception of the McDonough monitoring station located about 40 km away, halfway 

between the city of Atlanta and the location of the prescribed burns. The tendencies of 

modeled and observed concentrations at the sites considered are generally similar except 

at the McDonough site. At all sites, excluding McDonough, results from the static grid 

CMAQ simulation consistently underpredict maximum PM2.5 concentrations by 58-70% 

of measured values. Additionally, the CMAQ results at these sites exhibit two distinct 

concentration peaks unlike the monitoring station observations. The simulation with AG-

CMAQ results in higher peak concentration at all locations, other than McDonough, by 

27-40% relative to the maximum static grid CMAQ concentration predictions.  
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Figure 6.4. Modeled PM2.5 concentrations (μg m
-3

) using static grid CMAQ and AG-

CMAQ along with observed concentrations at the South DeKalb, Confederate Avenue, 

Jefferson Street, Fire Station 8, Fort McPherson, and McDonough air quality monitoring 

sites. 

 

 

The prominence of the double peak behavior observed in the static grid results is 

lessened by using AG-CMAQ as results show a stronger concentration increase at a 

single major concentration spike. However, a delay of approximately one hour in 

concentration peaks is observed in the AG-CMAQ simulation with respect to static grid 

results which exhibit timing more consistent with station observations. Table 1 presents a 

statistical comparison of model error for static grid CMAQ and AG-CMAQ simulations 

relative to monitoring site observations. 

 

Table 6.1.  Model error metrics for CMAQ and AG-CMAQ relative to PM 2.5 

observations at the Jefferson Street (JST), Confederate Avenue (CFA), McDonough 

(MCD), South DeKalb (SDK), Fort McPherson (FTM), and Fire Station 8 (FS8) 

monitoring sites and their averages. 
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 CMAQ 

AG-

CMAQ CMAQ 

AG-

CMAQ CMAQ 

AG-

CMAQ CMAQ 

AG-

CMAQ 

JST 21.9 21.7 114.1% 71.4% 65.4% 65.0% 78.0% 58.3% 

CFA 28.9 29.4 82.8% 57.0% 66.4% 67.5% 66.5% 58.3% 

MCD 47.2 27.6 131.3% 58.6% 111.8% 65.3% 92.5% 64.3% 

SDK 39.0 40.5 94.9% 70.1% 68.5% 71.0% 85.7% 78.6% 

FTM 32.2 33.3 48.6% 52.3% 60.6% 62.7% 69.7% 74.4% 

FS8 23.2 23.8 97.0% 83.4% 63.8% 65.4% 72.5% 65.0% 

Avg. 32.1 29.4 94.8% 65.5% 72.7% 66.2% 77.5% 66.5% 

Cm: Modeled Concentration, Co: Observed Concentration Measurement, N: Number of Concentration 

Observations 
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A closer look at the surface-level concentration fields along with the location of 

the six monitoring sites can explain some of the features observed in the time series plots. 

Four of the sites, South Dekalb, Confederate Av., Jefferson St., and Fire Station 8, are 

located in this order along a straight path downwind of the prescribed burns. 

Correspondingly, all increases in PM2.5 concentrations recorded for these sites occur 

following the same timing pattern from the station closest to the prescribed burns to the 

furthest. Figure 6.5A shows surface-level concentrations and monitoring site locations 

from the static grid simulation at 22:30 UT on February 28. The simulated plume appears 

fragmented into two segments. The initial segment is responsible for the first of two 

concentration peaks observed in the CMAQ results. However, the initial plume segment 

has a tangential impact on all stations, leading to smaller concentration increases. The 

southwesternmost station (Fort McPherson) remains practically unaffected. The larger 

concentration peaks are caused by the more direct impact from the second plume 

segment. The plume segmentation observed in the CMAQ simulation is caused by the 

upper-level bifurcation previously described. Although an interruption in the modeled 

plume is apparent with CMAQ results, no distinction between smoke plumes from the 

different prescribed burns is appreciable. Figure 6.5B shows surface-level concentrations 

and monitoring site locations from the AG-CMAQ simulation also at 22:30 UT. From 

these results no plume segmentation can be observed and plumes from both prescribed 

burns are clearly distinct. Once again, the earliest impact of the plume at monitoring sites 

is tangential, and avoids the Fort McPherson site.  
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Figure 6.5. Simulated PM2.5 concentrations (μg m
-3

) on February 28, 2007 at 22:30 UT 

using A) static grid CMAQ and B) AG-CMAQ, and on March 1, 2007 at 02:00 UT using 

C) static grid CMAQ and D) AG-CMAQ. The locations of the McDonough (green), 

South DeKalb (pink), Confederate Avenue (black), Fort McPherson (blue), Jefferson 

Street (white), and Fire Station 8 (yellow) air quality monitoring sites are indicated by the 

colored circles. 

 

 

Similar plots at 02:00 UT on March 1 for CMAQ and AG-CMAQ simulations are 

presented in Figures 6.5C and 6.5D respectively. The AG-CMAQ simulation indicates 

that the major modeled concentration peak is attributable to the prescribed burn farthest 

north at the Oconee National Forest. This conclusion cannot be derived from the static 

grid CMAQ results. The southernmost station at McDonough also merits special 

attention. While nested between plumes in Figure 6.5D, the site is affected by both 

plumes at different instances during the AG-CMAQ simulation. This may explain the 

site’s unique double concentration peak recorded in the station measurements. If indeed 
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these observations correspond to distinct hits from different plumes, such behavior can 

only be deduced with the increased resolution provided by the adaptive grid model. 

However, the initial hit recorded in the observations at the McDonough site is not 

apparent in the model’s predictions as the smoke plume is oriented excessively to the east 

of the site. 

6.3.3. Discussion 

We believe that differences in simulated concentration fields produced by the 

static grid and adaptive grid models reflect the improved reproduction of plume dynamics 

and decrease in artificial dilution that was achieved through grid refinement. 

Nevertheless, the consistent underprediction of maximum PM2.5 concentrations observed 

from a static grid simulation, although ameliorated, persists throughout the adaptive grid 

simulation. It is likely that model inputs and processes unrelated to grid resolution, 

including the underestimation of fire-induced volatile organic compound emissions and 

secondary organic aerosol formation, are largely responsible for the differences between 

modeled results and measurements (Lee et al., 2008). Uncertainties in plume rise, mixing 

layer height, and prescribed burn emission factors all contribute to the error in modeled 

pollutant concentrations and should be addressed in an attempt to achieve results more 

consistent with site observations.  

It is also clear that the surface-level concentrations are quite sensitive to wind 

direction and speed inputs derived from meteorological models. The sensitivity to winds 

becomes even greater when plumes are better defined, as in the adaptive grid simulation. 

Small changes in wind direction can greatly change the impact plumes have on surface-

level pollutant concentrations at specified locations. The performance of Eulerian 

chemical transport models will continue to be constrained by the limitations in fine-scale 

wind predictions inherent to meteorological models. To address this concern in the future, 

the grid refinement methodology in AG-CMAQ could be applied in meteorological 
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models to develop numerical weather prediction systems that can effectively adapt to air 

pollutant concentrations. Such adaptation would require continuous input of pollutant 

concentrations from the air quality model into the meteorological model. Thus, coupled 

air quality and meteorological adaptive grid models that operate simultaneously at finer 

scales and continuously exchange feedback may provide an ideal platform to simulate 

atmospheric plumes.     

Finally, the bifurcation observed in the three-dimensional visualization of the 

static grid simulation results may indicate the importance of vertical resolution in 

achieving more accurate results. An adaptive grid algorithm that includes refinement of 

the model’s vertical layering would allow full grid adaptation across a three-dimensional 

domain and may prove useful in simulating plume dynamics at even greater levels of 

detail. Extension of grid adaptation into the vertical dimension could also be useful in 

resolving cloud processes. 

6.4. Conclusions 

An adaptive grid air pollution model (AG-CMAQ) has been developed by 

integrating a dynamic, solution-adaptive grid algorithm into CMAQ. The model can 

efficiently refine the grid in response to any defined simulation variable or parameter. 

Although adaptive grid air pollution models have been previously explored, AG-CMAQ 

is unique in its capacity to model particulate matter and the first built onto an existing 

community model. At this time, adaptive grid modeling could potentially be the best 

approach to multiscale modeling of air pollution dynamics and chemistry. 

The adaptive grid model produces results that were practically equal to those 

obtained from a standard, static grid CMAQ simulation when grid adaptation was 

disabled. The model effectively increased grid resolution in response to pollutant 

concentrations when adaptation was applied. AG-CMAQ performance was evaluated by 

simulating an air pollution incident affecting the Atlanta metropolitan area caused by two 
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prescribed burns. The evaluation showed that AG-CMAQ successfully reduced the 

artificial diffusion inherent to chemical transport models and produced better defined 

plumes compared to a fixed grid CMAQ simulation. Additionally, AG-CMAQ allowed 

both prescribed burn plumes to be distinctly observed and the impacts at specific 

locations to be attributed to a particular burn. AG-CMAQ more accurately predicted 

PM2.5 concentrations with respect to observations than the fixed grid CMAQ simulation 

at most monitoring station locations affected during the incident. The mean fractional 

error was reduced by 15% on average in the adaptive grid simulation, indicating better 

agreement with site observations.  

The results of this study indicate that the adaptive grid model may provide 

understanding of air quality and atmospheric dynamics beyond that attainable through a 

static grid simulation. However, our evaluation shows that despite the improvement, AG-

CMAQ continued to under-predict observed PM2.5 concentrations. It is likely that the 

error is partially attributable to processes unrelated to grid resolution within the air 

quality modeling system. Among these, the ability of meteorological models to simulate 

fine-scale and short-term variability in winds may be of greatest concern.  

Adaptive grids are a tool that could prove useful for various applications beyond 

plume simulation. Grid refinement driven by reactivity may provide insight into 

atmospheric chemistry. The need for improved fine-scale wind modeling could be 

addressed by applying adaptive gridding within numerical weather prediction models. 

Adaptive mesh modeling is currently being discussed as a tool applicable to climate 

models to focus on small-scale processes that cannot be resolved in existing models. 

Some have suggested that adaptive grid models may provide the only means of resolving 

these small-scale processes within a single model (Weller et al., 2010). The potential 

benefits that could be attained through dynamic grid refinement in atmospheric 

simulations with chemical transport models are only briefly explored in this study. 

However, adaptive grids will likely lead to additional and greater advantages not 
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necessarily restricted to air quality modeling, but encompassing different geophysical 

models as well. 
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CHAPTER 7 

A THREE-DIMENSIONAL REFINEMENT ADAPTIVE GRID 

ALGORITHM FOR EULERIAN AIR QUALITY MODELS 

 

Abstract 

Adaptive grid methods can be used to advance the multiscale capabilities of 

Eulerian chemical transport models and attain grid resolutions unprecedented in regional-

scale air quality modeling. Previous efforts to explore the use of adaptive grids in air 

quality models have been limited to horizontal adaptation or simplified models. Here, a 

three-dimensional fully adaptive grid algorithm designed for Eulerian models is 

presented. The algorithm allows vertical refinement yet retains a grid’s original structure, 

enhancing compatibility with existing air quality models. Initial advection tests 

evaluating the algorithm’s functionality and potential to better capture concentration 

gradients in atmospheric plumes are included. Additional research needs and 

recommendations for complete implementation into operational air quality models are 

discussed.  

7.1 Introduction 

Air quality models can provide valuable insight into the processes that determine 

air pollution levels and are important atmospheric research tools. Currently, regional-

scale air quality models are widely used to guide environmental policy (Rao et al., 2010). 

Present-day Eulerian chemical transport models include state-of-the-science 

representations of chemical and physical processes and are capable of simulating multiple 

pollutants across extensive domains. However, the spatial scales of atmospheric 

processes relevant to air quality modeling differ by several orders of magnitude. At this 
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time, the spatial resolution of comprehensive Eulerian air quality models continues to be 

limited by high computational demand and limited system resources.  

Multiscale modeling is a practical approach to simulate different spatial scales 

within a single modeling framework. Adaptive grids are an attractive method to enhance 

the multiscale capabilities of grid-based air quality models. The technique is used to 

increase solution accuracy by dynamically refining the modeling grid in response to a 

model variable or parameter. Several efforts attempting to apply adaptive gridding in air 

quality models have been previously reported (Constantinescu et al., 2008; Srivastava et 

al., 2000; Tomlin et al., 1997). These are discussed extensively in Chapter 5. Mesh 

moving (r-refinement) methods may be best suited for grid adaptation in Eulerian models 

designed to operate on structured grids. For instance, an r-refinement algorithm has been 

introduced into to the Community Air Quality modeling system (CMAQ) (Garcia-

Menendez et al., 2010). Implementation of the adaptive grid method into this operational 

air quality model is described in Chapter 6.  

Nearly all adaptive grid air quality modeling has been limited to horizontal grid 

refinement. Vertical adaptation has only been reported in a few simulations using an 

unstructured  mesh enrichment (h-refinement) technique (Ghorai et al., 2000; Tomlin et 

al., 2000).  These studies highlight the importance of vertical grid resolution to resolve 

vertical pollutant profiles and capture concentration gradients at the edge of the boundary 

layer or near inversions. Vertical adaptivity has not yet been applied in current 

operational models. However, full three-dimension grid adaptation continues to be an 

attractive possibility for comprehensive air quality models. This may be particularly true 

for simulations involving concentrated pollutant plumes penetrating into the free 

troposphere. Examples of these include fire-related smoke plumes that rise above the 

boundary layer and long-range pollution transport in the free troposphere (Banta et al., 

1992; Liang et al., 2004). In simulations attempting to replicate atmospheric phenomena 

at high altitudes, where vertical grid resolution typically coarsens, vertical refinement 
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may be an effective mechanism to better resolve concentrated plumes. In addition, as 

three-dimensional adaptive grid modeling increases the spatial scales available to 

regional-scale models, subgrid treatments and embedded models designed to capture the 

small-scale physical and chemical dynamics of atmospheric plumes may become 

unnecessary. 

Here a three-dimensional adaptive grid algorithm designed for grid-based 

chemical transport models is described. The r-refinement algorithm includes vertical 

adaptation and builds on the horizontal method described in Chapter 6. The four-step 

algorithm is explained in in the following section. A coordinate transformation necessary 

to use existing solution algorithms on irregular grids is described in Section 7.3. In 

Section 7.4., functionality and advection tests carried out within the CMAQ framework 

are discussed. Finally, recommendations relevant to achieving full three-dimensional 

adaptation in current operational air quality models are included at the end of the chapter.  

7.2 Three-dimensional adaptation algorithm 

The three-dimensional adaptive grid method described herein extends on the two-

dimensional algorithm presented in Srivastava et al. (2000) and implemented into CMAQ 

in Garcia-Menendez et al. (2010). The method relies on an r-refinement technique. Grid 

nodes are allowed to freely move across the three-dimensional modeling domain to 

regions calling for increased resolution. However, the total number of nodes and their 

connectivity remain constant throughout the simulation. Grid adaptation is achieved 

applying an iterative process. The procedure consists of four key operations: (1) 

estimating a three-dimensional weight field; (2) grid node repositioning in relation to the 

weight field; (3) redistribution of concentration fields onto the newly adapted grid; and 

(4) examining grid convergence criteria to continue or terminate the iterative process.  

Figure 7.1 shows the steps included in the adaptive grid algorithm; each operation is 

further discussed below.   
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Figure 7.1. Steps of the three-dimensional adaptive grid algorithm  

 

 

7.2.1 Refinement weighting 

The basis of any adaptive grid algorithm is an estimate of solution error on a 

gridded spatial domain. Adaptation should be aimed at modifying a grid’s structure to 

reduce resolution-derived error and increase model accuracy. A refinement criterion that 

that efficiently points toward solution error is a key component of any adaptation 

algorithm. In the algorithm described herein, node movement is driven by a three-

dimensional weight field quantified for each individual grid cell (included as step 1 in 

Figure 7.1). The weights, w, may be a function of any model variable or parameter. 

However, in air quality modeling, refinement criteria have always been based on 

atmospheric concentration fields. In previously reported adaptive grid algorithms, 

solution error has been quantified using concentration gradients between adjoining cells 

(Ghorai et al., 2000), first- and second-order concentration approximations of local 
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concentrations (Tomlin et al., 1997), and numerical estimates of the curvature in pollutant 

concentrations (Constantinescu et al., 2008; Srivastava et al., 2000).  

In the three-dimensional adaptive grid algorithm described in this chapter, a 

discrete approximation of the Laplacian is used to evaluate numerical error and assign 

adaptation weights to each grid cell. As in the two-dimensional algorithm described in 

Garcia-Menendez et al. (2010), adaptation weights are estimated for each cell as 

 cw 2 , (7.1) 

where the Laplacian, 2 , is approximated using a seven-point stencil derived from the 

gridded concentrations, c, of any atmospheric species. A combination of species or 

pollutants can also be used. For the adaptation tests and applications described in this 

chapter, fine particulate matter (PM2.5) concentrations, estimated from the sum of various 

fine aerosol model species, are used to estimate weights following Equation 7.1.  

 In Cartesian coordinates, 2 c is given by  
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and can be numerically approximated from a discretized concentration field at each cell 

centroid as   

2

1,,,,1,,

2

,1,,,,1,

2

,,1,,,,1

,,

2
222

)(
z

ccc

y

Ccc

x

ccc
c

kjikjikjikjikjikjikjikjikji

kji
















 (7.3) 

where i , j and k are indices for the three-dimensional grid’s columns, rows and layers. In 

an adaptive grid algorithm, the discrete Laplacian approximation can be calculated using 

the air quality model’s conformal map and terrain following coordinates (e.g. X, Y, σ) or 

the  curvilinear computational coordinate system (e.g. ξ, η, ζ) further discussed in Section 

7.3. Differing from the two-dimensional weight function used in Garcia-Menendez et al. 

(2010), within a three-dimensional formulation, the use of an air quality’s original 

coordinate system may be complicated by dissimilar horizontal and vertical coordinates. 
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This is the case in CMAQ, where a normalized vertical coordinate, sigma-pressure (σ), is 

used. The computational domain is uniform in space and features unit grid spacing 

(Δξ, Δη, Δζ = 1), reducing the numerical approximation of the Laplacian magnitude to  

 1,,1,,,1,,1,,,1,,1,,,,

2 (6)(   kjikjikjikjikjikjikjikji cccccccc . (7.4) 

The estimate in uniform computational space can be related back to the model’s initial 

nonuniform domain by including cell volume, V, in the adaptation weight function 

 12 e

k,j,ik,j,ik,j,i V)c(w  , (7.5) 

where the parameter e1 can be used to adjust the weight of each grid cell with respect to 

its size. Setting e1 to a value greater than 0 diminishes a cell’s weight as it becomes 

smaller, while using a negative e1 value further promotes refinement of fine resolution 

regions. The ideal e1 level largely depends on the modeling application and error 

indicator being applied to drive refinement. In the simulations carried out in this work, 

effective three-dimensional adaptation was achieved by setting e1 to 0. Selecting an e1 

less than 0 usually led to excessive refinement, while values greater than 0 caused 

undesirable oscillations in vertical adaptation.  

A few additional considerations were taken into account in the weight function 

formulation. Fewer points are included in stencils used to approximate the Laplacian at 

grid cells along the domain boundaries. Smoothing procedures are applied to weight 

fields to avoid abrupt transitions in grid resolution. Weight fields are normalized with 

respect to the maximum weight of every adaptive grid iteration. A minimum value, w
min

, 

is added onto each estimated weight. To conserve the nonuniform vertical layering 

typically used in air quality models, w
min

 is a function of the cell’s vertical layer. The 

thickest vertical layer, usually that furthest from the surface, is assigned a domain-wide 

minimum allowable value at the start of the simulation. In the simulations described in 

this chapter this value was set to 0.001. The magnitude of w
min

 is inversely related to a 

vertical layer’s initial thickness and increases as layers become thinner. In this manner, 
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grid structures that concentrate vertical resolution near the ground are preserved under 

homogeneous w fields. The final normalized and vertically adjusted weight used to drive 

adaptation, w
adj-norm

, ranges from 0 to 1 and is estimated for each grid cell as 
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where w
max 

is the domain-wide maximum unadjusted weight and w
adj,max

 is the maximum 

unnormalized adjusted weight. Figure 7.2 shows examples of final smoothed three-

dimensional w
adj-norm

 fields estimated from blank and single-cell-value concentration 

fields.   

 

Figure 7.2. Side view of the w
adj-norm

 fields (b and d) estimated from (a) blank and (c) 

single-cell-value concentration fields (µg m
-3

).  

 

a) b)

c) d)
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7.2.2 Grid movement 

In the adaptive grid algorithm, resolution refinement is achieved by repositioning 

grid nodes with respect to a three-dimensional adaptation weight field. The technique is 

designed to cluster nodes at high-weight regions within a modeling domain, thereby 

reducing the resolution-associated error. Node movement in the three-dimensional 

algorithm extends on the horizontal adaptation method described in Garcia-Menendez et 

al. (2010). Following the weight function calculation described in Section 7.2.1, the 

computational grid is restructured by repositioning nodes with respect to the weight field. 

The process is included as the second step in Figure 7.1. The new location of each node is 

determined from the weight and centroids of the eight cells that share the node. Using 

CMAQ’s (X,Y,σ) coordinate system, a node’s new position is given by   
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where 
new

k,j,iX , 
new

k,j,iY , 
new

k,j,i  are the coordinates for node i ,j, k after adaptation, cent

kX , cent

kY , 

cent

k are the coordinates at the centroids of the node’s adjoining grid cells (n=1-8) and wn 

is the weight assigned to each of these cells. The formulation prevents nodes from 

crossing cell borders and moving into nonadjoining cells, therefore retaining grid 

connectivity and allowing the use of local interpolation algorithms in redistribution 

procedures, as further discussed in Section 7.2.3. Grid nodes at domain boundaries are 

only allowed to reposition themselves along the boundary and nodes at domain corners 

are kept fixed. 
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 The grid movement technique described by Equation 7.7 allows full three-

dimensional grid adaptation within a modeling domain. In air quality models, 

unconstrained three-dimensional adaptation may be impractical due to the nature of the 

solution algorithms and parameterizations applied. In CMAQ, for instance, vertical 

mixing and cloud processes are parameterized and treated for each stack of cells. 

Parameterized vertical processes such as these may be difficult to transform into a 

curvilinear computational coordinate system (ξ, η, ζ) and process on an irregular grid. 

Vertically constraining horizontal adaptation allows the processes to be retained in the 

adaptive grid model. In a vertically constrained adaptation algorithm, horizontal 

resolution only changes along the horizontal plane, maintaining cell area constant 

throughout each stack. The constraint is placed on the adaptation scheme by using a two-

dimension weight field , w
2D

, to drive horizontal node repositioning, as in the two 

dimensional algorithm described in Garcia-Menendez et al. (2010). Using this technique, 

new

k,j,iX  and 
new

k,j,iY  remain fixed along k and are given by  
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where cent

nX and cent

nY  are coordinates at the centroids of the node’s adjoining grid cells 

along a horizontal grid layer (n=1-4) and D

nw2 is the two-dimensional weight assigned to 

each vertical stack of cells. Single-layer concentrations, at the surface or above, as well as 

column totals can be used to estimate D

nw2 . Figure 7.3 compares side views of 

unconstrained and vertically constrained adaptation driven by the same weight field. 

While unconstrained three-dimensional adaptation is more efficient and provides greater 

flexibility, vertically constrained adaptation may still achieve the algorithm’s objective of 

dynamically restructuring grids to reduce the error related to model resolution. 
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Figure 7.3.  Side view of grid response to a normalized weight field using (a) 

unconstrained adaptation and (b) vertically constrained adaptation.  

 

7.2.3 Concentration field redistribution 

An important component of any adaptive grid algorithm is a redistribution 

procedure to estimate solution fields on a new grid after nodes are repositioned, shown as 

step 3 in Figure 7.1. In an iterative adaptation procedure the computational cost 

associated with the algorithm may be largely attributable to solution field redistribution 

(Garcia-Menendez and Odman, 2011). Local interpolation algorithms can be used to 

redistribute concentration fields if the adaptation is small and nodes are repositioned 

within the original volume of adjoining cells (i.e. nodes do not cross cell boundaries). 

This is the case for the grid repositioning technique described in Section 7.2.2. However, 

all solution fields must be redistributed after every adaptation iteration and in doing so 

may be significantly diffused. Global interpolation algorithms can redistribute solution 

fields onto any grid, which allows redistribution of the initial concentration fields onto 

every grid generated in an iterative adaptation algorithm.  

For adaptive grid methods, global interpolation presents several significant 

advantages over local schemes. The numerical diffusion associated with continuously 

redistributing concentration fields by repeatedly applying a local interpolation scheme in 

an iterative adaptation algorithm may be significantly reduced with a global interpolation 

b)a)
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scheme. Additionally, the use of global interpolation only requires that the variables 

included in the weight function calculation (e.g. PM2.5) be interpolated during each 

adaptive grid iteration. All other solution fields can be redistributed onto the finalized 

grid once node repositioning has stopped, leading to important computational savings 

compared to local interpolation. In mesh enrichment (h-refinement) adaptive grid 

methods, it may be possible to redistribute solution fields using simple global 

interpolation algorithms. In r-refinement methods, however, geometric intersection 

algorithms must be used to redistribute fields if grid cells do not remain rectangular 

prisms. Two-dimensional r-refinement methods may still rely on relatively simple global 

intersection algorithms. However, three-dimensional r-refinement algorithms require 

elaborate intersection schemes which may be dependent on computationally-intensive 

search algorithms. The complexity of intersection algorithms applicable to three-

dimensional adaptive grid methods largely counters the computational benefits of global 

interpolation schemes compared to local schemes.  

In Garcia-Menendez et al. (2010), local interpolation is used to horizontally 

redistribute concentration fields by applying a high-order accurate and monotonic 

advection scheme. Similarly, in the three-dimensional adaptive grid algorithm a local 

interpolation algorithm is included. Redistribution is carried out by estimating an 

apparent velocity at the faces of each grid cell after adaptation and using them in an 

advection scheme to update concentration fields. Apparent velocities are calculated at 

each node as  
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where 
old

k,j,iX , 
old

k,j,iY , 
old

k,j,i  are the coordinates for node i,j,k prior to displacement and Δt is 

an arbitrary time interval. The apparent velocities are transformed into curvilinear 
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computational coordinates (ξ,η,ζ)  using the metric derivatives between the coordinate 

systems as follows, 
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Transformed apparent velocities are then used to estimate fluxes along ξ, η, and ζ by 

applying the piecewise parabolic method advection scheme (Colella and Woodward, 

1984) to each row, column and stack of cells. Concentrations for each cell are 

recomputed using the fluxes at each face and the ratio between the original and new cell 

volumes. 

7.2.4 Grid convergence 

The final step in the iterative adaptive grid algorithm, included in Figure 7.1 as 

step four, is a test of grid convergence to either continue or terminate adaptation. 

Refinement control has been an important component of all previously reported adaptive 

grid applications in air quality modeling (Garcia-Menendez and Odman, 2011). Ideally, 

grid adaptation would cease after an equal level of solution error is achieved across the 

full domain, a concept described as error equidistribution (Baker, 1997). However, 

depending on the weight function and redistribution algorithm selected for the adaptive 

grid algorithm, reaching equidistribution may be difficult or unfeasible. Additionally, 

excessive refinement may offset the computational benefits of adaptive gridding without 

significantly increasing model accuracy further.  

In an iterative r-refinement adaptive grid method, the convergence criteria may 

take the form of minimum grid movement or a maximum number of adaptation 

procedures (Garcia-Menendez et al., 2010). The use of a volume-weighted error estimate, 

such as Equation 7.5, or a global interpolation redistribution scheme may facilitate grid 
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convergence. However, satisfactory adaptation may be efficiently attained by using 

simpler algorithms and grid convergence criteria. In the simulations included within this 

chapter, a minimum displacement of 10% for grid nodes with respect to initial cell 

spacing and an upper limit of 5 adaptation iterations were selected as refinement criteria. 

When the displacement of all nodes drops below the minimum movement criteria or the 

maximum number of iterations is reached, adaptation is halted and the grid is finalized. 

The model solution is then advanced in time using the restructured grid.  

7.3 Coordinate transformation 

An important advantage of r-refinement, or mesh moving, methods over other 

adaptive grid techniques is that throughout the entire simulation the total number of grid 

cells is constant and their connectivity remains intact. Frequently, Eulerian air quality 

models operate on structured grids (e.g. CMAQ), allowing data to be organized into 

rectangular matrices. In these models, the solution algorithms included are commonly 

designed for structured grids specifically. Thus, r-refinement, which allows a grid to 

remain structured after adapting, may be especially practical when adaptive gridding is 

applied to current chemical transport models. However, the solution algorithms may have 

also been explicitly developed for uniform grids and may not be directly applicable to 

nonuniform grids. A coordinate transformation capable of converting a nonuniform grid 

in physical space into a uniform grid in computational space can be used to overcome this 

limitation.  

In adaptive grid modeling, a local coordinate transformation from the model’s 

original space into a boundary-conforming curvilinear coordinate system can be applied. 

The transformation is achieved after establishing a unique correspondence between the 

coordinate systems by defining and normalizing the values at cell boundaries for each 

location, every time the grid is restructured. The model’s original coordinates are 
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transformed into a curvilinear computational coordinate system (ξ, η, ζ) that features unit 

dimensions for each cell and allows the grid to regain uniformity, as shown in Figure 7.4. 

 

 

Figure 7.4. Grid cell transformation from Cartesian (x, y, z, t) to boundary-conforming 

curvilinear coordinates (ξ, η, ζ, τ). 

 

 

To use a model’s original solution algorithms on the uniform computational 

domain, the coordinate transformation must be applied to the system’s governing 

equations. Chemical transport models rely on dividing the atmosphere into discrete grid 

cells and solving a species continuity equation, describing the rate of change of a 

chemical species’ concentration with respect to time, to estimate future atmospheric 

concentrations. In Cartesian coordinates, conservation of mass for each species can be 

expressed as  
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where cn is the concentration of species n changing in time, t, u, v, and w are the wind 

velocity components in the x, y, and z directions, K
h
 and K

v
 are horizontal and vertical 

turbulent diffusion coefficients, en is the volumetric emission rate of n, and rn is a 

chemical reaction rate for n. Equation 7.11 considers atmospheric advection, turbulent 
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diffusion, emissions and chemical transformation processes. To transform the equation 

into uniform computational space, a set of curvilinear coordinates is defined as 
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The species continuity equation on curvilinear coordinates can be derived by numerically 

manipulating Equation 7.11 and is expressed as     
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where v
ξ
, v

η
, and v

ζ
 are the are the wind velocity components in the ξ, η, and ζ directions, 

K
ξξ

, K
ηη

, and K
ζζ

 are the turbulent diffusion coefficients along ξ, η, and ζ, and J is the 

Jacobian of the transformation given by 
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 The nondimensional wind velocity components can be estimated from the original 

velocity terms using the metrics of the transformation as 
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As the transformed curvilinear coordinate system remains orthogonal, diffusive transport 

is reduced to the nondimensional diagonal elements of the turbulent diffusivity tensor 

which can be obtained from 
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The metrics of the transformation included in Equations 7.15 and 7.16 are given by 
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and are approximated at each grid node using a seven-point stencil of neighboring nodes. 

 In CMAQ, the system is solved using horizontal coordinates on a conformal map 

of the earth and a normalized terrain-following vertical coordinate (e.g. sigma-pressure). 

This transformation can be included in the Jacobian defined in equation 7.14 as  
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where m is a map scale factor for the conformal map projection and σ is the transformed 

vertical coordinate. Equation 7.13 in curvilinear coordinates therefore retains the same 
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form as CMAQ’s original governing equations and the model’s solution algorithms can 

be directly applied in the transformed computational space. 

7.4 Functionality Evaluation  

The CMAQ modeling system (version 4.7.1) (Byun and Schere, 2006) was used 

as a platform to verify the functionality of the three-dimensional adaptation algorithm 

described in Section 7.2. CMAQ simulates several atmospheric processes, including 

advection, diffusion, deposition, chemistry, aerosol dynamics, and cloud processes. The 

model is designed as a modular system, with individual atmospheric processes simulated 

by distinct science modules. This allows users to focus on specific processes. However, 

the model is constructed under the assumptions of structured and horizontally uniform 

grids. Additionally, CMAQ is designed to operate on grids that remain fixed throughout 

the simulation. Implementing an adaptation algorithm into CMAQ requires that major 

changes be made to the model’s original code and coordinate transformations be applied 

to the process modules included in a simulation. Several tests were carried out to 

corroborate that the three-dimensional adaptation algorithm performed in accordance 

with the method’s intent. One test is described below. 

To verify the functionality of the three-dimensional algorithm, adaptation was 

used to simulate the advection of a pollutant puff under a three-dimensional wind field 

generated with the Weather Research and Forecasting Model (Skamarock et al., 2008). 

Horizontal grid spacing was initially set to 4 km × 4 km and the modeling domain was 

divided into 34 vertical sigma-pressure layers increasing in depth from the ground up to 

approximately 20 km above. A PM2.5 puff was instantaneously injected into a single grid 

cell in layer 15 of the modeling domain, 2500 m above the ground. Figure 7.5 illustrates 

the grid’s response to the pollutant puff being advected across the domain. In the figure, 

the puff is depicted as a three-dimensional iso-surface bounded by constant PM2.5 

concentration equal to 10 μg m
-3

. Within the plots, intersecting grid planes along X and Y 
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are shown at different times and include grid lines and predicted concentrations along 

each plane. The surface grid is also included. The puff crosses the intersection as it is 

advected from its initial position behind the grid planes towards the viewer. Three-

dimensional adaptation is apparent in the sequence: grid cells along the X and Y planes 

are initially regular and uniform; while the puff crosses the intersection, grid resolution is 

refined around the puff; as the puff moves beyond the plane intersection, refinement 

persists prior to returning to the original grid configuration. The simulation demonstrates 

that the adaptive grid performs as expected by refining both horizontal and vertical 

resolution in response to pollutant concentrations.  

 

 

Figure 7.5. Pollutant puff shown as a three-dimensional iso-surface bounded by PM2.5 

concentration equal to 10 µg m
-3

 crossing an intersection of X and Y grid planes. Grid 

lines and PM2.5 concentrations (µg m
-3

) along the planes are also included. 

 

 

The evolution of the grid as it dynamically adapts to the puff is further apparent 

later in the simulation. Figures 7.6 and 7.7 provide additional visualizations of grid 

adaptation 4 hours into advection of the puff. At this time, the puff has been significantly 

deformed and elongated by wind shear. Figure 7.6a shows a side view of a Y grid plane 

intersecting the puff along X and σ. The PM2.5 concentration contour lines included in 

Figure 7.6a indicate the areas with the largest concentration gradients and curvature. In 

Figure 7.6b, showing the same grid plane, a three-dimensional iso-surface representing 

the pollution puff and grid cells along the plane are included. Three-dimensional grid 
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refinement concentrated around high concentration gradients, in agreement with the 

weight function formulation described in Section 7.3.1, is apparent.  

Dynamic adaptation to the puff simultaneously refines both horizontal and 

vertical grid resolution. Adaptation in each direction is depicted in Figure 7.7. Here 

again, a side view of the modeling domain shows the pollutant puff as a constant 

concentration iso-surface 4 hours after release. The viewer position is rotated by 90˚ with 

respect to Figure 7.6, the puff moving towards the viewer. In addition, a series of X and σ 

grid planes, along with the grid lines on each plane, are included in Figures 7.7a and 7.7b 

respectively. Each plane shows a unique response.  In Figure 7.7b, for instance, σ grid 

planes near the surface respond by moving nodes upwards towards the pollution, while 

planes initially above the puff relocate nodes to lower altitudes. In general, the adaptive 

grid algorithm acted as expected during the test, concurrently refining horizontal and 

vertical grid resolution in response to concentration gradients.  

 

 
Figure 7.6.  Y grid plane intersecting the pollutant puff 4 hours after release showing (a) 

PM2.5 concentrations (µg m
-3

) and contour lines and (b) grid lines and a three-

dimensional 1 µg m
-3 

iso-surface.  
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Figure 7.7. Three-dimensional 1µg m

-3
 iso-surface of PM2.5 concentrations 4 hours after 

release of pollutant puff. A series of (a) X grid planes and (b) σ grid planes are also 

shown.  

 

 

7.5 Advection of a pollutant puff 

A test similar to one described in in section 7.4 was used to simulate the transport 

of a pollutant puff within a wind field and compare the results produced under fixed and 

adaptive grids. Here an elemental carbon (EC) pollutant puff was instantaneously injected 

into a WRF-generated wind field approximately 2000 m above the ground. The grids 

initially featured 4 km horizontal grid resolution and 34 vertical layers extending up to 20 

km. The pollutant was injected into a single 4 × 4 km grid cell, approximately 400 m tall. 

The emissions instantaneously increased EC concentration within the cell to 1000 µg m
-3

. 

Pollutant dispersion was simulated for several hours. No initial concentrations or 

additional emissions sources were included and only horizontal and vertical advection 

were modeled. In the simulations, the puff rapidly dispersed as it was advected across the 

wind field.  Figure 7.8 shows three-dimensional visualizations of the puff at different 

times as it traveled within the fixed and adaptive grids. The initial EC concentration 

quickly dropped. However, under the adaptive grid, the puff remains more compact and 

better defined. Ten hours into the simulation significant differences are evident in the 

a) b)
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modeled puffs. The variation reflects the decrease in numerical diffusion achieved by the 

adaptive grid through grid refinement.  

 

  

Figure 7.8 Side view of three-dimensional iso-surfaces defined by EC concentration 

equal to10 μg m
-3

 in fixed and adaptive grid simulations ,1, 5, and 10 hours after the puff 

is released.  

 

 

Figure 7.9 compares the decrease in maximum EC concentrations simulated on 

fixed and adaptive grids during the 6 hours following the puff’s release. In all 

simulations, the initial EC concentration falls abruptly after emissions are injected. 

Nevertheless, the drop is attenuated by the adaptive grid.  In addition, 6 hours into the 

simulation the maximum concentration estimated in the adaptive grid simulation (54 µg 

m
-3

) is twice as large as that predicted using a fixed grid (27 µg m
-3

). Figure 7.9 also 

shows the maximum concentrations predicted by adapting with greater intensity. An 

adaptive grid simulation using 10 adaptation iterations as a grid convergence criterion for 

the procedure described in Section 7.2 is compared to the original simulation limited to 5 

iterations. Although the initial decrease in maximum EC concentration was further 
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reduced by increasing grid refinement, peak simulated concentrations eventually fell 

below the concentrations predicted using less adaptation iterations. Finally, the results of 

a simulation using the vertically constrained adaptive grid algorithm described in Section 

7.2.2 are also shown in Figure 7.9.  The predictions generated with the constrained and 

unconstrained methods are very similar. Figure 7.10 compares grid adaptation using the 

vertically constrained and unconstrained approaches and further confirms the likeness in 

modeled concentrations.  

 

 

Figure 7.9 Maximum EC concentration predicted by a fixed grid simulation, adaptive 

grid simulations with 5 and 10 adaptation iterations, and a vertically constrained adaptive 

grid simulation with 5 iterations. 
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Figure 7.10 Y grid plane intersecting the pollutant puff 5 hours after release, simulated 

with (a) unconstrained three-dimensional adaptation and (b) vertically constrained 

adaptation. EC concentrations (µg m
-3

) and grid lines along the planes are also shown. 

 

 

7.6 Advection of a continuous point source 

To further examine the performance of the three-dimensional adaptive grid 

algorithm, advection of a continuous point source was modeled under fixed and adaptive 

grids. EC was continuously emitted at a rate of 2500 g s
-1

 into a single grid cell 2000 m 

above the ground. The simulation used the vertically constrained adaptation algorithm 

and the same model configuration applied in the puff advection test described in section 

7.5, with 4 km ×4 km initial horizontal grid resolution and 34 vertical layers. No other 

emission sources were included. Initially, the point source was advected under a uniform 

field of 5 m s
-1

 southeasterly winds. Figure 7.11 shows the pollutant plume simulated 

with fixed and adaptive grids. Under a uniform wind field, the advection simulation 

would ideally produce a highly concentrated plume traveling directly northwest and 

eventually reach steady-state conditions. However, numerical diffusion dilutes the 

pollutant concentrations as the plume travels across a finite resolution grid. Numerical 

diffusion has a larger impact on the pollutant plume in the fixed grid simulation, leading 

to lower concentrations downwind of the point source. In contrast, a highly concentrated 

plume develops under the adaptive grid. Although the earliest emissions released on the 

a) b)

05:00 05:00



 190 

adaptive grid are numerically diffused by the grid’s initial coarse resolution, the grid 

rapidly refines along the advection trajectory and is better able to capture the continuous 

plume. Similarly, the adaptive grid can improve representations of emissions sources 

subjected to vertical transport. Figure 7.12 compares adaptive and fixed grid simulations 

of the continuous EC point source advected directly upwards by a uniform 0.3 m s
-1

 

vertical wind field. Here again three-dimensional refinement retains higher 

concentrations along the plume centerline and reduces numerical diffusion.  

 

 

Figure 7.11 Aerial view of EC concentrations (µg m
-3

) predicted in layer 15 of the 

modeling domain under uniform southeasterly wind field 11 hours after the start of 

emissions using (a) fixed grid and (b) adaptive grid. 
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Figure 7.12 Side view of EC concentrations (µg m
-3

) predicted under uniform vertical 

wind field 1 hour after the start of emissions using (a) fixed grid and (b) adaptive grid. 

 

 

Advection of the point source emissions was also simulated on a WRF-generated 

three-dimensional wind field. Figure 7.13 and 7.14 contrast the pollutant plumes 

generated using fixed and adaptive grids. Six hours after the initial release of emissions, 

significant differences between the simulations are apparent from the three-dimensional 

iso-surfaces included in figure 7.13. Here again emissions in the adaptive grid simulation 

are initially diffused as refinement begins. However, adaptation quickly leads to a highly 

concentrated pollution plume. In the fixed grid simulation, the model generates a 

uniformly shaped plume as emissions are consistently subjected to numerical diffusion. 

The strong influence of grid adaptation on pollutant concentrations is clear near the point 

source. Figure 7.14 compares the initial 20 km of the simulated plumes. Like in the 

uniform wind field simulation, the adaptive grid captures higher concentrations and 

drastically reduces numerical diffusion. However, the effect is short-lived as high 

concentrations are dispersed by winds after traveling for a brief period. 
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Figure 7.13 Three-dimensional iso-surfaces bounded by EC concentration equal to 10 µg 

m
-3

 simulated 6 hours after the start of emissions using (a) fixed grid and (b) adaptive 

grid.  

 

 

 

Figure 7.14 Aerial views of EC concentrations (µg m
-3

) predicted 8 hours after the start 

of emissions approximately 2000 m above the ground using (a) fixed grid and (b) 

adaptive grid.  

 

 

7.7 Discussion and Recommendations 

A three-dimensional adaptive grid algorithm applicable to Eulerian air quality 

models has been described. The mesh-moving algorithm may be especially well-suited 
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for chemical transport models developed under the assumption of structured grids. 

Additionally, a coordinate transformation can be used to apply solution algorithms 

designed exclusively for uniform or symmetrical grids on an irregular refined grid. The 

three-dimensional algorithm is the first adaptive grid method designed for regional-scale 

air quality models to simultaneously refine horizontal and vertical grid resolution. 

Atmospheric simulations featuring concentrated plumes in the free troposphere, as well 

as plumes near inversions or the top of the boundary layer, would especially benefit from 

three-dimensional adaptation. Furthermore, the algorithm can refine grids down to very 

high resolutions and may aid in ultimately eliminating subgrid scale treatments and 

embedded models, designed to capture small-scale processes relevant to atmospheric 

plumes, from regional-scale chemical transport models.  

A vertically constrained adaptive grid algorithm was also described. In future 

attempts to apply the adaptation algorithm in air quality modeling, vertically constraining 

adaptation is highly recommended. In the simulations explored within this chapter, the 

vertically constrained algorithm produced results that were very similar to those obtained 

with unconstrained three-dimensional adaptation. However, important advantages are 

associated with the vertically constrained method, including compatibility with process 

treatments designed for stacks of cells and simpler interpolation and redistribution 

procedures. The benefits of vertically constrained adaptation appear to substantially 

outweigh the costs associated with reduced adaptation flexibility.  

The advection tests carried out in this study demonstrate the potential of adaptive 

grid modeling to capture concentration gradients from concentrated plumes that are lost 

in fixed grid simulations. The ability of adaptive grid models to replicate detailed 

gradients and reduce the artificial mixing associated with coarse grids may improve the 

treatment of nonlinear processes in chemical transport models.  However, adaptive grid 

simulations will continue to be constrained by the resolution and accuracy of the 

meteorological data used in air quality modeling. High-resolution meteorological fields 
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commensurate with the resolution of the air quality modeling grid are needed to replicate 

small-scale dynamics. As long as coarse resolution meteorological fields are used in 

adaptive grid air quality modeling, the benefits of grid refinement may be limited to more 

accurate nonlinear processes and reduction of numerical diffusion.  

The use of global interpolation algorithms in solution field redistribution 

procedures is highly recommended for future applications of three-dimensional grid 

refinement. Global interpolation would greatly benefit three-dimensional adaptive grid 

simulations for three key reasons: (1) artificial diffusion associated with local 

interpolation algorithms, such as the one used in this study, is eliminated; (2) the 

computational demand of solution redistribution operations in iterative methods may be 

significantly reduced; and (3) grid convergence and optimal grid configurations are more 

efficiently realized. In the advection simulations carried out in this study, most of the 

computational burden imposed by the adaptive grid algorithm was related to solution 

redistribution operations with local interpolation algorithms. Grid convergence in the 

iterative adaptation process was hard to achieve and frequently relied on programmed 

constraints to halt adaptation. Excessive refinement was an important concern in several 

test simulations, but may be difficult to avoid with the current formulation of the adaptive 

grid algorithm if a local interpolation scheme is applied.  

Most importantly, the benefits of grid refinement can be largely negated by local 

interpolation algorithms that continuously diffuse solution fields in iterative adaptation 

methods. In the two-dimensional adaptive grid simulations carried out in Garcia-

Menendez et al. (2010), grid refinement improved modeling predictions in spite of the 

use of a local interpolation algorithm. However, in the three-dimensional adaptive grid 

advection simulations described in this work local interpolation of concentration fields 

significantly hindered model performance and rendered the use of the model’s horizontal 

and vertical diffusion modules unfeasible. Although, a complex global interpolation 

algorithm may be needed to carry out the solution field redistribution operations required 
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by a three-dimensional adaptive grid algorithm, the procedure can be significantly 

simplified by applying vertically constrained adaptation. In future attempts to apply the 

three-dimensional adaptive grid algorithm in air quality simulations the use of global 

interpolation algorithms along with vertically constrained adaptation is highly 

recommended. By applying these methods, full implementation of three-dimensional 

adaptation in air quality models will take a significant step forward.  
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CHAPTER 8 

SUMMARY OF CONCLUSIONS AND FUTURE RESEARCH 

DIRECTIONS 

 

8.1 Conclusions 

Eulerian chemical transport models are an attractive option to simulate the 

transport and transformation of fire emissions. However, current regional-scale systems 

may be ineffective as an air quality forecasting tool when applied to simulate regional-

scale transport of fire-related smoke.  This may be especially true for simulations 

involving long- or regional-scale smoke transport from multiple wildfires over a 

prolonged period. To varying degrees, several elements of the modeling system 

contribute to the errors in simulated pollutant concentrations, including fire-related 

emissions, meteorological inputs, grid resolution, and the vertical distribution of fire 

emissions. 

Significant uncertainties are associated with fire emissions estimates and their 

distribution on gridded modeling domains. PM2.5 concentrations predicted by a regional-

scale air quality model in simulations attempting to replicate fire-related air quality 

episodes are highly sensitive to plume rise, and more specifically to emissions injection 

altitude relative to the boundary layer. The model predictions are also responsive to the 

horizontal and temporal distribution of fire emissions on gridded domains. In addition to 

representative estimates of emitted mass, effectively modeling smoke transport with 

chemical transport models depends on an accurate spatiotemporal allocation of 

emissions.  

Uncertainty in meteorological fields derived from numerical weather prediction 

systems can propagate strongly through atmospheric chemical transport models and may 
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constrain their ability to replicate the effects of wildland fires on air quality. Fire-related 

air quality predictions from a regional-scale air quality model proved to be extremely 

sensitive to meteorological fields. For such an application, model performance largely 

depends on the accuracy of wind inputs. More importantly, simulated pollutant 

concentrations displayed large sensitivities to variations in wind fields well within the 

uncertainty range of numerical weather prediction systems. Errors associated with wind 

data may account for large discrepancies frequently detected between observed and 

predicted PM2.5 concentrations. Normalized errors in simulations attempting to predict 

the regional impacts of fires on PM2.5 concentrations could be as high as 100% due to 

inaccuracies in wind data. In the simulation of a severe fire-related air quality episode, 

the influence of uncertainty in wind inputs on concentration predictions substantially 

outweighed the effect of all other sources of error identified, including uncertain emission 

rates. This suggests that fire-related regional-scale air quality simulations are limited by 

the performance of existing numerical weather models. Additionally, as air quality 

modeling moves towards finer grid resolution, errors associated with meteorological 

inputs can be expected to constrain accuracy even further. 

Adaptive grid modeling is an appealing method to simulate atmospheric plumes 

in chemical transport models, including fire-related emissions. An adaptive grid 

algorithm was implemented in the Community Air Modeling System (CMAQ). The 

algorithm allows dynamic, solution-adaptive grid refinement that can efficiently modify 

resolution in response to any variable or parameter. In an evaluation simulation aiming to 

reproduce smoke transport from two controlled fires to an urban area, the adaptive grid 

algorithm reduced artificial diffusion, produced better defined plumes, and led to more 

accurate PM2.5 concentrations with respect to observations. Additionally, a three-

dimensional adaptive grid algorithm capable of simultaneously refining horizontal and 

vertical grid resolution was presented. Extremely fine grid resolution can be achieved 

using this grid refinement method. In initial advection tests, the three-dimensional 
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algorithm was able to efficiently increase grid resolution along concentration gradients 

and capture features of elevated emissions that were rapidly lost in fixed grid simulations. 

Ongoing development and refinement of the three-dimensional adaptive grid algorithm 

would greatly benefit from replacing local interpolation schemes with global 

interpolation algorithms. Beyond improved predictions of fire-related impacts on air 

quality, adaptive grid modeling may improve understanding of atmospheric processes.  

 

8.2 Future Research Directions 

8.2.1 Simulating the air quality impacts of wildland fires with two-way coupled 

meteorology-air quality models 

The strong influence of meteorological data on air quality predictions from 

simulations attempting to replicate the effects of fires with regional-scale chemical 

transport models was extensively discussed in Chapter 5. The modeling system used 

throughout this work, described in Chapter 2, uses one-way coupling between a 

meteorological model and the system’s chemical transport model. In the past, the 

feedback of air pollution to atmospheric dynamics has been regularly ignored by air 

quality modelers. However, the impacts of atmospheric concentrations on weather, by 

altering the radiation budget and cloud formation, are also accepted (Grell and Baklanov, 

2011). The feedback to meteorology may be particularly important in simulations 

centered on wildland fires, where high aerosol loads could lead to significant changes in 

planetary boundary layer height, photolysis rates, and temperature profiles. The effects of 

fires on these meteorological variables would subsequently influence air quality 

predictions. In addition, heat released by fires may directly affect microscale 

meteorology.  

Recently, operational systems that allow two-way coupled air quality and 

meteorological modeling have become available, either as meteorological models that 
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include an air quality component or as coupled independent models that continuously 

exchange feedback. The Weather Research and Forecasting model coupled with 

chemistry (WRF-Chem) simultaneously simulates meteorology and the transport and 

transformations of trace gases and aerosols (Grell et al., 2005) and has been used to 

explore the effects of fire emissions on weather forecasts (Grell et al., 2011). WRF-Chem 

simulations investigating the influence of fire emissions on ozone photochemistry have 

also suggested that two-way coupling may be necessary to better predict the air quality 

impacts of large fires (Jiang et al., 2012). Similarly, the latest release of the Community 

Multiscale Air Quality modeling system (CMAQ) enables two-way coupling between 

CMAQ’s chemical transport model and the Weather Research and Forecasting model 

(WRF) (Wong et al., 2012). Two-way coupled systems offer an extremely interesting 

framework to carryout simulations investigating fire-related plumes. Through online 

modeling, it may be possible to capture the effects of fires on smoke transport and plume 

rise. The benefits of two-way coupling would likely be heightened in high-resolution air 

quality simulations. Smoke episode simulations, diagnostic model evaluations, and 

uncertainty analyses similar to those undertaken here should be carried out under a two-

way coupled framework to gain additional insight into fire-related air quality impacts and 

improve the ability of chemical transport models to replicate the phenomenon.  

8.2.2 Adaptive grid modeling beyond smoke transport 

Here, adaptive grid air quality modeling is used to simulate smoke transport from 

wildland fires. The analyses completed focused on primary fine aerosol emissions and 

mostly ignored chemical transformations. However, high resolution may greatly improve 

the representation of chemical transformations in simulations involving concentrated 

plumes. Simulations exploring the impacts of fires on ozone concentrations or secondary 

organic aerosol formation would benefit from adaptive grid refinement. The assumption 

of immediate and complete mixing within grid cells made by chemical transport models 



201 

 

may lead to errors in estimated chemical reaction rates. For power plant or industrial 

stacks, plume-in-grid models embedded within chemical transport models have been used 

to better simulate fine-scale mixing and concentration gradients. However, a highly 

refined grid could lead to improved estimates of chemical transformation rates. The 

influence of high-resolution on the chemical evolution of fire-related emissions predicted 

by chemical transport models should be further explored with adaptive gridding. Beyond 

wildland fires, adaptive grid models may be especially advantageous in simulations of 

industrial and urban pollution plumes. In simulations with highly concentrated and 

reactive pollutants, the advantages of adaptive grid refinement could be substantial. 

8.2.3 Simulating the long-range transport of pollutants with adaptive grid models  

The simulations within this work have focused on regional-scale transport of 

relatively short-lived plumes. Additionally, the analyses have mostly centered on 

transport within the planetary boundary layer. However, plumes may displace air 

pollutants on a global scale. For instance, intercontinental transport of pollution has been 

identified for emissions from North America impacting air quality over Europe (Li et al., 

2002) and East Asian emissions impacting air pollution levels in North America (Jaffe et 

al., 1999). Furthermore, advection in the free troposphere is an important mechanism in 

long-range transport of pollution (Liang et al., 2004). 

Global chemical transport models have been used to simulate the air quality 

impacts of emissions transported over large scales (Fairlie et al., 2007; Wild and 

Akimoto, 2001; Yienger et al., 2000). Simulations of this nature could greatly benefit 

from high-resolution adaptive grid techniques such as those discussed in this work. 

Adaptive grid air quality models may reach their full potential in long-range plume 

simulations for a number of reasons: grid resolution in global or hemispheric simulations 

is further constrained by computational resources; vertical resolution in chemical 

transport models is typically coarser in the free troposphere than the boundary layer; and 
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spatial and temporal scales are substantially larger. Under these conditions, the ability of 

chemical transport models to capture atmospheric plumes may be significantly limited. 

Adaptive gridding in regional-scale air quality models should be applied to explore 

pollutant transport across the largest scales applied to these systems and atmospheric 

plumes lofted into the free troposphere. Additionally, the implementation of adaptive grid 

methods in established global chemical transport models remains an attractive prospect.  

8.2.4 A rectangular three-dimensional adaptive grid algorithm  

The adaptive grid algorithm applied in this work uses an r-refinement (mesh-

moving) method, which allows nodes to reposition while retaining grid structure. 

Alternatively, h-refinement methods modify the structure of a grid by changing the 

number of cells, yet allow refinement to occur into self-similar elements or cells with 

specific geometries. As discussed in Chapter 5, advantages and drawbacks are associated 

with implementing either method into operational Eulerian air quality models. Still, 

neither method has achieved widespread acceptance by air quality modeling 

communities.  

A major limitation of the h-refinement approach is that current air quality 

modeling systems generally use solution algorithms designed for structured grids. 

Modifying the procedures within existing models to allow simulations on unstructured 

grids would be a major undertaking and entail extensively redesigning a model. On the 

other hand, r-refinement may be incompatible with existing solution algorithms designed 

to operate on uniform or rectangular grids. As described in this work, the restriction may 

be overcome by applying a coordinate transformation. However, fully transforming the 

numerical solution schemes included in the model is not a simple task and may not be 

possible for all processes or parameterizations. In addition, redistribution and 

interpolation operations on nonuniform grids with irregular cells may be complex and 



203 

 

computationally intensive, especially for three-dimensional refinement, largely negating 

the benefits provided by the adaptive grid model.  

An adaptive grid method that may be practical within current operational air 

quality models is a rectangular r-refinement algorithm. The method combines advantages 

of r- and h-refinement algorithms previously explored in air quality models and is 

illustrated in Figure 8.1. The rectangular algorithm would operate by dynamically 

repositioning grid lines instead of nodes. By doing so, the structure and topography of a 

grid stay intact, grid cells remain symmetrical, and orthogonality is preserved. Compared 

to other adaptive grid methods, refinement in rectangular adaptation is more rigid. 

However, the advantages of the method may outweigh the loss in flexibility. The 

algorithm is compatible with numerical schemes designed for structured grids. No 

coordinate transformation is necessary for existing solution algorithms. These must 

simply include the capability to handle nonuniform grids, which remain symmetrical and 

orthogonal. Redistribution and interpolation operations on rectangular grids are simpler 

and their computational demand is minor compared to nonrectangular r-refinement 

methods. Furthermore, global interpolation algorithms may be effortlessly applied to 

redistribute solution fields, further decreasing the computational burden of the algorithm 

and easing weight and grid convergence calculations. A rectangular adaptive grid 

algorithm, although less elegant and more restrictive, may still provide efficient 

refinement and fulfill its purpose of increasing solution accuracy.  More importantly, the 

simplicity of the method and congruity with well-established chemical transport models 

may encourage air quality modeling communities to finally adopt adaptive gridding.  
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Figure 8.1. Rectangular r-refinement.   
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