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Abstract 
 
 
 

Very large wildfires in the western contiguous United States: probabilistic models for historical 
and future conditions 

 
 
 

Erica Natasha Stavros, M.S. 
 
 
 

Chair of Supervisory Committee: 
Ernesto Alvarado 

School of Environmental and Forest Sciences 
 
 

 
Wildfires, especially the largest ones, can have lasting ecological and social effects both directly 

on the landscape and indirectly on the atmosphere and climate. Both climate and fire regimes are 

expected to change into the future while air quality, the composition of the atmosphere, 

continues to be regulated. It is necessary to understand how climate, wildfire, and air quality 

interact to mitigate air quality. Existing studies, however, span spatial and temporal scales 

necessary for only linking two components at a time (e.g. climate and wildfire or wildfire and air 

quality). Appropriate scales of data and modeling are required to integrate all three components 

and understand the system as a whole. To lay the foundation for studying interactions among 

these three components, I investigated the relationship between climate and very large wildfires, 

here defined as megafires (≥ 50,000 ac ~ 20,234 ha), at spatial and temporal scales appropriate 

for future work to bridge results into air quality modeling. In this dissertation, I demonstrated, 

using a systematic approach, that broad spatial and fine temporal resolutions are the best scales 



	
  

by which to understand how climate, wildfire, and air quality interact. Thus, using broad wildfire 

data aggregated to the spatial scale of eight US National Interagency Fire Center Geographic 

Area Coordination Centers (GACCs) across the western contiguous US, and daily and monthly 

climate data, I developed logistic regression models to predict the probability that a megafire will 

occur in a given week. Significant climate predictors of megafires vary by GACC and are similar 

to those found by other studies for aggregate annual area burned. Thus	
  megafires	
  may	
  influence	
  

the	
  analysis	
  of	
  aggregate	
  statistics	
  substantially. For all eight GACCs, projecting these 

models showed a significant (p≤0.05) difference between the historical period from 1979 to 2010 

and Intergovernmental Panel on Climate Change future scenarios, representative concentration 

pathways (RCPs) 4.5 and 8.5, during 2031 to 2060. Generally, with the exception of the 

Southwest and Northern California, megafires will be more likely both throughout the fire season 

and from year to year, with more pronounced patterns under RCP 8.5 than RCP 4.5. This work 

investigates the effects of a changing climate on megafires at scales that can aid policy and 

management to mitigate their effects. It also provides a foundation by which to improve 

understanding of the climate and carbon systems. Lastly, it illuminates the need to investigate 

how fire statistics are aggregated and how this affects climate associations. 
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Chapter 1 

Introduction 

 

Wildfires create major environmental changes, locally, regionally, and globally. Local 

effects include changes in vegetation structure and composition, ecological processes such as 

nutrient cycling and hydrology, and loss of air quality from smoke emissions, with potential 

adverse effects on public health. Broader-scale effects include reduced air quality downwind and 

changes to the global radiation budget from aerosols and to the carbon budget. Across all scales, 

the largest fires, here called “megafires”, are responsible for a significant proportion of these 

changes. 

Megafires can significantly degrade air quality in turn modifying some aspects of 

climate. For example, Jaffe et al. (2008) found that across the western US, summer wildfires 

account for a substantial fraction of the annual regulated amount of fine particulate matter 

(particles ≤ 2.5 micrometers, PM2.5). PM2.5 is responsible for human health problems, regional 

haze, and has a less certain effect on radiative forcing on climate (Bond et al. 2013). Estimates 

for summer enhancements of PM2.5 approximately double during large wildfire years (Jaffe et al. 

2008). Variation in Northern Hemisphere carbon monoxide (CO), a regulated pollutant under the 

US National Ambient Air Quality Standard (NAAQS), is associated with annual area burned 

(Kasischke et al. 2005), of which large wildfires constitute a substantial portion in Canada (Jiang 

and Zhuang 2011) and the United States (Calkin et al. 2005). These associations, along with 

projections of increased annual area burned under a changing climate (Flannigan et al. 2009, 
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Littell et al. 2010), suggest that more very large wildfires will continue to affect the feedback 

loop among climate, wildfire, and air quality. 

Here I first propose a systematic approach to studying feedbacks within and across these 

components by providing a conceptualization of processes in the climate-wildfire-air quality 

system across spatial and temporal scales (Chapter 2). This comprehensive systematic approach 

identifies key processes integrating climate, wildfire, and air quality to be at broad spatial scales 

(e.g., square kilometers) and fine temporal resolution (e.g., daily or weekly). This conceptual 

framework motivates this dissertation and is the basis of its scientific contributions as it provides 

a foundation from which to understand emergent behavior (McKenzie and Kennedy 2011, p. 29) 

of individual events (i.e., megafires) that affect the complex climate-wildfire-air quality system. 

By studying and modeling megafires and climate at characteristic scales of key processes linking 

climate, wildfire, and air quality (Chapter 3), future work can focus on how any changes within 

the system (e.g., climate (IPCC 2007) and fire regime (Chapter 4)) affect other components of 

the system (e.g., air quality).   

1.1. Effects of wildfires 

Wildfires, especially the largest ones, can have lasting ecological and social effects. 

Wildfires affect air quality, climate, and atmospheric and terrestrial processes such as hydrology 

and autotrophic productivity. Wildfire emissions and smoke affect air quality, which can have 

adverse effects on both ecosystems and human health. Smoke effects include decreased forest 

growth (Fenn et al. 2011), increased tree mortality (Fenn et al. 2011), increased susceptibility to 

disease (Wohlgemuth et al. 2006), loss of sensitive species (Reich and Amundson 1985, Peterson 

and Parker 1998, Wohlgemuth et al. 2006), and increased presence of invasive species (Fenn et 

al. 2011). Furthermore, wildfire smoke, even from distant sources, can affect human health, 
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particularly by aggravating respiratory illness (Wotawa and Trainer 2000, Jaffe et al. 2004, 

Langmann et al. 2009). Effects on climate include those from aerosol and greenhouse gas 

emissions, such as water vapor, carbon dioxide, carbon monoxide, and methane. Other wildfire 

effects include altering hydrology such as increasing runoff thus leading to erosion (Colombaroli 

and Gavin 2010), affecting soil processes such as nutrient cycling (Kilgore 1973), facilitating 

vegetation succession (Sprugel 1991, Littell et al. 2010), affecting ecosystem resilience 

depending on the severity of the fire (Peterson 2002), and increasing the rate at which carbon is 

sequestered through growth (McDowell et al. 2003). 

Because wildfire affects climate and air quality, the three components, climate, wildfire, 

and air quality, play into many feedback loops creating a complex system spanning many spatial 

and temporal scales. The main feedback loop linking these three components is as follows. 

Climate can affect fire regimes by increasing the likelihood of conditions conducive for 

combustion (Price and Rind 1994) and by affecting regeneration after disturbance (Peterson 

2002, Bond and Keeley 2005, Littell et al. 2010). Climate affects fuel conditions and combustion 

as well as fire regimes, which affect the amount of available fuels. Thus, climate affects the 

amount and types of emissions produced during wildfire (McKenzie et al. 2012), which then 

further affect the climate by altering surface albedo, cloud formation, and radiative forcing 

(Bond et al. 2013). This broad-scale feedback loop is integral to understanding the climate and 

carbon systems, two systems that have been of growing concern over the last several decades 

because of recent and continued projected changes in climate (IPCC 2007). Nevertheless, this 

feedback loop among climate, wildfire, and air quality has not yet been well studied as a whole.  

1.2. A Systematic approach 

Rather than studying three-way interactions among climate, wildfire, and air quality, 
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existing research has focused on two components at a time: climate and wildfire (e.g., Littell et 

al. 2010, Abatzoglou and Kolden 2013), wildfire and air quality (e.g., Randerson et al. 2006, 

Strand et al. 2011), and climate and air quality (e.g., Pfister et al. 2008, Larkin et al. 2009, 

Wegesser et al. 2009). Studying this system as a whole, however, has practical implications for 

mitigating some of the effects of wildfire such as air quality degradation from wildfire and 

meeting regulations under a changing climate. Air quality standards are intended to regulate the 

chemical composition of the air to protect human and ecosystem health. There are both direct 

and indirect managerial strategies to meet these standards, even during natural disasters like 

wildfires. Direct strategies include mechanical or chemical fuel treatments to reduce fuel loads, 

prescribed burning to create fuel breaks and to control the timing of the burn to mitigate smoke 

effects, and suppression. Although the largest wildfires escape suppression efforts, during times 

of high fire danger, smaller fires can be suppressed to avoid growth. An indirect managerial 

strategy is to restrict allowable anthropogenic pollution, so that when natural disasters do occur, 

there is more leeway before exceeding the permitted air quality standard. Applying a systems 

approach to untangle complex interactions among climate, wildfire, and air quality requires 

identifying key processes and their spatial and temporal scales. 

Scientific implications for studying three-way interactions among climate, wildfire, and 

air quality include improving understanding of the climate and carbon systems. Although this 

analysis does not specifically aim to improve understanding of these systems, it does however 

fill a specific niche in science by analyzing the relationship between climate and wildfire such 

that results can be used to analyze the system. By better understanding climatic drivers of 

wildfires at spatial and temporal scales appropriate for further analysis with air quality modeling, 

we can improve predictive climate models by integrating the feedback loop between climate, 
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wildfire, and air quality. 

1.3. Defining megafire 

In this dissertation, very large wildfires will be denoted as megafires. Generally megafire 

is a socio-political term applied to wildfires with a lot of attention because of significant 

economic, social, or ecological damages. There is, however, no database documenting the 

economic, social, and ecological cost of damages for most fires across a region over several 

decades (to relate to climate). Instead, a quantitative definition of megafire based on size is used. 

Large fires are defined as those fires that reach or exceed a threshold of 1000 acres (~ 404 

hectares), and megafires as those fires that reach or exceed a threshold of 50,000 acres (~ 20,234 

hectares). These definitions are chosen because they resonate with the land management 

community that commonly uses acres as a unit of measure. This threshold for megafire also 

corresponds to the top two percent of all large wildfires in the western contiguous United States, 

and accounts for approximately 33 percent of all annual area burned by large wildfires in this 

region from 1984 to 2010. In this way my definition for megafires matches other work such as 

Alvarado et al. (1998) that suggest examining the upper percentiles of large fires when studying 

extreme fires. Although these thresholds for megafire and large fires have been developed in 

acres to meet the needs of land management, the rest of this work will be done in standard units.  

1.4. Data 

In developing a probabilistic occurrence model for megafires a variety of disparate data is 

used and interrelated.  Specifically, datasets of collected historical fires are used, along with 

datasets that describe historical and future climate in a series of calculated biophysical metrics. 

Fire data gathered across the US from remote sensing imagery classified by the US 

Forest Service is used to develop the database Monitoring Trends in Burn Severity (MTBS, 
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http://www.mtbs.gov, data acquired 1 Oct 2012). MTBS documents the date of discovery, as 

well as the fire perimeter of area burned divided into classifications of burn severity of wildfires 

from 1984 to present. All wildfires that exceed 404 hectares in the western contiguous United 

States are included.  

Historical climate data is needed to examine relationships between weather, climate, and 

moisture and megafire occurrence over the observed record (1984-2010). Two datasets are used: 

(1) data from Parameter-elevation Regressions on Independent Slopes Model (PRISM; Daly et 

al. 2008) to calculate monthly Palmer Drought Severity Index (PDSI) and mean temperature; (2) 

downscaled meteorology from Abatzoglou (2013) to calculate daily US National Fire Danger 

Rating System (NFDRS) and Canadian Forest Fire Danger Rating System (CFFDRS) metrics.  

Future climate data is used to project probabilities for two different future climate 

scenarios from the Intergovernmental Panel on Climate Change (IPCC) - representative 

concentration pathways (RCPs) 4.5 and 8.5. RCPs represent radiative forcing in 2100 as defined 

by the number, e.g. RCP 4.5 denotes the target radiative forcing of 4.5 watts per meter squared 

(van Vuuren et al. 2011). Output from 14 global climate models (GCMs) is used for each RCP. 

The use of multiple RCPs and GCM simulations helps account for uncertainty, and allows for 

results to be analyzed by individual models, across all models for a given RCP, and across RCPs. 

More detail on these models and scenarios is provided in Chapter 4. 

1.5. Analyses 

A binomial logistic regression model is used to relate climate at or near the time of 

ignition to the probability that a fire will grow to be a megafire. These models are created at the 

regional scale of the Geographic Area Coordination Center (GACC) run by the U.S. National 

Interagency Fire Center the models varied by GACC. Model selection involved minimizing 
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Akaike Information Criterion (AIC) by way of backward elimination. AIC was used to avoid 

incorrect estimations of p-values when the data is highly imbalanced. Models are then assessed 

using area under the [receiver operating characteristic] curve (AUC) and statistics for exactness 

(i.e., precision) and completeness (i.e., recall). The sensitivity of the definition of megafire by 

using alternative size thresholds is also investigated. These models are then used to examine the 

potential future occurrence of megafires under different climate change scenarios. Temporal 

changes over the 21st century and the seasonality of increased likelihood of megafire as well as 

spatial changes in the future climate space are examined.   

One difficulty of studying rare events, like megafires, is that they occur infrequently and 

there is often not a large enough sample size for most statistics to be robust. This results in 

imbalanced data, which is an imbalance in the class distributions (He and Garcia 2009). 

Imbalanced data require special consideration when selecting a modeling approach because 

traditional statistics and algorithms assume balanced class distributions; rare or extreme events 

are often considered outliers that can be omitted because they skew results (He and Garcia 2009). 

Similarly, more frequent events can skew results when focusing analysis on extreme events. For 

example, when there is many more of one class than another, then the model may assume a 

probability that favors the majority class despite the effect of external conditions. To further 

complicate analyses, imbalanced data of rare events not only biases traditional statistical 

approaches, but also are of limited sample size thus weakening the robustness of conclusions. 

Generalized linear models (GLMs) and accuracy statistics have, however, been adapted to handle 

a larger proportion of zeros than expected (Barry and Welsh 2002), and are thus used in this 

analysis. 
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Another difficulty is that MTBS can be transcribed into presence-only binary data. 

Presence-only data are occurrence distributions that show only where fire occurs and not 

absences. Presence-only datasets suffer drawbacks limiting their use and validity in statistical 

modeling (Zaniewski et al. 2002). For example, with presence-only data there is often a sampling 

bias toward common versus rare occurrences. However, presence-only data is often all that is 

available because it is easier to show where an occurrence happened, rather than where an 

occurrence will not. This further reinforces the use of binomial logistic regression (a type of 

GLM) to quantify the probability of occurrence because it uses binary data and has been adapted 

to incorporate presence-only data (Zaniewski et al. 2002). 

Other approaches to handling rare and class imbalanced data were also considered. Some 

of these approaches include extreme value theory (Grissino-Mayer 1999, Draghicescu and 

Ignaccolo 2009), sampling methods, cost-sensitive methods, kernel-based methods, and 

assessment statistics like F-measure or G-mean (He and Garcia 2009). Nevertheless, logistic 

regression was selected for this analysis because (1) simpler models have broader applicability 

(Elith et al. 2002) and are especially useful for meeting prediction objectives and (2) simpler 

models are easier to communicate for developing inferences. 

Although logistic regression is the most appropriate analysis for this research, it has some 

limitations. For example, usual test statistics, like accuracy and error rate, are heavily influenced 

by class distributions in the data. However, some test statistics such as precision and recall can 

be used to evaluate exactness and completeness (respectively). The formula for precision leaves 

it sensitive to class distributions, although this is not true for its inverse, recall (He and Garcia 

2009). Alternatively, one can use AUC to represent the relative costs and benefits of classifying 

data. Ideally, this work will inspire future research to conduct multiple analyses to compare and 
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contrast, or verify, the results found here. 

1.6. Dissertation structure 

I propose a systematic approach to studying feedbacks within and across climate, 

wildfire, and air quality by providing a conceptualization of processes in the climate-wildfire-air 

quality system across spatial and temporal scales (Chapter 2). This comprehensive systematic 

approach identifies the spatial and temporal scales of key processes integrating climate, wildfire, 

and air quality. I identify that data at broad spatial scales (e.g., square kilometers) and fine 

temporal resolution (e.g., daily or weekly) are necessary for linking climate, wildfire, and air 

quality. This conceptual framework of the climate-wildfire-air quality system is the motivation 

and foundation of the scientific contributions of this dissertation. 

Using identified scales for linking climate, wildfire, and air quality (Chapter 2), a model 

of megafire occurrence based on the historical record of megafires and historical climate 

conditions (Chapter 3) is developed, which is then used to project future megafire occurrence 

using future climate simulations (Chapter 4). The focus is on developing a model that can 

function at the highly resolved temporal scales required for understanding air quality, and that 

functions at a regional spatial scale (Chapter 3). Specifically the following questions are asked:  

1. What is the spatial and temporal distribution of megafires from 1984 to 2010 across the 

western contiguous US?  

2. Do antecedent and concurrent fuel conditions and climate for the occurrence of megafire 

differ from those for the occurrence other large wildfires? 

3. How does this spatial and temporal variation affect the probability that a megafire will 

occur?  

Using the derived historical relationships of megafire with climate conditions, the 
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likelihood of how megafire will change over the 21st century and within the annual year is 

analyzed. Also changes in how the climate space affects certainty in these estimates are 

examined (Chapter 4). Specifically the following questions are addressed: 

1. Will megafires be more likely in the future?  

2. Will seasons of increased likelihood of megafire change in the future?  

3. How do key climate predictors of megafire change across space going into the future?   

This work not only investigates new scientific ground relating climate to specific 

megafires, but has practical importance for policy and management as projections can be used to 

proactively mitigate the effects of megafires. Although other studies have related and projected 

into the future annual area burned and fire danger indices thus demonstrating average behavior of 

ecological mechanisms, none have projected the likelihood of megafires as individual events. 

Examining the relationship of climate and individual megafires at characteristic spatial and 

temporal scales allows for analysis of emergent behavior of megafires within a more complicated 

system such as the climate-wildfire-air quality system. Simulating emergent behavior of 

megafires provides a foundation for creative and adaptive policy development and management 

strategies (McKenzie and Littell 2011) that inform the mitigation of their effects such as smoke. 
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Chapter 2 

The climate-wildfire-air quality system: interactions and 
feedbacks across spatial and temporal scales 

This work is adapted from work originally submitted as: Stavros EN, McKenzie 
D, Larkin NK (2013) The Climate-wildfire-air quality system: interactions and 
feedbacks across spatial and temporal scales. Frontiers in Ecology and the 
Environment. 

 
2.1. Summary 

Future climate change and its effects on social and ecological systems present challenges for 

preserving valued ecosystem services, including local and regional air quality. Wildfire is a 

major source of air-quality impacts in some locations, and a substantial contributor to pollutants 

of concern, including nitrogen oxides and particulate matter, which are regulated to protect 

public and environmental health. Since climate change is expected to increase total area burned 

by wildfire and wildfires affect air quality, which is regulated, there is a need to define and study 

climate, wildfire, and air quality as one system. This review defines ecological processes acting 

across space and time within the climate-wildfire-air quality system and provides a foundation 

for future research to identify the spatial and temporal domain for assessing impacts of climate 

on air-quality degradation from wildfire.
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2.2. Introduction 

Many studies have shown warming temperatures and longer periods of drought will 

increase area burned by wildfire in North America (Flannigan et al. 2009, Littell et al. 2010). 

Increased area burned will likely mean more fuel consumed and emissions produced. The latter 

contribute a positive feedback to greenhouse warming from greenhouse gases (GHGs) and both 

positive and negative feedbacks from aerosols (IPCC 2007). From here forward, the term 

feedback is used when component A affects B, and B feeds back to A, whereas feedback loop 

refers to the bidirectional effect of A and B on one another. 

Studying these types of feedbacks within the environment requires merging multiple 

scientific disciplines at multiple scales across space and time. Studies have focused on separate 

components of this system independently, but few have integrated the components (McKenzie et 

al. 2006, Chen et al. 2009). Existing research focuses mainly at characteristic spatial and 

temporal scales of understanding, e.g., how climate affects wildfire (Littell et al. 2009), how 

wildfire affects air quality (Pfister et al. 2008, Larkin et al. 2009, Wegesser et al. 2009), or how 

wildfire affects climate (Randerson et al. 2006), but does not incorporate cross-scale analysis 

necessary for quantifying feedbacks and interactions among system components (Figure 2.7.1). 

Here I compile and synthesize the latest research on climate, wildfire, and air quality to 

define interactions and feedbacks and propose a cross-scale approach to studying the system as a 

whole. I seek to identify the appropriate spatial and temporal domains for modeling the effects of 

climate on air-quality degradation from wildfire. Interactions and feedbacks within and across 

system components are placed in an ecological context using examples from North America. 

Conceptual understanding of the system, however, applies broadly in other regions. Lastly, I 

discuss broader ecological, social, and scientific implications for studying the system as a whole. 
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2.3. Defining the system: Terminology 

For discussion here, it is useful to define the terms needed to understand the climate-

wildfire-air quality system (Figure 2.7.1). 

Climate describes daily, annual (e.g., seasons), and decadal (e.g., El Niño-Southern 

Oscillation or Pacific Decadal Oscillation) variation in weather, such as wind, rain, temperature, 

and relative humidity. A change in climate is defined as a long-term change in one or more of 

these variables. The term “climate change” commonly applies to increasing global temperatures 

and changes in precipitation gradients (IPCC 2007). 

Wildfire is a cross-scale phenomenon (Figure 2.7.1; Moritz et al. 2005, Falk et al. 2007). 

At the finest temporal (seconds to hours) and spatial (10-3-103 square meters) scales, consider fire 

as the flame. To sustain combustion, a flame requires oxygen, fuel, and heat (Agee 1993). 

Individual fire events reside at intermediate temporal (days to months) and spatial (104-108 

square meters) scales, with fire behavior typically characterized in a triangle with legs for fuels, 

weather, and topography (Agee 1993). Each leg, and its interaction with the others, influences 

fire behavior. At broader spatial (≥109 square meters) and temporal (years to centuries) scales, 

wildfire can be characterized by the fire regime, which consists of many individual fire events 

over time and is commonly define by multiple attributes: fire frequency, seasonality, fireline 

intensity (the energy released), fire severity (effect of fire on biological and physical components 

of the system), fire type (e.g., crown fire, surface fire, ground fire), areal extent of fire perimeter, 

and spatial complexity (spatial variability of fire severity). These properties depend on 

interactions between climate, vegetation, and ignition source (Agee 1993).  

At the broad scales associated with fire regimes -- landscape (~106 m2) to sub-continental 

-- vegetation is aggregated to classes (Agee 1993). Ignition sources are either anthropogenic or 
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natural (i.e., spontaneous combustion or lightning). Anthropogenic ignitions are either by 

accident, arson, or a result of management. For example, in western North America, Native 

Americans burned the land for thousands of years to sustain food sources (Wright and Bailey 

1982, Bowman et al. 2009), thereby altering fire regimes. Currently, managers use prescribed 

fire to reduce fuel loads, maintain ecological function, and control amount and seasonality of 

emissions. 

Air quality is a measure or standard of the maximum acceptable pollutant concentrations 

in air. The air is composed of a “cocktail” of compounds (e.g., oxygen and carbon dioxide); 

pollutants are too much of any one compound that has detrimental effects to both human and 

ecosystem health. The United States government has established national standards to regulate 

hazardous gases, some of which are GHGs, and others are aerosols. GHGs act as a blanket 

around the Earth absorbing long-wave radiation and increasing global temperatures. Aerosols are 

solid or liquid microscopic particles dispersed in a gas (Malm 1999), in this case air. An aerosol 

of particular concern for health is fine particulate matter (PM) (Section 2.5.). 

In the following discussion, feedback loop refers to the cyclic or bi-directional effect 

between two (sub)components within the system. Subcomponents are the terms in Figure 2.7.1 

that are colored by each component: wildfire, climate, and air quality. 

2.4. Interactions and feedbacks 

The feedback loop that defines the climate-wildfire-air quality system proceeds as 

follows: climate change caused by global warming from increased GHGs in the atmosphere 

increases annual wildfire area, inducing changes in the disturbance regime through vegetation 

shifts (Peterson 2002, Littell et al. 2010, Kitzberger et al. 2012) and increasing emissions of 

GHGs and aerosols. Both of these effects feed back to climate, altering temperature and 
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precipitation gradients and indirectly increasing the number of fire ignitions (Price and Rind 

1994). 

Figure 2.7.2 illustrates the over-arching feedback loop in the climate-wildfire-air quality 

system. Using Randerson et al. (2006) estimates of radiative forcing, I convert estimates into a 

percentage of the total net radiative forcing on climate from a boreal forest wildfire in the interior 

of Alaska. Randerson et al. (2006) focused on one specific fire interval, however, thereby 

quantifying only the effect on radiative forcing and not the complete feedback loop (represented 

by the dashed arrow), i.e., fire-caused forcing of climate in turn changes the fire regime. A more 

comprehensive analysis of the system involves this complete loop, along with resolving scale 

issues (e.g., radiative forcing is global, but local climate is what affects fire). 

2.4.1. Wildfire component 

Feedback loops occur at fine and intermediate scales between individual fire events and 

fuels, and at broad scales between fire regimes and vegetation. Although many tree species’ 

ecological niches are defined by climate (Peterson and Peterson 2001, McKenzie et al. 2003), 

disturbance regimes can affect the type of vegetation that regenerates (Littell et al. 2010, 

Kitzberger et al. 2012). Fire is an important disturbance regime to many communities, supporting 

ecosystem processes (Stephens and Ruth 2005, Noss et al. 2006, Keane et al. 2008). For 

example, fire affects gap dynamics for regeneration, which affect stand structure, composition, 

and age (Stephens 1998, Kolb et al. 2007). Some vegetation that depends on fire for recruitment 

is flammable (e.g., some chaparral species) and thus perpetuates fire-dependent communities 

(Bond and Keeley 2005). Similarly, wildfire can affect soil through physical, chemical, and 

biotic processes and can alter erosion (Agee 1993, Kasischke et al. 1995), thereby affecting how 

vegetation grows and the available fuels. 
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The effect of vegetation on the type of fuels present (i.e. fuel type) acts across scales 

within the wildfire component of the climate-wildfire-air quality system. Fuel characteristics 

depend not only on the type of vegetation present (i.e. vegetation type), but also on the 

biophysical environment and the spatial patterns of biomass (Langmann et al. 2009). Vegetation 

type does affect the type and quantity of live and dead fuels available. Furthermore, different 

vegetation types have different chemical compositions, thus affecting the (McKenzie et al. 2007, 

2012) smoke chemistry and aerosol emissions from fires (Yamasoe et al. 2000). Hierarchical 

spatial variation exists across scales such that although vegetation types can be clumped at broad 

scales (>109 m2) (Neilson 1995), there is heterogeneous fuel composition at intermediate scales 

(106-109 m2). Similarly, clustered fuel types at intermediate scales have heterogeneous spatial 

variation in fuel composition and structure at finer scales (101-106 m2) (McKenzie et al. 2007, 

Keane et al. 2012).  

2.4.2. Climate component 

There are two processes acting across temporal and spatial scales within the climate 

component. First is the effect of climate on weather. There are many feedbacks within the 

climate system that affect how the climate changes and consequently affect weather. For 

example, as the climate warms the overall locations of the jet stream change, causing different 

air masses to be transported into and out of a given region, thus affecting storm tracks and local 

weather variables like wind, temperature, and precipitation patterns (IPCC 2007). 

Second is the feedback loop between weather and heat from combustion. Weather 

typically provides the initial heat required for combustion at finer spatial and temporal scales, 

and heat from the flame affects local weather at intermediate scales. At the mesoscale (~109 m2) 

a heat release from wildfire of 10 Wm-2 has no detectable affect on local weather, but a heat 
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release of 100 Wm-2 has a statistically noticeable influence on weather (Miranda 2004). Further 

complicating the system, the amount of heat produced from the fire is not uniform (which affects 

the plume rise, vertical mixing, and emissions dispersal) and is largely dependent on the type and 

structure of fuel loadings (Larkin et al. 2009). 

2.4.3. Interactions between climate, wildfires, and air quality components 

Interactions between climate, wildfire, and air quality motivate studying the three 

components as one system. These interactions are shown in Figure 2.7.1 as arrows between 

components (between colored text). There exists one internal feedback loop between heat, 

oxygen, and fuel. Otherwise interactions are discussed in this section under three sub-categories: 

wildfire and air quality, climate and air quality, and wildfire and climate. Wildfire and air quality 

includes the effect of fuels on air quality and the feedback loop between vegetation and air 

quality. Climate and air quality includes the feedback loop between weather and air quality and 

the feedback loop between air quality and climate. The last category, wildfire and climate, 

include the effect of climate on fire regime, the feedback loop between weather and individual 

fire events, and the feedback loop between vegetation and weather, the effect of topography on 

climate and weather. 

Internal feedback loops between oxygen, heat, and fuel link all three components of the 

climate-wildfire-air quality system. The internal feedback loops are defined by the process of 

combustion, which has four phases: (a) preheating, (b) distillation and combustion of volatiles, 

(c) distillation and combustion of residual charcoal, and (d) cooling (Agee 1993).  During the 

preheating phase, fuels trap heat. As the fuels heat-up and moisture evaporates, the ignition 

process moves to phase (b). Fed by the fuel, the flame grows and produces more heat, thus 

drying any surrounding fuel in the preheating phase (a) and increasing flammability resulting in 
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combustion (b). Provided there is enough oxygen, fuel, and heat to sustain a flame, the process of 

combustion will continue.  

2.4.3.1. Wildfire and air quality 

The effect of fuels on air quality depends on the moisture content, composition, and 

structure of fuels, which determine the type of emissions (Langmann et al. 2009). The moisture 

content of the fuels not only affects flammability, but also the amount of water vapor produced 

during combustion. Also, the amount of methane emitted can affect the amount of water vapor 

from wildfire as oxidized methane can produce water vapor. Water (H2O) is a greenhouse gas 

with substantial affects on radiative forcing (IPCC 2007, Swann et al. 2010). The composition of 

the emissions cocktail produced (Table 2.8.1) depends on the type, structure, and chemical 

composition of fuels burned as well as the completeness and efficiency of the combustion 

process (Ward and Hardy 1991, Langmann et al. 2009, Larkin et al. 2009, Bond et al. 2013). For 

example, incomplete combustion of fuels, which is normally the case in wildfires, leaves behind 

carbonaceous materials (Agee 1993, Bond et al. 2013) either as charcoal on the ground, coarse 

particulate matter, or as aerosols.  

The feedback loop between vegetation and air quality proceeds as follows: poor air 

quality can alter productivity of some plant species, while plant productivity can affect the 

quality of the air. For example, tropospheric ozone (O3), a secondary pollutant formed in 

ultraviolet light through reactions between nitrogen oxides (NOx) and volatile organic 

compounds (VOCs), which are emissions from wildfire and fossil fuels (Hu et al. 2008), can 

decrease productivity of some plant species, especially under high concentrations (Reich and 

Amundson 1985). To complete the feedback, VOCs are also produced by vegetation (Guenther 

et al. 2000), while carbon dioxide (CO2) is a key input for photosynthesis.  
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2.4.3.2. Climate and Air Quality 

There is a feedback loop from air quality to weather. Ambient weather, fire-released 

energy, and moisture (atmospheric or from drying of fuels during a fire) affect the injection 

height of emissions into the atmosphere and consequently emissions transport and diffusion 

(Miranda 2004, Wohlgemuth et al. 2006, Larkin et al. 2009). Depending on the injection height 

(Langmann et al. 2009) and the weather, emissions can have a shorter or longer life. Dry weather 

is conducive to longer life and farther transport of emissions, while wet deposition removes the 

aerosols and improves air quality. Aerosols emitted from wildfire can alter cloud formation both 

by acting as cloud condensation nuclei (increasing) or absorbing light (decreasing), thus 

affecting precipitation (Liu 2005, Langmann et al. 2009), while the amount of water vapor 

(which depends in part on temperature) affects the amount of moisture available for precipitation 

(IPCC 2007). Furthermore, the amount of available light, which is affected by cloud cover, 

affects the photochemical reaction between CO, methane (CH4), and VOCs and NOx, which 

form ozone, a monitored and regulated gas (Section 2.5.). 

Degraded air quality from wildfires is thought to be a substantial positive feedback loop 

to the climate system (Bowman et al. 2009, Bond et al. 2013). As mentioned, the emissions such 

as CO2 and CH4 both from anthropogenic sources and wildfires, are GHGs. Aerosol emissions 

from wildfire have a less certain effect on the climate system as per the extent to which they 

absorb and scatter radiation because not only do aerosol species’ properties differ, but also the 

effect of the source on those species can produce net cooling or net warming (IPCC 2007, 

Bowman et al. 2009, Bond et al. 2013). In turn, climate can affect the spatial and temporal 

distribution of GHGs and aerosols such that it affects air quality (Bowman et al. 2009). For 

example, during times of high fire activity in Canada, transported emissions from wildfire 
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increase background pollutant levels, tropospheric O3 in particular, in the United States (Wotawa 

and Trainer 2000). The transport and later deposition of aerosols can also alter sea ice and snow 

surface albedo, which affect radiative forcing and its consequent effect on climate (Figure 2.7.2) 

(Randerson et al. 2006).  

2.4.3.3. Wildfire and Climate 

Climate affects the fire regime both directly and indirectly. Directly, climate influences 

fire regime by affecting flammability (Kitzberger et al. 2012), fuel availability, fire season-

length, and ignitions. These direct effects are projected to increase annual area burned (Flannigan 

et al. 2009, Littell et al. 2010) and number of lightning ignited fires (Price and Rind 1994) in a 

warming climate. Over time, climate affects fire regimes indirectly through its control of 

vegetation.  For example, in the dry southwestern US, the strongest predictors of area burned are 

variables associated with the previous year’s climate, which controls fuel availability and 

connectivity across landscapes (Littell et al. 2009). Over longer temporal scale, through the 

Holocene in Alaska, vegetation type mediated climatic controls on fire regimes (Higuera et al. 

2009).  

A feedback loop exists between weather and fire at both fine and intermediate scales. In 

the short term, weather controls wildfire behavior by affecting fine-fuel moisture, fireline 

intensity, and rate of spread. Fire behavior then affects weather because fire, air temperature, 

wind, and relative humidity (amount of water vapor in the air) change based on the airshed 

characteristics and the amount of heat released from the fire (Rothermel 1983, Miranda 2004, 

Potter 2012). For example, if a fire occurs in a basin and the hot air rises during the fire, the 

relative humidity gradient in an air column changes because hot air can hold more moisture than 
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cooler air. With warm air rising, vertical mixing and convective winds can change, with further 

consequences for fire behavior (Heilman and Bian 2010). 

The feedback loop between vegetation and weather proceeds as follows: vegetative 

surface cover influences local wind circulations and the amount of water transpired and 

evaporated in a region (Pielke et al. 1999, Swann et al. 2010). In turn, the local weather affects 

the composition, productivity, and mortality of vegetation that grows in the area.  

Fire-climate dynamics are mediated globally by topography, which influences climate at 

broad spatial scales and weather at intermediate spatial scales. For example, topographic 

(orographic) controls on broad-scale atmospheric circulation over land produce continental 

climate, thus leading to very different fire regimes than those in maritime climates. At 

intermediate scales, topography affects the weather by altering the length of time different 

aspects are shaded, consequently affecting fuel moisture, heat, and convective winds (Rothermel 

1983), which are created by air flowing between high and low temperatures. Furthermore, local 

topography can affect the amount of rainfall received and changes in temperature affect relative 

humidity, the amount of moisture the air can hold.  

2.5. Ecological, social, and scientific implications 

In an ecological context, fire as a disturbance alters the succession of vegetation (Sprugel 

1991, Littell et al. 2010), affects autotrophic productivity (Fenn et al. 2011), and ecosystem 

resilience (Peterson 2002). Fire can catalyze vegetational succession in communities adapting to 

a changing climate (Barrett et al. 2011). Alternatively, management can use fire in conservation 

and restoration efforts (Reinhardt et al. 2008). For example, fire affects gap dynamics for 

regeneration, which affect stand structure, composition, and age (Stephens 1998, Kolb et al. 

2007), and can alter the disturbance regime. This produces a feedback between landscape pattern 
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and processes like fire, depending on the strength of ecological memory (Peterson 2002, 

McKenzie et al. 2011). Post-fire regeneration provides ecosystem services such as carbon 

sequestration by increasing growth (McDowell et al. 2003) and nutrient cycling (Kilgore 1973, 

Ghimire et al. 2012), and affects timber resources, biodiversity, and soil fertility (Fenn et al. 

2011). 

Wildfire effects on air quality can counteract the ecological benefits of fire, and 

emissions from wildfire that affect air quality depend on type of vegetation system burned. For 

example, Fenn et al. (2011) describe the adverse effects of pollutants on ecosystems, such as 

decreased forest growth, increased tree mortality, increased susceptibility to disease 

(Wohlgemuth et al. 2006), loss of sensitive species (Reich and Amundson 1985, Wohlgemuth et 

al. 2006), and increased presence of invasive species. The dominant source of the pollutants 

discussed by Fenn et al. (2011) is anthropogenic, but wildfires can account for some of these 

pollutants (e.g. NOx and tropospheric O3). In a global study, van der Werf et al. (2006) show that 

inter-annual variability in emissions follows that of area burned in forests, thus demonstrating 

how the type of vegetation system can affect air quality.  

The climate-wildfire-air quality system has social significance as wildfires can affect 

humans directly through emissions harmful to health. Emissions from wildfire in the form of CO, 

and particulate matter less than 2.5 µm in diameter (PM2.5) as well as secondary pollutants like 

tropospheric O3 can have particularly grave consequences for human health. Ward and Hardy 

(2001) found that the sum of CO2 and CO accounts for 90 to 95 percent of carbon released 

during the combustion phase of burning. CO can alter pollutant levels, particularly of 

tropospheric O3, across large distances (Wotawa and Trainer 2000, Jaffe et al. 2004, Langmann 

et al. 2009). Not only can CO affect tropospheric O3 concentrations, but wildfires can directly 
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affect both nearby and distant-downwind surface tropospheric O3 levels, sometimes exceeding 

current health standards (Pfister et al. 2008). Surface tropospheric O3 concentrations can irritate 

the respiratory system, reducing lung function, aggravating asthma, and increasing susceptibility 

to lung infection and inflammation of lung tissues. Besides tropospheric O3, wildfires emit PM. 

The amount of PM2.5 emitted is particularly important because when such small particles are 

inhaled, they can penetrate deep down into the human lung causing similar symptoms as 

tropospheric O3 (Ward and Hardy 1991). Furthermore, PM emitted from wildfire is more toxic 

than equal levels of PM concentration from ambient air without wildfire (Wegesser et al. 2009). 

Smoke from wildfires has social consequences including reduced visibility on roads and 

at scenic vistas (Figure 2.7.3, IPCC 2007). Besides their effects on radiative forcing, aerosols 

emitted from wildfires, affect visibility (Figure 2.7.3), thus contributing to nuisance smoke and 

regional haze. Aerosols can come from many sources, but wildfires contribute substantially to 

annual aerosol emissions, particularly on the worst days. For example, in the western United 

States, wildfire emissions during summer constitute a significant fraction of the regulated annual 

NAAQS for PM2.5, which reduces visibility (Jaffe et al. 2008). At shorter time scales, following 

or during a burning a fire, there is nuisance smoke. Nuisance smoke is considered smoke that 

interferes with the rights or privileges of members of the public (Hardy et al. 2001), such as 

smoke that reduces visibility on roadways or clouds visibility for air traffic. At longer time 

scales, aerosols like PM2.5 can reduce visibility by producing haze. Haze is the accumulation of 

microscopic aerosols, at sufficient concentrations to restrict visibility (Hardy et al. 2001). Haze 

obscures the view at scenic vistas in parks or when looking at a city from a distance.   

As area burned increases (Flannigan et al. 2009, Littell et al. 2010), air quality may 

become less manageable (McKenzie et al. 2013), especially during extreme weather. As larger 
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fires become harder to anticipate and manage, so will smoke effects, such as respiratory illness 

and heart attacks, nuisance smoke on roadways (Hardy et al. 2001), and reduced visibility over 

broad areas, including those noted for pristine air quality. Studying climate, wildfire, and air 

quality systematically across scales will help quantify the cumulative impact of climate change 

on the diverse physical, ecological, and social processes I have referred to here. 

A systems approach can also evaluate the success of meeting air-quality standards. Two 

national air quality standards in effect for the United States are (1) the National Ambient Air 

Quality Standard (NAAQS), which regulates pollutants considered harmful to human health and 

the environment, and (2) the Regional Haze Rule, which requires national parks and other 

wilderness areas to reduce visibility impairment. Visibility provides ecosystem services such as 

aesthetic appeal, which determines the value that many observers place on wilderness areas 

(Malm 1999) and consequently the funding and political support required to maintain them 

(Hyslop 2009). Direct management strategies to maintain air quality include prescribing fires 

during seasons and conditions that reduce smoke effects, mechanical pre-thinning of fuels to 

reduce emissions, and fire suppression when expected emissions endanger health. Indirect 

management strategies include restricting emissions from anthropogenic pollution sources, such 

that more emissions from wildfire must occur before exceeding air quality standards. 

In a broader scientific context, studying climate, wildfire, and air quality as one system 

can improve understanding of the carbon cycle and the climate system as a whole. The climate-

wildfire-air quality dynamic influences the carbon cycle by (1) releasing carbon to the 

atmosphere; (2) changing successional patterns that influence biomass carbon storage (Lorenz 

and Lal 2010); (3) providing improved soil nutrients and gaps for regeneration (kashian et al. 

2006); and (4) affecting fire frequency, which determines the amount of total carbon sequestered 
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(Kasischke et al. 1995, Raymond and McKenzie 2012). Furthermore, because some wildfire 

emissions have substantial feedbacks to the climate system (Bowman et al. 2009), future studies 

can integrate modeling frameworks not only by quantifying the impact of climate on air quality 

from wildfires, but also by including feedbacks to the climate system explicitly, thereby 

improving the predictive capabilities of climate models.  

2.6. Conclusion 

This overview of recent literature and synthesis of system dynamics provides a 

foundation by which to identify appropriate spatial and temporal scales to link climate, wildfire, 

and air quality, a subject that has only just begun to be assessed. I propose selecting appropriate 

scales to address specific research objectives, but in general climate and wildfire affect air 

quality at broad spatial scales as fire regime, climate, and smoke can span across long distance 

(e.g., regional) and at fine temporal resolution as pollutants and fire can change in short time 

spans (e.g., hours). Future research of climate and wildfire interactions at these scales will be 

useful for studying the climate-wildfire-air quality system (McKenzie et al 2006). Research is 

needed to quantify interactions among these components to evaluate impacts such that managers 

and decision-makers have more information to address existing regulations or shape new policy. 

Lastly, by studying the climate-wildfire-air quality system as a whole, scientists can better 

understand carbon budgets and their potential effect on the climate system.  

Moving forward, research should focus on integrating existing models or developing new 

ones to fill the unique spatial and temporal scales appropriate for linking climate, wildfire, and 

air quality. In the following two chapters, I develop, assess, and apply wildfire-climate models at 

broad spatial scales with fine temporal resolution. This work is intended to create a foundation 

from which to build modeling frameworks that can link climate, wildfire, and air quality. By 
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identifying the scales necessary for capturing specific interactions, models and data sets can be 

merged to bridge knowledge gaps between disciplines such as climatology, meteorology, fire 

ecology and behavior, and atmospheric physics and chemistry. 
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2.7. Figures 

 

Figure 2.7.1. Conceptual space-time diagram of the climate-wildfire-air quality system with 
components: air quality (black), climate (blue), and wildfire (red). Modified from Moritz et al. 
(2005), with permission, to include the air quality and climate components, the feedback loops 
(double-pointed arrows), and effects (single-pointed arrows) of the climate-wildfire-air quality 
system across scales. 
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Figure 2.7.2. Mean radiative forcing over an 80-year fire cycle in the boreal forest of interior 
Alaska (adapted from findings in Randerson et al. 2006). Numbers are the percentage of total net 
radiative forcing from each component. Positive numbers represent increased forcing (i.e., 
positive feedback to climate change); negative numbers are decreased forcing. The dashed line 
represents the change in climatic forcing of fire regimes, thus closing the feedback loop. 



 29 

 

Figure 2.7.3. Examples of pristine air quality (top panels) and degraded air quality (bottom 
panels) in Yosemite National Park (California, USA) (left) and Glacier National Park (Montana, 
USA) (right). bext represents light extinction whereby low values are typical for clear conditions 
and high are typical of degraded visibility. Photos are courtesy of IMPROVE 
(http://vista.cira.colostate.edu/improve/) and used with permission.  



 30 

2.8. Tables 
 
Table 2.8.1. Table of some of the emissions and secondary pollutants from wildfire (Agee 1993) 
as well as classification as a greenhouse gas (GHG) or aerosol and the typical spatial and 
temporal extent. Spatial and temporal scales are defined as fine (10-3-103 square meters or 
seconds-days), intermediate (104-108 square meters or weeks-months), and broad ((≥109 square 
kilometers or years-centuries). 
 

Emission from Wildfire 
Greenhouse Gas 

(GHG) or 
Aerosol 

Spatial Scale Temporal Scale 

Carbon Monoxide (CO) Neither Fine Fine 
Carbon Dioxide (CO2) GHG Fine to Broad Broad 

Methane (CH4) GHG Fine to Broad Fine to Intermediate 
Water vapor (H2O) GHG Fine to Broad Fine to Intermediate 

Nitrogen Oxides (NOx) GHG Fine to Broad Constant 
Volatile Organic Compounds 

(VOCs) Neither Fine Fine 

Particulate matter (PM10) ² 10 µm Aerosol Fine to Intermediate Fine 

Particulate matter (PM2.5) ² 2.5 µm Aerosol Fine to Broad Fine 

Secondary pollutants    
 Tropospheric ozone (O3) GHG Fine to Broad Fine to Intermediate 
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Chapter 3 

Climate and megafires in the contiguous Western United States 

This work is adapted from work originally submitted as: Stavros EN, Abatzoglou 
J, Larkin NK, McKenzie D, Steel EA (2013) Megafires: An analysis of climatic 
factors associated with very large wildfires in the western contiguous United 
States. International Journal of Wildland Fire. 

3.1. Summary 

Very large wildfires can cause significant economic and environmental damage, including 

destruction of homes, adverse air quality, firefighting costs, and even loss of life.  I examine how 

climate enables very large wildfires (≥ 50,000 ac ~ 20,234 ha) in the western contiguous US. For 

simplicity, I refer to such fires as “megafires”, as they account for the top two percent of all fires 

and represent 33% of all area burned. Multiple megafires often occur in one region during a 

single fire season, suggesting that regional climate is a driver. I used composite records of 

climate and fire to investigate the spatial and temporal variability of the megafire climatic space. 

I developed logistic regression models to predict the probability that a megafire will occur in a 

given week, with separate models for each of eight US National Interagency Fire Center 

Geographic Area Coordination Centers (GACCs) across the western contiguous United States 

(US). Accuracy was good (Area Under the Curve: AUC > 0.80) for all eight models, but 

significant climate predictors of megafires vary by GACC, suggesting that broad-scale ecological 

mechanisms associated with megafires also vary across regions. These mechanisms associated 

are very similar to those found by previous analyses of annual area burned, thus reflecting how 

the largest fires drive annual aggregate statistics. By predicting individual megafires, however, 

instead of annual area burned, I provide a means for anticipating extreme fire events and thereby 

possibly mitigating their risk and associated damage.   
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3.2. Introduction 

Throughout the western contiguous United States in the past several years, very large 

wildfires have set modern records for the largest fires in several states (e.g. Long Draw in 

Oregon  (2012), Wallow Fire in Arizona (2011), and the Whitewater Baldy Complex in New 

Mexico (2012); http://www.nifc.gov). Such fires may have dramatic and lasting socio-economic, 

environmental, and health effects including property damage, firefighting costs, loss and 

degradation of habitat, and air-quality reductions (Jaffe et al. 2008) that lead to respiratory illness 

or even premature mortality. Fires also contribute to global warming, including greenhouse gas 

emissions, aerosols and other secondary pollutants (Randerson et al. 2006, Bond et al. 2013). 

During very large wildfire events, particularly if there are multiple large fires in a region, 

firefighting resources within the region may become strained and additional resources may be 

needed from other areas, if they are even available.    

Investigation of the mechanisms and climatic drivers of these very large fires is a first 

step to reducing or managing their effects.  Past studies have focused on quantifying the factors 

influencing total annual area burned within a region including the influence of fuel loading, 

climate, and weather (e.g., Westerling et al. 2002, McKenzie et al. 2004, Flannigan et al. 2005, 

Flannigan et al. 2009, Littell et al. 2009), the probability of a fire, of any size, across North 

America (Parisien et al. 2012), or a single-day fire growth event (Podur and Wotton 2011). These 

studies have aggregated fires in a region over an entire fire season, without addressing individual 

large wildfires, and do not provide information at adequate temporal resolution for management 

strategies, such as suppression, or policy, such as air quality regulation.  

Studies investigating fire probability or fire behavior across a range of fire sizes may fail 

to capture relationships between fuels, climate, and large fires because large fires may behave 
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differently than smaller fires (Alvarado et al. 1998), and are often the consequence of uncommon 

circumstances, e.g., extreme fire weather with abundant fuels and limited resources for 

suppression in their early stages. Consequently the largest fires are subsumed into analysis of 

aggregate properties such as annual area burned (Littell et al. 2009). Studies that have addressed 

individual large fires have been geographically specific (Abatzoglou and Kolden 2011, Irland 

2013, San-Miguel-Ayanz et al. 2013, Tedim et al. 2013), not extending across the western 

contiguous US, or have examined only fire danger without linking it to actual entire events (Liu 

et al. 2013). My study addresses this knowledge gap by specifically predicting the probability of 

very large wildfires across the western US.  

I assess how antecedent and concurrent climate is associated with very large wildfire 

events, specifically those with total area burned over 50,000 acres (~20,234 hectares).  For 

simplicity, I refer to such fires here as “megafires”. I recognize that the term “megafires” has 

been used loosely in scientific and popular literature, with multiple underlying meanings.  Here I 

apply a simple and consistent quantitative definition based on total burned area in the fire. Fires 

this size and above constitute roughly 33 percent of annual area burned across the West (figure 

from data used in this analysis). Such fires have probably escaped attempts at suppression, 

contribute disproportionately to degraded air quality, present danger to communities, and have 

great economic costs. I hypothesize that these fires are associated with an identifiable 

climatology, that is, they can be quantitatively linked to specific climate and weather. 

To examine climate associations with megafires and develop a set of regional predictive 

models useful for management and policy, I use the Monitoring Trends in Burn Severity 

(MTBS) database of fire perimeters and burn severity that has fire date of discovery, perimeter, 

and burn-severity classifications from 1984 to present, along with climate data for the same 
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period. These data sets meet the broad spatial and fine temporal resolutions required for 

investigating climate, wildfire, and air quality (Chapter 2). I focus on three questions. (1) What is 

the spatial and temporal distribution of megafires from 1984 to 2010 across the western 

contiguous US? (2) Do antecedent and concurrent fuel conditions and climate for megafire (≥ 

50,000 ac ~ 20,234 ha) occurrence differ from those for other large wildfire (≥ 1000 ac ~ 405 ha 

but <20.234 ha) occurrence? (3) How does this spatial and temporal variation affect the 

probability that a megafire will occur? Although this research does not specially integrate 

predictive models into smoke modeling to investigate the Climate-Wildfire-Air Quality system 

(Chapter 2), it provides a foundation for such future research. 

3.3. Study area 

My analysis grouped climate and fire information within existing operational 

management boundaries across the western US (Figure 3.8.1). Specifically, I examined the 

geographic areas defined by the US National Interagency Fire Center as Geographic Area 

Coordination Center (GACC). GACCs are management units and do not coincide directly with 

ecological boundaries (most of which are subjectively defined) or vegetative fuel types (which 

vary at much finer scales than acknowledged in classification – Keane et al. 2012). Each GACC 

includes multiple Predictive Service Areas (PSAs) (last acquired 1 Oct 2011 from 

http://psgeodata.fs.fed.us/data/gis_data_download/static/PSA_2009.zip). PSAs, used for both 

operational decision-making and regional forecasting in air-quality management, are spatial 

polygons defined by distinct climate and weather that affect fire occurrence and behavior. 

Because my goal was to understand wildfires, I excluded PSAs within each GACC for which 

large fires are primarily agricultural, notably within the Great Plains (defined by the Terrestrial 

Ecoregion L1 boundaries, Olson et al. 2001). There are eight GACCs in the study area: Southern 
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California (SCAL), Northern California (NCAL), Pacific Northwest (PNW), Northern Rockies 

(NROCK), Rocky Mountains (RM), Western Great Basin (WGB), Eastern Great Basin (EGB), 

and the Southwest (SW). I modeled megafires at the GACC scale because the rarity of megafires 

makes finer-scale analyses difficult, with sample sizes too small to develop predictive models, 

and because GACCs do define operationally important fire management boundaries. 

3.4. Data and methods  

3.4.1. Fire data 

For fire area, I used fire perimeters from the Monitoring Trends in Burn Severity (MTBS) 

dataset produced by the US Forest Service (http://www.mtbs.gov, data acquired 1 Oct 2012). As 

used, MTBS spans 1984-2010 and includes area burned and burn-severity data within nearly 

6,000 individual large fire perimeters exceeding 405 ha across the western contiguous US. 

Unburned islands (anything categorized as “unburned/unchanged” by MTBS) within the fire 

perimeter were not included in the burned area calculations to achieve a more accurate estimate 

of the total area burned (Kolden et al. 2012). 

I used past records of fire discovery date to define the core fire season within each 

GACC. Statistical analyses often assume that data classes are balanced, however, this is not the 

case with rare events (He and Garcia 2009), such as megafires. Consequently, I reduced each 

year to the core fire season to create a more balanced data set and improve inference from 

statistical analyses. The core fire season was defined as the time window within which fires 

accounting for the middle 95% of the area burned were within each GACC in an average year 

over the record (Figure 3.8.2, i.e., Abatzoglou and Kolden 2013). Fires with discovery dates 

outside of the core fire season were excluded from the analysis. I classified each week of the core 

fire season in which at least one megafire was discovered, as a “megafire week”, weeks in which 
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at least one large fire was discovered but no megafires as a “large fire week”, and weeks in 

which no large fires occurred as a “no fire week”. Because megafires are rare, there were many 

fewer megafire weeks than weeks in which no megafires occurred (e.g. the RM GACC has only 

three megafire weeks out of 621 weeks available for analysis). Analysis was aggregated to weeks 

for the following reasons. In keeping with Chapter 2, I wanted to conduct the analysis at “fine 

temporal resolution” in order for the models to eventually be applied to air quality modeling. 

Unfortunately, daily resolution created even more of an imbalance in the data, and was more 

subject to temporal autocorrelation. In addition, MTBS provides dates of discovery, but there is 

some uncertainty in that estimate. Therefore, aggregating data to the week made the most sense.  

3.4.2. Climate data and derived indices 

Climate data were averaged spatially across all pixels (800-m for monthly data, 4-km for 

daily data) within each GACC perimeter (excluding PSAs within the Great Plains). This 

aggregation assumes homogeneity of fire regime, vegetation, climate, and weather within a 

GACC. Two gridded climate datasets were considered: (1) monthly temperature and 

precipitation from Parameter-elevation Regressions on Independent Slopes Model (PRISM - 

Daly et al. 2008), and (2) daily surface meteorological data from Abatzoglou (2013). Multiple 

biophysical metrics were also calculated and available with these data sets. Palmer Drought 

Severity Index (PDSI), a time-averaged measure of drought believe to track soil moisture, is 

calculated from the monthly climate data, and fire danger indices of the National Fire Danger 

Rating System (NFDRS) and the Canadian Forest Fire Danger Rating System (CFFDRS) are 

calculated from the daily surface meteorological data. NFDRS calculations used fuel model G 

(dense conifer stand with heavy litter accumulation) to maintain consistency with previous 

studies (Andrews et al. 2003) and used greenup dates defined by the first day of each year when 
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the normalized growing season index exceeds 0.5 (Jolly et al. 2005; M. Jolly, personal 

communication). NFDRS and CFFDRS are compared in Figure 3.8.3. Both NFDRS and 

CFFDRS are used because each classification system has been shown to be more effective in 

different areas. 

I used six indices from the NFDRS and CFFDRS. From NRFDRS: (1) NFDRS- 100-hour 

fuel moisture (FM100) represents the moisture content of dead fuels 2.5-7.6 centimeters in 

diameter or roughly the moisture content of 1.9-10.2 centimeters of soil. (2) NFDRS- 1000-hour 

fuel moisture (FM1000) represents moisture content of dead fuels 7.6-15.2 centimeters in 

diameter. Lower values of FM100 and FM1000 represent drier conditions. (3) NFDRS- energy 

release component (ERC) represents the daily potential worst-case scenario of total available 

energy per unit area within the flaming front at the head of a fire. Higher values represent higher 

fire danger. (4) NFDRS- burning index (BI) represents the potential difficulty of fire control as a 

function of spread rate and ERC. Higher values represent higher fire danger. (5) CFFDRS- fine 

fuel moisture content (FFMC) represents the relative ease of ignition and flammability of litter 

and other fine fuels. Higher values represent drier conditions. (6) CFFDRS- duff moisture code 

(DMC) represents average moisture content of loosely compacted organic layers of moderate soil 

depth. Higher values represent drier conditions. These indices were selected because a priori 

data analysis of the data sets suggested that these indices had strong associations with the fire 

data. 

3.4.3. Large fire vs. megafire climatology  

A composite analysis was used to answer my second question: Do antecedent and 

concurrent fuel conditions and climate differ for megafires and other large wildfires and for 

weeks during the fire season without large fires? Composite analysis calculates biophysical 
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metrics for fires classified as large versus megafire and plots them relative to the date of 

discovery. This allows one to see the difference in mean (and 95 percent confidence intervals) of 

biophysical conditions for all fires within a given classification for a GACC from ten weeks 

before to ten weeks following the discovery of the fire. Composite analysis includes lead-lag 

temporal composites of (1) weekly fire danger index percentiles over a 13-week period centered 

on the discovery week, and (2) monthly temperature and PDSI for the year prior to and 

concurrent to the discovery week. Temperature and PDSI were used to examine fire 

climatologies up to a year prior to discovery and to provide insight to longer-term lagged effects 

of climate. The composite analysis staggers climate and fire danger index percentiles (to aid 

comparisons between GACCs) relative to the discovery week of fires (when x-axis is zero) 

within each GACC. The analysis is aggregated to the discovery week of each fire (weeks are 

defined by day-of-year, e.g. week 1 = January 1-7), because of challenges in temporal overlap of 

individual fires and inconsistencies in the reported discovery date of each fire. The 95% 

confidence intervals of the composite means are estimated using bootstrapping (N=1000). 

3.4.4. Probability of a megafire week 

I built logistic regression models for each GACC to estimate the probability of a megafire 

week, i.e. a week when at least one megafire occurred within a fire season. Potential predictor 

variables included climate and fire danger indices as described in section 3.4.2. The hypothesized 

mechanisms relating each potential predictor variable to megafire probability suggest a variety of 

potential time lags. For example, climate several weeks in advance of ignition could influence 

fire risk through reduced fuel moisture. Climate after ignition could also influence megafire 

probability via spread from wind and lack of significant precipitation. To allow for these time 

lags during the model building, I used the composite graphs to identify predictor variables at 
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multiple time lags (section 3.2). Note that PDSI and temperature (TEMP) are monthly indices 

that were assigned to all days of the month. Furthermore, explanatory variables used in this 

analysis are raw values rather than the percentiles applied by managers for fire danger ratings. 

Percentiles are tied strictly to the model database used to generate them, thus using them over-

calibrates models to the dataset used to generate them.  

I applied the following binomial logistic regression model selection procedure 

independently for each GACC. I built models using forward stepwise procedure by minimizing 

Akaike Information Criterion (AIC), then removing insignificant (p>0.05) variables one at a 

time, rebuilding the model after each elimination. Next, I examined the resultant models for any 

correlated indices (Pearsons correlation coefficient ≥0.8) or any indices that were included over 

multiple time windows, retaining the first occurrence (e.g., if FFMC the week prior to discovery 

was used, no other FFMC variable was allowed). I confirmed that all predictor variables retained 

in the model still met the significance criteria (p<0.05). Although there are many cautions when 

using forward stepwise regression (Anderson et al. 2000, Mundry and Nunn 2009), in this case 

we have a very large data set and the models are used for prediction, consequently inferences 

from these models are fairly direct (Anderson and Burnham 2002). Moreover, the use of AIC 

avoids the corruption of alpha levels when forward selection is used with significance testing. I 

used standard odds ratios to estimate each predictor’s influence on the probability of a megafire 

week. To understand how sensitive model selection and accuracy statistics were to the choice of 

megafire threshold, I built an additional two models for each GACC using alternative definitions 

of megafire (10,000 ac ~ 4,047 ha and 25,000 ac ~10,117 ha).  

I evaluated each model using a combination of precision, recall, and Area Under the 

[receiver operating characteristic] Curve (AUC).  Precision is “a measure of exactness” returning 
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the probability of correctly classifying a megafire, where as recall is “a measure of 

completeness” returning the probability of correctly classifying a megafire that is actually a 

megafire (He and Garcia 2009). There is generally a trade-off between precision and recall. To 

calculate precision and recall, I converted the model output, probability of a megafire week, into 

binary predictions of megafire week (Table 3.9.1). I used a sliding classification criterion, in 

increments of 0.05, to translate model output into binary megafire predictions. For example, if 

one applies a classification criterion of p ≥ 0.5, then any modeled predictions greater than or 

equal to 0.5 would be considered a prediction that a megafire would occur in that week. I 

evaluated model predictive accuracy across all thresholds, using AUC, which quantifies the 

relative trade-offs between true positives (TP; benefits) and false positives (FP; costs) (He and 

Garcia 2009). An AUC of 0.5 indicates that the model predicts no better than random, whereas a 

value of 1.0 indicates that the model makes perfect predictions (Harrell 2001). 

3.5. Results 

3.5.1. Large fire vs. megafire climatology 

In all GACCs, unlike monthly PDSI values, monthly temperature anomalies are highly 

variable and show limited evidence of meaningful differences in conditions between megafires 

and large fires (Figure 3.8.4). One exception is that fire-season temperature coincident with 

megafires in the NROCK and RM GACCs appear warmer than temperatures associated with 

large fires. In contrast to the highly variable temperature anomalies, PDSI values for megafires in 

several GACCs show a transition from moist conditions the year before the fire year to moisture 

deficits concurrent with the fire season. Most notably, megafires in the WGB occur a year 

following pluvial conditions as evident from PDSI values >2 (wet) the year prior to the fire, and 

approach normal values during the fire season of the fire year. Though not as dramatic, similar 
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patterns were seen the year prior to megafires in the EGB and SCAL GACCs. Megafires in the 

SW and RM occurred during periods of negative PDSI and after periods of negative PDSI during 

the prior summer and winter, respectively. However, there is a limited sample size for these 

GACCs. Megafires in the NROCK appear to occur during concurrent drought.  

In contrast to the limited and disparate relationships observed for megafires using 

monthly temperature and PDSI, strong commonality across GACCs was observed in the 

composite analysis for weekly fire danger indices (Figure 3.8.5). Megafires generally 

experienced elevated fire danger concurrent to and up to three weeks post discovery week. The 

fire danger indices with slower response times (i.e., FM1000, ERC, DMC) sustain conditions in 

the upper decile in the weeks following the discovery week. For other large wildfires, fire danger 

indices were more moderate and typically subsided the week following fire discovery. In many 

of the GACCs, large differences in climate that desiccate fuels and increase fuel availability are 

apparent two weeks prior to the discovery week. These differences both before and after fire 

discovery provide a basis for defining time durations of calculated indices that can be used to 

define explanatory variables driving fire growth. 

3.5.2. Probability of a megafire week  

Models to predict the probability of a megafire week and the effect of predictors on the 

output probability differed by GACC (Table 3.9.2 and 3.9.3). In general, models predicting 

megafire probability for all GACCs included seasonal drought signals (FM100, low FM1000,  

high ERC, high BI, and high DMC). Models for only a few GACCs included variables indicative 

of short-term and long-term moisture signals. Models for EGB and NROCK included short-term 

fire-weather signals (high FFMC). Models for EGB and WGB included long-term moisture 

signals (PDSI). 
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Odds ratio (Table 3.9.3) demonstrates the effect size of any one predictor variable on the 

response when holding all other predictors constant. In general, models for all GACCs show that 

hotter, drier conditions have an odds ratio >1, therefore increasing the probability of a megafire 

week. EGB and WGB show PDSI with an odds ratio >1, thus increased long-term moisture 

increases the probability of a megafire week. The NROCK model also includes FFMC and 

DMC, which have odds ratios <1 denoting that wetter conditions increase the probability of a 

megafire. 

Models for all GACCs have AUC greater than 0.8 suggesting that the models have high 

predictive ability (Harrell 2001), but examining the trade-offs between precision and recall 

demonstrates that model probabilities drop to near zero very quickly (Figure 3.8.6). Because of 

the large number of zeros in the data being modeled, the model can achieve reasonably high 

predictive ability by simply predicting a probability of zero.  This phenomenon is most obvious 

when the percentage of non-megafire weeks ≥ 98 (e.g., NCAL, SCAL and SW at 20,234 ha and 

RM at 10,117 and 20,234 ha). This bias toward zero affects AUC for nearly all GACCs (with the 

exception of EGB). 

Models predicting the odds of a megafire using smaller fire-size thresholds with more fire 

weeks are more balanced (smaller portion of zeros), and may be more robust because they 

included a larger sample of megafires. I identified similar predictor variables for models across 

the three fire-size thresholds within a region in all GACCs except NCAL and PNW (Table 3.9.2 

and 3.9.4). 

3.6. Discussion 
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3.6.1. Megafires across space and time 

The spatial and temporal distributions of megafires show three patterns. First, mapping 

the number of fires and percentage area burned by megafires (Figure 3.8.1) shows that although 

models were developed at the GACC scale, there is finer-scale variability at the PSA scale. 

There are many PSAs with no megafire occurrence at all. PSAs with the most fires are also PSAs 

with the most megafire occurrences. Furthermore, the PSAs with megafires have a substantial 

percentage of annual fire area was burned by megafires. Second, fire seasons are qualitatively 

different among GACCs (Figure 3.8.2), and with exception of the SW, megafires occur 

throughout the fire season. Third, years with the most annual area burned (“megayears”) are 

years with not only a substantial fraction of hectares burned by megafires (Figure 3.8.7), but also 

an increased number of megafires (Figure 3.8.8). 

3.6.2. Megafire climate space 

This analysis focuses on climate conducive to the occurrence of megafires (≥ 50,000 ac ~ 

20,234 ha) in the western contiguous US. Previous studies focusing on annual area burned 

provide less specific information, thus making it difficult to prepare for and mitigate the lasting 

ecological and social effects of individual fires. I focus on climate-fire relationships, because 

although there are other controls on fire size such as fuel abundance and connectivity and 

topographic complexity (Littell et al. 2009, Kennedy and McKenzie 2010, Hessburg et al. 2000), 

extreme climate and weather can neutralize the effects of other controls (Turner and Romme 

1994, Bessie and Johnson 1995). I compared findings from this analysis to those for annual area 

burned in previous studies. Similar broad-scale ecological mechanisms were associated with 

megafires as with annual area burned, thus suggesting that the megafire size class may be 

substantially influencing the associations found in aggregate analyses. 
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Identifying the megafire climate space requires both examining the fire climatologies and 

interpreting the effect of predictors on the probability of a megafire week. Fire climatologies 

provide insight about climate beyond that which is identified in the explanatory variables. 

Interpreting the effect of predictors on the probability of a megafire week cannot be done directly 

by examining the sign and magnitude of coefficients, even standardized coefficients, because the 

daily and monthly indices averaged to create predictor variables are calculated using nonlinear 

relationships between meteorological data and are not completely independent. For this reason, 

odds ratios (Table 3.9.3) provide a basis for quantitatively measuring the effect size of a 

predictor variable on the response by calculating each predictor variable’s influence while 

holding the others constant.  

The climate space of megafires across the West shows very different fire danger leading 

up to and concurrent to discovery of megafires than with large wildfires. Despite commonality 

among GACCs, there is variability by GACC that reflects either fuel-limited or flammability-

limited fire regimes. In extremely hot and dry climates, fire regimes are fuel limited in that fuel 

accumulation and connectivity are enabled by wet conditions in the previous year, and abundant 

fuels become flammable in the succeeding dry year (Veblen et al. 2000). On the other hand, 

areas with more moderate climate, and forest vegetation, are flammability limited (Littell et al. 

2009) because there is always sufficient fuel to burn under the right conditions. It is difficult to 

classify a fire regime for entire GACCs, however, because of climatic differences and finer-scale 

variability of ecotypes (i.e. grouping of similar ecosystems) and fire regimes within them 

(Figure 3.8.1, Littell et al. 2009, Littell et al. 2010).  

The composite plots show that mountainous and Northern regions are generally 

flammability-limited, in agreement with the conceptual model of annual area burned and climate 
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(Littell et al. 2009). For example, in the PNW, the most influential predictor as defined using the 

magnitude of the odds ratio, is temperature the week following discovery. This is in agreement 

with findings from Littell et al. (2010), which show annual area burned increase with low 

summer precipitation and high temperature. When temperature increases, the probability of a 

megafire week increases, and under wetter conditions (FM1000 increases), the probability 

decreases (Table 3.9.3). Keane et al. (2008) found that the PNW large fires are characterized by 

seasonal drought (represented in this analysis by FM1000) and easterly winds. In the NROCK, 

my models and the composite graphs suggest that drying of both fine (FFMC) and medium-sized 

fuels (FM100 and DMC) during the discovery week and increased temperature leading up to it, 

as well as how hot and fast the fire grows (BI), influence the occurrence of megafires. Using the 

odds ratios (Table 3.9.3), when BI and temperature increase, so does the probability of a 

megafire week, and when FM100 increases (i.e. wetter conditions), the probability decreases. 

Counter-intuitively, however, when FFMC and DMC increase (i.e. drier conditions), the 

probability decreases. An increase in FFMC probably decreases the probability because the 

model uses both FM100 and FFMC, which are correlated (Pearsons correlation coefficient = 

0.55) enough to have interacting effects on the predicted probability, but not enough so to be 

excluded from the model. Although an increase in DMC decreases the probability of a megafire, 

the odds ratio for DMC is very close to 1 and thus does not heavily influence the output 

probability. In the RM, drying of medium-sized fuels (DMC) post-discovery influences the 

occurrence of megafires. In NCAL, drying of large fuels (FM1000) following discovery of the 

fire is the dominant predictor of the occurrence of megafires. 

Dry fuel-limited areas such as the WGB and parts of the EGB show similar dominant 

predictors with both long-term and short-term precipitation influencing the occurrence of 
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megafires, in agreement with findings from previous studies (Westerling and Swetnam 2003, 

Littell et al. 2009). In the WGB, seasonal drought (FM100) (i.e., dry conditions over the season) 

peaking the week of discovery, and PDSI are the dominant predictors of the occurrence of 

megafires. In the EGB, increased short-term and seasonal drought (FFMC and DMC) during and 

up to three weeks after the discovery week increases the probability of megafire, with odds ratios 

>1. Temperature, the dominant predictor, and PDSI, also increase the probability of megafire. 

The odds ratios for both WGB and EGB show that as PDSI increases, so does the probability of 

a megafire. This may seem counter-intuitive because positive PDSI indicates wetter conditions. 

Studies, however, have shown that PDSI has an e-folding time (i.e., natural logarithmic analog of 

doubling time) of approximately 10 months (Cook et al. 2007). The composite plots show 

positive PDSI for at least a year prior to the month of megafire discovery in the WGB and for a 

year to six months before discovery in the EGB. Previous studies have shown area burned in 

non-forested areas of the EGB and WGB had significant correlations to the previous years 

moisture (Littell et al. 2009, Abatzoglou and Kolden 2013). EGB also showed significant 

correlations between area burned in forested areas and in-season fire danger (Abatzoglou and 

Kolden 2013), thus demonstrating the mixed fire regime of the EGB between fuel and 

flammability limited.  

Similar to the EGB, the SW has an intermediate fire regime (Swetnam and Baisan 1996, 

Littell et al. 2009), but some studies have shown indirectly that drought, periods of prolonged 

dryness, has been and continues to be a primary influence on the occurrence of wildfires 

(Williams et al. 2013). In concurrence, my model shows that increased seasonal drought (DMC) 

peaking the week of discovery is the dominant predictor of the probability of a megafire week. 

There is a sharp decline in fire danger indices in the SW the month following discovery of all 
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fires in the dataset, especially megafires (Figure 3.8.5), which is likely attributable to monsoonal 

moisture which may be responsible for curtailing fire growth. In correspondence, Figure 3.8.2 

shows that most megafires occur in the hot and dry months before the monsoon. 

Drivers of wildfire in SCAL differ from the rest of the contiguous US. In general, 

wildfires are driven by either Foehn-type winds known as Santa Anas (Sergius et al. 1962, 

Westerling et al. 2004, Keane et al. 2008, Parisien and Moritz 2009) or low spring precipitation 

(Littell et al. 2009). My models do not include wind as a direct predictor, rather a component of 

the calculated indices (e.g. BI) used to define explanatory variables. Nevertheless, in agreement 

with the understanding that seasonal drought influences the occurrence of wildfire, my models 

found that the potential for how hot the fire burns (ERC), a function of seasonal drought the 

week following the week of discovery, has a positive relationship with the probability of a 

megafire week. 

All of the models had higher accuracy (AUC ≥ 0.8) at the highest megafire size threshold 

than with smaller fire-size thresholds. Similarity in models across fire-size definitions, however, 

provides confidence that my models are robust to the specification of particular megafire 

thresholds and to heavy zero-inflation in the largest threshold (20,234 ha). 

3.6.3. Domain of model applicability 

Besides the intrinsic difficulties of modeling rare events (Alvarado et al. 1998, Coles 

2001), other factors limit the domain of applicability of these models. First, these models assume 

that area burned approximately equates fire effects and thus size thresholds can be used to define 

megafires. What defines a "megafire", however, goes beyond area burned (Kasischke et al. 2005) 

to include lives lost, structures destroyed, economic cost, and degradation of air quality, which 

can be very different for two fires of similar size. Second, other factors, besides climate and 
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weather, control wildfires. Large fires can occur because of large areas of continuous fuels, 

merging of multiple fires, time available for spread, and ineffectiveness of suppression (Gill and 

Allan 2008), which can be taxed if there are multiple coincident wildfires. In all GACCs, there 

was at least one megafire week in which more than one megafire burned, but there are no indices 

or metrics in this analysis that account for preparedness or availability of suppression resources. 

Third, the biophysical metrics used here to regress the binary occurrence of a megafire in a given 

week do not include all climate influences, e.g. atmospheric stability (Werth et al. 2011). Fourth, 

there is an element of uncertainty in these models associated with ignitions and discovery date. 

For example, Jiang and Zhuang (2011) reported that lightning-caused and human-caused fires 

have very different fire behavior, something not accounted for in this study. These statistics are 

different perhaps because human-caused fires generally start close to the wildland urban 

interface (WUI) where there is increased land-use fragmentation and a higher motivation for 

suppression efforts (Jiang and Zhuang 2011). My models do not account for proximity to the 

WUI or the time between the fire start and initial attack of suppression efforts (Gill and Allan 

2008), which can vary widely depending on the number of concurrent fires burning and 

proximity of resources needing protection. Furthermore, multiple ignitions at different times can 

merge into one large fire (Gill and Allan 2008), referred to as a complex fire, thus there is some 

uncertainty around classifying the discovery date of a megafire. 

A principle effect of these confounding factors is to limit the domain of applicability of 

these models to the coarse scale of the GACCs.  Predicting megafires at finer scales will require 

explicit fire-spread modeling, whether probabilistic or mechanistic, and acceptance of even 

greater uncertainty around climatic and other factors that produce a megafire. Still, my models 
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provide a foundation for investigating very large wildfires specifically, rather than using 

aggregate statistics such as annual area burned. 

3.7. Conclusions  

Because large wildfires have lasting ecological and social effects, and future projections 

under a changing climate estimate increased annual area burned (Flannigan et al. 2009, Littell et 

al. 2010) and more extreme events in general (Coumou and Rahmstorf 2012, Hansen et al. 2012) 

there is a need to understand how climate influences the occurrence of very large wildfires. This 

analysis assesses the spatial and temporal domain of megafires (area burned ≥ 20,234 ha ~ 

50,000 ac) and related climate patterns. In general, hotter, drier conditions increase the 

probability of a megafire in the western contiguous US. Climate drivers of megafires are similar 

(but not the same as) to those of annual area burned, which is largely attributable to broad-scale 

ecological mechanisms driving wildfire, e.g. xeric areas require wet conditions the year prior to 

wildfire to increase fuel connectivity. Furthermore, “megayears” or years with high area burned 

have more megafires and a substantial portion burned is by megafires.  

Predicting these very large wildfires emphasizes the difficulty and importance of 

studying these events individually, rather than in annual aggregates. This analysis provides a 

good example of how larger aggregates, like annual area burned, can be influenced by individual 

events, like megafires that compose a substantial portion of the aggregate, despite any imbalance 

in the size of the class distribution.  

A future enhancement of this analysis could be to define megafires by severity rather than 

simply by an area threshold. Data sets like MTBS are useful for breaking down area burned into 

fire-severity classes, and can be used to improve assessments of the ecological consequences of 
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megafire in particular. Other data sets may be needed to refine the assessment of megafire to 

include political and social consequences. 

A focus on individual fire events can aid managerial preparedness; e.g., to keep smaller 

fires small when the probability of a megafire occurrence in a given week is high (Tedim et al. 

2013). Short-term management responses are more reactive than proactive. For short-term 

responses, management may use fire danger indices (Xiao-rui 2005) or the probability that fire 

will spread in a given day (Podur and Wotton 2011). The models in this study, however, may 

provide a foundation from which proactive fire management can be developed. For example, by 

projecting these models into future climate space, we can determine how the likelihood of a 

megafire is going to change. If the probability of a megafire week is going to increase into the 

future, we may need policy that supports proactive carefully placed fuel reductions so as to avert 

the climatic potential of a megafire occurrence (Williams 2013). 

Projecting these models into the future will require consideration of a changing climate 

space and non-stationarity of megafire-climate relationships as vegetation (fuels) configurations 

within the GACCs change. These models produce a probability representative of the climatic 

potential for megafire, and consequently naïve projections into the future would assume that 

relationships between climate and megafires remain the same despite changes in fuels, land-use, 

and natural resource policy or management. By using multiple future climate scenarios (IPCC 

2007), however, we could still use these models to constrain the variability of future megafire 

occurrence, which can then be used to inform policy decisions, while recognizing intrinsic 

uncertainties associated with non-climatic factors. 
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3.8. Figures 

 

Figure 3.8.1. Spatial patterns of four fire statistics across the study domain from 1984 to 2010. 
Smaller polygons indicate PSAs by which statistics are calculated to show finer-scale variability, 
whereas larger polygons in bold indicate GACCs: a) total number of fires in MTBS >=404 ha, b) 
number of fires in MTBS >= 20,234 ha, c) hectares burned in climatological record in MTBS, 
and d) total area burned in 25 years for fires > 20,234 ha divided by total area burned by all fires. 
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Figure 3.8.2. Core fire season and extended fire season by GACC. Seasons are defined by the 
average middle 95% of annual area burned (inside white rectangle) in the historical record. The 
shaded gray region denotes the middle 75% of annual area burned. The points represent megafire 
events by discovery date.  
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Figure 3.8.3. Computational flow chart of the United States National Fire Danger Rating System 
(NFDRS) vs. the Canadian Forest Fire Danger Rating System (CFFDRS). Similar positions in 
the flow charts indicate similar metrics (Xiao-rui et al. 2005). The number in the lower right 
corner represents the residence time in days that any given calculated index has an effect on 
subsequent calculated indices. The gray shaded indices denote those used in this analysis. 
Note: T = temperature, RH = relative humidity, P = precipitation, FM = fuel moisture 
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Figure 3.8.4. Monthly composite plots of temperature anomaly and PDSI up to 21 months prior 
to and two months post the month of discovery. Red lines denote mean conditions during 
megafires, and blue lines denote all other fires, with a 95 percent confidence interval (shaded 
pink and blue respectively). The dashed line is the megafire month. The numbers at the top are 
the ratios of the number of megafire months to number of large fire months to number of 
megafire months with no fire.  
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Figure 3.8.5. Weekly composite plots from six weeks prior to discovery of fire and six weeks 
following. Solid lines denote mean conditions where red is megafires, and blue is all other large 
fires (>405 ha), and gray is weeks in the fire season with no fire. The shaded regions represent a 
95 percent confidence interval. The dashed line is the megafire week as defined by day of year, 
with week 1 = Jan 1-7. The x-axis shows weeks from discovery week. The lighter shaded regions 
denote the 95 percent confidence interval of the mean. The numbers at the top are the ratios of 
number of megafire weeks to number of large fire weeks to number of weeks with no fire.  
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Figure 3.8.6. Trade-offs between precision and recall of two characteristic GACCs: Eastern 
Great Basin and Northern California, for each of the three megafire-size thresholds. The x-axis is 
the probability threshold for classifying a megafire (i.e. a probability >0.2 is a megafire). Blue 
represents normalized precision (how well do the models predict megafires), and red represents 
recall (how often do the models miss megafires that actually happened). The numbers on the 
right of each graph denote the percentage of non-megafire weeks. For a complete list of precision 
and recall values, see Appendix. 
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Figure 3.8.7. Proportion of annual area burned across the contiguous United States by megafires 
(gray) and by all large fires including megafires (black), by the criteria defined on this study. 
This illustrates that in many years, the largest fires constitute a substantial proportion of the 
annual area burned. 
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Figure 3.8.8. Scatterplot of annual area burned and number of megafires for each GACC.  
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3.9. Tables 
 
Table 3.9.1. Contingency table structure and associated model accuracy statistics precision and 
recall. Recall = TP/(TP +FN) = p(predicting a megafire that is actually a megafire). Precision = 
TP/(TP + FP) = p(correctly classifying a megafire). 

 

 

 

 

Table 3.9.2. Models by GACC to calculate the probability of conditions during a given week 
being conducive for fire growth to megafire size. AUC is the area under the receiver operating 
characteristic curve.  
Note: I defined explanatory variables as the calculated index averaged over the suffix such that “.1” denotes the 
week prior to discovery, “.dw” is the discovery week, and “.n#” is the number of weeks post discovery week. PDSI 
= palmer drought severity index, TEMP = mean temperature, FFMC = fine fuel moisture code, DMC = duff 
moisture code, FM100 = 100-hr. fuel moisture, FM1000 = 1000-hr. fuel moisture, ERC = energy release component, 
and BI = Burning index.  
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Table 3.9.3. Table of odds ratio, i.e. effect size, of each explanatory variable get GACC model.  
Odds ratio >1 indicates a positive relationship that an increase in the predictor results in an 
increase in the probability of a megafire week. Odds ratio <1 indicates a negative relationship 
that an increase in the predictor results in a decrease in the probability of a megafire week. 
 

 

  

GACC
variable FFMC.dw TEMP.dw DMC.n3 PDSI.n1

odds ratio 1.25 1.3 1.01 1.27
95% CI (0.98,1.61) (1.05,1.60) (1.00,1.03) (1.02,1.58)
variable FM1000.n1

odds ratio 0.28
95% CI (0.12,0.64)
variable BI.n3 FM100.dw FFMC.n1 DMC.dw TEMP.1

odds ratio 1.36 0.51 0.72 0.97 1.44
95% CI (1.14,1.63) (0.28,0.92) (0.58,0.89) (0.96,0.99) (1.06,1.97)
variable TEMP.n1 FM1000.n1

odds ratio 1.67 0.63
95% CI (1.15,2.43) (0.44,0.89)
variable DMC.n3

odds ratio 1.06
95% CI (1.02,1.10)
variable ERC.n1

odds ratio 1.21
95% CI (1.10,1.33)
variable DMC.dw

odds ratio 1.02
95% CI (1.01,1.02)
variable FM100.dw PDSI.dw

odds ratio 0.28 1.48
95% CI (0.15,0.50) (1.15,1.90)

SCAL

SW

WGB

Explanatory Variables Odds Ratio

EGB

NCAL

NROCK

PNW

RM
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Table 3.9.4. Models by GACC to calculate the probability of conditions during a given week 
being conducive for fire growth to megafire size for alternate size thresholds defining megafire. 
AUC is the area under the receiver operating characteristic curve.  
Note: I defined explanatory variables as the calculated index averaged over the suffix such that “.1” denotes the 
week prior to discovery, “.dw” is the discovery week, and “.n#” is the number of weeks post discovery week. PDSI 
= palmer drought severity index, TEMP = mean temperature, FFMC = fine fuel moisture code, DMC = duff 
moisture code, FM100 = 100-hr. fuel moisture, FM1000 = 1000-hr. fuel moisture, ERC = energy release component, 
and BI = Burning index.   
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precision recall precision recall precision recall
0.05 0.15 0.89 0.18 0.90 0.28 0.98
0.10 0.21 0.68 0.23 0.85 0.34 0.94
0.15 0.19 0.39 0.27 0.78 0.37 0.88
0.20 0.23 0.29 0.30 0.59 0.39 0.80
0.25 0.26 0.21 0.34 0.41 0.43 0.76
0.30 0.25 0.11 0.37 0.29 0.45 0.69
0.35 0.33 0.07 0.32 0.17 0.49 0.61
0.40 0.50 0.07 0.40 0.10 0.53 0.48
0.45 1.00 0.04 0.29 0.03 0.57 0.39
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precision recall precision recall precision recall
0.05 0.04 0.22 0.21 0.69 0.12 0.86
0.10 0.17 0.22 0.14 0.31 0.15 0.53
0.15 0.00 0.00 0.14 0.13 0.20 0.36
0.20 0.17 0.06 0.21 0.19
0.25 0.50 0.06 0.33 0.14
0.30 1.00 0.06 0.25 0.03
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0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

93.798.4 97.2

NCAL
20,234 10,117 4,047

Pr
ob

ab
ili
ty
	
  T
hr
es
ho

ld
	
  (f
or
	
  c
la
ss
ify
in
g	
  
a	
  
m
eg
af
ire

)

Accuracy	
  Statistic
Percent	
  Imbalance
Megafire	
  Size	
  (ha)

GACC



Appendix

64

precision recall precision recall precision recall
0.05 0.18 0.81 0.23 0.90 0.27 0.89
0.10 0.26 0.75 0.29 0.80 0.33 0.78
0.15 0.32 0.69 0.37 0.73 0.39 0.72
0.20 0.42 0.59 0.39 0.63 0.46 0.70
0.25 0.35 0.44 0.42 0.57 0.51 0.65
0.30 0.50 0.38 0.44 0.50 0.55 0.63
0.35 0.67 0.25 0.52 0.47 0.54 0.56
0.40 0.67 0.25 0.62 0.43 0.58 0.50
0.45 0.80 0.25 0.67 0.40 0.63 0.48
0.50 0.80 0.25 0.64 0.30 0.71 0.44
0.55 1.00 0.25 0.56 0.17 0.83 0.41
0.60 1.00 0.25 0.67 0.13 0.81 0.37
0.65 1.00 0.19 0.60 0.10 0.88 0.30
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precision recall precision recall precision recall
0.05 0.12 0.83 0.21 0.94 0.25 0.95
0.10 0.18 0.61 0.24 0.78 0.29 0.90
0.15 0.21 0.33 0.27 0.61 0.35 0.86
0.20 0.21 0.17 0.32 0.53 0.38 0.78
0.25 0.22 0.11 0.33 0.39 0.44 0.71
0.30 0.00 0.00 0.34 0.33 0.46 0.58
0.35 0.00 0.00 0.44 0.33 0.51 0.53
0.40 0.50 0.31 0.51 0.39
0.45 0.53 0.25 0.57 0.31
0.50 0.83 0.14 0.61 0.27
0.55 0.75 0.08 0.61 0.13
0.60 0.67 0.06 0.60 0.07
0.65 1.00 0.03 0.60 0.04
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precision recall precision recall precision recall
0.05 0.00 0.00 0.13 0.57 0.20 0.84
0.10 0.00 0.00 0.13 0.29 0.25 0.74
0.15 0.00 0.00 0.22 0.29 0.29 0.58
0.20 0.00 0.00 0.00 0.00 0.29 0.32
0.25 0.00 0.00 0.33 0.26
0.30 0.00 0.00 0.40 0.21
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0.40 0.50 0.16
0.45 0.50 0.11
0.50 0.50 0.11
0.55 0.33 0.05
0.60 0.33 0.05
0.65 0.33 0.05
0.70 0.50 0.05
0.75
0.80
0.85
0.90
0.95
1.00

4,047
GACC

96.9

Pr
ob

ab
ili
ty
	
  T
hr
es
ho

ld
	
  (f
or
	
  c
la
ss
ify
in
g	
  
a	
  
m
eg
af
ire

)
RM

99.5 98.9Percent	
  Imbalance
Megafire	
  Size	
  (ha)

Accuracy	
  Statistic

20,234 10,117



Appendix

67

precision recall precision recall precision recall
0.05 0.09 0.50 0.10 0.72 0.14 0.93
0.10 0.27 0.29 0.18 0.41 0.17 0.67
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precision recall precision recall precision recall
0.05 0.13 0.43 0.12 0.76 0.21 0.93
0.10 0.18 0.29 0.10 0.29 0.27 0.87
0.15 0.17 0.14 0.10 0.14 0.29 0.68
0.20 0.25 0.14 0.23 0.14 0.31 0.53
0.25 0.33 0.14 0.50 0.10 0.32 0.43
0.30 0.33 0.14 0.35 0.37
0.35 0.00 0.00 0.36 0.28
0.40 0.41 0.19
0.45 0.57 0.16
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0.60 1.00 0.03
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

99.1 97.4 90.9

Pr
ob

ab
ili
ty
	
  T
hr
es
ho

ld
	
  (f
or
	
  c
la
ss
ify
in
g	
  
a	
  
m
eg
af
ire

)

Accuracy	
  Statistic
Percent	
  Imbalance
Megafire	
  Size	
  (ha)

GACC SW
20,234 10,117 4,047



Appendix

69

precision recall precision recall precision recall
0.05 0.12 0.67 0.15 0.90 0.19 0.98
0.10 0.21 0.47 0.21 0.60 0.23 0.89
0.15 0.27 0.40 0.25 0.40 0.27 0.73
0.20 0.31 0.33 0.31 0.37 0.30 0.59
0.25 0.30 0.20 0.32 0.27 0.39 0.50
0.30 0.50 0.13 0.40 0.20 0.52 0.34
0.35 0.33 0.07 0.33 0.10 0.47 0.22
0.40 0.33 0.07 0.33 0.10 0.50 0.14
0.45 0.00 0.00 0.33 0.07 0.43 0.09
0.50 0.00 0.00 0.00 0.00 0.40 0.06
0.55 0.00 0.00 0.17 0.02
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Chapter 4 

Regional projections of the likelihood of megafires under a 
changing climate in the contiguous Western United States 

This work is adapted for submission: Stavros EN, Abatzoglou J, Larkin NK, McKenzie D (2013) 
Regional projections of the likelihood of megafires under a changing climate in the contiguous 

Western United States. Climatic Change. 

 
4.1. Summary 

A warming climate will likely increase wildfire activity. To anticipate future fire events, 

projections of individual fires are necessary. Wildfires that account for a disproportionate 

amount of damage are classified as megafires, here defined quantitatively as fires that burn ≥ 

50,000 ac ~ 20,234 ha. This research evaluates long-term and seasonal changes in the climatic 

potential for megafire occurrence across the western contiguous United States using binomial 

regression models projected onto two Intergovernmental Panel on Climate Change representative 

concentration pathways (RCPs). The Eastern Great Basin, the Northern Rockies, the Pacific 

Northwest, the Rocky Mountains, and the Southwest show increasing proportional changes over 

time in the probability of a megafire. There was a significant (p≤0.05) difference between the 

historical modeled ensemble mean proportional difference in megafire probability from 1979-

2010 and both RCP 4.5 and 8.5 means during 2031-2060. Generally, with the exception of the 

Southwest and Northern California, there are higher probabilities of megafire occurrence more 

frequently and for longer periods both throughout the fire season and from year to year, with 

more pronounced patterns under RCP 8.5 than RCP 4.5. My results provide a quantitative 

foundation for management strategies to mitigate the effects of megafires. 
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4.2. Introduction 

In a warming climate, we expect increases in lightning ignition (Price and Rind 1994), 

area burned (Flannigan et al. 2009, Littell et al. 2010), fire intensity (Flannigan et al. 1998, Liu et 

al. 2013), and severity (Flannigan et al. 2013). Wildfires can have substantial ecological, social, 

and economic effects. However, the many studies that project annual averages of area burned 

(Westerling et al. 2002, McKenzie et al. 2004, Flannigan et al. 2005, Flannigan et al. 2009, 

Littell et al. 2009) or the potential for fire occurrence (Parisien et al. 2012), do not capture fire-

climate relationships at a temporal resolution suitable for predicting individual fire events. 

Individual fire events are challenging to predict (Chapter 3), but if it is done successfully it can 

provide key information necessary for facilitating fire management in mitigating the effects of 

wildfire.  

Ecological, social, and economic effects of wildfires include ecosystem effects, property 

loss especially along the wildland urban interface (WUI), destruction of natural resources, 

significant degradation of air quality (Jaffe et al. 2008), suppression expenditures (Calkin et al. 

2005), and loss of human life. Also, wildfires are a part of a feedback loop between climate, 

wildfire, and air quality (Chapter 2) as they produce carbon emissions and aerosols that 

contribute to global warming (Bond et al. 2013). Individual wildfires that cause significant 

damage are classified as “megafires”. Although the term megafire can have socio-political 

connotations, I use a simple quantitative definition of megafire, assuming these effects, as 

wildfires ≥ 50,000 acres ~ 20,234 hectares (Chapter 3). 

Understanding the potential for megafires in the future is important for both planning and 

mitigation. Megafires may be unavoidable, but projecting models of megafire climatic drivers 

(Chapter 3) into the future can identify spatial and temporal patterns of increased potential of 
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megafire, thereby controlling risk, enhancing opportunities for management, and developing 

policy using both direct and indirect strategies. Direct strategies include fuel management and 

fire suppression. Areas with large-scale fuel reduction have successfully reduced “suppression 

costs, private property loss, environmental damages, and wildfire fatalities” over the long-term 

from megafire events (Williams 2013). If we can determine where and when megafires are more 

likely in the future, then we can allocate resources proactively to regions most at risk. Although 

megafires, by definition, are wildfires that escape initial and extended suppression efforts, it may 

be possible to suppress smaller fires that might become megafires when the likelihood is very 

high (Podur and Wotton 2011, Tedim et al. 2013), provided that multiple megafires in a region 

do not constrain suppression resources. Indirect strategies to mitigate the effects of megafires 

include, for example, reducing anthropogenic emissions (e.g., fossil fuels), so that when there is 

a wildfire, more emissions must occur before exceeding air-quality standards (Bedsworth 2011). 

For this study, I examine three fundamental questions about the future likelihood of 

megafire occurrence at scales appropriate for management and policy planning using models 

developed by Stavros (2013a). First, will megafires be more likely in the future? Second, will 

seasons of increased likelihood of megafire change (e.g., timing and duration of the season) in 

the future? Third, how will key climate predictors of megafire change across space in the future? 

4.3. Data and methods 

4.3.1. Study area 

The analysis is divided regionally based on existing operational management in the 

western contiguous United States. Regions are defined by the firefighting command centers, 

Geographic Area Coordination Centers (GACC), run by the U.S. National Interagency Fire 

Center (Figure 4.7.1, last acquired 1 Oct 2011 from 
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http://psgeodata.fs.fed.us/download.html/GACC_2009.zip). Aggregating to this broad spatial 

scale assumes homogeneity of fire regimes, vegetation, climate, and weather within the GACC; 

discussion of what these assumptions mean for our results and interpretation is given in Section 

4.5.2. GACCs are used for operational decision-making and regional forecasting in air-quality 

management. There are eight GACCs in the study area: Southern California (SCAL), Northern 

California (NCAL), Pacific Northwest (PNW), Northern Rockies (NROCK), Rocky Mountains 

(RM), Western Great Basin (WGB), Eastern Great Basin (EGB), and the Southwest (SW). To 

focus the analysis on wildfires, I excluded Predictive Service Areas (PSAs), subdivisions of 

GACCs, within each GACC for which large fires are primarily agricultural, notably within the 

Great Plains (defined by the Terrestrial Ecoregion L1 boundaries, Olson et al. 2001). 

4.3.2. Climate Data 

The study uses observed climate data over 1979-2010 and modeled climate data from 14 

Global Climate Models (GCMs) over 1979-2099. Using the same data set as Abatzoglou and 

Kolden (2013), climate data over the observed period 1979-2010 comes from two gridded data 

sets: (1) 800-m monthly temperature and precipitation from Parameter-elevation Regressions on 

Independent Slopes Model (PRISM, Daly et al. 2008), and (2) 4-km daily surface meteorology 

from Abatzoglou (2013).  

Climate predictions have three sources of uncertainty: model uncertainty, scenario 

uncertainty, and internal variability (Hawkins and Sutton et al. 2009). To address model 

uncertainty, this analysis uses 14 global climate models (GCMs, Table 4.8.1). By examining 

ensembles from the 14 models rather than on any one model, I focus on trends rather than 

internal temporal variability in projections of the climate system. To include a range of scenarios, 

future modeled climate data come from 14 GCMs under two future scenarios: representative 
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concentration pathways (RCPs) 4.5 and 8.5 for 2010 to 2099. RCPs are the new set of scenarios 

introduced for the upcoming fifth Intergovernmental Panel on Climate Change Assessment 

Report. These two RCPs are representative of the larger set used by IPCC, and are back-

engineered from cumulative radiative forcing in 2100, in watts per square meter (van Vuuren et 

al. 2011). In RCP 4.5, total radiative forcing is stabilized before 2100. Clarke et al. (2007) and 

Wise et al. (2009) detail the associated drivers, technology strategies, and land use and terrestrial 

carbon emissions. In RCP 8.5, greenhouse gas emissions continue to increase through the 21st 

century. Riahi et al. (2007) details the underlying scenario drivers and the resulting development 

path of the older SRES A2r scenario (Nakicenowicz and Swart 2000) from which RCP 8.5 is 

based. 

From the gridded climate datasets, the Palmer Drought Severity Index (PDSI, a metric of 

drought believed to track soil moisture) and six indices from the United States National Fire 

Danger Rating System (NFDRS, using fuel model G) and the Canadian Forest Fire Danger 

Rating System (CFFDRS) were available. Indices from NFDRS include the moisture content of 

fuels 2.5-7.6 centimeters in diameter (100-hour fuel moisture- FM100), the moisture content of 

fuels 7.6-15.2 centimeters in diameter (1000-hour fuel moisture- FM1000), how hot a fire could 

burn (energy release component- ERC), and the potential difficulty of controlling a fire as a 

function of spread rate and ERC (burning index- BI). Indices from CFFDRS include the relative 

ease of ignition and flammability of fine fuels (fine fuel moisture content- FFMC), and the 

average moisture of loosely compacted organic layers (duff moisture code- DMC). For all 

indices but FM100 and FM1000, the higher the index value, the higher the fire danger.   

Because the cumulative distribution function of simulated data may be different from the 

observed, modeled data were bias-corrected. I received the climate data sets bias-corrected for 
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both historical and future simulated data to match quantiles of the observed cumulative 

distribution function, using a non-parametric quantile mapping transformation (Michelangeli et 

al. 2009). Bias correction was also applied on the calculated indices. The calculated fire danger 

indices were bias-corrected to match the quantiles of the downscaled data over the historical 

model runs to the observed data. The same transformation was applied to future projections with 

the assumption that any biases are stationary in time, thereby preserving the differences between 

the projections and historical model runs. 

4.3.3. Methods 

To investigate the three questions posed for this analysis, I use time-series plots, Welch’s 

t-test comparisons of the historical to the future, contour plots of how the probability of a 

megafire varies by season and by year, and spatial GIS mapping of key megafire predictors. 

First, I define megafire quantitatively as wildfires ≥ 50,000 acres ~ 20,234 hectares in keeping 

with Chapter 2. Climate data were then integrated into megafire models defined per GACC, 

thereby projecting the probability that in a given week, a megafire will occur (Table 4.8.2, 

Chapter 3). The models produced in Chapter 2 were selected because they focus explicitly on 

extremely large wildfires. 

To compare the observed likelihood of megafire to the future, I examined time series of 

the proportional change in probabilities and performed Welch’s t-test for statistical comparison. 

For each RCP ensemble from 1979 to 2099 and for the observed ensemble 1979 to 2010, I used 

five-year moving averages each divided by the mean of the observed record to determine the 

proportional change in probability. Future proportional change projections for 2031-2060 were 

then compared both as ensembles and by individual GCMs to the historical modeled proportional 

change using Welch’s pairwise t-test assuming unequal variances. I chose 2031-2060 for two 
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reasons. First, the mean from 2010-2030 is very similar between future scenarios and I wanted 

projections far enough into the future to detect any changes and capture the differences between 

a radiative forcing of 4.5 versus 8.5 Wm-2. Second, as I project into the future beyond 2060, there 

is more uncertainty associated with vegetation shifts and its feedback to fire climatology that 

may change the climate-megafire associations used to build the models in this analysis. 

Nevertheless, time series were extended out to 2100 to capture the full potential difference 

qualitatively in probability of a megafire between RCP scenarios. 

Two other analyses included (1) a plot of megafire seasonality and (2) the spatial 

distribution of the change in climate space from the observed record to the future. First, I plotted 

seasonality by examining the probability of a megafire by week of year (y-axis) for each year 

from 1979 to 2010 (x-axis). Second, I examined the spatial distribution in the change of climate 

space by plotting the change in all calculated indices across the domain from the baseline 

conditions (1979-2010) to the future RCP 4.5 scenario for 2031-2060. For qualitative analysis of 

the climate space, I used RCP 4.5 as it is a more conservative representation of any future 

changes that may occur. I examined both the change in mean calculated index for months June to 

September between the future and the baseline period, and frequency of extremes. Regions 

where fewer than ten of the 14 models agree on the sign of change were excluded from the 

analysis. To see changes in extreme climate, I used the percentage change in days or months 

(depending on the predictor variable) with extreme conditions. Extreme conditions are defined as 

exceeding the upper decile of the observed calculated index from 1979-2010 for ERC, BI, 

FFMC, DMC and Temperature. Because large fires have a proclivity for occurring during 

drought and low fuel moisture, the bottom decile was used as the threshold for classifying 

extreme for FM100, FM1000, and PDSI.   
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4.4. Results 

4.4.1. Long-term temporal change 

Five of the eight GACCs show relatively steep positive slopes in the long-term trend in 

probability of megafire regardless of the future scenario used (Figure 4.7.2). The GACCs that do 

show positive slopes in the trend of proportional change of the probability of a megafire are the 

EGB, the NROCK, the PNW, the RM, and the SW. These GACCs have much more variability in 

predicted probabilities by model than those that do not show such changes. NCAL, SCAL, and 

WGB ensembles do not show steep slopes in proportional change in the probability of a 

megafire, and appear to have one or two models as outliers. This is particularly true for future 

scenario RCP 8.5. Inter-decadal variability is well captured by individual GCMs and the 

projected probabilities. The historical modeled probabilities show more inter-decadal variability 

than do the observed, with the exception of the NROCK and RM. The NROCK shows periodic 

increases and decreases in the observed probability of a megafire. In the RM, however, inter-

decadal variability is visible when probabilities are fit to individual GCMs, but not for the 

ensemble mean. 

The proportional change in the mean probabilities for the future was significantly 

different from the proportional change in the historical modeled mean for all GACCs (Table 

4.8.3). In all but the SW GACC, means increased from the historical modeled probabilities to 

RCP 4.5 and then to RCP 8.5. In the SW, RCP 4.5 has a slightly higher mean proportional 

change in the probability of a megafire than the mean for RCP 8.5. Examining Figure 4.7.2 

shows that RCP 8.5 begins to exceed the proportional change projected by RCP 4.5 towards the 

end of the period over which the means were calculated. For all these observations, we see strong 
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model agreement in that the difference observed between the ensembles is true for at least 9 of 

the 14 GCMs, with the exceptions of NCAL and RM for RCP 8.5.  

The baseline period from 1979 to 2010 showed significant (p<0.05) differences between 

the historical modeled ensemble and the observed probabilities for the EGB, PNW, RM, and 

WGB GACCs. With the exception of the RM, these GACCs had high agreement among GCMs 

that there was a significant difference between the historical modeled divided by the mean 

observed and the observed probabilities divided by the mean observed.  

4.4.2. Annual temporal change 

There is variation in how the probability of megafire will change by GACC, but in 

general, both throughout the fire season and from year to year, the likelihood of a megafire is 

higher and more frequent in the future than from the baseline (Figure 4.7.3). With the exception 

of NCAL, the likelihood of a megafire is more frequent under RCP 4.5, and more exaggerated 

under RCP 8.5. 

In EGB, NROCK, and PNW, the likelihood of megafire increases in magnitude, 

frequency within a year, and length of megafire season under both RCP 4.5 and RCP 8.5. Under 

RCP 4.5, we see increased probabilities throughout the fire season of each year that continue 

increasing into the future. This trend is more pronounced under RCP 8.5. Over the baseline 

period and under RCP 4.5, the season for megafire is between mid-June to early August, but 

under RCP 8.5 the season lengthens from early June to early October. 

Similarly to the EGB, NROCK, and PNW, the RM and SCAL show increased likelihood 

of a megafire more frequently within a fire season and from year to year. The fire season 

typically covers early June through early September under RCP 4.5, but extends as late as 

October under RCP 8.5. The magnitude of increased probability is not as exaggerated as EGB, 
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NROCK, and PNW, however, and follows a less consistent pattern both throughout the season 

and from year to year. 

In the SW, the length of the megafire season remains consistent, but the likelihood of a 

megafire is higher, and more frequent both throughout the season and from year to year. In the 

WGB, the fire season lengthens and shows increased consistency in increased probability of a 

megafire both throughout the megafire season and from year to year. The megafire season for 

1979-2010 was from late June through July, but under both future RCP 4.5 and RCP 8.5 it 

extends from early June through mid to late August. NCAL shows no indication under either 

RCP 4.5 or RCP 8.5 that the fire season length or consistency of increased probability of 

megafire will change. This may because the availability of fire prone areas is projected to retreat 

in some areas of NCAL in the future (Krawchuk et al. 2009). 

4.4.3. Changes in the climate space 

We examined spatial patterns of the change in climate space by examining changes in the 

means of calculated indices and in changes in the frequency of extreme conditions. The spatial 

patterns of change in the mean of climatic indices from 1979 to 2010 and the mean from 2031 to 

2060 are not universal, but patterns that do exist do not have strong model agreement (Figure 

4.7.4). Increases in the number of days or months of extreme climate are more universal with 

more model agreement than the change in means of predictors of megafire (Figure 4.7.5). For 

most predictors of megafire by GACCs, there is either no change or an increase in the frequency 

of exceeding the decile threshold classified as “extreme” from 1979-2010 to 3031-2060, but 

there are areas where more than three of the 14 GCM models disagree on such increases. 
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4.5. Discussion 

4.5.1. Long-term trends and seasonal change 

Although studies have projected annual area burned under a changing climate space 

(Flannigan et al. 2009, Littell et al. 2010), these do not specifically address the likelihood of 

megafire events, which constitute a disproportionate amount of annual area burned and have 

long-lasting social and environmental effects. By understanding the effect of climate on the 

occurrence of megafires specifically, management can allocate resources more appropriately 

than from annual-scale projections of area burned potential. We used previously developed 

logistic regression models on each of the eight GACCs in the western contiguous US (Table 

4.8.2, Chapter 3) to explore long-term trends of and seasonal changes in the likelihood of 

megafire occurrence. 

In general, all GACCs show a significantly (p<0.05) increased potential for megafire 

occurrence from the baseline period 1979-2010 to the future 2031-2060 under both RCP 4.5 and 

again under RCP 8.5. In the SW, however, the proportional change in mean probability of a 

megafire is not greater under RCP 8.5 (Figure 4.7.2) until after 2070 when the scenarios diverge 

and radiative forcing continues to increase under RCP 8.5. Results show periodic fluctuations in 

climate being reflected in the changing probability of a megafire, although attributing 

probabilities to specific future years would constitute false precision that ignores the stochastic 

elements in climate models. Mapping the proportional change in probability of a megafire across 

14 GCMs (Figure 4.7.2) shows the worst and best case scenarios. GACCs with the largest 

spread of projected proportional change, EGB, NROCK, PNW, RM, and SW, generally have the 

most models that agree that megafires will be more likely in the future. This is in conceptual 

agreement with Kitzberger et al. (2012) who found that fire size distributions (log-transformed) 
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shifted to more large fires as climatic variability increased. It is worth noting, however, that the 

EGB, PNW, RM, and WGB show significant differences between the 14 GCM ensemble mean 

probability and the observed. Of these models, RM does not have high model agreement of this 

difference. Down-scaled GCM meteorological data used in the models for this analysis, over 

predict the probability of a megafire for the EGB, PNW, and the WGB. Consequently, assuming 

stationarity, these models of the likelihood of megafire over-predict the likelihood of megafire. 

A unique feature of this study is that it specifically projects the likelihood of individual 

megafires rather than the aggregate statistic of annual area burned. By temporally partitioning the 

probability into seasonality of megafires, and further into megafire weeks, we enable more 

timely anticipation of megafire events. Projecting models into the future, there is variation in 

how the probability of megafire will change seasonally by GACC, but generally (with the 

exception of the SW and NCAL) the likelihood of a megafire is higher more frequently both 

within a fire season and from year to year. Patterns are generally more pronounced for RCP 8.5 

than RCP 4.5. 

With enhanced predictability of individual events, we can draw on proposed mechanisms 

for increased future wildfire to improve megafire predictions. For example, one hypothesis about 

future fire season in the western United States is that warming temperatures will facilitate earlier 

snow-melt and green-up, desiccating fuels earlier and creating a longer fire season (Westerling et 

al. 2006). Spatial variation in earlier snowmelt could be used to refine predictions of the onset of 

conditions conducive to megafires, complementing more volatile predictors like fire-danger 

indices, which only rarely can be estimated more than a few days in advance. 

4.5.2. Projection considerations 
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There are two key limitations to our projections. First, biophysical variables provide 

better correlations for fire potential than do individual variables like temperature and 

precipitation (Abatzoglou and Kolden 2013), but their calculation uses temperature, 

precipitation, relative humidity, and wind (Xiao-rui et al. 2005), not all of which are estimated 

with the same certainty by climate models (IPCC 2007). Second, the response of vegetation and 

wildfire patterns to climate change is not simple. For example, extreme environments are 

unsuitable for wildfire (Parisien and Moritz 2009), e.g., very hot and dry climates that lack fuel 

connectivity to carry wildfire or cold and wet climates where fuels are rarely flammable. Further 

complicating future fire climatology is uncertainty about how vegetation, and the fire regimes it 

supports (Abatzoglou and Kolden 2013), will change (McKenzie and Littell 2011). Such 

uncertainties could affect megafire-climate correlations, weakening or changing the predictors 

used to calculate the probability of megafire.  

Generally, the climate space for each GACC is expected to have more days and months 

with “extreme” conditions than the observed period. Because GCMs have varying degrees of 

uncertainty, especially for moisture metrics, there are places where at least three GCMs produce 

inconsistent results from the rest and do not agree that days and months with extreme conditions 

will increase. The EGB, PNW, NROCK RM, and the SW experienced at least a 150% increase 

in the mean proportional change in probability of a megafire (Table 4.8.3). The PNW and RM 

both have over a four-fold increase in probability of a megafire, and are both classified as areas 

with a flammability-limited fire regime (Littell et al. 2009, Chapter 3). Consequently, these areas 

require hot and dry weather for fire to occur. It follows logically that as the climatic extremes of 

hot and dry become more likely in these areas, there will also be more fire. The EGB, NROCK 

and SW have mixed fire regimes constituting both fuel and flammability limited (Littell et al. 
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2009).  It is likely that the increase in probability of a megafire is driven by areas within the 

GACC that are flammability limited, but such inference lies beyond the scope of this study. 

SCAL, NCAL, and the WGB have a less steep change in probability of a megafire. Non-forested 

areas within these GACCs are mostly fuel limited (Littell et al. 2009, Chapter 3, Abatzoglou and 

Kolden 2013). Consequently, more days of extremely hot and dry conditions are unlikely to 

increase the probability of a megafire, which in these GACCs depends on fuel connectivity. This 

supports the hypothesis by Parisien and Moritz (2009) that wildfire is less likely under climatic 

extremes. 

The change in climate space with regard to changes in the mean predictors of megafire, 

specific to each GACC, is much less agreed upon across GCMs than percentage change in days 

or months with “extreme climate”. Other studies have found similar shifts in the distribution of 

extreme climate with an increase in temperatures at the high end of the probability distribution 

(Hansen et al. 2012). Probable explanations for more pronounced and agreed upon changes in 

extremes versus means are that the fire season means were defined from June to September, but 

not all GACCs have such a long fire season (e.g. NROCK, EGB, and PNW (Abatzoglou and 

Kolden 2013)), nor does this period capture the peak fire season for all GACCs (e.g. SW). 

Consequently, the means may be “washed-out”, whereas the extremes are counts of days or 

months with conditions exceeding a threshold. Calculated values of extremes are less certain and 

may not be as well defined because they reside in the tail of the distribution with many fewer 

samples.  

4.6. Conclusions 

Because megafires have lasting and damaging effects socially and environmentally, 

understanding future changes can inform decision makers on how best to prepare for such 
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events. This analysis, the first of its kind over the western contiguous US, addresses key 

questions about how the likelihood of megafires is projected to change over the 21st century. 

Unlike other studies that project annual area burned (Flannigan et al. 2005, Littell et al. 2010) 

into the future, this study focuses on how the climatic potential for megafires changes both 

seasonally and over the 21st century.   

In general, across the western contiguous US, the likelihood of a megafire will both 

increase over the long-term, but also in duration and frequency throughout the fire season. 

Specifically, my analysis showed that the climatic potential of a megafire will increase through 

the 21st century in the Eastern Great Basin, the Northern Rockies, the Pacific Northwest, the 

Rocky Mountains, and the Southwest. For all eight GACCs within the domain, there was a 

significant (p≤0.05) difference between the historical modeled ensemble mean megafire 

probability during 1979 to 2010 and the mean for both RCP 4.5 and 8.5 during 2031 to 2060. 

With the exception of the Southwest and Northern California, our results show more frequent 

and longer durations of increased probability of megafire occurrence both throughout the fire 

season and from year to year, with more pronounced patterns under RCP 8.5 than RCP 4.5. 

Although these models may not predict actual megafire occurrence, rather the climatic 

potential for a megafire, these results can be used to shape new fire policy including fuel and air-

quality management. Large-scale fuel management may mitigate the effects of megafires 

(Williams 2013) because high biomass and fuel accumulations also contribute to megafires. 

Areas with previous fuel treatments have lower tree mortality with decreased fire behavior and 

reduced spread rates (Williams 2013), thus large-scale fuel reduction may reduce suppression 

costs, private property loss, environmental damages, and fatalities from megafires (Williams 

2013). Fuel treatments, depending on the relationship between fire hazard and stand age, may 
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also suppress a cycle of megafires as they provide fuel breaks, preventing large burned areas 

from regenerating into even-aged stands (Williams 2013). This work can also aid air-quality 

policy. Because this work is at a broad spatial scale and uses climate data at fine temporal 

resolution, it can be integrated into air quality modeling frameworks, e.g. BlueSky (Larkin et al. 

2009), to understand potential effects of megafires on regulated air quality. 

There are still many questions, however, that should be addressed moving forward. First, 

what is the effect of multiple disturbances on the likelihood of megafire? For example, beetle 

kill, which is affected by climate, can increase fuel availability and connectivity affecting 

wildfire patterns (Lynch et al. 2006, Jenkins 2008). Second, how does uncertainty in GCM 

projections affect the projected probabilities of megafire? This question arises when considering 

that moisture-specific metrics, many of which are incorporated into the probability models, are 

less robust than temperature-specific metrics. Future research could partition the variance found 

in projected probabilities to investigate this uncertainty. Third, the IPCC scenarios used in this 

analysis represent target radiative forcing per square meter, such that many combinations of 

different population growth, technological developments, and land-use scenarios meet the same 

RCP “budget”, whose differing components may affect the probability of megafire beyond that 

which can be predicted by examining the climatic potential for a megafire (D’Andrea et al. 

2010). Further investigation is required to understand how these components will interact to 

affect the occurrence of megafires. The projections from this study can still be used as a baseline 

for future research and policy and management decision-making.   
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4.7. Figures 

 
Figure 4.7.1. The study domain over the western contiguous United States, divided by 
Geographic Area Coordination Centers (GACCs), excluding subsections of GACCs with 
predominantly agricultural fires, represented here as white areas within the GACCs.  
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 Figure 4.7.2. 
Proportional 
change of the 
probability that in 
a given week a 
megafire will 
occur from the 
observed mean 
probability. The 
plots show a five-
year moving 
average. Dashed 
vertical lines 
denote the  from 
modeled values 
from the 
observed period 
(1979-2010) to 
those from the 
future (2011-
2099). Each 
shaded line 
denotes one of 14 
GCMs used, and 
the bold line 
denotes the 
ensemble mean 
of all 14 models. 
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Figure 4.7.3. The seasonality of P(megafire) from 1979-2099. The historical modeled ensemble is used for 1979 to 2010. The 
ensemble mean of the14 GCMs is used for scenarios RCP 4.5 and RCP 8.5 from 2011 to 2099. 
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Figure 4.7.4. Change in the means 2031-2060 minus 1971-2000 averaged over 14 GCMs for June-September under RCP 4.5. Gray 
regions signify area of high uncertainty across models, are areas with <10 of 14 model agreement. Indices represent the index value at 
daily (ERC, BI, FM1000, FM100, FFMC, and DMC) and monthly (PDSI and mean temperature) resolution. For ease, examining the 
spatial distribution of changes in FM100 and FM1000 used inverted categorized color spectrums. FM100 and FM1000 decrease with 
increased fire danger, in contrast to all other variables, which increase with increased fire danger. Therefore, the color spectrums used 
for spatial investigation of the changes in climate space represent the same for all indices such that red denotes increased fire danger.  
Note: PDSI = palmer drought severity index, TEMP = mean temperature, FFMC = fine fuel moisture code, DMC = duff moisture code, FM100 = 100-hr. fuel 
moisture, FM1000 = 1000-hr. fuel moisture, ERC = energy release component, and BI = Burning index.  
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Figure 4.7.5. Projected changes, under RCP 4.5, in the number of days or months that exceed the threshold defined by the 
upper/lower decile of days or months from 1979-2010 to 2031-2060 for each index. Changes are expressed as a percentage change 
from baseline conditions (e.g., +100 means a doubling). Regions where the signal is not robust, i.e. regions of high uncertainty across 
models, areas with <10 of 14 model agreement are gray. For ease, examining the spatial distribution of changes in FM100 and 
FM1000 used inverted categorized color spectrums. FM100 and FM1000 decrease with increased fire danger, in contrast to all other 
variables, which increase with increased fire danger. Therefore, the color spectrums used for spatial investigation of the changes in 
climate space represent the same for all indices such that red denotes increased fire danger. 
Note: PDSI = palmer drought severity index, TEMP = mean temperature, FFMC = fine fuel moisture code, DMC = duff moisture code, FM100 = 100-hr. fuel 
moisture, FM1000 = 1000-hr. fuel moisture, ERC = energy release component, and BI = Burning index.



 91 

 
4.8. Tables 
 
Table 4.8.1. A list of the 14 GCMs used in this analysis listed in descending order of most to 
least total relative error as a sum of relative errors from many metrics over the PNW as 
calculated by Rupp et al. (in review). 
 
GCM Reference 
CNRM-CM5 Voldoire et al. 2012 
GFDL-ESM2M http://www.gfdl.noaa.gov/earth-system-model 

CanESM2 http://www.atmos-chem-phys-discuss.net/11/22893/2011/acpd-
11-22893-2011.pdf 

MIROC5 Wantanabe et al. 2010 
HadGEM2-ES Martin et al. 2011 
GFDL-ESM2G http://www.gfdl.noaa.gov/earth-system-model 
HadGEM2-CC Martin et al. 2011 
CSIRO-MK3-6-0 Collier et al. 2011 
inmcm4 Volodin et al. 2010 
MIROC-ESM Wantanabe et al. 2011 
MIROC-ESM CHEM Wantanabe et al. 2011 
bcc-csm 1-1  
MRI-CGCM3 Yukimoto et al. 2012 
BNU-ESM http://esg.bnu.edu.cn/BNU_ESM_webs/htmls/data_acc.html 
 
 
 
Table 4.8.2. Models by GACC to calculate the probability of conditions during a given week 
being conducive for fire growth to megafire size. Models taken from Stavros (2013a). Note: We 
defined explanatory variables as the calculated index averaged over the suffix such that “.1” 
denotes the week prior to discovery, “.dw” is the discovery week, and “.n#” is the number of 
weeks post discovery week. PDSI = palmer drought severity index, TEMP = mean temperature, 
FFMC = fine fuel moisture code, DMC = duff moisture code, FM100 = 100-hr. fuel moisture, 
FM1000 = 1000-hr. fuel moisture, ERC = energy release component, and BI = Burning index. 
 

GACC P(Megafire) = 1/(1+eb) where b = the linear predictor in a binomial GLM = 
EGB 31.033 - 0.226*FFMC.dw - 0.260*TEMP.dw - 0.015*DMC.n3 - 0.238*PDSI.n1 

NCAL -8.500 + 1.290*FM1000.n1 
NROCK -13.951 - 0.309*BI.n3 + 0.672*FM100.dw + 0.334*FFMC.n1 + 0.026*DMC.dw -0.366*TEMP.1 

PNW 6.664 - 0.514*TEMP.n1 + 0.468*FM1000.n1 
RM 11.930 - 0.057*DMC.n3 

SCAL 18.660 - 0.193*ERC.n1 
SW 8.430 - 0.017*DMC.dw 

WGB -4.532 + 1.279*FM100.dw - 0.392*PDSI.dw 
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Table 4.8.3. Comparative statistics across GACCs for projections of the GLMs from Stavros 
(2013) onto historical and future modeled climate spaces under two RCPs.  “Mean” refers to the 
proportional change in ensemble model average over the time period (where historical is 1979-
2010 and future is 2031-2060) from the mean observed. AUC is the area under the receiver 
operating characteristic curve for the GLMs for each GACC. 
 
row  EGB NCAL NROCK PNW RM SCAL SW WGB 

1 Model AUC 0.840 0.858 0.934 0.859 0.967 0.804 0.918 0.863 

2 Historical modeled ensemble mean/ 
observed mean 1.462 1.086 1.227 1.88 1.447 1.061 1.145 1.190 

3 p-value (H0: row 2 = 
observed/observed mean) 2.04 e-6 0.308 0.092 3.3 e-11 0.007 0.375 0.206 0.033 

4 
# models with sig. difference (p<0.05) 
between each model/mean observed 

and observed/mean observed 
12 2 3 14 3 2 3 9 

 RCP 4.5         

5 RCP 4.5 mean/observed mean 2.426 1.278 1.840 4.471 4.557 1.396 2.301 1.472 

6 p-value (H0: row 2 = row 5) 6.9 e-13 0.010 4.6 e-7 5.0 e-22 3.6 e-27 6.3 e-8 4.7 e-18 5.0 e-4 

7 # models with sig. difference (p<0.05) 
between each model and row 2 11 11 11 13 13 9 12 11 

 RCP 8.5         

8 RCP 8.5 mean/observed mean 2.901 1.306 2.259 5.901 4.630 1.542 2.280 1.531 

9 p-value (H0: row 2 = row 8) 1.5 e-21 0.004 9.4 e-14 4.6 e-33 1.1 e-26 6.7 e-13 8.9 e-18 2.8 e-5 

10 # models with sig. difference (p<0.05) 
between each model and row 2 14 8 12 14 7 11 11 12 
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Chapter 5 

Conclusion 

 

5.1. Overview 

Very large wildfires can have lasting ecological and social effects both directly on the 

landscape and indirectly on the atmosphere and climate. Understanding these effects requires 

placing wildfires within the context of feedbacks between the climate-wildfire-air quality system 

(Chapter 2). There are limited studies, however, conducted at appropriate spatial and temporal 

scales, for integrating climate, wildfire, and air quality data to understand the system as a whole 

(McKenzie et al. 2006, Chen et al. 2009). Additionally, there are no studies that specifically 

examine the occurrence of very large fires (≥ 50,000 ac ~ 20,234 ha), here termed ‘megafires’ in 

the western contiguous US. This dissertation has developed, evaluated, and projected regional 

models of megafire occurrence that can be used at spatial and temporal scales appropriate for 

integrative studies on climate, wildfire, and air quality across the western contiguous US.  

First a systematic framework was created to understand and study climate, wildfire and 

air quality feedbacks. Appropriate spatial and temporal scales of key processes affecting climate, 

wildfire, and air quality were identified (Chapter 2). Then climatic drivers for extremely large 

wildfires (≥ 50,000 ac ~ 20,234 ha, defined here as megafires) were examined across the western 

US from 1984 to 2010 (Chapter 3) at the identified scales for integrating climate, wildfire, and 

air quality. Biophysical metrics calculated from climate were used to develop regional 

probabilistic models of the occurrence of megafires. Finally, the potential occurrence of future 

megafires was examined under a number climate change scenarios and models by projecting 
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how the identified drivers of megafires are expected to change over time (Chapter 4). 

5.2 Findings 

5.2.1. Spatial and temporal scales 

To understand air quality, the climate-wildfire-air quality system is best modeled at broad 

spatial scales and fine temporal resolution. Climate, fire regimes, and air quality operate or affect 

broad spatial scales thus aggregating across similar landscapes captures them and allow for better 

statistics because megafires are rare events; fine temporal resolution is needed to capture the 

effects of smoke emissions and transport which. Here megafire was examined from 1979 to 2099 

at the broad spatial scale of the National Interagency Fire Center (NIFC) Geographic Area 

Coordination Center (GACC) regions. GACCs are used to manage fire-fighting resources; there 

are 8 GACCs covering the western contiguous United States. A weekly temporal resolution was 

used to meet the fine temporal scale required for linking climate, wildfire, and air quality. 

5.2.2. Statistical modeling 

Logistic regression was used to examine how climatic and biophysical variables 

influence the likelihood of a megafire occurrence. Explanatory variables examined include those 

thought to drive large wildfires and include variables from one week before and up to three 

weeks after the discovery date. Models varied by GACC and were created using backwards 

elimination by minimizing AIC. Analyzing these models and the difference between fire 

climatology between large fires and megafires showed that in general, hotter, drier conditions 

increase the probability of a megafire in the western contiguous US. These results are similar to 

those found in area burned analyses, thus demonstrating the influence of broad-scale ecological 

mechanisms driving wildfires (e.g., fuel versus flammability limited environments). Similar 

results are probably because the number of megafires and the amount of area burened by 
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megafires correlate with annual area burned. 

Projecting these models into the future under IPCC scenarios RCP 4.5 and 8.5 showed 

significant (p≤0.05) differences in the mean likelihood of a megafire between the historical 

period from 1979 to 2010 and the future during 2031 to 2060. Across the West, with the 

exception of the Southwest and Northern California, megafires will be more likely in the future 

both throughout the fire season and from year to year, with more pronounced patterns under RCP 

8.5 than RCP 4.5. 

5.3. Scientific and management context 

This work is a significant advance over previous studies that have predicted annual area 

burned in that it presents models for predicting individual fire events. Although the relationships 

between climate and megafires are similar to those found for annual area burned, this work 

provides more specific information as to the seasonality of individual events; thus it is a basis for 

developing wildfire policy and management strategies.  

This research demonstrates the sensitivity of aggregate statistics, like annual area burned, 

to influential sub-classes, like megafires. Although climate and megafire relationships are similar 

to those found to predict annual are burned, annual area burned estimates represent average 

behavior, which suffers from error propagation and produces biased estimates at broad-scales 

because of the cumulative error from aggregating many individual events (McKenzie and 

Kennedy 2011, p. 29). This analysis of individual megafires represents emergent behavior, which 

is defined as the complex behavior of many simple entities operating within a system. 

Consequently, this analysis was conducted on megafires at specific spatial and temporal scales to 

capture changes (McKenzie and Kennedy 2011, p. 29) within the more complicated climate-

wildfire-air quality system (Chapter 2). 
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Unfortunately few studies have been conducted at the scales necessary for understanding 

changes within the climate-wildfire-air quality system. By filling a specific spatial and temporal 

niche identified in Chapter 2, the models produced in Chapter 3 and applied to future projections 

in Chapter 4, provide a foundation for investigating system dynamics between climate, wildfire, 

and air quality (Chapter 2). Furthermore, future megafires can be simulated as part of Earth-

system models, informing processes as diverse as aerosol feedbacks to radiative forcing and 

estimates of carbon soruces or sinks, to better predict and understand the climate and carbon 

systems. 

In a managerial context, this research can be used to shape new fire policy such as fuel 

management. For example, high biomass and fuel accumulations contribute to megafires, and 

large-scale fuel management may reduce the effects of megafire including tree mortality, fire 

behavior, suppression costs, private property loss, environmental damages, and fatalities 

(Williams 2013). Since megafires are more likely (Chapter 4), governments are better advised to 

financially and politically support fuel treatments as essential tasks of forest management. 

5.4. Future research 

By integrating this work into air quality smoke modeling frameworks, e.g. BlueSky 

(Larkin et al. 2009), we can improve understanding on how megafires degrade air quality and 

how best to mitigate such effects (McKenzie et al. 2006, 2013). For example, since we project 

that megafires are more likely in the future (Chapter 4), and they constitute a significant fraction 

of the annual regulated amount of emissions (Jaffe et al. 2008), urban areas could restrict 

anthropogenic emissions (e.g. from fossil fuels) allowing for more emissions from prescribed 

and wildfire to occur before exceeding regulated levels. Such work would require downscaling 

likelihoods of megafire to create a map of probabilities (sensu McKenzie et al. 2006 but with 
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empirically based estimates replacing a heuristic method). Using a Monte Carlo approach with a 

stochastic simulation the downscaled probabilities could then be converted to megafire 

occurrences and then integrated into a smoke modeling framework, such as Bluesky (Larkin et al. 

2009), to examine how climate will affect air-quality degradation from wildfire.   

Consideration for how management strategies will feed back into the likelihood of 

megafire is especially important as the IPCC scenarios used in this analysis represent target 

radiative forcing per square meter rather than a particular storyline (van Vuuren et al. 2011). 

Defining the scenarios as a target radiative forcing means that there are many different 

combinations of population growth rate, technological developments, and land-use changes that 

meet the same radiative forcing “budget”. Consequently, further investigation is required to 

understand how these components and different management strategies interact to affect the 

likelihood of a megafire beyond climatic potential. 

Investigating how sensitive results from this analysis are to the assumptions used is a 

good first step to bounding the uncertainties in future projections and their consequences. One 

assumption was that the top two percent of fire sizes, expected to be the most damaging, could 

be isolated from other large fire with respect to climatic drivers. Future work is required to 

investigate how climatic predictors change under different definitions of megafire. A second 

assumption is that the effects of megafires are strongly associated with their extent. Other 

options for megafire “indicators” are fire severity, which could be evaluated further with the 

MTBS data set, or political and social metrics such as cost or the medical or aesthetic effects of 

smoke. A third more subtle assumption is the equal certainty of different output variables in 

climate projections by GCMs. It has been established that not all meteorological variables are 

equally well predicted by GCMs (IPCC 2007). For example, temperature-specific metrics are 
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more robust than moisture-specific metrics. Understanding confidence limits for the least certain 

of megafire predictors in the future is essential for determining the confidence of megafire 

projections. Sensitivity analyses of projected megafire probabilities such as variance partitioning, 

would help quantify uncertainties in projections.  

This work lays an important foundation for understanding how extreme events, 

specifically megafires, are affected by climate and may change into the future. The projections 

from this study provide a baseline for future research including investigation of the assumptions, 

sensitivity of findings, and air quality modeling. The results suggest the emergence of a changing 

wildfire environment, one marked by longer seasons and more years with high likelihood of 

megafire occurrence. Those directing policy and management will be faced with adapting to a 

changing climate. The results from this research can aid development of management strategies 

for meeting existing regulations where possible and informing new ones where needed. 
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