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The detection and mapping of burned areas from wildland fires is one of the most
important approaches for evaluating the impacts of fire events. In this study, a novel
burned area detection algorithm for rapid response applications using Moderate
Resolution Imaging Spectroradiometer (MODIS) 500 m surface reflectance data was
developed. Spectra from bands 5 and 6, the composite indices of the Normalized Burn
Ratio, and the Normalized Difference Vegetation Index were employed as indicators to
discover burned pixels. Historical statistical data were used to provide pre-fire baseline
information. Differences in the current (post-fire) and historical (pre-fire) data were
input into a support vector machine classifier, and the fire-affected pixels were detected
and mapped by the support vector machine classification process. Compared with the
existing MODIS level 3 monthly burned area product MCD45, the new algorithm is
able to generate burned area maps on a daily basis when new data become available,
which is more applicable to rapid response scenarios when major fire incidents occur.
The algorithm was tested in three mega-fire cases that occurred in the continental USA.
The experimental results were validated against the fire perimeter database generated
by the Geospatial Multi-Agency Coordination Group and were compared with the
MCD45 product. The validation results indicated that the algorithm was effective in
detecting burned areas caused by mega-fires.

1. Introduction

Tens of thousands of wildfires occurred annually on an average between 1960 and 2012 in
the USA burning over four million acres (16,187 km2) of forest and other ecosystems and
threatening human lives and properties. In 2012, for example, 67,774 fire events were
reported and consumed over nine million acres (36,422 km2) of wildland in total
(NIFC 2013). The major damage was primarily caused by mega-fires that are often
characterized as high intensity, high impact, and difficult to control; these events have
recently increased (Liu, Goodrick, and Stanturf 2013). There is no quantitative definition
for a ‘mega-fire’, but this term usually refers to extraordinary fire incidents in terms of
their size, complexity, and resistance to control (Williams et al. 2005). For instance, the
2007 Georgia/Florida Okefenokee fires burned 0.6 million acres (2428.1 km2) during the
entire burn period, which coincided with the worst drought in Georgia in a century.
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Together, these large fires represent <1% of all wildfires but cause most damage by
accounting for 90% of the area burned and 80% of the suppression costs (Williams 2004).

The existing fire reporting system provides basic information on fires, that is, fire
type, start and end dates, burned area, and other data. However, acquiring details of the
spatial structure of daily fire processes are usually costly. Satellite remote sensing has
emerged as an advanced technique for fire event identification. Satellites provide nearly
global coverage of the Earth with spatial and temporal resolutions that vary from one
platform to another. The Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument aboard NASA’s Terra and Aqua platforms has improved fire monitoring
capabilities, and several products that focus on fire events have been put into operational
use, i.e. MOD14 – Thermal Anomalies – Fires and Biomass Burning (Justice et al. 2006)
and MCD45 – MODIS burned area product (Roy et al. 2008, 2005). The satellite fire
research community is currently working to secure necessary long-term fire observations
from the next generation of operational satellite systems, such as the Joint Polar Satellite
System (http://www.jpss.noaa.gov).

Current burned area detection algorithms that use remote sensors can be categorized
into two groups: multitemporal change detection schemes and unitemporal spectral
classification approaches. The methods of the first category usually compare pre- and
post-fire data and detect spectral changes. The fire-affected areas are determined using
preset criteria or thresholds via analyses of differences between two or multiple temporal
data on sensitive variables. For instance, Barbosa, Grégoire, and Cardoso Pereira (1999)
proposed an algorithm for extracting burned areas from the time series of Advanced Very
High Resolution Radiometer (AVHRR) data at the continental scale, and the multitem-
poral and multispectral approaches were implemented based on spectral changes before
and after a fire event. Roy et al. (2002, 2005, 2008) proposed change detection-based
algorithms for fire-affected area mapping and compared the reflectance from a bi-direc-
tional reflectance model with the observed surface reflectance to locate burned areas using
spectral changes. In addition, these algorithms were implemented with the MODIS
MCD45 operational products. Kasischke et al. (1993) proposed an AVHRR-based multi-
temporal method to map boreal forest fires in Alaska in 1990. The forest fire boundaries
were subtracted by comparing the late summer normalized difference vegetation index
(NDVI) (Kriegler et al. 1969) composite image with an early summer scene.

Unitemporal spectral classification approaches commonly use knowledge of the
spectral characteristics of burned vegetation, and the burned areas are identified by a
series of spectral thresholds or a classification process. For example, Li et al. (2004)
presented an empirical technique for detecting burned areas using MODIS level 1B top-
of-atmosphere reflectance data. Several near-infrared (NIR) channels were used in the
threshold process, which was based on the spectral analyses of characteristics of the pixels
of burned areas. Petropoulos, Kontoes, and Keramitsoglou (2011) presented a burned area
delineation method with unitemporal Landsat Thematic Mapper (TM) data using support
vector machine (SVM) classification. The spectral differences between the burned and
unburned pixels in the TM images were discovered implicitly in the SVM training process
in the original spectral bands of TM, and the burned areas were mapped using an SVM
classification process. Chuvieco, Martín, and Palacios (2002) proposed a burned area
index to discriminate burned land in the red-NIR spectral domain, and the index was
tested on Landsat TM and NOAA/AVHRR data. Pereira (1999) compared and assessed
the performance of multiple vegetation indices in burned area detection and mapping, that
is, NDVI, vegetation index 3 (VI3), global environmental monitoring index (GEMI), and
a modified version of GEMI known as GEMI3; the author concluded that GEMI3
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performed the best among the tested indices. Other burned area detection studies are
available in the literature (Cahoon et al. 1994; Cao et al. 2009; Giglio et al. 2005; Libonati
et al. 2010; Smith et al. 2007; Mitrakis et al. 2012). Comprehensive reviews of applica-
tions of remote-sensing techniques in assessing fire characteristics and post-fire effects
can also be found (Emilio Chuvieco 1999; Lentile et al. 2006). Compared with unitem-
poral fire detection approaches, multitemporal methods involved additional information in
decision-making, which may theoretically improve the performance of detections.
Although the conclusion requires further verification, a comparative study on burned
area detection from Landsat TM images and our preliminary experiments on MODIS data
suggested that multitemporal algorithms might provide higher detection accuracies and
more reliable performances than unitemporal methods (Kontoes et al. 2009).

This study builds upon research that integrating remote sensing-based burned area
maps into wildfire caused smoke plume transport and process models (Heilman
et al. 2014; Goodrick et al. 2013). In these studies, maps of major burns with high
temporal resolutions are required as auxiliary variables in new models, and no available
burned area products meet these requirements. This study also developed a general
alternative mega-fire burned area detection algorithm using MODIS 500 m surface
reflectance data for rapid response scenarios following major fire incidents at a regional
scale. It provides higher temporal resolution (up to 1 day) than the MCD45 product
(monthly available) with higher detection accuracy. Compared with the MOD14 Thermal
Anomalies & Fire product (5-min/daily/8-day with 1 km resolution), the proposed algo-
rithm provides higher spatial mapping resolution (500 m), and it focuses on mapping
burned areas rather than locating active fire spots.

In the proposed algorithm, four predictors consisting of differences in the surface
reflectances from MODIS bands 5 and 6, the normalized burn ratio (NBR) (Roy,
Boschetti, and Trigg 2006), and the NDVI with the corresponding historical statistical
average data were used as predictors (dB5, dB6, dNBR, and dNDVI) (‘d’ denotes
difference). A burned/unburned pixel separation model was built using an SVM training
process, and the burned pixels were determined by an SVM classification. This study
differs from other previously proposed methods in which historical statistics are used as
the baseline information, which offers the advantages of the high temporal resolution of
unitemporal methods and the high detection accuracy of multitemporal change detection
methods.

In this study, the proposed algorithm was trained and tested on six major mega-fire
events that occurred in the continental USA. The detected burned area maps were
validated against the Geospatial Multi-Agency Coordination Group (GeoMAC) fire
perimeters database, and the detection accuracies of the new algorithm were compared
with the accuracies of the MCD45 product.

2. Mega-fire events and data

2.1. Mega-fire events

Selected mega-fire events among the top 20 largest fires in recent years in the continental
USA (refer to http://www.nifc.gov/fireInfo/fireInfo_stats_lgFires.html) were used in this
study. Details on the fire cases are summarized in Table 1. The selection of the six used
cases was decided by data quality, i.e. these fires had less persistent cloud cover than other
top 20 cases according to visual inspections. The duration and location information for the
fires were primarily retrieved from the websites of government agencies, for example, the
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Bureau of Land Management (http://www.blm.gov) and the Earth Observatory of the
National Aeronautics and Space Administration (http://earthobservatory.nasa.gov/).
Portions of the information were obtained or confirmed from local media websites,
which are not listed in Table 1.

2.2. Data

The daily 500 m surface reflectance data (MOD09GA) acquired by MODIS on board the
Terra platform were the main data source for detecting burned areas in this study. The 8-
day 500 m surface reflectance composite data (MOD09A1) from 2000 to 2013 with the
same geolocation coverage, which was identified by the same MODIS Sinusoidal grid
number, were also collected for calculating statistical averages. In addition to the surface
reflectance data, the 250 m water–land mask data (MOD44W), which were primarily
derived from the Shuttle Radar Topography Mission water body data, were also applied to
exclude existing water pixels, such as rivers and lakes, from the burned area detection.

To validate the algorithm, a burned area perimeter database, which is updated daily
and maintained by the GeoMAC (http://wildfire.usgs.gov/geomac/index.shtml), was used
as the ground truth data. To ensure the accuracy of the validation, the acquisition dates of
the satellite data and the coverage dates of the perimeter data for the same fire events were
matched. The fire perimeter data are generated and updated daily based upon input from
incident intelligence sources, GPS data, and infrared imagery from fixed wing and satellite
platforms. A data quality check is performed before the perimeter data are loaded into the
GeoMAC database (Walters, Schneider, and Guthrie 2011). Although the GeoMAC
database is not an all-inclusive archive of fire incidents, the mapping accuracies of the
perimeter data are generally satisfactory according to flight verifications on local scales
(Thompson et al. 2013), which indicates that the GeoMAC data set is reliable and its
accuracy is sufficient for the use as the ground truth data to validate a remote sensing-
based burned area algorithm with a 500 m resolution. It is worth noting that the GeoMAC
database only records relatively large burnings that are already known to exist, and it is
not used to discover previously unreported burnings. In this study, the existence of the fire
perimeters and the data quality for tested fire cases in the validations has been manually
verified in the GeoMAC database. Because GeoMAC is not an all-inclusive database, it is
unable to evaluate fire conditions for excluded cases, but it is able to assess burn scenes
when the corresponding perimeter data are recorded in the GeoMAC database.

Table 1. Summary of the fire events including the fire name, starting and ending dates, total
affected area in square kilometres, and the approximate locations in latitude and longitude.

Name State Duration
Total area
(km2) Location

Murphy Complex Idaho 16 July 2007–2 August 2007 2638.6 42° 17′ N, 115° 8′ W
Wallow Arizona 29 May 2011–28 July 2011 2177.4 33° 48′ N, 109° 19′ W
Biscuit Oregon 12 July 2002–15 July 2002 2023.7 42° 3′ N, 123° 53′ W
Big Turnaround
Complex

Georgia 16 April 2007–18 June 2007 1565 30° 48′ N, 82° 19′ W

Milford Flat Utah 6 July 2007–15 July 2007 1469.2 38° 39′ N, 112° 46′ W
Rock House Texas 9 April 2011–7 May 2011 1272.5 31° 42′ N, 100° 27′ W
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The obtained MODIS data in the sinusoidal grid were reprojected to the appropriate
zones of the Universal Transverse Mercator projection with the world geodetic system 84
(WGS84) datum. All reprojection operations were set to a 500 m spatial resolution. The
retrieved GeoMAC perimeter data in the ESRI shapefile format with the North American
datum 83 were also reprojected to the WGS84 datum to match the satellite data accurately.
Notably, cloud-contaminated pixels, which were identified by the quality assurance data
set of MOD09GA data, were excluded prior to the classification. Only cloud-free pixels
were used in the process of burned area detection.

In this study, three fire events were selected as training cases to generate the burned/
unburned separation rules, and the remaining three fire events were used as test cases in
the validation phase. The separation of the training and test cases was random, except for
the Wallow case which was selected as a test case for detecting and tracking the
development of burned areas in a time series. The isolation of training and test cases is
to prevent the possible overfitting phenomenon that can occur in a pattern classifier.
Detailed information on the fires in the experiments is listed in Table 2.

In this article, the MODIS level 3 monthly product for mapping burned areas, known
as MCD45, was used as a benchmark. The MCD45 algorithm detects changes in the
MODIS band 5 data in daily time steps, and a multiple day statistical threshold z-score is
used to separate the burned and unburned pixels. Additional details on the MCD45
algorithm can be found in (Roy et al. 2008).

3. Methodology

3.1. Spectral characteristics of the burned area

Many studies have already clearly characterized the spectral reflectance of burned areas
observed by remote sensors and found that the major differences between burned and
unburned vegetated areas are reduced reflectances in the NIR channels. For example, Li
et al. (2004) provided an example of apparent reflectance spectra acquired with AVIRIS
from NASA’s ER-2 aircraft over Cuiaba, Brazil, on 25 August 1995. The burned and
unburned vegetated area showed significant differences in the NIR channels, and

Table 2. Summary of the details of the experiments, including the name of the fire event, the
affected ground ecosystems described by the land-cover classes, which were extracted from the
MCD12 Land Cover product in the International Geosphere–Biosphere Programme category (Friedl
et al. 2010), the acquisition date of the MODIS data, and the purpose of the case.

Name Purpose Land cover Year and day of year

Murphy Complex Training Evergreen needleleaf forest, Woody
savannahs, Grasslands

2007 209

Biscuit Training Evergreen needleleaf forest, Woody
savannahs, Savannahs, Grasslands

2002 231, 238

Rock House Training Open shrublands, Grasslands 2011 107
Wallow Test Evergreen needleleaf forest, Open

shrublands, Grasslands
2011 154, 157, 158,
160, 162, 163, 165,
167, 172

Big Turnaround
Complex

Test Evergreen needleleaf forest, Evergreen
broadleaf forests, Mixed forests,
Woody savannahs

2007 154

Milford Flat Test Open shrublands, Grasslands 2007 189
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approximate reductions of 0.1–0.2 in the reflectance were observed (Li et al. 2004). For
the MODIS sensors, the NIR band 5 (bandwidth centred on 1.24 μm), band 6 (1.64 μm),
and band 7 (2.13 μm) are potential indicators for separating burned and unburned areas.
The visible bands of MODIS (bands 1–4) were not directly used in this study because
smoke caused by fires could be observed in these bands and could cover the burned-
affected area. The phenomenon is mainly explained by the size of the smoke particles,
which are usually larger than the wavelengths of the visible channels; as a result,
significant scattering occurs in the visual bands (Li et al. 2004). However, bands 1 and
2 of the MODIS were indirectly used in the NDVI composite indices, and the scattering
effects in these bands were mitigated by band ratio operations.

After comparing all collected surface reflectance data from post-fire or active-fire
scenes, a single threshold that distinguishes burned from unburned areas is difficult to
identify. The spectral reflectance of the burned areas in bands 5–7 varies considerably for
different cases. A threshold can be easily built for a specific case with satisfactory
performance, but that threshold usually performs poorly in another scene or another fire
event. Other popular indices, for example, the NDVI and NBR which are used in many
studies, also vary significantly in different scenes and cases. Figure 1 presents a compar-
ison of several potential spectral signatures for burned areas among three fire cases.

Many factors contribute to the variation of the surface reflectance of the burned areas
shown in Figure 1. For example, different vegetation types and the severity of fire events
cause different levels of water content and chlorophyll loss and subsequently lead to
variations in the reflective radiance received by the sensors. The variations in the surface
reflectance among the cases indicate that the direct use of band reflectance or vegetation
indices may be effective for specific cases of burned area detection, but it will be difficult
to find stable and operable rules for general burned area detection algorithms.

Potential Indicators for Burned Pixels
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Rock House
Biscuit
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NBRRef. B7Ref. B6Ref. B5
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Figure 1. Spectral characteristics of burned areas in terms of extracted averages from regions of
interest associated with three fire events in the USA. Ref, reflectance; NBR, normalized burned
ratio; NDVI, normalized difference vegetation index. The values of each point in the figure represent
the surface reflectance or index number and are all unit less.
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3.2. Predictors

To alleviate the abovementioned instabilities of the reflectance characteristics in the
burned areas, the proposed algorithm used spectral differences between post-fire and
pre-fire reflectance data to increase the separability between the burned and unburned
areas; the algorithm was based on the fact that reductions of reflectance in the NIR
channels would be observed by remote sensors for fire-affected pixels. The commonly
used solution for obtaining post-fire and pre-fire changes is to apply multiple year
reflectance data in time series comparisons; fire-caused reflectance changes will be
discovered by multitemporal data analyses. However, because the proposed algorithm is
developed for rapid response for fire management systems, extensive data requirements,
such as multiple day time series data input, are not operationally realistic. Therefore, in
this study, historical statistical average data were used as the pre-fire baseline information
instead of the time series data. Once the statistical data are generated, they can be stored in
the system persistently and instantly applied to detect fire-affected areas when the daily
surface reflectance is acquired. After comparisons and trials, four indicators of reflectance
or indices were used to calculate the difference values, i.e. band 5 (centred on 1.24 μm),
band 6 (centred on 1.64 μm), NBR calculated as the reflectance ratio (band 2 − band
7)/(band 2 + band 7), and the NDVI (band 2 − band 1)/(band 2 + band 1). After the
difference calculation, dB5, dB6, dNBR, and dNDVI represented the final predictors used
in this study. A line plot created from portions of the training samples comparing burned
and unburned areas was presented to confirm that the applied difference calculation
indeed increased the separability of these predictors, as shown in Figure 2. Details on
the generation of the historical average are discussed in Section 5.

In Figure 2, the region of interest (ROI) of the burned/unburned areas was manually
collected from the four-predictor data sets (dB5, dB6, dNBR, and dNDVI) and from the

dNDVI

Used Predictors in Classification
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Figure 2. Comparisons between burned areas and unburned area for the four predictors. The
values shown are averages calculated from training samples extracted from the regions of interest.
In the average calculation, 9450 burned pixels were used, and 46,733 unburned pixels were used.
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three fire cases selected for training. The burned areas could be visually distinguished
from the difference data because of their significantly lower values compared with the
surrounding unburned pixels. Unburned pixels were collected from the same images of
fire cases, which included not only surrounding unburned vegetation pixels but also other
non-water non-vegetated land-cover types. Figure 2 displays the average values of the
four predictors for the burned and unburned samples, and the significant differences
between the burned and unburned pixels can be observed. In general, the burned pixels
exhibit negative values for all predictors due to reductions of the original indicators; the
regular unburned pixels show dissimilar statistical results. Based on the quantitative
analyses of the training samples used in Figure 2, ~75.6% of the burned class samples
showed negative values for all four predictors, and only 4.72% of the samples of the
unburned class in the training data showed negative values for all predictors. This result
indicates that the general trend in the changes in the burn-affected areas is valid, but not
every burned pixel follows the all-negative rule. Evidently, the separation of burned and
unburned areas is more complicated than simple threshold partitioning. To capture the
complexity of the patterns of differences between burned and unburned areas, rather than
using intuitive thresholds, more powerful pattern recognition classification algorithms
should be applied; thus more accurate separation rules would be generated through the
training process.

3.3. Classifier

In this study, a classification algorithm known as an SVM was selected to separate the
burned and unburned areas. As a promising pattern recognition technique, the SVM
classifier has been extensively used in countless fields of research, including burned
area detection using remote sensing (Cao et al. 2009; Petropoulos, Kontoes, and
Keramitsoglou 2011). This algorithm locates an optimal discriminative boundary
between binary classification problems using a relatively small training sample, and
the kernel function provides the ability to generalize complicated classification pro-
blems with a small computational requirement. The SVM is designed to solve binary
classification problems, but its function can be extended to include the computation of
multiple classification problems by applying multiple SVMs simultaneously via a one-
against-one or one-against-all schema. Because the required burned/unburned area
separation is an obvious two-class problem, basic binary SVM classification was
used in this study. Because the SVM classification techniques are generally well-
known in the remote-sensing community and because many successful applications in
remote sensing have been reported in the literature, the equations for the SVM are not
included in this article. Detailed descriptions and explanations of the concepts behind
the SVM can be found in Burges (1998), Cristianini and Shawe-Taylor (2000) and
Vapnik (2000).

4. Validation

4.1. Validation design

Many SVM varieties and implementations are available for research, and the classic C-
SVM implemented in Libsvm (Chang and Lin 2011) was selected here. A radial basis
function (RBF) kernel was used in the experiments. Only two parameters, C and γ, need
to be set before training. Parameter C is used to control the trade-off between
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classification accuracy and tolerance error of the generated model. γ is the width of the
RBF kernel, which controls the mapping from the original feature space into infinite
dimensional space. A 10-fold cross validation process was applied to choose the optimal
combination of the RBF parameters. The results showed that multiple parameter combi-
nations yielded similar classification performance, including the combination of C = 2000
and γ = 0.5 used in this study. In addition, another commonly used kernel polynomial was
also tested using a 10-fold cross validation, but no significant differences in classification
accuracies were obtained compared with the RBF kernel. Hence, only the RBF kernel was
used in the study.

In total, 56,183 pixels were used as training samples, including 9450 burned pixels
and 46,733 unburned pixels. Burned and unburned pixels were identified by the GeoMAC
data. All pixels in the burned/unburned ROIs were stacked into a binary training sample,
and SVM training was conducted to obtain a binary classification model for separation
rules. Water and cloud pixels were excluded using the MOD44W water–land mask and
the quality assurance data set of the MOD09GA data, respectively. Except for water and
clouds, all other land-cover types were treated as unburned in the training sample. As
mentioned in ‘Section 2.2’, the training samples were completely independent of the test
cases in the experiments as entirely different fire cases for training and testing were
selected. The purpose was to avoid overfitting of the classifier because powerful classi-
fiers, such as SVM, have the ability to generate a customized model for a specific
problem, but lack generalization ability; thus, the performance of these models is usually
poor in other cases.

4.2. Validation results

This section presents the validation results for three burned area detection cases. In
Section 4.2.1, the mapped burned areas for the three cases tested with the new
algorithm and the MCD45 product are shown, and the GeoMAC perimeter contours
on the false colour reflectance data are also presented for visual comparison. Section
4.2.2 presents a time series comparison for the Wallow fire case. To demonstrate the
significance of the progress of burning, only 3 day results with a 1 week interval are
presented. Finally, the quantitative validations are presented in Section 4.2.3.
Confusion matrices were used as an accuracy measurement for the proposed algorithm
and the MCD45 product, and the converted GeoMAC perimeter vector data were
taken as the ground truth image.

4.2.1. Three tested cases

In this subsection, the burned area detection results derived from the proposed algorithm,
the MCD45 product, and GeoMAC database for the Wallow fire (2011), the Big
Turnaround Complex fire (2007), and Milford Flat fire (2007) are presented in Figures
3, 4, and 5, respectively. Six major vegetation ecosystems, as listed in Table 2, were
affected by these three wildland fires.
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Figure 3. Wallow fire. Terra MODIS data acquired over Arizona, USA at 17:40 UTC, 11 June 2011:
(a) false colour image (red: 2.13 μm, green: 1.64 μm, blue: 1.24 μm) with the GeoMAC burned area
perimeter overlaid as a white contour; (b) burned area detected by the proposed algorithm (red);
(c) MCD45 burned area product (green; the data are aggregated from day 149 to day 162).

Figure 5. Milford Flat fire. Terra MODIS data acquired over Utah, USA at 17:05 UTC, 8 June 2007:
(a) false colour image (red: 2.13 μm, green: 1.64 μm, blue: 1.24 μm) with the GeoMAC burned area
perimeter overlaid as a white contour; (b) burned area detected by the proposed algorithm (red); (c)
MCD45 burned area product (green; the data are aggregated from day 187 to day 189).

Figure 4. Big Turnaround Complex fire. TerraMODIS data acquired over Georgia, USA at 16:30 UTC,
3 June 2007: (a) false colour image (red: 2.13 μm, green: 1.64 μm, blue: 1.24 μm) with the GeoMAC
burned area perimeter overlaid as a white contour; (b) burned area detected by the proposed algorithm
(red); (c) MCD45 burned area product (green; the data are aggregated from day 106 to day 154).
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4.2.2. Time series of detected burned area for the Wallow fire

Figure 6. Zoomed in burned area development of the Wallow fire. All images are displayed in
false colour (red: 2.13 μm, green: 1.64 μm, blue: 1.24 μm) overlaid with the perimeter vectors: (a) 7
June 2011 image; (b) burned area detected by the new algorithm; (c) burned area detected by the
MCD45 product; (d) 14 June 2011 image; (e) burned area detected by the new algorithm; (f) burned
area detected by the MCD45 product; (g) 21 June 2011 image; (h) burned area detected by the
proposed algorithm; and (i) burned area detected by the MCD45 product.
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4.2.3. Quantitative accuracy validations

To evaluate the accuracy of the burned area detection for the cases, 2 × 2 confusion
matrices were used. The detection results obtained by the proposed algorithm and
provided by the MCD45 product were evaluated with the GeoMAC fire perimeter data.
Accuracy indicators were provided, including the kappa coefficient (κ), total accuracy,
commission error of the burned pixels, and omission error of the burned pixels. The
confusion matrices for all cases were calculated from ~400 × 400 pixel windows.

It is worth noting that the GeoMAC fire perimeter vector data primarily stores the
contour information for the fire-affected areas, and many details on the ground pixels
inside the contours are ignored. In contrast, the detected burned areas are generated from a
pixel-by-pixel classification process, and it is quite possible that pixels classified as
unburned will appear inside the burned contour lines. Therefore, pixels classified as
unburned surrounded by burned pixels or neglected unburned islands might generate
multiple closed rings and isolated unburned pixels inside the fire perimeter regions in
the detection maps. These rings and isolated unburned pixels do not necessarily mean that
the algorithm omits these pixels as undetected. For example, in the square region A in
Figure 6(b), the omitted pixels inside the burned areas might not represent omission errors
based on visual inspections. The ground pixels with apparently high reflectance might not
yet be burned or might be contaminated by active fire spots or other non-vegetative land
cover. Therefore, the existence of these rings and pixels is reasonable, and the incon-
sistency of the two results may stem from the unique nature of each data set. To evaluate
the accuracy using a consistent standard, the closed rings and isolated unburned pixels
surrounded by burned areas in the detection maps were filled, i.e. reclassified as burned;
this process maintained the consistency with the perimeter vector data. The same filling
processes were applied to the results of the MCD45 products. This process was only
applied for the accuracy measurement shown in Tables 3 and 4, and Figures 3–6 show the
original detected mapping results without filling. This process is not a part of the
operational burned area detection algorithm.

Table 3 presents the confusion matrices for the proposed algorithm and the MCD45
product for the three mega-fire cases, which are described in Section 4.2.1. A time series
quantitative validation for the Wallow case was also conducted, and confusion matrices
for the new algorithm and the MCD45 product are shown in Table 4.

5. Discussions

5.1. Generation of historical average data

To obtain the difference values of the indicators, the first step was to generate the
historical statistical average data that correspond to the daily surface reflectance. The
statistical averages are presented as the simple mean value calculated as the direct
summation divided by the number of years for each indicator of one pixel. As mentioned
in Section 2.2, the MOD09GA daily surface reflectance data were used for post-fire
burned area detection, and the MOD09A1 8-day composite surface reflectance data were
used to generate the historical average. The subtraction is performed between the post-fire
daily data with the temporally closest 8-day pre-fire average data. The strategy is based on
the assumption that over a short period of time, for example less than 8 days, the seasonal
and inter-annual variations in the vegetative life cycle are not significant, and the obtained
surface reflectance should be similar for a specific ROI, such as forest coverage areas.
Cloud-affected pixels in the 8-day data are excluded in the average computation. Based on
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the pre-fire assumption of the statistical data, the historical averages for operational use
and for algorithm development use are different. In the operational phase, all of the 2000
to 2013 MOD09A1 8-day data will be used to calculate the statistical average. The
historical average data will be calculated for each MODIS Sinusoidal grid tile (http://
modis-land.gsfc.nasa.gov/MODLAND_grid.html) for every 8-day period. For instance,
for the tile number h12v04 that covers portions of the northeast and mid-Atlantic regions
of the USA, the average data for day 153, which covers observations from day 153 to day
160, will be generated using 2,000,153, 2,001,153, …, 2,013,153 h12v04 8-day surface
reflectance data. For each grid tile, 45 (365/8) 8-day data are calculated. Regarding the
continental USA, for example, 15 tiles (number of MODIS sinusoidal tiles covering the
continental USA) on 45 dates result in 675 historical average data sets. Depending on the
geographical locations and vegetation types in the USA, the forest recovery time from
major fire events varies, but it is usually much shorter than the total 14-year observational
coverage provided by the MODIS data. For example, in the southeastern USA, re-grown
vegetated areas become spectrally inseparable from unburned areas in only 4–6 years
(Huang et al. 2010). Therefore, the 14-year data average, which represents normal
circumstances, minimizes the possible impact of past fire incidents, and reduces other
noises in the images, such as temporal data gaps caused by clouds. Because the generation
of the operational historical average data is based on simple mathematical calculations
using 8-day MODIS surface reflectance archive data and because no special steps are
involved in the process, the creation of these historical data for general use is not difficult.

The strategy for generating historical averages for the algorithm development phase
that is presented in this article is different from the approach above for operational use.
Here, the average data were generated on demand for fire scenes using pre-fire years data
only. For example, for the 2007 Big Turnaround Complex fire, to detect the burned area
from the 154th daily data, the 2000–2006 day 153 MOD09A1 data, which was the closest
pre-fire 8-day data, were collected; these data were used to calculate the historical pre-fire
average. The major difference in the methods is that the historical data used in this article
describes fire cases that occur in the past, and the average data for the operational use
processes wildfires in the future. Both methods use pre-fire statistical average data as the
baseline information for burned area detection. In this article, to ensure the quality of the
historical average data, which are generated from temporally limited surface reflectances,
the pre-fire data were manually checked to ensure that there are no other incidents that
may also cause reductions of surface reflectances, such as previous fires, floods, and crop
harvests.

The strategy of generating historical average data used in this article, which is referred
as the ‘pre-fire method’, may introduce more noise and clouds in the generated average
data, but it reveals the pre-fire conditions better than the operational generation strategy,
which is referred to as the ‘all 14 years method’, because the speed of the disturbance–
succession pathway for forests could vary significantly among tree species. Therefore, the
‘all 14 years method’ average data may not be very similar to the ‘pre-fire’ canopy
conditions; as a result, different burned area detection results may be obtained. To
evaluate the impact of historical data on the final burned area detection results, the two
generation methods are compared in Section 5.3.

5.2. Comparisons with MCD45 products

Based on the visual comparisons of the burned area detection results presented in Figures
3–5, the geographical covers mapped with the proposed algorithm were more consistent
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with the GeoMAC fire perimeter vector data compared with MCD45. Generally, the
MCD45 data omitted a greater number of burned pixels than the proposed algorithm.
The results could be explained by the conservative design of MCD45 for global imple-
mentation and validation (de Klerk, Wilson, and Steenkamp 2012).

In this study, κ was used as the primary indicator for evaluating the detection accuracy,
instead of the total accuracy. κ is generally considered a more robust measure than a
simple percentage calculation because κ takes into account the agreement that occurs by
chance. From the accuracy comparisons for the three fire cases listed in Table 3, the newly
proposed algorithm achieved higher κ values than the MCD45 algorithm (0.9136 vs
0.8648, 0.8038 vs 0.6635, and 0.8322 vs 0.8040). The time series comparisons of the
confusion matrices for the Wallow fire case in Table 4 also showed similar results (0.8564
vs 0.8033, 0.8659 vs 0.8040, and 0.8726 vs 0.8504). Here, the bold values indicate higher
κ or higher detection accuracies.

According to analyses of the confusion matrices and comparisons of the commission
and omission errors of the burned areas, the new algorithm produced more committed
errors and fewer omitted errors than the MCD45 product. For the three tested burned area
cases, the proposed algorithm produced commission errors of 7.65%, 23.44%, and
22.17%. However, MCD45 produced commission errors of 3.44%, 1.11%, and 3.06%.
The omission errors for the proposed algorithm versus the MCD45 product for three cases
were 8.76% vs. 20.82%, 11.65% vs. 48.54%, and 9.20% vs. 30.62%. The results clearly
indicate that the newly proposed algorithm is more aggressive in detecting burned areas.
On the other hand, the MCD45 algorithm performs more conservatively in masking one
pixel as burned.

The time series experiment for the Wallow fire confirmed the ability of the proposed
algorithm to track the spatial development of the burned areas. The results from the
MCD45 product were also included for comparison. Because MCD45 is a monthly
product, the burn development of MCD45 was obtained by aggregately masking the
burn dates that represent approximate the day of year of the burning from the beginning of
the fire to the detection dates. According to the visual comparisons in Figure 6, the new
algorithm captured the majority of the burned pixels development, and the consistencies
between the mapping results and the GeoMAC perimeter vectors were high. MCD45 also
discovered the burned areas during the fire progress, but more burned pixel omissions
were observed. κ values obtained with the new algorithm and the MCD45 for the three
observation dates were 0.8564 vs 0.8033, 0.8659 vs 0.8040, and 0.8726 vs 0.8504.

Based on examinations of the commission errors of the new algorithm, a portion of the
committed errors were caused by residual errors from the applied cloud mask and
contamination by cloud shadows, which can be observed in Figure 4(b). Sensor noise
also introduced misclassified pixels in the burned area detection. For example, in
Figure 6(b) region B and in Figure 6(e) region C, the isolated committed pixels shown
in the zoomed view were caused by stripe noise in Terra band 5. Other commission errors
of the proposed algorithm were caused by unexpected non-fire-related surface reflectance
changes. In the zoomed view of region D in Figure 6(h), a patch of burned pixels was
shown in the detected maps, but no perimeter polygon covered the same region. Visual
inspection confirmed that this area had a lowered surface reflectance, while the historical
statistics do not show the same reduction. This result indicates that other non-fire-related
incidents occurred in this region. These commission errors suggest that the algorithm is
unable to distinguish fires from other incidents that also cause a reduction of surface
reflectance in the NIR bands, such as plant phenology, crop harvesting, and flooding.
However, this drawback is common to other methods that use similar assumptions in the
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signature of burned areas. Notably, the proposed algorithm is designed for rapid response
systems for use by regional fire management authorities, and the demands of mapping
burn area are only initiated by major fire incidents; hence, the approximate locations are
already known from fire reporting systems, and the possibility of confusing of spectral
changes in the NIR induced by fires with other causes is small.

The proposed algorithm omitted fewer burned pixels than the MCD45 product based
on visual comparisons and quantitative analyses. According to the comparisons in Figures
3(b) and (c) and Figures 5(b) and (c), many burned pixels were not detected by the
MCD45 algorithm. Inaccurate edges of the fire-affected areas were depicted by the
MCD45, particularly for the Milford flat case shown in Figure 5. The quantitative
comparison in Table 3 indicated that over 30% of the burned pixels were missing from
the MCD45 results for this case. Comparisons for the Wallow time series also showed a
similar trend for omission errors obtained by the proposed algorithm and the MCD45
product (Figure 6 and Table 4). Figures 6(b), (e), and (h) showed considerably more
accurate edge mapping results for the fire-affected areas than the results obtained for the
MCD45 product in Figures 6(c), (f), and (i). The omission errors of 30.11%, 29.38%, and
23.02% obtained by the MCD45 product for three tested dates are significantly higher
than the results obtained by the new algorithm, which yields omission errors of 6.39%,
4.51%, and 3.26%.

Based on the quantitative validations and visual inspections, the new algorithm out-
performed the MCD45 algorithm in terms of the overall detection accuracy measured by κ
for all tested cases, and the burned area mapping was more consistent with the GeoMAC
perimeter data than the results of the MCD45 product. The new algorithm tends to detect
burned pixels aggressively, and it omits fewer burned pixels than MCD45. The time series
experiment confirmed that the newly proposed algorithm was able to detect and track the
development of burned areas effectively.

5.3. Comparison between two historical data generation strategies

The ‘pre-fire method’ was used in generating historical average data in this article, and the
detection results based on these ‘pre-fire method’ average data are presented in previous
sections. In this subsection, the historical average data generated by the ‘all 14 years
method’ were also tested for the three fire cases, and the accuracy comparisons measured
by confusion matrices between the two strategies are presented in Table 5. In the
experiment, validation conditions were identical, except that the historical average data
were generated by the ‘pre-fire method’ and the ‘all 14 years method’.

Based on the confusion matrices presented in Table 5, the two strategies yielded
similar κ values for the Wallow fire case. The ‘pre-fire method’ achieved higher detection
accuracies than the results from the ‘all 14 years method’ for the Big Turnaround and
Milford Flat fire events. These inconsistent results indicated that >10 years of averages
minimized the variations in the surface reflectances or indices caused by fires in some
cases, but the inclusion of past fire incidents or other forest disturbances would affect the
quality of the average data in some circumstances. Contributing factors may include
different tree species, the different nature and duration of disturbance events, and the
uncertainty of the data quality, such as the presence of noise and cloud contamination in
the surface reflectance. Although the detection accuracy using the ‘all 14 years method’
average data decreased in two cases, the obtained κ values were higher than those
achieved by the MCD45 products for all three tested cases; thus, the proposed algorithm
outperformed the MCD45 algorithm regardless of the averaging strategy employed.
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6. Conclusions

This article proposed a new burned area detection algorithm based on MODIS 500 m
surface reflectance and historical statistics for time-sensitive applications. Differences
between the surface reflectance or indices and statistical averages (dB5, dB6, dNBR,
and dNDVI) were employed as predictors. Separation of the burned from unburned areas
was achieved using the SVM classifier. The trend of reduced reflectances or indices in the
burned areas was captured by the SVM training process, and separation rules were
expressed in the SVM model implicitly. The newly proposed algorithm was validated
against the GeoMAC fire perimeter data set using three fire cases. The results indicated
that the proposed algorithm is effective and stable in detecting fire-affected areas from
MODIS surface reflectance data. Comparisons with the MCD45 product data suggested
that the new algorithm outperforms the MCD45 algorithm in terms of detection accuracy.

The proposed algorithm requires the visible and NIR bands of remote-sensing data for
detecting burned areas; therefore, this method shares the disadvantages observed in many
optical remote-sensing techniques. For example, a clear ground view is always critical for
any Earth observation-related applications, but the availability of remote-sensing data with
clear views over fire scenes is not always guaranteed. Other noise caused by sensors,
cloud masks, and cloud shadows will also introduce commission and omission errors in
burned pixel detection.

Benefiting from the high temporal resolution and minimal data input, the algorithm could
be used as an alternative approach in rapid response systems for fire management authorities,
such as the USA forest service. However, comprehensive validations should be conducted
prior to deployment in operational environments. In addition, the currently proposed burned
area detection algorithmwas developed based only on data acquired over the continental USA
because only USA data are included in the GeoMAC validation database; therefore, more
training samples obtained from other regions of the world are required to build a more general
detection model for applications in other regional fire management authorities.
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