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ABSTRACT

Smoke plume rise is an important factor for smoke transport and air quality impact modeling. This study

provides a practical tool for estimating plume rise of prescribed fires. A regression model was developed on

the basis of observed smoke plume rise for 20 prescribed fires in the southeastern United States. The in-

dependent variables include surface wind, air temperature, fuel moisture, and atmospheric planetary

boundary layer (PBL) height. The first three variables were obtained from the Remote Automatic Weather

Stations, most of which are installed in locations where they can monitor local fire danger and are easily

accessed by firemanagers. The PBL height was simulated with theWeather Research and ForecastingModel.

The confidence and validation analyses indicate that the regressionmodel is significant at the 95% confidence

level and able to predict hourly values and the average smoke plume rise during a burn, respectively. The

prediction of the average smoke plume rise shows larger skills. Themodel also shows improved skills over two

extensively used empirical models for the prescribed burn cases examined in this study, suggesting that it may

have the potential to improve smoke plume rise and air quality modeling for prescribed burns. The regression

model, however, tends to underestimate large plume rise values and overestimate small ones. A suite of

alternative regression models was also provided, one of which can be used when no PBL information is

available.

1. Introduction

Prescribed fire (Rx fire) is a forest management tool

to reduce the buildup of hazardous fuels and the risk

of destructive wildfire. Any fire is ignited by manage-

ment actions under a predetermined ‘‘window’’ of very

specific conditions including winds, temperatures, hu-

midity, and other factors specified in a written and ap-

proved burn plan. Rx fire has been widely used. In the

southern United States, for example, about 2–3 million

ha (6–8 million acres) of forest and agricultural lands

are burned by Rx fire each year (Wade et al. 2000).

Emissions fromRx fire, however, can impact air quality.

Biomass burning is a primary source of ambient par-

ticulate matter # 2.5mm in diameter (PM2.5) in less

populated areas in the southeastern United States (Lee

et al. 2007). Smoke plumes from two Rx fires in central

Georgia led to ground PM2.5 concentrations much

higher than the daily U.S. National Ambient Air

Quality Standards (Hu et al. 2008; Liu et al. 2009).

Smoke plume rise, also called smoke plume height, is

the elevation above the ground of the top of a smoke

plume. A typical plume rise is about 1 km for Rx fires

and several kilometers for wildfires. Smoke plume rise is

an important factor for local and regional air quality

modeling. Particles emitted from Rx fires with a higher

plume rise are more likely to be transported out of the

rural burn site and may affect air quality in downwind

remote populated areas. Plume rise is required by many

regional air quality models. The Community Multiscale

Air Quality (CMAQ)model (Byun and Ching 1999; Byun

and Schere 2006), for example, uses the Sparse Matrix

Operator Kernel Emissions (SMOKE; Houyoux et al.

2002) modeling system to provide plume rise as part of

the initial and boundary conditions for elevated emission

sources, including fire emissions.

Various smoke plume rise models have been devel-

oped using dynamical (e.g., Latham 1994; Freitas et al.

2007, 2009), empirical (e.g., Briggs 1975; Pouliot et al.

2005), and hybrid (Achtemeier et al. 2011) approaches.

One of the differences among various approaches is the
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degree of complexity. Dynamical models consist of dif-

ferential equations governing fluxes of mass, momentum,

and energy that often require time and space integration.

Details of fire behavior and ambient conditions at high

spatiotemporal resolutions (e.g., seconds and meters) are

needed. Empirical models, on the other hand, are based

on field and laboratory measurements using statistical or

similarity theory. They usually appear as algebraic ex-

pressions that require burn and ambient conditions at

a lower time frequency (e.g., 1 h) without spatial resolu-

tion. The simplicity of empirical models makes them

a more practical tool for forest managers. Empirical

models have been included in many fire and air quality

management systems such as the Fire Emission Pro-

duction Simulator (FEPS; Anderson et al. 2004), the

Western Regional Air Partnership’s Fire Emission In-

ventory (Western Regional Air Partnership 2005), and the

BlueSky smoke modeling system (Larkin et al. 2009).

Empirical models often use parameters related to

fire behavior and atmospheric conditions. The modified

Briggs model used in FEPS (Anderson et al. 2004), for

example, calculates smoke plume rise using fire heat

release, transport wind [averaged wind within the at-

mospheric planetary boundary layer (PBL)], and at-

mospheric stability. Heat release is determined by fuel

and fire properties including fuel loading, consumption

rate, combustion efficiency, buoyant efficiency, and en-

trainment efficiency. The uncertainty in the related burn

properties such as burned area, burn phase (flaming or

smoldering) partition, and many empirical parameters is

one of the error sources.

On the basis of the statistics of plume rise measure-

ments of Rx fires in the southeastern United States,

Liu et al. (2012) proposed a guideline for fire and land

managers to estimate smoke plume rise without using any

burn and meteorological information. The averaged

smoke plume rise over 20 Rx fires, about 1 km, was sug-

gested to be a first-order approximation. A second-order

approximation was suggested by making seasonal ad-

justments, that is, using the average value for spring and

fall, decreasing by 0.2 km from the average for winter, and

increasing by 0.2 km for summer. The guidelinemay avoid

the uncertainty related to the burn property specification

with the empirical models such as the one used in FEPS,

but it is unable to describe the variability in smoke plume

related to fire behavior and meteorological conditions.

This study was designed to develop an empirical re-

gression model for smoke plume rise of Rx fire, which

has a complexity level in between the FEPS approach

(Anderson et al. 2004) and the guideline (Liu et al.

2012). Similar to Liu et al. (2012), this study was based

on plume rise measurements of Rx fires in the south-

eastern United States. However, only meteorological

conditions, which include both forest understory (a layer

between the canopy and forest floor that is made up of

small trees, bushes, and large green plants) fuel conditions

(temperature andmoisture) andweather conditions (wind

and PBL height) in this study, were taken into account;

a buoyancy factor determined by heat release from burn,

which is used in many existing empirical models such as

FEPS (Anderson et al. 2004), was not used. The major

source for the meteorological conditions was the Remote

Automatic Weather Stations (RAWS; http://raws.fam.

nwcg.gov/). RAWS is run by the U.S. Forest Service and

the U.S. Bureau of Land Management and monitored by

the National Interagency Fire Center. There are more

than 2000 stations across the United States, most of which

are placed in locations where they canmonitor fire danger.

Thus, the empirical model has the potential to be a prac-

tical tool for fire and land managers as well as researchers

to obtain smoke plume rise information needed for as-

sessing the air quality impacts of smoke from Rx fires.

The rest of this paper is arranged as follows. The data

and methods are described in section 2. The meteoro-

logical conditions and relationships with smoke plume

rise variations are described in section 3. The models and

evaluation are presented in section 4, and the discussion

and conclusions are provided in the last two sections.

2. Data and methods

a. Smoke plume rise measurement

The smoke plume rise for 20 Rx fires in the south-

easternUnited Stateswasmeasured during 2009–11 using

a Vaisala, Inc., CL31 ceilometer [a light detection and

ranging (lidar) device] with a frequency of 2 s and vertical

resolution of 20m. The results were analyzed in Liu et al.

(2012). A summary of the fires is provided in Table 1. Six

burns (denoted as F1–F6) occurred at the Fort Benning

Army Base (32.338N, 84.798W, near Columbus in south-

western Georgia), five (O1–O5) occurred at the Oconee

National Forest (33.548N, 83.468W, in central Georgia),

one (P1) occurred at the Piedmont National Wildlife

Refuge (33.158N, 83.428W, in central Georgia), and eight

(E1–E8) occurred at the Eglin Air Force Base (30.158N,

86.558W, near Niceville in northwestern Florida). The

burns were typical Rx fires for the southeastern United

States, with fuel types of mainly pine understory dead

fuels and a few live fuels. The burns had varied sizes

(about half of the burns between 500 and about 1000

acres and half over 1000 acres), occurred in three seasons

(5 in winter, 13 in spring, and 2 in summer), and applied

aerial (11 burns) and ground (9 burns) ignition tech-

niques. Burning lasted between 1 and 6h, mostly during

afternoon hours. Cloudy conditions appeared for a few

burn cases.
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b. Meteorological data

The RAWS observation data at four stations were

used. The Fort Benning station has the same location as

the corresponding burn site. The Brender station is lo-

cated near the southwestern side of the Piedmont and

Oconee burn sites. Two other stations are Naval Live

Oaks by the Florida coast and Open Pond at the Florida–

Alabama border, about 60kmwest and north of the burn

site at Eglin, respectively. The averaged meteorological

conditions over the two stations were used for Eglin. The

automated measurements include solar radiation, wind

speed and direction, wind gusts, air temperature, fuel

temperature, fuel moisture, relative humidity, dewpoint,

wet bulb, and precipitation. Only wind, air temperature,

fuel temperature, fuel moisture (10h), and relative hu-

midity were used in this study.

In addition, the vertical meteorological profiles at

the grid points near RAWS simulated with theWeather

Research and Forecasting (WRF) Model (Skamarock

et al. 2008) were used to estimate PBL height, transport

wind, and the stability factor. TheWRF domain covered

the southeastern United States with a resolution of 4 km

and 27 vertical layers. The Yonsei University scheme for

PBL processes was selected, which uses a nonlocal K

scheme with explicit entrainment layer and parabolic K

profile in unstable mixed layer. The PBL height was

defined as the geometric height of a model level where

potential temperature starts to increase upward. The

stability factor used in this study was defined as the dif-

ference in air temperature between themodel levels near

the ground and at the PBL height (multiplying gravity

acceleration and divided by temperature).

Figure 1 shows hourly variations of smoke plume rise

and meteorological conditions for each of 19 fires (the

fire F2 is not shown because it was only 1 h long). The

hourly trends of smoke plume rise are classified into

increase, decrease, and flat groups (Table 2). For the

increase group, hourly smoke plume rise either increases

constantly or fluctuates with time but with an overall

increasing trend over the burn period.

Three out of the four variables show consistent trends

for the increase group. Fuel moisture reduces with time

for all 11 burns, PBL height increases or is flat for 10 burns,

and surface wind increases or stays steady for 9 burns. Fuel

temperature, however, has mixed trends for these burns.

Drying fuel or active PBL favors the development of

smoke plume, while increasing wind suppresses the de-

velopment of smoke plume to a larger degree.

Inconsistency is found mainly for two other trend

groups. For the five burns in the decrease group, there

are no consistent trends in various variables except for

fuel temperature, which decreases with time for four

burns. For the three burns in the flat group, there are no

dominant trends in all variables.

c. Regression model

We here use index notation in the following way:

i 5 1, . . . , I is used to represent a specific hour during a

burn case, where I is the length of the burn (h); j5 1, . . . ,

J is used to represent a burn, where J is the number of

TABLE 1. Prescribed fire information.

Site Fire Date Acres Period

Length

(h)

Element No.

Hour Avg

Fort Benning F1 14 Jan 2009 364 13–14 2 1–2 1

F2 15 Jan 2009 583 13 1 3 2

F3 8 Apr 2009 236 13–14 2 4–5 3

F4 9 Apr 2009 343 13–14 2 6–7 4

F5 28 Apr 2010 1000 14–15 2 8–9 5

F6 29 Apr 2010 447 11–13 3 10–12 6

Oconee O1 24 Mar 2009 1580 13–15 3 13–15 7

O2 25 Mar 2010 2500 11–14 4 16–19 8

O3 1 Apr 2010 725 12–15 4 20–23 9

O4 2 Apr 2010 1069 12–14 3 24–26 10

O5 7 Apr 2010 996 1–15 6 27–32 11

Piedmont P1 27 Apr 2009 1195 12–14 3 33–35 12

Eglin E1 6 May 2009 500 14–15 2 36–37 13

E2 7 May 2009 641 12–16 5 38–42 14

E3 8 May 2009 1058 15–16 2 43–44 15

E4 6 Jun 2009 1500 14–15 2 45–46 16

E5 7 Jun 2009 1600 12–16 4 47–50 17

E6 6 Feb 2011 1650 14–15 2 51–52 18

E7 8 Feb 2011 2046 13–15 3 53–55 19

E8 12 Feb 2011 500 12–14 3 56–58 20
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total burn cases; l 5 1, . . . , L is used to represent an el-

ement in a smoke plume rise sequence, where L is the

sum of I ( j); m 5 1, . . . , M is used to represent an in-

dividual meteorological variable, whereM is the number

ofvariablesusedtobuildaregressionmodel;n5 1, . . . ,N is

used to represent an individual element in a smoke mea-

surement sequence, whereN is the number of elements in

a smoke plume sequence; and k 5 1, . . . , N is used to

represent new sequences created for cross validation.

A multiple linear regression model for smoke plume

rise H can be written as

H5b01 �
M

m51

bmXm , (1)

FIG. 1. Variation trends of hourly plume rise and meteorological variables, where each panel represents one burn. The x and y axes are

hour of the day during a fire and smoke plume rise (m), respectively. The ranges formeteorological variables are between 1 and 5m s21 for

surface wind speed, 108 and 508C for fuel temperature, 5% and 15% for fuel moisture, and 600 and 2200m for PBL height.
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where b0 is the regression intercept, bm are regression

coefficients, and Xm are meteorological variables.

d. Validation

Two approaches were used to validate the model

performance. The first one included three analyses based

on the regression model and the original smoke meteo-

rological data. The first analysis looks at the statistical

significance of regression coefficients and model through

t test and F test (Blackwell 2008). The critical value is

dependent onM,N, and the selected confidence level. A

confidence level of 95% was used, meaning that there is

a probability of 5 out of 100 cases that a coefficient or

regression model would produce a false result. The sec-

ond analysis is concerned with errors of simulation with

the regression model. Smoke plume rise was simulated

using the regression model with the observed meteoro-

logical variables as inputs, which produced a simulated

smoke plume rise sequence Hsimu(n). The differences

with the observed sequence Hobs(n) were measured by

mean error (ME) and root-mean-square error (RMSE)

to understand the systematic and random errors:

ME5
1

N
�
N

n51

[Hsimu(n)2Hobs(n)] and (2)

RMSE5

(
1

N
�
N

n51

[Hsimu(n)2Hobs(n)]
2

)0:5

. (3)

The third analysis compares simulated and observed

smoke plume rise using scatterplot with N samples.

The other approach was to use a cross-validation

technique (Barnett and Preisendorfer 1987) to validate

model prediction skills based on new created data sub-

sets and regression models. A technique traditionally

used for model validation is to split samples in original

dataset into model development and evaluation subsets.

There were only 20 burns available for this study and the

sample number would be even smaller after the splitting.

Thus, this technique was not used for this study; instead,

cross validation, a useful tool for evaluation of a model

with limited number of samples, was used. The pro-

cedure to conduct this validation is as follows:

1) Create new smoke plume rise subsets for model

formation and evaluation. The model formation sub-

set consists ofN new sequences with the elementH0
obs

(n, k), where k5 1, . . . ,N. The kth new sequence has

the same elements as the original sequence Hobs(n)

except that the kth element is removed. Thus, the new

sequence has (N 2 1) elements. The evaluation

subset sequenceH0
eva (k) where k5 1, . . . ,N consists

of all the removed elements.

2) Create new meteorological variable subsets for

model formation and prediction from the original

datasetXm,obs (n), where n5 1, . . . ,N using the same

technique. The model formation subset consists

of N new sequences X 0
m,obs (n, k), where n 5 1, . . . ,

N2 1 and k5 1, . . . ,N.The prediction subset consists

of a sequence X 0
m,pred (k), where k 5 1, . . . , N.

3) Build N new regression models: H(k) 5 b0(k)1 (k)

using H0
obs (n, k) and X 0

m,obs (n, k), where n 5 1, . . . ,

N 2 1 and k 5 1, . . . , N. Note that the coefficients bm
(m5 0, . . . ,M) here are different from the coefficients

in Eq. (1).

4) Use the new models with X 0
m,pred(k) as inputs to

predict smoke plume riseX 0
pred(k), wherem5 1, . . . ,

M and k 5 1, . . . , N.

5) The cross validation was conducted in a categorical

way. Here H0
eva(k) (k 5 1, . . . , N) was categorized

into the group of positive anomaly if $0.5 SDobs

(where SDobs is the standard deviation of the obser-

vations), negative anomaly if #20.5 SDobs, or nor-

mal if otherwise. The same categorization was made

for H0
pred(k). The sequence was assumed to have

a binomial distribution. There was a probability of

p5 1/3 forH0
eva(k) andH0

pred(k) to be in a same group

and a probability of q 5 2/3 to be in different groups.

6) The prediction skill of the regression model is S 5
Nc/N, where Nc is the number of same group occur-

rence (correct number). Assuming that the binomial

distribution could be approximated by normal distri-

bution, a z score (Blackwell 2008) defined as z5
(S2 p)/(pq/N)1/2 was used to test the statistical sig-

nificance of the regression model, together with the

p score. The z score is a statistical significance indicator

that determines whether to reject a null hypothesis,

TABLE 2. Trends of hourly smoke plume rise and meteorological variables. The signs represent increase (/), decrease (\), and flat with or

without fluctuation (2).

Plume rise

trend Fire

Meteorological variable trend

Wind Fuel temperature Fuel moisture PBL height

Increase F1, F3, O3, P1, E1, E8 /, /, \, /, /, 2 /, \, /, /, \, 2 \, \, \, \, \, \ /, /,2, /, \, /

O2, O4, O5, E2, E5 \, 2, 2, /, / \, /, /, 2, \ \, \, \, \, \ 2, /, /, /, /

Decrease F4, O1, E3, E4, E6 /, \, /, \, 2 \, \, \, 2, \ \, 2, /, /, \ \, 2, 2, 2, 2
Flat F5, F6, E7 \, \, 2 2, /, \ \, \, 2 /, 2, 2
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that is, the analyzed pattern (the simulated plume rise

falls into a same group of positive anomaly, negative

anomaly, or normal as the observed plume rise) is

likely randomly generated. For a critical value zcri,

which is 1.95 at the 95% confidence level, the hypoth-

esis is rejected if z score . 1zcri (z score . 0) or

z score , 2zcri (z score , 0). A p value (the pro-

bability that the null hypothesis has been falsely re-

jected) smaller than the corresponding significance

level (0.05) was used as another criterion.

Note that a total of N new models were developed that

produced N predicted smoke plume rise values in the

cross-validation procedure.

3. Meteorological conditions

a. Hourly sequence

RAWS observation data were available hourly. WRF

simulation outputs at each hour were used accordingly.

Hourly smoke plume rise was obtained by averaging the

observed values over each of the individual hours during

a burn period. Smoke measurement during the first or

final hour of a burn period was usually less than 60min.

The average for the hour was not included in the smoke

plume rise sequence if the measurement length was less

than 25min. One exception was the first hour for E5,

which had a smokemeasurement length of about 50min,

but heavy clouds were on top of the smoke layer and

therefore the detected heights by the ceilometer were

likely those of the clouds rather smoke plume. For this

study, I ( j) ranged between 1 and 6 for j 5 1, . . . , J, and

J5 20 (Table 1). An hourly smoke plume rise sequence

Hhour(l) was formed, where l5 1, . . . ,L andL5 58. The

corresponding hourly sequence was formed for each of

the meteorological variables.

Figure 2 shows variations of hourly smoke plume rise

sequence versus each of the four meteorological vari-

able sequences. The sequence elements were normal-

ized by subtracting each element from the sequence

average and divided by the standard deviation (SD).

The entire smoke plume rise sequence is composed of

five portions, including the negative first (F1–F4), third

(from late hours of E1 to early hours of E2), and fifth

(from late hours of E6 to early hours of E8) portions,

and positive second and fourth portions covering the

elements in between two adjacent negative portions.

There is an exception with the second portion, which has

small negative values at a few hours for O1, O3, and O5.

Wind and fuel moisture vary in an opposite direction

to smoke plume rise. Fuel temperature, on the other

hand, follows smoke plume rise closely, despite the

difference occurring in the third portion where plume

rise is negative while temperature is positive, and from

the first portion to the first half of the second portion

where both have an increasing trend, but temperature

remains negative while plume rise has turned to be

positive. PBL height also generally follows plume rise

except for the first half of the second portion.

The statistics of the hourly sequence are provided

inTable 3. Besides themeteorological variables described

above, four other variables (air temperature, air relative

humidity, transport wind, and stability factor) are also

analyzed for comparison. As indicated below, air relative

humidity and transport wind have low correlations with

smoke plume rise, while surface air temperature and

stability have similar relationships with smoke plume rise

to fuel temperature and PBL height, respectively.

Fuel temperature and surface air temperature have

the averages of 308 and 22.48C and SDs of 8.68 and 7.48C,
respectively. The correlation coefficients with smoke

plume rise are 0.434 and 0.464, which are statistically

significant (at the 95% confidence level, same hereaf-

ter). The critical value is 0.33. Fuel and air temperature

are related to sensible heat energy for smoke plume

lifting. PBL height and stability factor have the averages

of 1320m and 0.3m s22 and SDs of 385m and 0.1m s22,

respectively. The correlation coefficients are around

0.40 and are significant. Similar to smoke plume, the

development of PBL and status of atmospheric stability

depend on sensible heat from the ground. The surface

and transport winds have the averages of 3.0 and

5.7m s21 and SDs of 0.83 and 2.5m s21, respectively.

The correlation coefficients of 20.22 for the surface

wind and 20.15 for transport wind are insignificant.

Winds make the smoke plume move horizontally and

therefore reduce the buoyancy in the smoke area for

vertical lifting of smoke plume. Fuel moisture and air

relative humidity have the averages of 8.69% and 43.2%,

and SDs of 2.13% and 13.2%, respectively. Both are

negatively correlated to smoke plume rise with a mag-

nitude of 0.53 for fuel moisture (significant), but only

0.02 for relative humidity (insignificant). Evaporation

of water within fuels during burning consumes latent

heat, which reduces the sensible heat energy used to lift

smoke plume.

b. Average sequence

An average sequence of smoke plume rise, Havg(l)

(l 5 1, . . . , L, and L 5 20 for this study),was formed,

where the lth element is the average ofHhour(l) over the

hours I ( j) for the jth burn. The corresponding average

sequence was formed for each of the meteorological

variables. The average sequence shows the same feature

as the hourly sequence, but the relationships between

average meteorological variables and smoke plume rise
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are closer (Fig. 3). The correlation coefficients have

the same signs for each of the meteorological variables

between the average and hourly sequence. The mag-

nitude, however, is larger for the average sequence.

The coefficients are 0.683 and 0.874 for air and fuel

temperature and 20.583 and 0.582 for fuel moisture

and PBL height (all significant; the critical value is

0.56), 0.538 for the stability factor (close to the

TABLE 3. Statistics of smoke plume rise and meteorological variables. The notations of avg, SD, and r represent average, standard

deviation, and correlation coefficient between plume rise and a meteorological variable.

Plume rise and

meteorological variable Unit

Hourly sequence Avg sequence

Avg SD r (%) Avg SD r (%)

Hobs Plume rise m 1048 187 — 1023 158 —

Vsfc Surface wind m s21 2.9 0.8 221.6 3.0 0.8 242.2

Ta Air temperature 8C 23.6 6.8 46.4 22.4 7.4 67.4

Tf Fuel temperature 8C 31.5 8.1 43.4 30.2 8.5 68.3

Mf Fuel moisture % 8.4 2.0 252.6 8.7 2.1 258.5

RH Air humidity % 43.2 13.2 2.4 42.0 12.8 20.1

HPBL PBL height m 1320 385 44.8 1289 365 58.2

Vt Transport wind m s21 5.7 2.5 215.2 5.5 2.4 223.4

SF Stability factor m s22 0.3 0.1 39.5 0.3 0.1 53.8

FIG. 2. Variations of normalized hourly smoke plume rise and meteorological variables: (top) wind, (top middle)

fuel temperature, (bottommiddle) fuel moisture, and (bottom) PBL height. Theminor ticks in the x axis are different

hours during a fire. The vertical lines separate various sequence portions.
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significant level), 20.422 for surface wind, and 20.234

and 0.201 for transport wind and air relative humidity

(insignificant).

4. Regression models

a. Reference model

The regression model formed using four meteoro-

logical variables (surface wind speed, air temperature,

fuel moisture, and PBL height), denoted as RxPrise

(prescribed fire plume rise), is described here as a ref-

erence model. When selecting predictors, those vari-

ables that were insignificantly correlated with plume

rise were not considered. Air relative humidity was one

of such variables. In addition, considering the close

relations between surface wind and transport wind, air

temperature and fuel temperature, and PBL height and

stability factor, transport wind, fuel temperature, and

stability factor were not selected in the referencemodel

to avoid multicolinearity. For the same reason, one

variable in each pair of variables was not selected if the

other was selected in the alternative models described

below. It has two forms for hourly and average smoke

plume rise prediction, respectively. The regression

coefficients are listed in Table 4. The model for hourly

smoke plume rise has an intercept b0 of 1111m, which

is 63m more than the observed average of smoke

plume rise. The regression coefficients b1–b4 are

264.95, 5.425, 224.64, and 0.153. The corresponding

95% confidence level intervals are (2116.2, 213.7),

(20.62, 11.48), (245.0, 24.3), and (0.046, 0.26). The p

values are 0.0093, 0.0616, 0.0127, and 0.0035, re-

spectively. Three of the four coefficients are statisti-

cally significant at the 95% confidence level, while the

one for air temperature is close to the level. Thus, all

the four variables are important to smoke plume rise

modeling.

The reference model for average smoke plume rise

has an intercept b0 of 885m. The regression coeffi-

cients b1–b4 are 282.56, 11.19, 24.06, and 0.133. The

FIG. 3. As in Fig. 2, but for the average sequence.
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corresponding 95% confidence intervals are (2130.3,

234.8), (5.73, 16.7), (223.3, 15.2), and (0.022, 0.245). The

p values are 0.0035, 0.0095, 0.68, and 0.0298, respectively.

All coefficients except the one for fuel moisture are sta-

tistically significant at the 95% confidence level. This

suggests that fuel moisture is not important to smoke

plume rise modeling. The average value of a variable can

be used if it is not important to the regression model.

b. Alternative models

Five alternative models were formed. RxPrise-Tf is the

same as RxPrise except using fuel temperature instead of

air temperature. The model is presented in Table 4 as

well. The regression coefficients of themodel have similar

statistical significance to the corresponding coefficients of

the reference model, that is, all meeting the criteria for

the 95% confidence level except for the average fuel

moisture. However, the coefficient for hourly fuel tem-

perature is insignificant at the 95% confidence level.

RxPrise-SF and RxPrise-Vt are the same as RxPrise

except using stability factor and transport wind, respec-

tively, instead of PBL height. Their significance prop-

erties, presented in Table 5, are very close to those of

RxPrise.

RxPrise-sfc andRxPrise-Tf -sfc are the same asRxPrise

andRxPrise-Tf, respectively, except only using the three

surface variables. The first two regression coefficients

are statistically significant at the 95% confidence level

(Table 6).

c. Errors

Simulations with the reference model as well as the

alternatives were conducted. The errors were obtained

through calculating the differences between the simu-

lated and the observed smoke plume rise. Table 7 shows

errors and statistical properties of these models. For

hourly modeling, RxPrise has a small systematic error of

ME5 4.6m, which is about 2.5% of the SD value. But it

has a large RMSE value of 141m, which is 75% of the

SD value. The squared correlation coefficient is 43%

with an adjusted value of 39%, meaning the simulated

smoke plume rise explains less than one-half of the ob-

served smoke plume rise variance, though the regression

model is significant at the 95% confidence level.

RxPrise for average smoke plume rise modeling has

a systematic error of ME 5 9.6m (about 6% of the SD

value) and random error of RMSE 5 69m (about 44%

of the SD value). This indicates an increased systematic

error but decreased random error in comparison with

the hourly plume risemodeling. The squared correlation

coefficient is 75% with an adjusted value of 69%,

meaning the simulation explains about three-fourths of

the observed smoke plume rise variance, which is much

improved over the hourly modeling. The regression

TABLE 4. Regression models RxPrise and RxPrise-Tf. The quantity b0 is the intercept, and b1–b4 are regression coefficients for surface

wind (Vsfc), air temperature (Ta) or fuel temperature (Tf), fuel moisture (Mf), and PBL height (HPBL). The lower and upper values are

95% confidence intervals of the regression coefficients.

Regression coef (variable)

RxPrise b0 b1 (Vsfc) b2 (Ta) b3 (Mf) b4 (HPBL)

Hourly Value 1111 264.95 5.425 224.64 0.153

Lower 2116.2 20.63 245.0 0.046

Upper 213.7 11.48 24.3 0.260

t value 22.70 1.91 22.58 3.06

p value 0.0093 0.0616 0.0127 0.0035

Avg Value 885 282.56 11.19 24.06 0.133

Lower 2130.3 5.73 223.3 0.022

Upper 234.8 16.7 15.2 0.245

t value 23.46 4.1 20.42 2.4

p value 0.0035 0.0095 0.68 0.0298

RxPrise-Tf b0 b1 (Vsfc) b2 (Tf) b3 (Mf) b4 (HPBL)

Hourly Value 1112 263.9 3.85 225.78 0.163

Lower 2115.4 21.26 246.2 0.055

Upper 212.3 8.96 25.33 0.27

t value 22.64 1.60 22.69 3.22

p value 0.0109 0.116 0.0095 0.0022

Avg Value 711 283.6 11.26 3.60 0.15

Lower 2128.7 6.79 214.6 0.045

Upper 238.5 15.74 21.8 0.255

t value 23.71 5.03 0.40 2.85

p value 0.0021 0.0002 0.695 0.0122
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model for average smoke plume rise is significant at the

95% confidence level.

RxPrise-Tf, RxPrise-SF, and RxPrise-Vt have com-

parable variance contributions to RxPrise, differing by

1% for hourly modeling and 4% or smaller for average

modeling. The contributions from RxPrise-sfc and

RxPrise-Tf -sfc, however, are up to 10% for hourly mod-

eling and 7% for average modeling smaller than those

fromRxPrise. This suggests that themodeling accuracy is

increased considerably by using the information on at-

mospheric PBL. Besides the fact that a regression model

will increase the contribution to total variance of the

simulated sequence with an additional variable, PBL

height is a good indicator for PBL development; after

smoke particles are released from fire, the rise of smoke

plume largely depends on PBL conditions.

Figure 4 compares the simulated smoke plume rise

using RxPrise and RxPrise-sfc with the observed plume

rise [the first model validation approach described in

section 2d (model validation)]. A model overestimates,

exactly estimates, or underestimates an observed plume

rise, respectively, if the corresponding point is located

above, on, or below the line with a unit slope. For the

simulation of hourly plume rise with RxPrise or

RxPrise-sfc (Fig 4, top), there are comparable numbers

of points located above and below the line. The over-

estimated values largely offset the underestimated ones,

leading to the small modeling systematic error as

described above. However, the models tend to un-

derestimate smoke plume rise when the observed smoke

plume rise is large and overestimate it when the ob-

served rise is low. This indicates a limitation in the

TABLE 5. As in Table 4, but for RxPrise-SM and RxPrise-Vt and with regression coefficients for surface wind (Vsfc) or transport wind (Vt),

air temperature (Ta), and PBL height (HPBL) or stability factor (SF).

Regression coef (variable)

RxPrise-SF b0 b1 (Vsfc) b2 (Ta) b3 (Mf) b4 (SF)

Hourly Value 1060 260.09 7.657 222.65 510.97

Lower 2111.9 1.54 243.2 100.8

Upper 28.3 13.78 22.09 921.1

t value 22.47 2.66 22.35 2.63

p value 0.0168 0.0103 0.0225 0.0112

Avg Value 785 278.72 13.24 0.905 511.4

Lower 2124.7 7.98 217.7 130.7

Upper 232.7 18.5 19.5 892.1

t value 23.42 5.03 0.1 2.69

p value 0.0038 0.0002 0.922 0.0168

RxPrise-Vt b0 b1 (Vt) b2 (Ta) b3 (Mf) b4 (HPBL)

Hourly Value 1000 222.48 7.341 222.8 0.143

Lower 248.1 1.25 243.3 0.035

Upper 24.82 13.43 22.34 0.25

t value 22.71 2.57 22.37 2.82

p value 0.009 0.013 0.0215 0.0067

Avg Value 685 227.13 13.64 0.41 0.138

Lower 245.5 7.7 220.5 0.017

Upper 28.8 19.6 21.3 0.258

t value 22.96 4.61 0.04 2.29

p value 0.0097 0.0003 0.91 0.0369

TABLE 6. As in Table 4, but for RxPrise-sfc and RxPrise-Tf-sfc.

Regression coef (variable)

RxPrise-sfc b0 b1 (Vsfc) b2 (Ta) b3 (Mf)

Hourly Value 1284 257.61 7.58 229.77

Lower 2112.0 1.16 251.4

Upper 23.2 14.0 28.2

t value 22.26 2.51 22.94

p value 0.0279 0.0151 0.0048

Avg Value 1086 285.09 12.78 210.65

Lower 2137.6 6.77 231.9

Upper 232.6 18.79 10.6

t value 23.24 4.25 21.0

p value 0.0051 0.0004 0.332

RxPrise-Tf -sfc b0 b1(Vsfc) b2 (Tf) b3 (Mf)

Hourly Value 1349 253.7 4.54 234.66

Lower 2108.9 20.93 256.5

Upper 1.46 10.02 212.8

t value 22.07 1.77 23.37

p value 0.0109 0.116 0.0095

Avg Value 971 285.8 12.03 25.98

Lower 2137.9 6.86 227.0

Upper 233.7 17.2 15.1

t value 23.30 4.65 20.57

p value 0.0021 0.0002 0.695
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model’s capacity in predicting extreme smoke plume

rise. This limitation is more noticeable for RxPrise-sfc.

However, because the extremes occur less often in the

average sequence, the models have much improved ca-

pacity in simulating the average smoke plume rise (Fig 4,

bottom) than the hourly rise.

The complex control of the meteorological conditions

on smoke plume rise could be one reason for the limi-

tation. For example, in the model developed by Briggs

(1975) based on laboratory measurements of stack

plume, plume rise is proportional toV24/3
t under a stable

condition. In comparison with this relation, a linear re-

lation such as RxPrise would predict a slower increase

(decrease) in smoke plume rise with decreasing (in-

creasing) wind speed. This would lead to an underestimate

(overestimate) of actual large (small) plume rise.

d. Cross validation

Using the second model validation approach described

in the data and methods section, smoke plume rise at each

of the individual hours and the average over a burn period

was ‘‘predicted.’’ Figures 5 and 6 show the hourly and av-

erage smoke plume rise predicted using RxPrise and

RxPrise-sfc, respectively. As described in the data and

methods section, new data subsets were created for model

formation and evaluation with the cross-validation pro-

cedure. The validation subset had a sample number ofL5
58 for the hourly plume rise and L 5 20 for the average

plume rise sequence. It can be seen that RxPrise is able to

produce the observed hourly high plume rise (peak values)

during F6, O3–O5, P1, and E5 and the low rise (valley

values) during F1, O1, O4, E3, and E7–E8. However, it

misses the large values during O2 and E2 and the low

values during F3, F4, O1–O2, O5, and E2. The predicted

smoke plume rise with RxPrise-sfc has more values falling

closer to the normal category. Meanwhile, the predicted

average smoke plume rise follows the observed one very

well. RxPrise is able to produce the observed high plume

rise values for F4–F6, O2–O3, O5, and E4 and the low rise

values for F1 andE6.However, itmisses the high rise value

for F3. In comparison, the prediction with RxPrise-sfc

differs more from the measurement for most burns.

The cross-validation results for RxPrise are provided in

Table 8. The predicted sequence has 20, 18, and 20 elements

in the positive anomaly, negative anomaly, and normal

groups, respectively. The corresponding numbers for the

observed sequence are 16, 19, and 23. The correct number is

33 out of total 58 elements, leading to a prediction skill of

56%.Thecorresponding z score is 3.81,which is greater than

the critical value at the 95% confidence level. The p score is

0.0001, which is smaller than the critical value of 0.05. Thus,

the model is statistically significant. The predicted average

sequence has 8, 6, and 6 elements in the positive anomaly,

negative anomaly, and normal groups, in comparison with

the numbers for the observed sequence of 7, 5, and 8. The

correct number is 14 out of total 20 elements, leading to

a prediction skill of 67%. The corresponding z score is 3.48

and the p value is 0.0005, both of which are significant.

For the prediction of hourly smoke plume rise with

RxPrise-sfc, the correct number is only 23outof 58 elements,

leading to a lowskill of 40%with az scoreof 1.02 andp score

of 0.308, both ofwhich are insignificant. For the prediction of

average smoke plume rise, the correct number is 10 out of 20

elements, leading to a skill of 50%with a z score of 1.58 and

p score of 0.114, both of which are also insignificant. Thus,

this alternative model has no statistical skills.

However, things will change if replacing Ta with Tf.

The z score and p score for RxPrise-Tf -sfc are 2.69 and

0.007 for hourly plume rise prediction and 3.0 and 0.003

for average plume rise prediction, all are significant at

the 95% confidence level.

5. Discussion

1) A regression model as well as its alternatives with

statistical significance has been formulated to

TABLE 7. Model errors and statistical significance. Here R2 and R2
adj are squared regression correlation coefficient and adjusted value by

sample numbers.

Model ME RMSE R2 R2
adj F value p value (31023)

RxPrise Hourly 4.6 141 0.43 0.39 10.1 0.004

Avg 9.6 69 0.75 0.69 11.4 0.19

RxPrise-Tf Hourly 4.6 141 0.43 0.39 9.9 0.005

Avg 10.5 63 0.78 0.72 13.3 0.08

RxPrise-SF Hourly 4.4 143 0.42 0.38 9.7 0.006

Avg 9.2 67 0.77 0.71 12.6 0.011

RxPrise-Vt Hourly 4.1 142 0.43 0.38 9.9 0.005

Avg 8.9 78 0.71 0.63 9.2 0.58

RxPrise-sfc Hourly 3.9 151 0.35 0.31 9.7 0.007

Avg 6.0 81 0.68 0.62 11.4 0.30

RxPrise-Tf-sfc Hourly 4.1 153 0.33 0.30 9.0 0.016

Avg 6.9 79 0.69 0.63 11.7 0.26
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provide a practical tool for fire managers to estimate

plume rise of prescribed burns. To further under-

stand the value of the regression model, the results

from the model were compared with the preliminary

results fromDaysmoke (Liu et al. 2010) and the FEPS

plume rise scheme (the modified Briggs scheme) in

simulating the average plume rise sequence of the 20

prescribed burns. The results from the two empirical

models will be described in detail in Y.-Q. Liu et al.

(2013, unpublished manuscript). The ME and RMSE

are 25.6 and 94m for the regression model, 19 and

281m for Daysmoke, and 184 and 765m for the FEPS

scheme. Thus, the regression model has much smaller

errors for the specific burn cases. The FEPS scheme

was found to overestimate plume rise for most burn

cases. The reasons are yet to be investigated. One

possible reason is that the scheme does not distin-

guish between wildfires and prescribed fires, but some

model parameters may be more appropriate to

wildfires than prescribed fires. For example, the heat

release rate in the scheme is 8000Btu lb21 [1 Btu

(British thermal unit)’ 1055–1060 J; 1 lb’ 0.45 kg],

which is about 20% higher than the average value

suggested for prescribed burns in the South

(Southeastern Forest Experiment Station 1976).

2) The role of fire behavior, another primary factor

often used in empirical smoke plume rise models,

could have been indirectly included in the regression

models because the meteorological conditions used

in this study can impact fire behavior. It is expected

that skills of the regression models would be im-

proved by directly incorporating heat release, up-

draft core number (Liu et al. 2010; Achtemeier et al.

2011), and other important information provided

from fire behavior simulation and measurement.

Topography is another factor for smoke plume rise.

FIG. 4. Scatterplots of the hourly and average observed (x axis) vs simulated smoke plume rise using RxPrise and

RxPrise-sfc (y axis). The quantity R2 is the unadjusted squared correlation coefficient.
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For the prescribed fires conducted in the northwestern

United States (H. Harrison and C. Hardy 2002, un-

published manuscript; available online at http://www.

atmos.washington.edu/~harrison/reports/plume3.pdf)

for example, the burn sites were predominantly lo-

cated on the lateral slopes of alpine river valleys. The

upvalley thermal winds were locally amplified by heat

release from the fires. The plumes did not rise solely

from thermal buoyancy, but were significantly accel-

erated by upvalley convergence of horizontal winds.

The approach of not directly using fire-related factors in

the regression model does not mean that these factors

are less important for smoke plume rise prediction.

Theywere not used because the primary purpose of the

regression model was to provide a practical tool for fire

manages. This type of approach has been widely used

in statistical weather forecasting. For example, pre-

cipitation is determined by dynamic lifting mechanism

(vertical velocity), thermal instability, and water vapor

supply. Some statistical precipitation forecast models

only use the last two factors. This does not mean that

the first one is less important; it is not used often

because of the difficulty in obtaining a quality value for

the factor. This makes the models only using the last

FIG. 5. Hourly smoke plume rise (normalized) from observations and predictions by RxPrise and RxPrise-sfc. The values for the same

burn are connected by lines. The three horizontal lines indicate smoke plume heights at the average and plus or minus one-half standard

deviation, respectively.

FIG. 6. As in Fig. 5, but for the average smoke plume rise.
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two factors a more practical tool for meteorolog-

ical managers and users.

3) Empirical smoke plume rise models are easy to use

and computation effective. With observed or pre-

dicted fire andmeteorological conditions, the models

are able to provide speedy plume rise information for

air quality models (AQM). One of the issues with the

models for prescribed burning is the possible low

accuracy. For the FEPS scheme, which is one of

the two plume rise schemes used by the U.S. Envi-

ronmental Protection Agency CMAQ model, may

sometimes lead to large errors for prescribed burns,

as shown above.

Other techniques for plume rise also have both ad-

vantages and disadvantages. Dynamic plume rise models

are amore complete description of physics and have been

used in someAQMs such as ‘‘WRF-Chem.’’ The models,

however, usually include many parameters that need to

be empirically specified or parameterized. The models

themselves need temporal integration and therefore

present a speed disadvantage in comparison with empir-

ical models. The complexity and time costs present an

issue for fire managers.

Plume rise measurements are needed for model de-

velopment and evaluation. However, they have a timing

issue forAQM. They only provide informationwhile the

measurements are being taken, but not at later times,

which is also needed by AQM. Satellite measurements

have a limited frequency and a specific time when

passing over a specific location, and therefore they often

miss a large number of prescribed burns, which often

have very short burning periods. Also, satellites have

difficulty detecting small prescribed burns, especially if

they occur in the understory, while ground measure-

ments are too expensive to be installed at every burn site

across a region.

Thus, any specific model or technique, including the

model developed in this study, could provide more

useful plume rise information than other models or

techniques for AQM only under certain specific circum-

stances. The regression model developed in this study is

expected to be a practical tool for fire managers and also

a useful tool for AQM, with improved skill in plume rise

prediction for prescribed burns.

6. Conclusions

A regression model for smoke plume rise has been

developed and validated using the observed smoke

plume rise of 20 prescribed fires in the southeastern

United States, together with observed and simu-

lated meteorological conditions near the burn sites. The

model’s ability to predict a plume rise category was

statistically significant, although it underestimates large

plume rise and overestimates small plume rise. The

model can be used to simulate plume rise for individual

hours during a prescribed fire or averaged height over

the burn period. The model showed more capacity in

explaining the observed variance of the average than

hourly smoke plume rise. The model skill was found

to be improved by adding PBL height information to

RAWS variables. If no PBL information is available, an

alternative model using surface wind, fuel temperature,

and moisture can be used.

The RAWS measurements used in the model are

easily obtained by fire and land managers. Thus, the

regression model could be a practical tool for them. The

regression model also showed improved skill over some

existing empirical models for the observed prescribed

burn cases. This suggests that it may have the potential

for improving air quality modeling. Further evaluation

for other regions, however, should be conducted to un-

derstand how robust the model’s performance is.
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