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Abstract 

Cloud-to-Ground (CG) lightning, in particular when it occurs in dry 

thunderstorms, is a major cause of wildfire initiation each year.  A 

thunderstorm is considered dry when little to no precipitation reaches the 

ground.  There have been several studies that have developed methods to 

predict CG, but little has been done to take precipitation into account.  The 

perfect prognosis technique is applied to a 40-km Contiguous United States 

(CONUS) domain and 10-km Alaska (AK) domain to try to predict dry 

thunderstorms.  Twelve years (2000-2011) of warm season (May-Sep) North 

American Regional Reanalysis (NARR) data are used as a development set.  

Principal Component Analysis (PCA) is used to identify the most meaningful 

atmospheric parameters associated with dry thunderstorms for the predictive 

equations.  Predictive equations are created in S-PLUS using a generalized 

linear model structure.  Global Forecast System (GFS) data are fed into 

these equations to create forecasts over the two domains during the summer 

of 2012.  Verification scores and reliability assessments reveal that the dry 

thunder forecasts contain skill appropriate for their rare-event nature, but 

some results have noticeable impacts from GFS model biases.  Case studies 

show how forecasts, even with the uncertainty, can benefit users up to a 

week in advance, especially if dry thunder forecasts are coupled with 

information about other atmospheric and fuel conditions. 
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CHAPTER 1 

A Legacy of Lightning Prediction 

1.1 The Lightning Wildfire Problem 

 From choking smoke to blazing fields and structures, wildfires impact 

many parts of the world, including the United States, every year.  A 

significant fraction, roughly 13%, of wildfires in the United States are started 

by cloud-to-ground (CG) lightning, but wildfires started by lightning account 

for at least 60% of the total acreage burned (based on 2001-2011 data; 

National Interagency Fire Center 2013).  Within the Contiguous United States 

(CONUS) and Alaska (AK) there are some regions in which lightning-started 

fires are the main wildfire concern.  In particular, dry thunderstorms, 

thunderstorms with little to no precipitation reaching the surface (less than 

0.10” or less than 2.54-mm), pose considerable threat of fire ignition.   

In these regions, forecasts of dry thunderstorms are in essence 

forecasts of where CG lightning could start wildfires.  It follows that advanced 

knowledge of where CG lightning is likely allows emergency managers and 

fire crews to make preparations for possible fires sooner than if they did not 

have the forecast.  This means resources and crews can be sent to risk 

areas to contain fires at early stages – the most important stage for fire 

control.  Fire control during initial attack also helps reduce overall costs of 

firefighting and possibly structure damage by decreasing the suppression 

time.  Furthermore, lightning and/or dry thunderstorm guidance benefits fire 

weather forecasters at places such as the Storm Prediction Center (SPC).  
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Observations and probabilistic fields from model output data make up a 

majority of guidance products that highlight threat areas.  These guidance 

products play critical roles in developing and sending accurate forecasts to 

those in the field before and during a fire event.  Thus, high interest exists for 

lightning and dry thunderstorm guidance. 

 It usually takes more than lightning to start a wildfire even with high 

lightning flash rates.  Antecedent drought status, fuel type, and moisture 

content, along with surrounding atmospheric variables such as wind speed, 

storm motion, and relative humidity play important roles in determination of 

whether there will be wildfires and how severe they might become.  

Generally, moderate winds coupled with low relative humidity and dry fuels 

set up prime wildfire conditions.  

As weather observation networks became more consistent and 

widespread, meteorologists and fire crew managers looked to forecasting 

lightning as a possible tool to help predict lightning-started fires.  Forecasters 

in regions with generally drier fuel types (Fig. 1.1) considered this a priority 

even at the early stages of observational/model forecasting.  Note how most 

of the western region is covered with shrub/scrub and some forests - prime 

fire fuels.  Other cropland and forests, including wetland forests, can become 

fire hazards as well depending on their moisture content.   

With all of the dry fuels and North American Monsoon-generated 

lightning, forecasters in the western CONUS initiated lightning-fire prediction.  

For example, Beals (1923) explains that a High in the North Pacific region 
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and a Low around Arizona often led to thunderstorms that generated 

wildfires.  The author introduces the suggestion that studies of thunderstorm 

formation in different wind regimes could be beneficial – decades before 

lightning detection equipment development.  

 

 

Figure 1.1: Example of vegetation type (fuels) across the CONUS from the National Land Cover 

Database (NLCD) – see Fry et al. (2011) for more information about the NLCD. 

 

1.2 Early Lightning Prediction Systems 

 Initially, prediction of thunderstorms often focused on severe weather 

with lightning considered only for the definition of a thunderstorm.  Reap and 

Foster (1979) required that “an observer must hear thunder” for a storm to 

count as a thunderstorm in their attempt to associate thunderstorms with 

certain Video Integrator and Processor (VIP) radar data to predict storms and 

severe weather.  Regardless of the validity of their method (see Weiss et al. 
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1980), this example is one of many studies focused on thunderstorms 

without specific interest in lightning or fire weather.  Lightning-specific 

research and prediction did not start until lightning location sensors, like 

Direction Finders (DFs), and computer models entered the scene.  

Numerical weather prediction has advanced thunderstorm prediction 

considerably in the last several decades.  Watson et al. (1991) studied the 

low-level convergence concept suggested by Byers and Rhodebush (1948) 

and Sullivan (1963) by using Lightning Location and Protection (LLP) 

Company's sensors in the lightning hotbed of Florida.  In particular, Watson 

et al. focused on CG strikes near the Kennedy Space Center.  Fuelberg and 

Biggar (1994) took these environmental concepts further to the Florida 

Panhandle.  Back to a more basic thunderstorm focus, they discovered that 

low-level humidity and wind direction can play a big role in thunderstorm 

development in the region.  Reap (1994) shows similar results by dividing 

environmental patterns over Florida into different map types.  Other studies 

came with a Model Output Statistics (MOS) predictive system (Hughes 2001; 

2004) which associates certain model data to lightning observations by linear 

regression.  This technique has built-in bias correction depending on the 

model used for development.  

Most of the previously mentioned studies did not focus on fire weather 

concerns explicitly.  Bothwell (2002) addressed the problem with a lightning 

prediction system applicable to western regions of the CONUS.  His 

technique of perfect prognosis (or perfect prog), principal component 
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analysis, and logistic regression (covered more in Chapter 3) set the stage 

for lightning forecasts as a possible fire weather prediction tool.  Coverage 

was expanded to the entire CONUS within a few years. 

 

1.3 Alaska Development 

 As mentioned previously, the CONUS does not bear the lightning-fire 

burden alone.  The state of Alaska experiences many weather patterns 

similar to the CONUS because of its large size, gulf coast, and mountainous 

regions.  Figure 1.2 shows a comparison between AK and CONUS areas.   

 

Figure 1.2: The size of AK compared to the CONUS. 

 

Parts of Alaska, especially mainland in the boreal forests, deal with fire 

threats each year (Todd and Jewkes 2006).  Figures 1.3 and 1.4 show this 

boreal forest coverage across the interior region of the state, especially along 

the Yukon River valley, where many large fires have occurred.  
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Figure 1.3: Basic overview of vegetation coverage in Alaska - Fig. 2 in Todd and Jewkes (2006). 

 

Figure 1.4: Historically large fires and the areas burned from 1950-2004 - Fig. 11 in Todd and 

Jewkes (2006).   



7 

  Prior to Alaska building their own lightning detection network, 

techniques like using large fire starts as an indicator for thunderstorms 

(Sullivan 1963), helped start research in Alaska.  The U.S. Bureau of Land 

Management (BLM) installed an LLP lightning location system in Alaska in 

1978.  Using data from that network, Reap (1991) performed a climatological 

study of lightning across the state.  This study reaffirms the affinity for 

lightning in regions of elevated terrain and along the major interior rivers.   

Reap’s study included early work for thunderstorm prediction over 

Alaska using a linear regression and MOS technique.  Such predictive 

systems persisted as the BLM slowly updated their detection network.  

Eventually, people began using weather models like the Global Forecast 

System (GFS) with a MOS approach (Shafer and Gilbert 2008).  This 

updated method improved areal and temporal resolution and accuracy of 

forecasts, but more work was needed for verification of the overall benefits.  

Using a reasonably large grid spacing (48-km) helped with the scoring of 

lightning in the limited sectors, but still lacked in detail around certain 

mountains and river valleys.  Buckey (2009) brought the scale down to 45-km 

and then 10-km while implementing the perfect prognosis technique in the 

Alaska domain.  The efficacy of this technique was noticeably better, 

showing improvement in precision of areas with high lightning probabilities.  

 All methods mentioned thus far have an overforecasting bias 

regardless of grid size.  This bias is generally accepted because lightning 

resembles rare events (similar to severe weather) where a miss seems 
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worse to a user than a false alarm.  To ensure events are not missed, 

overforecasting is deemed acceptable by most users.   

 

1.4 Dry Thunderstorm Focus 

Though some studies address the question of precipitation amount to 

distinguish between wet and dry thunderstorms (e.g., Rorig and Ferguson 

1999; Hughes 2004; Hostetler et al. 2005), none of the aforementioned 

research focuses directly on a dry thunderstorm predictor.  A paper by Rorig 

et al. (2007) reports initial work towards that end, defining a dry thunderstorm 

as one or more lightning flashes and less than 0.10” (2.54-mm) of 

accumulated precipitation.  Only those storms associated with large fire 

starts were considered.  Their method used the Pennsylvania State 

University/National Center for Atmospheric Research (NCAR) mesoscale 

model (MM5) on a western CONUS domain.  Overprediction still remained 

an issue along with their fairly small sample size, but results showed 

relatively successful forecasts for most cases presented.   

Wallmann (2004) developed a Dry Thunderstorm Procedure that used 

atmospheric variables, such as jet streaks and a dynamic tropopause, to 

distinguish dry thunderstorm areas.  This technique was advanced further to 

attempt to predict the large 21 June 2008 fire outbreak in California with a 

successful hind-cast prediction of lightning 30-h prior to the first flash 

(Wallmann et al. 2010).  Instead of using an explicit dry thunderstorm 

predictand, Bothwell (2008) expanded his perfect prog technique to include a 
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Dry Thunder Potential Index (DTPI) that takes cloud base height (Above 

Ground Level, AGL) and sub-cloud relative humidity into account for fire 

weather potential.  Coupling DTPI with the probabilistic lightning forecasts 

assisted in distinguishing drier air masses from wetter ones.  Distinction 

between wet and dry thunderstorms generally comes from a 24-hr rainfall 

perspective and the common 0.10” (2.54-mm) threshold. 

In contrast to the previous studies, observationally based studies of 

dry thunderstorms have not been neglected.  Dowdy and Mills (2012) explore 

the combination of atmospheric environments and fuel setups that are 

generally associated with lightning-started fires.  Their research reinforces 

the concept that low relative humidity has significant impact on fire potential, 

perhaps more so than does warm temperature.     

Despite the consideration of the larger environment and total 

precipitation, studies with an explicit dry thunderstorm predictor are rare, and 

there have been no climatological studies for dry thunderstorms (with a 

formal definition) to date.  This study proposes to explore prediction of an 

explicit dry thunderstorm parameter developed using the perfect prog 

technique established by Bothwell (2002) and used by Buckey (2009).  An 

overview of system development and performance of their work in operations 

can be found in Bothwell (2010).  It is hypothesized that a dry thunderstorm 

probabilistic field will help simplify the amount of data ingest for forecasters 

and fire crews preparing for fire weather.  Specifically, rather than assessing 

all of the atmospheric variables separately, the product developed herein can 
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assist in pinpointing regions of main fire threat because the storm-dryness 

factor is inherently included.  

 Owing to high interest in long-term forecasts, a system that uses the 

GFS data is constructed to generate forecasts out to 1 week (0-180 hours).  

Testing occurs on two different domains: a 40-km CONUS grid (Fig. 1.5) and 

10-km AK grid (Fig 1.6).  Separate forecast equations are developed for each 

warm season month (May-Sep) for multiple predictands (see Section 3.4).  

These months make up the majority (entirety) of the convective season in the 

CONUS (AK) (Reap 1991; Hostetler et al. 2005; Buckey 2009).  While it is 

noted that the overall environment and fuel moisture play major roles in 

sustaining a fire (e.g., Rorig and Ferguson 2002; Calef et al. 2008), the focus 

herein is mostly ignition due to combinations of atmospheric parameters for 

lightning and precipitation potential.    

 

 

 



11 

 

Figure 1.5: Coverage map of 40-km CONUS grid - demarked by the symbol "1".  Some coastal 

waters are included, but areas of Canada and Mexico are excluded.  Lambert Conic Conformal 

(LCC) projection used mostly throughout unless specified otherwise. 

  

 

Figure 1.6: Coverage map of 10-km Alaska grid.  The arc shape is the result of the North Polar 

Stereographic (NPS) projection – used throughout unless specified otherwise.  The right edge of 

the image demarks the Alaska/Canada border (141° longitude).  
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CHAPTER 2 

Development Data 

2.1 Definition of a Development Set  

One of the most common methods of creating a forecast comes from 

developing a model/set of equations that determines the probability of an 

event.  Instead of elementary probability, complex systems such as the 

atmosphere work in the realm of conditional probability.  Equation 1 

describes elementary probability where p(x) is the probability of an event x, 

and Σx is the set of all possible events.  Equation 2 describes conditional 

probability in relation to Bayes’ Theorem p(x|f) represents the probability of 

an event happening given a forecast f, p(f|x) is the probability of a forecast 

given an event, and p(f) is the probability of a forecast.  That is, an event may  

   



x

x
xp )(                                                           (1) 

)(

)()|(
)|(

fp

xpxfp
fxp                                                 (2) 

be more likely given a certain forecast.  For example, an area with a 30% 

probability of dry thunder is more likely to see a dry thunderstorm than an 

area with 1% probability.  

Additionally, a model needs information about events and conditional 

parameters in a large enough sample that describes the climatology and 

conditional probability domain of a particular event.  This adequately-sized 

sample of conditional parameters, the development data set, can be used to 

train the model to a specific event such as dry thunderstorms.  Models can 
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then be used to predict said event on a different assortment of data – the 

testing data set (see Chapter 3).  Twelve years of data (2000-2011) from the 

warm season months (May1 – Sep 30) were used for the development set, 

and forecasts are generated during the 2012 warm season (testing set). 

 

  2.2 NARR Data 

The National Centers for Environmental Prediction (NCEP) North 

American Regional Reanalysis (NARR; Mesinger et al. 2006) data set is 

suitably reliable and accurate for the development set of interest.  Because 

dry thunderstorms are conditional to many parameters in the atmosphere, a 

sufficient set of standard and derived parameters is desired for the 

development data set.  This study uses information from the NARR for its 

spatial and temporal resolution and the fact that NARR data covers both the 

CONUS and AK domains.  NARR data contains many variables on a 32-km 

grid in 45 vertical Eta levels - levels described by horizontal planes of the 

atmosphere. 

2.2.1 Predictor Variables 

Much of the development information for NARR comes from the 

Global Reanalysis (GR) data set which uses data from radiosondes, 

dropsondes, pibals, surface stations, and satellite data (Shafran et al. 2004).  

Temperature, moisture, wind components, radiative fluxes, and other 

variables are archived in NARR on a 45-layer system.  To improve resolution 

around mid-levels, the program GDVINT from the General Meteorological 
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Package (GEMPAK) version 6.2.0 on a Linux server is used to vertically 

interpolate data to every 25-hPa between 650 to 300-hPa.  Thus, all data 

variables can be assessed at the surface (2-m and 10-m readings) and 

pressure levels from 1000 to100-hPa with a granularity of 25-hPa – a usable 

resolution for the spatial scale in this study.  These variables are grouped 

into 3-hourly (3-h) time bins, which is a common forecast time for many 

operational models.  NARR 3-h bins for each of our warm season months, for 

the twelve year span mentioned above, were downloaded from Research 

Data Archive of the Computational and Informational Systems Library at the 

National Center for Atmospheric Research (NCAR).  GDBIINT, a bilinear 

interpolation program included with GEMPAK, was used to convert the 32-

km NARR data to each of the domains in Figures 1.5 and 1.6.  

  Variables such as temperature, dewpoint, wind components, and 

lapse rate come directly from the NARR.  It has been noted that the 2-m 

temperature bias is smaller compared to the Global Reanalysis (Mitchel at al. 

2005), but there is a slight negative 10-m wind bias (Messinger et al. 2006).  

Other predictors of interest such as Most Unstable Convective Available 

Potential Energy (MUCAPE), divergence, and Lifted Index (LIFT) are 

calculated using GDDIAG in GEMPAK – see Tables A2-5 for a full list of 

predictors in this study.  Many of these calculated variables such as 

advection, moisture convergence, and frontogenesis have been shown to be 

associated with lightning and dry thunderstorms in previous studies (e.g., 
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Sullivan 1963; Reap 1991; Watson et al. 1991; Klein et al. 1996; Rorig and 

Ferguson 1999; Bothwell 2002; Rorig et al. 2007).  

Instead of using variables or indices as stand-alone terms, it has been 

shown (e.g., Reap 1979; Hughes 2004) that combining them into unique 

predictors can strengthen predictability.  These Interactive Predictors benefit 

forecasting systems because terms related to a similar phenomenon, say 

Convective Available Potential Energy (CAPE) and lightning flashes to 

denote thunderstorm potential, are grouped into a single, stronger term 

(Reap 1979; Bothwell 2002; Hughes 2004; Hughes and Trimarco 2004; 

Buckey 2009).  That is, statistical techniques can extract these interactive 

predictors as some of the highest contributors to meteorological signal 

compared to individual parameters.   

MUCAPE multiplied by Lightning Climatology (sometimes called 

lightning frequency) has been shown to be a skillful interactive predictor for 

predicting lightning flashes (Bothwell 2002; Buckey 2009).  These and other 

terms developed by Bothwell (2002) are used in this study, and are notable 

for capturing much of the variance of lightning prediction, as discussed in the 

next chapter.  The list of interactive predictors can be found in Table A5 near 

the end of the predictor list.   

For this study, MUCAPE is calculated by finding the maximum CAPE 

value calculated at each 25-hPa level from 1000 to 525-hPa and the surface.  

One benefit to using MUCAPE includes the fact that the term is less prone to 

errors noted in CAPE and surface-based CAPE (Doswell and Rasmussen 
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1994; Rochette et al. 1999; Craven et al. 2002).  MUCAPE is also often the 

main choice to describe environments for deep convection and/or elevated 

storms, which contributes highly to dry thunderstorm formation.  That is, 

MUCAPE can distinguish information about the most unstable parcel even 

when said parcel is elevated. 

2.1.2 Precipitation Data 

Another benefit to using NARR data comes from the continuous 

precipitation data set.  The NARR total precipitation (in units of mm 

converted to inches) comprises the rainfall totals in this study.  While the 

precipitation does not come from direct assimilation, latent heating profiles 

are derived from multiple sources to coincide with observed precipitation 

closely.  Sources include rain gauges, radar measurements, and analysis 

with the Parameter-Elevation Regressions on Independent Slopes (PRISM; 

see Daly et al. 2004) technique over terrain in the CONUS domain.  These 

assimilation techniques have been shown to reduce the precipitation 

overforecasting bias of the Eta model (Ruane 2010a; Ruane 2010b).   

A study by Bukovsky and Karoly (2007) suggest that the NARR 

precipitation values match the Climate Prediction Center’s (CPC) observed 

values closer than the other reanalysis examined (i.e. the NCEP-DOE and 

ERA-40, refer to their paper for more information on these systems), yet it 

has been shown that the NARR tends to underforecast heavy precipitation 

events and slightly overforecast light ones (Shafran et al. 2004; Becker et al. 

2009).  Also, Spurious Grid-Scale Precipitation (SGSP) can create problems 
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in isolated extreme events in the Eta model.  SGSP is most commonly 

identified by a single grid point containing a high amount of precipitation 

(West et al. 2007; Becker et al. 2009).  A single point with a very high 

precipitation value could affect the dry thunderstorm forecasts.  That is, a grid 

point may have an erroneously high value for precipitation that would exceed 

the thresholds used to distinguish dry thunderstorms in this study (see Sec. 

2.3).  This study does not attempt to correct problems related to SGSP in the 

training data due to their overall rarity.    

Bi-linear interpolation was applied to the NARR precipitation grid along 

with the other NARR variables mentioned above.  While it is noted that other 

budgeting techniques may conserve precipitation better, bi-linear 

interpolation conserves precipitation across areas well enough that it suffices 

for the 32 to 10-km conversion (Brill and Ling 2011, personal 

communication).  Error values from this 32 to 10-km conversion fall ~±0.004” 

(±0.1-mm) – about an order of magnitude smaller than the scale of interest 

(0.01”).  Moving information to the larger 40-km grid is acceptable for this 

study as error values fall ~±0.040” (±1.0-mm) – about the same order of 

magnitude as the scale of interest.  Thus, the NARR atmospheric variables 

can be associated to the “observed” precipitation values at the same grid 

size.  The NARR data set includes three precipitation fields: Total 

Precipitation, Large Scale Precipitation, and Convective Precipitation.  Only 

the Total Precipitation field is considered in this study.   
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2.3 Lightning Data 

Precipitation data alone will not explain dry thunderstorms, thus 

observed lightning data becomes a necessity.  Total flash data (CG only), as 

opposed to strike data, is used to match the previous Bothwell (2002) and 

Buckey (2009) studies.  CG flashes contain the most interest for fire weather 

because the act of striking a fuel is required for ignition.  Consideration for 

flash data over strikes comes from the fact that there can be multiple strikes 

in a single flash (Valine and Krider 2002).  Furthermore, most detection 

systems recorded and offered flash data up to 2013.  

2.3.1 CONUS Lightning Data 

As mentioned in the previous chapter, the two domains utilize different 

lightning detection networks.  Vaisala, Inc.’s National Lightning Detection 

Network (NLDN) sensors are spatially distributed across the CONUS region 

(see Fig 2.1).  This network of 187 lightning sensors, which consists of 

Improved Accuracy from Combined Technology (IMPACT) and Time of 

Arrival (TOA) sensors, detects CG lightning with ≥95% efficiency over the 

CONUS with decreasing efficiency over adjacent coastal waters as seen in 

Fig. 2.2 (Cummins et al. 1998; Orville 2008).   
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Figure 2.1: Layout of National Lightning Detection Network sensors across the CONUS - Fig. 1 in 

Orville and Huffines (2001). 

 

 

Figure 2.2: NLDN CG detection efficiency from 2011.  Map available on the Vaisala website at: 

http://www.vaisala.com/Vaisala%20Documents/Brochures%20and%20Datasheets/0537_WCO-

WEN-G-DE-Lightning%20Map%20for%20Detection%20Efficiency%20%28zoom%29.pdf 
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CG flash data is supplied in 3-h intervals which match with the NARR 

data.  Consistent NLDN system operations since 1989 and previous studies 

ensure reliable accuracy of the network’s lightning data for use as official 

observations.  Data for this study come in the form of ASCII files gridded to a 

GEMPAK file by Lat/Lon coordinates with time stamps in Coordinated 

Universal Time (UTC).  Part of the gridding process filters out flashes < 10 

kA due to the likelihood of them being In-Cloud (IC) flashes (Cummins et al. 

1998; Orville and Huffines 2001).   

2.3.2 Alaska Lightning Data 

Alaska slowly developed their separate network years later than the 

CONUS.  The first Alaska lightning detection network consisted of only 9 DFs 

from Lightning Location and 

Detection, Inc. (LLP) across 

the state (Reap 1991).  

These LLP sensors were 

used prior to the NDLN in the 

CONUS, so Alaska made use 

of this system.  The AKBLM 

Lightning Detection Network 

(sometimes referred to as 

ALDN) evolved into 12 

sensors across the mainland 

region (see Fig. 2.3) – 

Figure 2.3: AKBLM Lightning Detection Network with 

stars denoting sensors.  Stations in this basic 

configuration were in operation from 2000-2012.  

Map is a color-modified version of the one on their 

website listed in the text.  
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reducing the coastal bias mentioned by Reap (1991).  The network records 

CG flashes of positive and negative strikes as part of the detection, which 

matches the NLDN method, and makes it suitable for observations over 

Alaska.  A lower network detection efficiency and range over Alaska could 

cause some location bias at the 10-km scale though the 45-km grid used in 

Buckey’s (2009) work showed no such issue.  

These data were freely available from the AKBLM website for 

historical lightning which could be downloaded as shapefiles/textfiles 

(http://afsmaps.blm.gov/imf_customlight/imf.jsp?site=customlight at the time 

of writing).  Data for the entirety of May-Sep from 2000-2011 were 

downloaded and modified for gridding purposes to replicate the NDLN style.  

The time stamp is in local time (Alaska Daylight Time, in the warm season).  

All AK lightning times were converted to UTC by adding 8 hours.  The <10 kA 

filter used for the CONUS is not applied to the AK domain because the 

overall magnitude of flash intensity is lower in Alaska, and the network is 

slightly less reliable.  Any flashes recorded east of 141° longitude (in 

Canada) were excluded from this study to match the domain shown in Fig. 

1.6.  

 

2.4 Predictand Categories 

Instead of focusing on total amounts of lightning and precipitation, 

total lightning flashes and total precipitation are placed into non-exclusive 

categories (Table 2.1).  Bothwell (2002) and Buckey’s (2009) method for 
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lightning categories is repeated here as a continuation study, and new 

categories are created for precipitation.  All resulting fields are binary (1 or 0; 

yes or no).  For example, FONE denotes areas where one or more flash has 

occurred (TOTF≥1).  Lightning categories range from low to high amounts of 

flash density where the higher categories represent “significant” lightning.   

   

Table 2.1: List of Predictands based on lightning flashes and precipitation.  All fields 

are binary and unitless except for TOTF and PTOT which are measured in total flash 

count and hundredths of inches respectively.   

 

Name Description Threshold 

L
ig

h
tn

in
g

 

TOTF Total CG lightning flashes All CG lightning 

FONE One or more flashes TOTF ≥ 1 

FTHR Three or more flashes TOTF ≥ 3 

FTEN Ten or more flashes TOTF ≥ 10 

FTHT Thirty or more flashes TOTF ≥ 30 

FHUN One hundred or more flashes TOTF ≥ 100 

P
re

c
ip

it
a

ti
o

n
 

PTOT Total precipitation in inches All rainfall 

PHDTH 
Hundredth of an inch or more of 
precipitation 

PTOT ≥ 0.01” 

PTNTH Tenth of an inch or more of precipitation PTOT ≥ 0.10” 

PQTR 
Quarter of an inch or more of 
precipitation 

PTOT ≥ 0.25” 

PHLF Half of an inch or more of precipitation PTOT ≥ 0.50” 

P3QTR 
Three Quarters of an inch or more of 
precipitation 

PTOT ≥ 0.75” 

PONE One inch or more of precipitation PTOT ≥ 1.00” 

PLTN 
Less than a tenth of an inch of 
precipitation 

PTOT < 0.10” 

PLQT 
Less than a quarter of an inch of 
precipitation 

PTOT < 0.25” 

D
ry

 

T
h

u
n

d
e
r 

DRYTH1 
One or more flashes and less than a 
tenth of an inch of precipitation 

FONE * PLTN 

DRYTH2 
One or more flashes and less than a 
quarter of an inch precipitation 

FONE * PLQT 
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The precipitation data are processed similar to the lightning with a 

couple of special fields included for the dry thunder consideration.  The 

choice to start at 0.01” (0.25-mm) is consistent the NWS definition of 

measurable precipitation.  That is, all values at the Trace level are counted 

as not measurable and assigned a value of 0.00”.  Most of the categories fit 

accepted NWS measurement thresholds up to the 1.00” (25.40-mm) mark.  

Events with 3-h precipitation rates more than 1.00” are considered too wet for 

the threat of wildfire ignition and will not be a major focus here.   

Two other rainfall-related fields test for the lack of heavy precipitation.  

One category, Precipitation Less than a Tenth of an inch (PLTN), matches 

the common threshold for a dry thunderstorm.  Rainfall less than 0.10” (2.54-

mm) is often associated with rains that either evaporate before reaching the 

ground or may not wet the area enough to prevent ignition.  Some lightning 

flashes occur outside of the rain region, which can spark fires, or very dry 

fuels mean that rain greater than 0.10” in a storm will not wet the vegetation 

enough.  The Precipitation Less Than a Quarter of an inch (PLQT) category 

is used to try and account for very dry fuels or strikes outside of the rain 

region.  Both of these categories can include a value of 0.00”. 

With these fields that account for low amounts of precipitation, specific 

dry thunder fields can be created.  The first field, Dry Thunder 1 (DRYTH1), 

follows the NWS definition that a dry thunderstorm consists of one or more 

flash and rainfall measuring less than 0.10”.  Dry Thunder 2 (DRYTH2) adds 
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in the slight extra precipitation allowance by using the PLQT field for reasons 

mentioned above.  Because the lightning and precipitation categories are 

binary, simple multiplication works for creating the dry thunder fields.  

 

2.5 Climatology 

As several comprehensive lightning and precipitation climatology 

studies exist (e.g. Reap 1991; Orville and Huffines 2001; Hostetler et al 

2005; Richman and Lamb 1985; Walsh et al. 1982; Trenberth et al 2003; 

Becker et al. 2009) only a small sample will be reviewed here.  Instead of a 

seasonal or monthly climatology, a pentad (5-day) climatology is developed 

for each of the main predictands listed in Table 2.1.  A pentad consists of 

information from five days, with the date being set as the middle (or 3rd) day.  

Pentads are created for each 3-h interval (e.g., 00-03 UTC) every five day 

period.  This process is repeated for each of the twelve training years (2000-

2011).  Averaging over these 5-day groups results in the 12-year 

“climatology” value.  Utilizing pentads has been shown to resolve variability 

better than daily or seasonal trends, and can be especially effective 

descriptors temporally for deep convection (Wang and Xu 1997).   

 Peak heating (insolation) occurs in the afternoon to evening hours in 

both domains (around 21 UTC for the CONUS and 00 UTC for Alaska), 

generally corresponding with maximum convection and lightning activity.  For 

consistency, 00 UTC data (covering 00-03 UTC) will be the focus of the 

development and subsequently used for the climatology examples (see Sec 
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3.4); only examples of 00 UTC climatology data from both domains are 

covered here.  The common time of 00 UTC across both domains is selected 

because it contains the most current information about the atmosphere from 

input such as soundings.  A Gaussian weighted filter of 10 grid points has 

been applied to all climatology fields as this amount of filtering has been 

found to reduce noise (Bothwell 2002; Buckey 2009).  Any values below a 

given magnitude (generally within 0.001 units) are considered noise in this 

case. 

2.5.1 CONUS Climatology 

 Lightning climatologies have been generated in multiple studies 

across the CONUS domain (e.g. Reap 1994; Rorig and Ferguson 1999; 

Orville and Huffines 2001; Bothwell 2002; Hostetler et al. 2005); many refer 

to NLDN as the data source.  Lightning flashes start off concentrated in the 

Plains in early May and move toward the Gulf Coast and Rocky Mountains 

by early June (Fig. B1).  The North American Monsoon is responsible for this 

intra-seasonal increase in lightning across the Inter-Mountain west during the 

summer months (Rorig and Ferguson 1999; Bothwell 2002; Hostetler et al 

2005).  From June through July, the monsoon starts to move further west, 

and lightning chances decrease in a line from Oklahoma to Indiana (Fig. B2).  

Monsoon activity in the western states dominates much of the lightning 

activity in August with some enhanced activity in the southeast in southern 

Georgia and Alabama into Florida in mid-August (Fig. B3).  Most lightning 

activity begins to decrease in the month of September (Fig. B4).  
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 A climatology built off of binary data, such as one-or-more flashes 

(FONE), varies slightly in magnitude compared to total flashes (TOTF).  This 

is particularly based on the fact that the climatology of TOTF (AVETOTF) is 

in units of flashes while the climatology of FONE (AVEFONE) is in units of 

percent.  Certain regions are highlighted with the percentage unit more than 

the flashes unit.  Figure 2.4 shows one example of the differences between 

AVETOTF and AVEFONE from early July.  Notice how the Inter-Mountain 

west is more prominent in AVEFONE compared to AVETOTF.  Also, values 

of AVEFONE are higher in parts of Vermont and Maine while the AVETOTF 

values are small or close to 0.  The figure inidicates the area between 

Vermont and Maine has a 7% chance of seeing at least 1 lightning flash, but 

it is likely not much more than 1 because the total flash climatology is close 

to or less than this value.  More AVEFONE images can be found in Appendix 

B following the AVETOTF images.   

 

 

Figure 2.4: AVETOTF (left) representing average number of flashes and AVEFONE (right) 

representing the chance of getting one or more flashes for the pentad centered on 7 July (5-9 Jul). 

The timestamp format (e.g. 000707/0000) represents the year, month, day, and hour 

(yymmdd/hhhh); all climatology grids are placed at a year 2000 date.   
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 Intra-seasonal precipitation trends highlight the monsoon track during 

the summer, and a couple of other regions such as the Ohio Valley and 

Carolina Coast appear as local maxima according to the total precipitation 

climatology (AVEPTOT).  In comparison the climatological average of 

(PHDTH) seems higher because it is measured in percent instead of 

hundredths of an inch (see Fig. 2.5 – note the difference in scales).  

Illustrations for each can be found in Appendix B.  

 

 

Figure 2.5: Example of different viewpoints of climatology between AVEPTOT (left) and AVEPHDTH 

(right). 

 

 Instead of focusing on lightning and precipitation separately, a dry 

thunder climatology will be more beneficial for the predictive system as part 

of the development data set.  Figures 2.6 and 2.7 show how the dry thunder 

climatology fields follow closely with the lightning climatology – lightning is 

the ultimate identifier for a thunderstorm (wet or dry).  Areas that receive 
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more rain from phenomena like Mesoscale Convective Systems or deep sea-

breeze convection generally have lower dry thunder climatology values.      

 

Figure 2.6: Example of FONE climatology (left) vs. DRYTH1 climatology (right) for the CONUS.  

 

 

Figure 2.7: Example of FONE climatology (left) vs. DRYTH2 climatology (right) for the CONUS. 

  

 Climatology values of DRYTH2 (AVEDRYTH2) are generally higher 

than the climatology values of DRYTH1 (AVEDRYTH1), as more grid points 

receive at least a tenth but less than a quarter of an inch of rain.  This could 

be important in places such as Florida where the threat for lightning-started 

fires outside of the rain shaft can be a bigger problem than not getting 



29 

enough wetting rain.  Figure 2.8 displays how DRYTH2 has climatologically 

higher values than DRYTH1 in southeastern states (e.g., Georgia and 

Florida) and in western states (e.g., New Mexico and Colorado).  Figures 2.9-

2.16 show more examples of AVEDRYTH1 and AVEDRYTH2 from May-Sep.  

 

 

Figure 2.8: Example of DRYTH1 climatology (left) vs. DRYTH2 climatology (right) for the CONUS. 



 

3
0 

 

Figure 2.9: Average Dry Thunder 1 (AVEDRYTH1) pentad examples from early May through early June – 00 UTC data.  
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Figure 2.10: AVEDRYTH1 pentad examples from mid June through mid July – 00 UTC data.   
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Figure 2.11: AVEDRYTH1 pentad examples from late June through late August – 00 UTC data.   
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Figure 2.12: AVEDRYTH1 pentad examples from Sep – 00 UTC data.  Convection diminishes in general during this time frame. 
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Figure 2.13: Average Dry Thunder 2 (AVEDRYTH2) pentad examples from early May through early June for the CONUS – 00 UTC data.   
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Figure 2.14: AVEDRYTH2 pentad examples from mid June through mid July for the CONUS – 00 UTC data.  
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Figure 2.15: AVEDRYTH2 pentad examples from late July through late August for the CONUS – 00 UTC data.   
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Figure 2.16: AVEDRYTH2 pentad examples from Sep for the CONUS – 00 UTC data.   
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2.5.2 Alaska Climatology 

 An intra-seasonal pentad climatology for AK lightning has been 

investigated thoroughly by Buckey and Bothwell (2009).  Their work reveals 

an increase in lightning into June, a slight decrease mid-to-late June, and 

another increase into July.  The lightning season tapers off quickly by August 

and September.  Climatology values of TOTF and/or FONE are lower in 

Alaska compared to the CONUS because of the lower amount of total 

lightning received.  Additionally, the climatology values shown here are 

smaller than those covered in Buckey and Bothwell (2009) because of the 

differences of resolution (45-km in Buckey and Bothwell compared to 10-km 

in this study).  Fewer flashes fall into a bin on the 10-km grid due to the 

splitting of the total amount seen at a coarser resolution.  Fields of thirty-or-

more flashes (FTHT) and one-hundred-or-more flashes (FHUN) are excluded 

from consideration in Alaska as these amounts are rare at this smaller grid 

size (and in Alaska, in general).  Refer to Figs. B17-B25 in Appendix B for 

examples of Alaska lightning climatology.   

 This finer resolution also affects precipitation (specifically rainfall) 

values in AK.  Intra-seasonal trends show precipitation regions shift from the 

Gulf of Alaska, northward along the Alaska/Canada border, and into the 

mainland forest regions.  Southwestern regions see an increase in 

precipitation moving into the warmer months of July and August.  

Precipitation fields excluded from consideration in Alaska include rainfall 

three-quarters-of-an-inch-or-more (P3QTR) and one-inch-or-more (PONE) 
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due to the smaller grid size.  Examples of AVEPTOT and AVEPHDTH can be 

found in Appendix B (Figs. B25-B32).   

 Examination of the dry thunder climatology reveals pertinent 

information.  Again, the chances for dry thunder (AVEDRYTH1 and 

AVEDRYTH2) generally resemble the chances for lightning (AVEFONE).  

Certain coastal regions and areas of lower terrain have higher climatology 

values of DRYTH2 compared to climatology values of DRYTH1 (see Fig. 

2.17).  The red ovals highlight one of the more notable areas of differences 

between AVEDRYTH1 and AVEDRYTH2.  Lower elevation and coastal sites 

generally receive more than a tenth of an inch of rain compared to 

mountainous or sloped areas, so the chances for DRYTH1 would be lower.  

Some of these lower regions contain higher chances of a dry thunderstorm or 

become apparent when considering AVEDRYTH2.  Figures 2.18-2.25 show 

more example of AVEDRYTH1 and AVEDRYTH2 climatology over Alaska. 

 

 

Figure 2.17: Example of DRYTH1 climatology (left) vs. DRYTH2 climatology (right) in AK.   
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Figure 2.18: Average Dry Thunder 1 (AVEDRYTH1) pentad examples from early May through early June for Alaska – 00 UTC data.  Values are in tenths of an 

inch, so, e.g., values of 30 = 3%. 
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Figure 2.19: AVEDRYTH1 pentad examples from mid June through mid July for Alaska – 00 UTC data.    
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Figure 2.20: AVEDRYTH1 pentad examples from late July through late August for Alaska – 00 UTC data.  
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Figure 2.21: AVEDRYTH1 pentad examples from Sep for Alaska – 00 UTC data.   
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Figure 2.22: Average Dry Thunder 2 (AVEDRYTH2) pentad examples from early May through early June for Alaska  – 00 UTC data.   
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Figure 2.23: AVEDRYTH2 pentad examples from mid June through mid July for Alaska – 00 UTC data.   
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Figure 2.24: AVEDRYTH2 pentad examples from late July through late August for Alaska – 00 UTC data.  
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Figure 2.25: AVEDRYTH2 pentad examples from Sep for Alaska – 00 UTC data.   
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CHAPTER 3 

Perfect Prognosis & Principal Component Analysis 

3.1 Perfect Prog Technique 

There are several methods to create a relationship between model 

variables (predictors) and the observed data (predictands or response 

values).  Perfect prognosis (perfect prog or PP) assumes the resulting model 

forecast fields are perfect once a relationship is established (Klein et al. 

1959; Wilks 2006).  As such, it comes with all of the parent model biases.  No 

bias correction occurs in this technique, but it can be used with output from 

any model because it is not dependent on parent model physics.  Therefore, 

perfect prog equations do not have to be rederived if the parent model 

changes, and the forecasts should improve as the driving input improves 

(Wilks 2006).  

Though some studies claim that MOS is more reliable than perfect 

prog due to its built in bias correction (e.g., Vislocky and Young 1989; Brunet 

et al. 1998, Wilson and Vallée 2003), its dependence on a large, stable 

sample of model variables and observations can make it difficult to maintain 

and update.  Brunet et al. (1998) mention that “[t]he PP forecasts are 

sharper, and the MOS forecasts are more reliable” out to 72 hours for 

precipitation and temperature forecasts.  A model with better sharpness is 

more likely to correctly forecast a rare event instead of converging to a 

forecast of climatology at longer time ranges (Brunet et al. 1998; Marzban et 

al. 2006; Shafer and Fuelberg 2008).  This ability to correctly forecast rare 
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events compared to climatology makes PP the method of choice to predict 

dry thunderstorms instead of MOS in this study.  

Both analysis variables and observed values go into a logistic 

regression technique.  A total of 139 predictors created from the NARR data 

can be related to the lightning and precipitation data (Tables A2-A5).  Several 

of these variables explain more about the inherent signal than others at the 

noise level.  Another statistical technique can be used prior to logistic 

regression to draw out the groupings of meteorological patterns/variables 

that are interrelated and explain the most variance of a data set.   

 

3.2 Introduction to PCA 

Principal Component Analysis (PCA) can effectively extract signal vs. 

noise in complicated and mixed patterns, such as variables that measure the 

atmosphere.  In particular, the variables highlighted in this procedure explain 

the most variance about a data set.  PCs are similar to (and sometimes 

called) Empirical Orthogonal Functions (EOFs), as EOFs are unit length PCs. 

Refer to Lorenz (1956) for more information on EOFs.  PCA decomposes a 

similarity matrix (e.g., correlation matrix), relating the aforementioned 

atmospheric variables, into two displays: PC loadings and PC scores.  

Equation 3 describes the basic formula on relating, in this case, the PC 

Scores (F) and the transpose of the Loadings (A) matrix to a set of effective 

standard scores (Z-Scores), or scores standardized to the mean.  

Z = FAT                                                     (3) 
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See Appendix C for more details and plots not covered in this overview.  All 

analysis for PCA was performed in the TIBCO Spotfire S-Plus 8.2.0 statistical 

software package on a Linux workstation with RedHat 5.   

Using (3) as a template, the construction of Z will be discussed.  First, 

a data matrix, X, is constructed for each month.  Each column contains 

information about the predictors at each grid point.  Each row represents the 

value of the variable for a given day, for a given month.  As such, this type of 

analysis is similar to mixed P/R-Mode, but ultimately is most similar to R-

mode because variables are columns that are assessed spatially.  Data in 

the data matrix, X, is scaled because of the mixed units across the variables.  

The orders of magnitude difference between variables, such as pressure and 

omega, require that all variables are scaled to a relative threshold.  That is, 

each variable is adjusted to a mean of 0 and a standard deviation of 1.   

A correlation matrix, R, is created to measure the linear similarity 

among predictors.  The process of correlating the variables removes the 

mean from each variable and makes each variable unit length 

(standardization).  This standardization allows variables measured on 

different metrics to be compared.  Because each variable is perfectly linearly 

related to itself, R has 1’s along the diagonal.  Any points (rows) with missing 

data are omitted from the correlation calculation.  Eigenvectors (V) and 

Eigenvalues (λ) are then calculated from R and used to form the PC loading 

matrix (A) by postmultiplying V by a diagonal matrix (D) of the square root of 

the eigenvalues.  This loading matrix displays “weights” of variables along a 
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PC, and because R is decomposed, those weights in A are in correlation 

units. 

Rotating the PCs makes the results more stable and less susceptible 

to sampling errors, as shown in North et al. (1982), and more consistent with 

the similarities measured in the correlation matrix (Richman 1986).  

Assuming the correlation matrix is a valid representation of the similarities 

among the variables and the variables express meaningful relationships 

between the atmosphere and dry thunderstorms, the rotated PC loadings (B) 

are more interpretable physically or meteorologically than the initial 

(unrotated) loadings (A) (Richman 1986).  Such an analysis is often referred 

to as Rotated Principal Component Analysis (RPCA).  See Appendix C for 

more mathematical background behind the rotation process.  O’Lenic and 

Livezy (1988) tested the RPCA method on upper-air heights to find 

discrepancies between data sets.  RPCA was applied to lightning research 

by Bothwell (2002) over the western United States and was utilized for 

Alaska by Buckey (2009).  Given the predictive skill in these analyses and 

the statistical and interpretational advantages of RPCA, it will be applied as 

part of this study, using the Varimax (orthogonal) rotation method.  

Because one of the key advantages of any PCA (unrotated or rotated) 

is efficient data reduction, PCA seeks to compress as much variability of the 

variables into as few dimensions (k) as possible.  Additionally, the rotation of 

PCs requires that a number of PCs (k) be identified prior to the rotation 

process.  Several tests are applied to help determine how many PCs to keep 
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for rotation.  While keeping all of the PCs explains all of the variance, a few 

can be found to explain most of the variance.  North et al. (1982) remark that 

“…for a given n no other basis set can explain more of the average 

variance…” where n refers to a certain number of PCs kept.     

One test comes from the Scree diagram.  Scree refers to rock rubble 

that falls down cliff faces and collects near the bottom.  Thus, the diagram 

displays how PC variance explained (a proxy for relevance) starts off highs 

and then falls off the cliff as the number of PCs retained (k) goes from 1 to 2 

and onward.  Unfortunately this test alone, even when coupled with other 

Scree-related tests such as North’s test (not shown), makes no clear 

distinction on the number of PCs to retain because it has never been 

demonstrated that the amount of variance explained by a PC relates to its 

meaningfulness.  Moreover, as shown in Fig. 3.1, in many analyses, multiple 

breaks occur.  The first PC explains a lot of variance as seen by its high 

value.  Moving down the slope means that each additional PC contributes 

less and less to add-

itional variance explained 

until it starts to level off 

around 9-15 PCs.  The 

actual contribution to ex-

plaining the variance is 

difficult to distinguish 

from this chart. Figure 3.1: Scree Test showing how PC contributions 

slope down from PC1 (top left) to PC20 (bottom right).   
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Another method, the Congruence Coefficient (CC), constructed to 

relate two sets of PC loadings, is shown in Equation 4 (Harman 1976).  CC  

 

                                                                                                                      (4) 

 

 

 

was introduced in this form by Harman and later adapted by Richman (1986) 

who related the loadings (matrix A) to the correlation matrix from which the 

loadings have been extracted (matrix B).  A congruence coefficient value is 

calculated for each PC, and varies depending on the number of PCs kept.  

Values fall between -1 and 1.  Because the signs of the loadings are arbitrary 

(i.e. any loading vector can be multiplied by -1 with no loss in interpretation) 

the absolute value of the CC is evaluated.  For any PC, the largest absolute 

PC loading is identified and the variable number (row number) associated 

with that largest value is noted.  That variable number indexes the 

appropriate column of the correlation matrix for the CC calculation.  CC 

values between 0.82 and 1.00 indicate a good to excellent match between 

the two vectors.  

Examples from the CONUS and AK domain are shown in Figs. 3.2 

and 3.3.  Keeping 12 PCs shows good matches down each PC value for both 

domains as the blue line falls between the perfect and good match 

thresholds.  The variance explained (dashed-red) line starts to flatten as 
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more PCs are kept and less additional variance is explained.  Keeping 7 PCs 

explains 50% (0.5) of the variance and keeping 12 explains a bit over 60% 

(0.6) over the CONUS domain.  About 55% of the variance is explained when 

12 PCs are kept in Alaska.  Twelve PCs are kept across each domain, for 

each month, of this study for consistency.  Plots for the other months can be 

found in Appendix C.   

 

 

Figure 3.2: Congruence coefficient lines when keeping different numbers of PCs (6-15).  The dark 

black lines near the top represent a perfect (≥0.9998) and poor (<0.82) match.  It is considered a 

good match when moist points fall between these lines for a given number of PCs.  The light-blue 

line representing 12 PCs is a good match here.  The dashed red line represents the variance 

explained by a kept number of PCs.   
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Figure 3.3: Same as Fig. 3.2 for Alaska.  Again, 12 PCs (light-blue) appears to be a good match of 

the data overall and explains ~55% of the variance. 

 

3.3 Describing or Naming PCs 

PC loading values (bij), formed from a correlation matrix, have a range 

of -1 and 1 with a higher contribution or importance the further away from 

zero.  After rotating the first 12 column vectors of PC loadings, variables with 

large (not near zero or not in the hyperplane) values are noted and the 

commonality among variables in the groupings noted and used to name the 

physical process underlying that PC.  Richman and Gong (1999) describe 

that values below a small PC loading cutoff are essentially very close to 0 

(zero-projection on a PC).  This concept is often referred to as simple 

structure (Richman 1986; Richman and Gong 1999).  Maximum amount of 

simple structure is obtained when most points fall along the axes of a pair 

plot (See Appendix C).  Previous work by Bothwell (2002) found that 0.4 is 
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an appropriate hyperplane cutoff for the loadings in lightning research.  That 

is, anything with a magnitude less than 0.4 is ignored during the grouping 

and naming process.  The cutoff of 0.4 relates to a variance squared weight 

of 0.16, so anything below this value is considered to have an insufficient 

amount of weight to contribute to the PC group.  

An example of rotated loadings shown in Fig. 3.4 highlights how the 

variable weights fall on certain PC columns.  The yellow highlights groupings 

of lightning climatology, and the purple highlights strong contributions from 

vorticity and the Laplacian of the Geopotential Height field.  Refer to Tables 

C1-C4 to see a detailed layout of variables above this cutoff for each 

month/region.  Figure 3.5 shows some of the most commonly seen groups 

noted across both domains.  As expected, predictors such as the lightning 

climatology (LTGCLIMO) and the associated interactive predictors of 

MUCAPE*LTGCLIMO consistently appear.  Other terms related to storm 

production, such as low level forcing and moisture, are present often.  

 

Figure 3.4: Example of loadings from Alaska during the month of July.  A small sample of the 139 

loadings are shown here.  Parameters with a magnitude ≥ 0.4 can be grouped down each column 

(PC).   
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Figure 3.5: Processes seen often across all warm season months for both regions.   

Another step in the PCA process involves generating PC scores by 

algebraically combining the standardized data with the rotated loadings.  

These scores display the standard deviations of data away from a mean of 0.  

Owing to the linearity of the model, the actual sign of the PC loadings (and 

hence the PC scores) is irrelevant, so any PC loading vector can be 

multiplied by -1 and the corresponding PC score vector also multiplied by -1 

to aid in the meteorological interpretation.   

For this hybrid-R-mode analysis, scores reveal regions of excess 

moisture, overall wind flow, and other important terms.  For example, PC2 

scores over the CONUS highlight the drier western regions (Fig. 3.6).  

Negative numbers (blue) represent areas that are generally drier than the 
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mean, so the New Mexico/Arizona border is generally drier than other parts 

of the country in June.   

 

Figure 3.6: Scores from the CONUS domain that represent low level moisture and lapse rate.   

Scores on PC11 look similar to lightning climatology around this 

month as shown in Fig. 3.7.  Areas of higher lightning climatology amounts 

generally correspond spatially with higher score deviances (red).  Similar 

results fall on PC1 in Alaska as both images display higher values in the 

central part of the state (Fig. 3.8).  Meanwhile, the scores on AK PC3 and 

CONUS PC9 highlight areas of terrain based on relative vorticity differences 

and the Laplacian of the Geopotential Height field (Figures 3.9 and 3.10).  

See Appendix C for further examples of scores from June over both 

domains; other months show similar results.    
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Figure 3.7: An example of scores (top) that correspond with high contributions from lightning 

climatology as seen in the example of FONE Climatology (bottom).  Note that the Scores are 

plotted using an Equidistant Cylindrical projection and the lightning climatology is plotted using a 

Lambert Conic Conformal projection. 
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Figure 3.8: Lightning climatology and interactive predictors (MUCAPE * lightning climatology) 

contribute the most to these scores.  Note that the Scores (top) are plotted using an Equidistant 

Cylindrical projection and the lightning climatology (bottom) are plotted using a North Polar 

Stereographic projection. 
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Figure 3.9: Score example that highlights terrain (right).  The Lambert Conic Conformal relief map on the left from Armap.org contains shape overlays 

denoting the Brooks Range in the north (yellow), Yukon River (blue), and the Alaska Range in the south (orange).  Mountainous regions, or regions with 

sharp terrain differences, appear as the high red standard deviations in the score plot on the right.  Note that the score plot uses an Equidistant Cylindrical 

projection. 
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Figure 3.10: Scores showing high contributions from elevation changes (right).  This CONUS example shows that elevation changes play more of a role than 

actual elevation as seen with the narrow blue strip of scores between higher mountain peaks denoted by reds.  A Lambert Conic Conformal projection is 

used for the relief map (left), and an Equidistant Cylindrical projection is used for the scores (right). 
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3.4 Building Equations and Forecasts 

Predictive equations were built for each binary predictand - all of the 

terms in Table 2.1 excluding TOTF and PTOT.  Scores (in units of standard 

deviations) are related to observed values with a Generalized Linear Model 

(GLM) which relates such “dependent” and “independent” data by a certain 

family relationship (Nelder and Wedderburn 1972).  The binomial family is 

chosen for logistic regression due to the binary nature of the observations.  

Nelder and Wedderburn suggest that independent binomial and independent 

Poisson models are similar, so the binomial method should suffice for this 

complex atmospheric data.  Complexity in this case refers to the many 

variables in the atmosphere and the number of predictors used for this study 

in particular.  Using a GLM ensures an accurate fit where the fewest number 

of parameters explain the most variability in the response variable.    

Equations were created per response variable (or predictand) for each 

month because the predictand categories are not mutually exclusive.  That 

is, equations are independent of each other (e.g., Equations 5 and 6) 

Predictand observations (e.g., FONE and DRYTH1) and PC Scores (S1-S12) 

are passed into a logistic regression model to create an associative equation. 

EqtnFONE = FONE + S1 + S2 + S3 +… + S12                      (5) 

EqtnDRYTH1 = DRYTH1 + S1 + S2 + S3 +… + S12                      (6) 

For example, a predicted value for dry thunder (DRYTH1) does not know the 

predicted value for rainfall greater than a tenth of an inch.  Dry thunder fields 

do not depend on the predicted values of FONE or PLTN/PLQT because the 
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dry thunder fields were passed in as distinctive independent data with 

uniquely developed equations.  It is hoped that the fields will show similar 

trends, say low precipitation chances in regions of high dry thunder chances.  

 Only 00 UTC data was used to create equations due to peak heating 

and convective activity interest as mentioned earlier.  Another reason 00 

UTC has the focus is that model and reanalysis data contain the most up-to-

date information of actual observations (e.g., from soundings) than other 

times of peak convective activity.  This may introduce a slight low bias 

around 12 UTC (convective minimum time) and result in more misses 

because of the higher 00 UTC threshold.  For example, CAPE and 

temperatures may be higher around 00 UTC, so the equations expect these 

higher values to predict dry thunder.  Lower temperature values more likely 

around 12 UTC may not be enough to generate dry thunder probabilities due 

to the 00 UTC structure even if the environmental setup is reasonable for dry 

thunder at that time.  However, it is hoped that the climatology amounts hold 

enough weight in development (as shown with PCA) that this potential bias 

will be reduced further.  That is, the equation pulls information about the 

associated climatology value for the given forecast hour.  A forecast for 12 

UTC contains information about the associated pentad 12-15 UTC 

climatology.   

GFS model data were chosen as input to the equations to create 

forecasts.  This model forecasts over both domains used in this research, 

which means each region is subject to inherent GFS biases (as per the PP 
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definition).  A standard operational 40-km grid covers the CONUS and needs 

no modification.  The Pacific 35-km grid over Alaska is converted to a 10-km 

grid with the same interpolation method used on the NARR development 

data.  Some differences from the development data to note: 1) Only the 

standard atmospheric variables are available instead of every 25-hPa, 2) 

CAPE is calculated using the virtual temperature correction with MUCAPE on 

a pressure difference layer from the surface to 300-hPa above the surface.  

Details about convergence, forcing, and wind may be reduced with the 

limited amount of pressure level information.  Meanwhile, the CAPE 

adjustment may seem larger than the development data and contribute 

slightly to overprediction.  This may be more of a problem at the 10-km 

Alaska scale.  Generating forecasts from GFS data takes about 1-h to run 

and grid (2-h for both domains). 

A CAPE and CIN filter is applied to the resulting FONE probabilities.  

Grid points with CAPE ≤ 50 J/kg and/or CIN ≤-50 J/kg in the CONUS are set 

to 0 in the lightning probabilities for one or more flash in the CONUS.  The 

filter of FONE in AK uses CAPE ≤10 J/kg and/or CIN ≤-50 J/kg.  Additionally, 

this predicted FONE field works as a mask for higher lightning values.  That 

is, if the chance of FONE is predicted to be 0%, FTHR, FTEN, etc. are set to 

0% as well.  Locations are unlikely to receive FTHR if they do not receive 

FONE.  This limit is separately applied as a post-filter – the equations are still 

independent due to the non-exclusive category definitions.  None of these 

filters are applied to precipitation or dry thunder fields.  
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CHAPTER 4     

Verification & Case Studies 

4.1 Contingency Statistics 

Lightning flash/dry thunderstorm forecasts follow similar guidelines 

and traits of other rare-event forecasts, such as the ones for severe weather.  

A general goal of such forecasts lies in predicting an area of interest several 

days in advance.  Most of these predictions come in the form of probabilistic 

fields.  One benefit to probabilistic forecasts comes from convenient 

comparison to climatological data.  Forecast probabilities higher than 

climatology can suggest an event is more likely to occur as proposed by Brier 

(1950).  Probabilistic fields also convey the uncertainty of a forecast.  Antolik 

(2000) states, “[p]robabilistic formulation not only makes it possible to convey 

information regarding the uncertainty of forecasts, but also allows individual 

guidance users to decide how best to react, given this uncertainty.”  All 

forecasts in this study use probabilistic output that range from 0 – 100% 

chance of an event/phenomenon occurring at a particular grid point.  

Verification of continuous variables presents concerns with 

dimensionality as described by Murphy (1991).  The amount of data needed 

for verification becomes so large that it either takes large amounts of 

temporal data (e.g., years) and/or many grid points to verify.  Binning the 

forecast output, probabilistic in this case, into separate bins reduces this 

problem.  Dimensionality would be too high to do every 1% category even 

with dichotomous observations (yes/no).  Categories are binned into the 
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categories shown in Table 4.1.  

Dimensionality equals one less 

than the forecast categories (bins)  

multiplied by the resulting categories.  

With nine categories and two poss-

ible outcomes, the dimensionality is 

calculated as: D=(9*2)-1=17.  This 

number represents the absolute 

minimum amount of observations/ 

forecasts that can accurately verify a 

forecast system.  Each available day 

over a given month counts toward 

this dimensionality data requirement, 

and doing point-to-point verification 

ensures adequate samples on the  

10-km and 40-km grids.  

One of the most common 

verification metrics comes from the 

Contingency Table (or confusion 

matrix) as shown in Table 4.2.  

Term a represent the number of 

hits; term b represents false alarms; 

term c describes misses, and term 

Category (%) Range (%) 

0 0.00 – 0.99 

1 1.00 – 2.99 

3 3.00 – 6.99 

7 7.00 – 14.99 

15 15.00 – 29.99 

30 30.00 – 49.99 

50 50.00 – 69.99 

70 70.00 – 89.99 

90 90.00 – 100.00 

Table 4.1: Binned categories and the 

exact ranges of consideration for each.  

Categories visually match intervals seen 

on forecast images. 

Table 4.2: Format of the 2X2 

Contingency Table used in this study: 

Y=yes, N= No. 
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d counts the number of correct nulls.  Calculations are made for each 

category listed in Table 2.  Optimally, most values fall in terms a and d.  

Several metrics and scores derived from the contingency table support 

assessing forecast quality (Doswell et al 1990; Wilks 2006).  Table 4.3 

describes the formulation of several metrics of interest where N represents 

the total number of forecasts made in a particular bin. 

 

Table 4.3: Name and formula for calculating common contingency metrics and scores. 

Name Formula 

n dcba   

Frequency (f) 
N

a
 

Base Rate 
n

ca )( 
 

Probability of Detection (POD) 
)( ca

a


 

Frequency of Misses (FOM) 
)( ca

b


 

False Alarm Ratio (FAR) 
)( ba

b


 

Frequency of Hits (FOH) (Success 
Ratio) )( ba

a


 

Probability of False Detection (POFD) 
)( db

b


 

Bias 
)(

)(

ca

ba




 

Critical Success Index (CSI) 
)( cba

a


 

Heidke Skill Score (HSS) 



2(ad bc)

(a c)(c  d) (ab)(b d)
 

Hanssen-Kuipers Skill Score (HKSS) 
(True Skill Score) 



(ad bc)

(a c)(b d)
 POD POFD 

Extremal Dependency Index (EDI) 
)ln()ln(

)ln()ln(

PODPOFD

PODPOFD




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Table 4.4: List of forecast hours (FHR) that 

count as a Day for the contingency metrics. 

For dry thunderstorm prediction, high interests lie in metrics such as 

the Probability of Detection (POD), and Probability of False Detection 

(POFD).  Metrics assessed in terms of time (forecast hours or FHR) reveal 

information similar to a time series.  Forecasts from 00 UTC cycles are 

assessed at a given valid time of 00 UTC.  Table 4.4 lists the forecast hour 

specifications that denote a Day which represents 00-00 UTC.  Day 8 (FHR 

168) was not included because this Day would not be within the 180-h limit at 

other cycles (such as 06 UTC).  

June and July data are 

combined due to the small 

number of cases in June (5 

days); significant dry thunder 

activity occurs in these months 

for both domains.  

Though there are many categories of interest, examples will only be 

shown for the 15% (3%) bin for the CONUS (AK).  This bin makes up an 

adequate portion of forecasts, and should be higher than the noise level to 

capture the coherent signal of a forecast.  Additionally, the CONUS domain 

was split into western and eastern domains at 102° longitude (Figure 4.1).  

This division allows for comparison of DRYTH1 and DRYTH2 between the 

drier West and wetter East.  Fire managers and crews in the West are more 

concerned with dry thunder fire ignition compared to the generally wetter 

East.  Also, it was discovered that the GFS contained a significant 2-m 

Day Cycle/FHR 
Day 1 (D1) 00 UTC/F000 

Day 2 (D2) 00 UTC/F024 

Day 3 (D3) 00 UTC/F048 

Day 4 (D4) 00 UTC/F072 

Day 5 (D5) 00 UTC/F096 

Day 6 (D6) 00 UTC/F120 

Day 7 (D7) 00 UTC/F144 
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temperature and dewpoint bias (~10-20° F) with most of the bias originating 

in the Central Plains during the summer of 2012.  This bias was not corrected 

until September 2012 (Lapenta 2012, personal communication).  Because 

the bias in the Central Plains would propagate eastward as the model 

forecasts move forward with time, scores are expected to be less accurate in 

the East than in the West.  Dividing the full CONUS should help avoid 

misleading impacts from the bias.  

 

Figure 4.1: Image demarking West vs. East areas in this study. 

 

 Figure 4.2 compares POD and POFD across the full CONUS, East, 

and West domains for forecasts out to Day 7.  FONE POD is notably higher 

than the dry thunder fields, and DRYTH2 is higher than DRYTH1 in CONUS 

and East setting.  DRYTH1 POD exceeds DRYTH2 in the West.  POD values 

decrease slightly with increasing forecast hour, as forecast accuracy 

decreases, in the full CONUS and East.  Values of POD in the West remain 

relatively consistent even out to Day 7.  POFD charts show very little change.  
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Results from the West are slightly different in that DRYTH1 has more false 

detections than FONE or DRYTH2.  This could be a factor of overforecasting.  

 

Figure 4.2: POD (left) and POFD (right) for the full CONUS (top), East (middle), and West (bottom) 

in the 15% bin.  Note that the scales are different between POD and POFD. 

 

 FAR and FOH (Fig. 4.3) can describe a bit more about a system, but 

FAR results can be misleading in rare-event forecasting as high values are 

not uncommon (Doswell et al. 1990; Brooks 2004; Hitchens et al. 2013).  As 

Brooks (2004) states, “[i]f missed events are considered costly, however, 



72 

much higher FAR values must be accepted.”  Nevertheless, FAR values are 

shown here for completeness.  High FAR values, a direct result from 

overforecasting, increase slightly as accuracy decreases with time.      

 

 

Figure 4.3: FAR (left) and FOH (right) for the full CONUS (top), East (middle), and West (bottom) in 

the 15% bin.  Note that the vertical axis scales differ between FAR and FOH. 

Results from the CONUS and East are consistently higher than the 

West, i.e., values for the West are better in terms of FAR.  West values 

outperform in FOH results as well, as the hits remain fairly consistent even at 
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the longer lead times.  The slight improvement at F024 may be associated 

with model spin-up.  Results from the East decrease rapidly to F144 most 

likely due to the GFS biases. 

Forecasts values at the 10-km AK grid (Fig. 4.4) follow trends similar 

to the CONUS with decreasing accuracy as time increases.  DRYTH1 values 

perform better than DRYTH2 and FONE.  Even though the FOH is lower in 

AK, the POD is higher compared to the CONUS domain.  Such individual 

metrics reveal some information about the forecast system, but scores based 

on these metrics can provide further insight. 

 

Figure 4.4: Values of POD (upper-left), POFD (upper-right), FAR (lower-left), and FOH for Jun and 

July data Valid at 00 UTC in the 3% bin.  Note that the vertical axes are different for each term.  

The Heidke Skill Score (HSS) represents a skill score from the 

contingency table that relates to relative accuracy.  Values of 1 express 

perfect scores, and negative scores relate to forecasts that are worse than 
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the chance of random correctness (Wilks 2006).  A related score, the 

Hanssen-Kuipers Skill Score (HKSS), equals the HSS if forecasts are 

unbiased.  Generally, this score seems better for systems prone to 

overforecasting.  Fig. 4.5 shows results from the CONUS, East, and West.  

 

Figure 4.5: HSS (left) and HKSS (right) for the full CONUS (top), East (middle), and West (bottom) in 

the 15% bin. 

A high bias is noted by the fact that HKSS values generally fall higher than 

the HSS values, especially for FONE.  High values of HKSS in the West 
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contribute more to the higher results in the CONUS compared to the East.  

Values of HSS are not perfect, but they are better than random forecasts. 

Results from AK (Fig. 4.6) show how the HSS follows a trend similar 

to FOH.  Overforecasting ties directly into the higher HKSS values shown 

below, and the trend is similar to POD.  Because the HKSS does not equal 

the HSS, and are larger, the forecasts contain a high bias.  

 

 

Figure 4.6: HSS and HKSS for the 3% bin for AK Jun and Jul data valid at 00 UTC.  Note that the 

vertical axes are different. 

 

Because lightning emulates rare-event phenomena for forecasting, the 

Extremal Dependency Index (EDI) is assessed (Ferro and Stephenson 2011; 

Wilson and Giles 2013).  EDI values are related to POFD and POD as shown 

in Table 4.3; positive EDI relates to higher POD and negative EDI relates to 

higher POFD.  Equal values of POD and POFD equate to 0 EDI.  Results for 

the CONUS appear very similar to POD in the overall trend and performance 

between predictands (Fig. 4.7).  It is encouraging that all values are positive, 

i.e. POD exceeds POFD even at the Day 7 time frame. 
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Figure 4.8: EDI plot for AK Jun and Jul data 

Valid at 00 UTC for the 3% bin. 

 

Figure 4.7: EDI values in the 15% bin for the full CONUS (top), East (bottom-left), and West 

(bottom-right). 

 

Alaska values of EDI reiterate that POD is higher than POFD even at 

extended ranges (Fig. 4.8).  This plot resembles the POD and HKSS plots, 

and shows that DRYTH1 typically 

has slightly better forecasts than 

DRYTH2 and/or FONE forecasts.  

A minor decrease in forecast 

accuracy with time is suggested, 

but consistent positive values 

exhibit that the forecasts contain 

skill even at further time ranges. 
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The Brier Score (BS) essentially represents the mean squared error of 

the forecasts.  Values closer to 0 denote better forecasts.  Additionally, the 

Brier Skill Score (BSS) works as a measure of accuracy related to 

climatology where larger values represent superior scores (e.g., Fig 4.9). 

 

Figure 4.9: BS (left) and BSS (right) for the full CONUS (top), East (middle), and West (bottom).  

Note that the vertical axes are different between BS and BSS. 
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Values of BS in the CONUS are not too low, and the relatively low BSS 

values in the full CONUS and East domain suggest the forecasts could use 

some improvement.  While the West has slightly higher BS, the BSS is also 

higher in this area.  That is, results in the West outperform forecasts of 

climatology. 

Plots for AK convey a decreasing reliability/resolution trend with a few 

interesting caveats (Fig. 4.10).  BS values are surprisingly higher at F000 

compared to other times until F072.  One possible explanation comes from 

the fact that models and certain schemes need time to “spin-up” the physics 

of certain phenomena.  For the BSS, values are highest at F000 where 

forecasts exhibit more reliability, and become more negative (closer to 

climatology) at further time scales. 

 

Figure 4.10: BS and BSS for AK Jun and Jul data valid at 00 UTC in the 3% bin.  Again, scales are 

different between BS and BSS. 

 

4.2 Performance Diagrams  

Instead of the metrics and bins individually, a Reliability (or Attributes) 

Diagram conveys information about reliability and resolution of a given 
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forecast system which conveys different strengths and weaknesses of a 

forecast system (Wilks 2006).  Because points on the reliability diagram may 

become jagged and misleading with a small sample size, any bins that do not 

contribute to 0.01% of the total forecasts (N) are not shown.  A histogram of 

the forecasts per bin is overlaid as this information in otherwise not apparent.  

An example from the CONUS is displayed in Figure 4.11 below. 

 

Figure 4.11: Attributes Diagrams for Day 1 (F000, left) and Day 7 (F144, right) for the full CONUS 

(top), East (middle), and West (bottom). 
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Results from the CONUS show overforecasting from 1-15%, and 

underforecasting for the higher bins at F000.  The 90% bin is not shown 

because the number of forecasts falls below the 0.01% threshold utilized in 

this study.  This trend of underforecasting at lower bins and overforecasting 

at higher bins is seen in the East and West, and at the later time of F144.  

Higher values in the CONUS are more aligned or below No Skill at F144. 

The East exhibits poorer results compared to the CONUS or the West, 

especially at the higher categories.  Total forecasts made in the 70% bin are 

likely very low, but just above the threshold, which causes the sharp 

decrease in the frequency line.  By the F144 (Day 7) forecast time, most of 

the values fall to create a practically horizontal line.  This result suggests that 

the forecasts cannot resolve areas any better than climatology.  Meanwhile, 

values from the West are reasonable at the F000 and F144 time frames.  

Underforecasting and overforecasting occur, as observed in Bothwell (2002), 

but none of the bins fall below No Skill.  That is, the West shows more skill 

than the East or full CONUS according to this diagram. 

A DRYTH1 sample from AK is shown below in Figure 4.12.  The 

forecasts are mostly reliable, but actually underpredict in the 1%, 3%, and 

7% bin in the F000 time frame.  By the 15% bin, overprediction drives the 

value down to the No Skill line at F000.  Higher bins at F144 have no 

resolution as the line parallels the No Resolution line, so forecasts are similar 

to climatology.  Inspection of the forecast histograms reveals why some of 



81 

the higher categories seem less reliable: the total number of forecasts in bins 

>1% are a small fraction of the forecasts in the 0% and 1% bins.  

 

 

Figure 4.12: Reliability diagram for DRYTH1 in AK for Jun and Jul data Valid at 00 UTC.  Points 

related to Day 1 (F000) are on the top, and points related to Day 7 (F144) are on the bottom. 

 

Recall that the 15% (3%) bin was assessed for the CONUS (AK) in 

Section 4.1.  These bins were chosen to represent coherent forecast signal, 
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and the Attributes Diagrams validate this statement (Fig. 4.13).  More 

specifically, this bin is the first bin above sample climatology with adequate 

reliability.  The bins exhibit some underforecasting, yet the histograms reveal 

a sufficient amount of forecasts fall within these bins.  Forecasts in this bin 

can be considered as important because they exceed the sample 

climatology.  Note that though these bins are greater than the sample 

climatology of observed events, the values may not be larger than the 

observed pentad climatology.  Forecasts may but are not required to exceed 

pentad climatology to be considered significant.  This will be covered more in 

the case studies shown in the next section. 

 

 

Figure 4.13: CONUS (left) and AK (right) Attributes Diagrams for 00 UTC and F000.  Green circles 

highlight the bins that are above the sample climatology (vertical purple line). 

   

  POD, FOH, Bias, and CSI can be assessed using a Performance 

(Roebber) Diagram (Roebber 2009) as seen in the CONUS example below 

(Fig. 4.14).  Values of FOH (Success Ratio) vs. POD are plotted as the main 
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lines on the chart.  Curved reference lines represent values of constant CSI; 

CSI increases from (0, 0) to (1, 1).  Dashed lines represent constant Bias.  

The 1-1 line symbolizes Bais equal to 1 (perfect); lines above represent Bias 

greater than 1, and vice versa for below.  Performance diagrams are zoomed 

into a max POD/FOH of 0.5 for clarity.  Values are plotted for each of the 7 

Days, yet the exact order is not implicit in the chart.  The individual charts of 

POD/FOH can assist in this case (Figs. 4.3 and 4.4).  In the full CONUS 

domain, FONE is higher than DRYTH1 and DRYTH2 in the POD/POFD ratio.  

There is a slight high Bias starting out, yet the Bias and CSI decrease with 

increasing forecast hour – another sign that forecasts are not as skillful at 

longer ranges.   

 

 

Figure 4.14: Performance Diagram for the CONUS.  The full diagram is on the left, and the zoomed 

plot on the right is denoted by the dotted blue square.  Starting and ending times are labeled. 

 

East and West domain Performance Diagrams are shown in Figure 

4.15.  FONE is prominently better than DRYTH1 and DRYTH2 in the East, 
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and DRYTH2 outperforms DRYTH1 as well.  FONE and DRYTH2 Bias 

values are very close to 1, while DRYTH1 has a Bias less than 1.  The lower 

values of DRYTH1 may suggest a smaller sample size of forecasts 

compared to DRYTH2 or FONE, i.e., storms are generally wetter in the East, 

so the total number of DRYTH1 observations is expectedly lower.  West 

results show improved FONE compared to the dry thunder fields, but 

DRYTH1 outperforms DRYTH2.  CSI is higher, and does not decrease as 

much with time compared to the East.  

 

 

Figure 4.15: Performance diagram for the East (left) and West (right) – axes are zoomed into a 

subset range of the full diagram. 

 

In Alaska, a high Bias exists in FONE and the dry thunder fields as all 

of the lines fall in the upper left side of the chart (Fig. 4.16).  As previously 

noted (Fig. 4.4), POD is larger than FOH, and the decrease and increase in 

CSI as forecasts go out in time appears as well.  Again, these higher values 

of POD and Bias are attributable to the overforecasting and overall lower 
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amounts of forecasts at the 10-km AK domain compared to the 40-km 

CONUS domain.  Recall that most forecasts only fall within the 1-3% bins in 

the AK domain. 

 

Figure 4.16: Performance Diagram for AK for F000-F144 – axes are zoomed to a subset range. 

 

The Receiver (or Relative) Operating Characteristics (ROC) Diagram 

is another performance metric chart.  A ROC Diagram evaluates overall 

performance of a system by comparing the POFD (also known as False 

Alarm Rate) to the POD (Mason and Graham 1999; Wilks 2006).  An 

example from the CONUS is show in Fig. 4.17.  The dashed 1-1 line 

represents No Skill from a forecast of always no (0, 0) to always yes (1, 1).  

Additionally, a performance measure, the Area Under the Curve (AUC), can 

be obtained from this chart.  AUC values of 1 are perfect, and values of 0.5 
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equal the No Skill line.  For this study, AUC values are found using the 

trapezoidal method.    

 

 

Figure 4.17: ROC diagrams for Day 1 (F000, left) and Day 7 (F144, right) for the full CONUS (top), 

East (middle), and West (bottom). 
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Values from Alaska show that the dry thunder and FONE forecasts 

have good performance values (Fig. 4.18), especially with AUC values 

around 0.88 at F000.  It is seen that both dry thunder fields marginally 

outperform FONE as noted by the AUC value and the fact that the black line 

(FONE) is slightly below DRYTH1 and DRYTH2 for part of the curve.  Lines 

and AUC values are expectedly lower at F144, but still represent good 

performance from lightning and dry thunder forecasts at the 10-km grid. 

 

Figure 4.18: ROC diagrams for Jun and Jul data valid at 00 UTC for F000 (top) and F144 (bottom).  
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4.3 Case Studies 

 While quantitative metrics describe the true objective performance of a 

system, forecasters and other users often benefit from more qualitative 

assessments.  Four case studies (2 per region) are shown as examples of 

the apparent visual benefit of dry thunder forecasts.  Though not a 

requirement, most of the cases presented relate to notable fire starts, and 

others highlight spatial variability and accuracy.   

4.3.1 CONUS Bonita Complex Fires 

Several large fires plagued the CONUS during the continuing drought 

of 2012.  Early in July, dry thunderstorms ignited two fires, the Bonita Fire 

and Iron Fire, in the Bonita Complex located in eastern Oregon.  Figure 4.19 

highlights the approximate location of these fires.  Around 18,000 acres were 

burned in a little over a week and impacted the town of Westfall, OR 

(InciWeb 2012). 

 

Figure 4.19: Bonita Complex DRYTH1 forecast, observations, and approximate fire location. 
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Figures 4.20 and 4.21 show forecasts from Day 7 (F144) up to the day of the 

event (Day 1, F000).  Color fills represent the chance of DRYTH1 occurring 

at a given point.  Observations of DRYTH1 are overlaid as green “1’s”, yet 

these do not represent total flashes within a box.  Because DRYTH2 

forecasts are extremely similar to DRYTH1 on the 10-km grid, only examples 

of DRYTH1 are presented.  Forecasts are for 00 – 03 UTC. 

 Day 7 forecasts may not show extremely prominent values for 

DRYTH1, yet a noticeable area of 15% probability appears by Day 6 (F120) 

in central Oregon.  This “bulls-eye” region remains fairly consistent for the 

next 3 days (through Day 3).  On Day 2 (F024), the probabilities decrease 

slightly.  

 Still, the area of interest was noticeable by Day 6 and persisted up to 

the Day of the event.  The fires started near the eastern edge of the 15% 

contour in the 7-15% range – refer back to Figure 4.19.  Of course, the dry 

thunder probabilities are not directly relatable to fire start locations, so fire 

starts outside of the main “bulls-eye” of forecasts are acceptable.  Perhaps 

these areas of higher probabilities are more closely related to total flashes, 

and that can be an area of future exploration.  
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Figure 4.20: DRYTH1 forecasts and Observations for Day 7 (F144) to Day 4 (F072). 

 

 

Figure 4.21: DRYTH1 Forecasts and Observations for Day 3 (F048) to Day 1 (F000) - the day of the 

event. 
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 With this discussion of a DRYTH1 forecast “bulls-eye”, a comparison 

to climatology could reveal the actual strength of such a forecast.  Figure 

4.22 shows the forecast and observations from the day of the event, and also 

shows the pentad climatology value for the day.  Fire symbols denote the 

approximate location of the Bonita Complex.   

 The Bonita Complex falls in a 7-15% forecast value and likely falls 

closer to the 15% range.  Climatology values for this time do fall in the 7% 

range, but are likely closer to the low end.  Values of only 3% fall in the place 

of the 15% forecast “bulls-eye” which may suggest that the climatology 

values are on the lower end of the 7-15% range.  While forecast values of 

DRYTH1 are not significantly higher than climatology at the Bonita Complex 

location, forecasts are significantly higher in other portions of the state.  

Other DRYTH1 observations may have ignited some other fires, but focus 

remains on the larger starts.  

 

 

Figure 4.22: DRYTH1 Forecast for F000 on 09 July 2012 00 UTC (left) and the pentad climatology 

from the associated range (07 July, right).  Note that the scales have similar increments and units, 

but the colors are different. 
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4.3.2 CONUS Mustang Complex Fire 

Another large fire started in late July 2012 in the Pacific Northwest.  

Lightning ignited a fire in eastern Idaho near the Idaho/Montana border (Fig. 

4.23).  Dry fuels in a forested area made this fire difficult to bring under 

control, as it burned over 300,000 acres in a little over 3 months (InciWeb 

2012).  The Mustang Complex contributed more to hazardous air quality for 

towns east of the area compared to actual property damage from the fires.   

Similar to the previous case study, Figures 4.24 and 4.25 step through 

the Day 7 through Day 1 forecasts leading up to 29 July 2012.  The pattern is 

not as consistent with these forecasts as the area of interest fluctuates 

between 3% and 7% bins.  Comparisons with the observations may suggests 

that the pattern is fairly consistent up to the Day 2, but is somewhat lost at 

Day 1 as noted by the reduction of forecast probabilities in Montana. 

 

Figure 4.23: CONUS DRYTH1 forecast and observations along with a zoomed image centered on 

Idaho showing the approximate fire location. 
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Figure 4.24: DRYTH1 00 UTC forecasts and Observations for Day 7 (F144) to Day 4 (F072). 

 

 

Figure 4.25: DRYTH1 00 UTC forecasts and Observations for Day 3 (F048) through Day 1 (F000). 
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 Comparing the forecasts to the associated pentad climatology reveals 

that the two numbers are very close (Fig. 4.26).  That is, the forecasts for 

DRYTH1 are not higher than climatology in this case.  This example 

suggests the forecasts are performing as good as climatology, but not 

necessarily better in these isolated cases.  Additionally, a case with values 

similar to climatology reinforces the fact that other sources of information, 

such as fuel dryness and drought stats, are necessary additions when 

making fire weather forecasts and preparations. 

 

 

Figure 4.26: DRYTH1 00 UTC Forecast for 29 July 2012 F000 (left) and the associated pentad 

climatology (right). 
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4.3.3 AK Uvgoon Creek #1 

Lightning-started fires in Alaska were lower than average in 2012, but 

a few cases did result in large amounts of acreage burned.  One such event 

started around 04 July between 00 – 03 UTC.  In far northwestern Alaska, a 

fire ignited near Uvgoon Creek ignited the tundra fuels and burned a bit more 

than 49,000 acres over one month (reported out on 05 August).  This fire was 

allowed to burn because the regions remoteness presented no threat to 

human life or property (Alaska Interagency Coordination Center 2012).  

Forecast examples from 02 July (120702/0000) and 03 July 2012 

(120703/0000) in 6-h intervals are shown in Figures 4.27 and 4.28 leading up 

to the time of interest (Fig. 4.29).  Parts of eastern Alaska contain high 

chances for dry thunderstorms 24-h prior at 120703/0000.  Forecasts from 

120702/0000 have generally higher probabilistic forecasts than the 

120703/0000 forecasts because linear-regression-based forecasts have 

been noted to display diminished chances closer to event time (Antolik 

2000).  Overnight forecasts are diminished appropriately with heating (Fig. 

4.27), yet the weather pattern visibly begins to shift westward across the 

Brooks Range in the north.  Forecasts from 120703/0000 resolve the 

westward extension of dry thunder chances better than the forecast from 

120702/0000.  
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Figure 4.27: Forecasts from 120702/0000 (left) and 120703/0000 (right) runs starting on 120703/0000 (top).  Forecast from 6-h later are shown on the 

bottom.  Brown contours represent terrain.  Vertical dashed lines signify the different forecast runs. 
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Figure 4.28: Same as Figure 4.26 valid at 12 UTC (top) – 18 UTC (bottom) hours from start time. 
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By the day of the event, at 120704/0000, the 48-h and 24-h forecasts 

show an increased chance of dry thunder occurring in northwestern Alaska 

and along the Brooks Range (Fig. 4.29).  Visually, the overall shape of 

forecasts improve with the 24-h forecast from the 120703/0000 cycle run 

which manages to capture some of the missed forecast from the 

120702/0000 cycle.  Unfortunately, some of the higher probabilities on the 

24-h forecast are considered misses though the areas are only slightly 

displaced from areas of observed DRYTH1.    

Both cycles predict dry thunder chances equal to or higher than 

climatology for the associated pentad (the bottom left panel of Fig. 4.28) and 

designate areas with a noteworthy chance of dry thunder.  This suggests the 

equations are not highly skewed toward climatology, at least at within the first 

two days.  Additionally, both cycles manage to capture the chance of dry 

thunderstorms in places where fires actually ignited.  The bottom-right panel 

in Fig. 4.28 denotes recorded fire starts as observed by the Alaska BLM 

(denoted with fire symbols).  The southern-most fire symbol represents the 

approximate Uvgoon Creek ignition location.      

Forecasts in AK are lower than in the CONUS due to the smaller grid 

size and the increased rarity for lightning in Alaska.  Hughes and Trimarco 

(2004) mention, “[a]s we increase the resolution of the guidance, both in time 

and space, the magnitude of the probabilities will decrease, as the likelihood 

of an event at an exact time and point in space approaches zero.”  Thus, it is 

not surprising to see fewer values above 7-15% across the AK domain.   
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Figure 4.29: Forecasts for 120704/0000 (top), the associated climatology of DRYTH1 (bottom left), and the 24-h forecast shown again with fire locations 

displayed as fire symbols. 
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4.3.4 AK 120708 Case 

Instead of focusing on a day with large fire starts, a large-scale 

“outbreak” of dry thunder can be assessed, i.e. a large area is expected to 

receive a lightning flash associated with a dry thunderstorm.  Forecasts from 

several cycle runs valid at 08 August 2012 00 UTC are shown in Figure 4.30; 

again, only DRYTH1 will be shown.  The 144-h (Day 7) forecast for DRYTH1 

captures the overall shape and domain of dry thunder well.  Some areas 

exhibit overprediction in places where no lightning occurred, but these 

regions are effectively reduced by the day of the event.  

The overall pattern appears to be a strongly driven signal from the 

GFS data, as forecasts look solid from 144 to 120 hours prior to the event.  

That is, almost all of the probabilities align from northeast to southwest 

Alaska.  A strong line of dry thunderstorms in north-central and southwestern 

regions is suggested as early as the 120-h forecast.  Unfortunately, the 72-h 

(Day 3) forecast actually misses the northeast-to-southwest pattern, but the 

pattern reappears by the day of the event.  Such a pattern change could help 

explain the lower POD and other scores seen in the statistics above if the 

trend is consistent.  The unique trait exhibited here could be a further area of 

study for PP and/or GFS data in general.   

Probability reduction from F144 to F000 appears here as well.  

Regardless of the low scores displayed earlier, especially at longer ranges, a 

user could find such an extended-range forecast to be beneficial.  Having the 

alert for dry thunderstorms is advantageous even with overprediction.    



 

1
01

 

 

Figure 4.30: DRYTH1 forecasts valid at 120708/0000 (color-fill) from F144 prior (top-left), F120 prior (top-right), F072 prior (bottom-left), and F000 (start 

time; bottom-right).  Observed DRYTH1 plotted with green digits. 

 



102 

As previously stated, the chance for dry-lightning does not necessarily 

correlate with fire ignition, so using other information about fuels and weather 

conditions could help fire crews select smaller areas to concentrate men and 

resources out of the larger risk area.  Some of the more notable fires from 08 

August 2012 (as recorded by the AK BLM) are marked on the F144 and 

F000 forecasts (Figure 4.31).  This illustrates that high dry thunderstorm 

probabilities do not necessarily correspond with high chances of fire ignition, 

but that forecasts do emphasize certain areas of potential risk. 

 

 

Figure 4.31: F144 and F000 forecast for 120708/0000 with recorded fire starts overlaid.  
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CHAPTER 5 

Summary & Future Work 

5.1 Summary & Discussion 

A method for predicting dry thunderstorms, with regard to fire weather 

forecasting, by using Perfect Prognosis, Principal Component Analysis, and 

logistic regression is developed and tested.  Dry thunder forecasts have been 

shown to be as, or more, successful than the lightning forecasts in the 

CONUS and AK domains.  Such forecasts can benefit fire crews and 

managers, as lightning-started fires are considered a major fire weather 

concern across the CONUS and Alaska.  Both domains are assessed 

separately; a 40-km CONUS grid, and a 10-km AK grid.  Twelve years (2000-

2011) of NARR data provided a reliable training data set.  Variables of 

temperature, dewpoint, and wind components were used in conjunction with 

derived parameters, such as MUCAPE, to describe the environment. 

Additionally, a dry thunderstorm climatology was developed using 

NARR precipitation data coupled with lightning data (NLDN for CONUS, and 

BLM for AK) from the twelve year data set.  Climatologies were created for 

two different dry thunder categories: DRYTH1 and DRYTH2.  DRYTH1 

combines total precipitation less than a tenth of an inch (PLTN) with the 

product of one-or-more flashes of lightning (FONE).  DRYTH2 allows a bit 

more precipitation by requiring precipitation less than a quarter of an inch 

(PLQT) and one-or-more flashes (FONE); i.e., precipitation can be a tenth or 

more but not a quarter or more.  Both sets of climatology resemble the 
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climatology for FONE, yet DRYTH2 captures more variability in areas with 

slightly more rain (such as coastal or valley regions).  The pentad method of 

creating a climatology set is employed in this study, matching the Bothwell 

(2002) and Buckey (2009) studies. 

Using the perfect prognosis method, it is assumed all forecasts are 

perfect once a relationship between predictors and predictands has been 

established.  Prior to making this relationship, Principal Component Analysis 

is used to maximize the variance explained by the predictands.  After rotating 

the principal components (PCs) for stability, a Scree Diagram and 

Congruence Coefficient test found that keeping 12 PCs explained the data 

well for each month across both domains.  Resulting PC Scores from the 

analysis were then used to create equations by logistic regression.  Some of 

the strongest predictors as determined by the PCA are the lightning/dry 

thunder climatology and interactive predictors of lightning climatology 

multiplied with MUCAPE. 

Because peak heating occurs in the afternoon hours, only 00 UTC 

equations were developed using logistic regression.  An equation was 

created for each month across the separate domains.  These equations were 

tested during the summer months of 2012.  GFS model data are used as 

input, and resulting probabilistic fields of dry thunder are output.  Probabilistic 

fields were chosen to help convey the uncertainty in the forecasts.  

In general, DRYTH1 and DRYTH2 were analogous, and were both 

comparable to the lightning field, FONE.  Sometimes, especially at the 40-km 
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CONUS grid, the forecasts of dry thunder accurately capture areas missed 

by FONE.  This is most likely a result of applying a CAPE and CIN filter to the 

lightning fields (FONE included).   

Forecasts results from June and July were combined together for 

verification because there were a small number of days available in June, 

and these two months contain the most lightning activity for both regions.  

Binning was used as part of the verification process, with more bins at 

smaller percentages because most of the forecasts fall within the first few 

bins.  As such, the underforecasting noted for DRYTH1 and DRYTH2 on the 

Attributes Diagrams can be misleading.  That is, if most of the hits occur 

within the 1% bin, then it appears that the value of 1% does not get 

forecasted enough to only receive 1% of the hits.  ROC diagrams 

corresponded well with other plots by showing how skill decreases with 

increasing forecast hour, i.e., skill from mid to extended range (Day 3 +) 

forecasts contain less skill and reliability.   

Two case studies are assessed per domain.  Both CONUS cases 

relate to notable large fire events in 2012: the Bonita/Iron Complex Fire and 

Mustang Complex Fire.  Both case studies reveal that DRYTH1 forecasts 

accentuate areas of dry thunderstorm probabilities up to one week in 

advance.  Forecasts were noted to remain consistent across the 7 day time 

frame leading up to the event.  Coupling such forecasts with other 

information about fuels and drought condition could have helped pinpoint the 

areas with the highest risk for fire ignition. 
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In Alaska, case studies also revealed the benefit of forecasts days in 

advance.  One study effectively highlights regions of increased dry thunder 

risk in areas significantly higher than climatology that resulted in a few large 

fires.  The second case revealed accurate predictions, at least spatially, of a 

large dry thunder outbreak a week in advance.  Probabilities decreased as 

the event drew near, but this behavior has been seen in other logistic 

regression studies.   

 

5.2 Future Work 

 Forecasts were only made for a portion of the warm season during 

2012, but these forecasts are being assessed and run daily in 2013.  

Coupling the 2012 and 2013 data could allow for verification assessment 

across each month individually instead of requiring a combination of months.  

Additionally, it was noted that the GFS contained cool and moist biases 

during the summer of 2012.  It should also be reiterated that the summer of 

2012 was rather unique in both domains.  Drought conditions across parts of 

the CONUS allowed for many acres to be burned from lightning-started fires.  

Meanwhile, AK experienced a more moist and cool summer with less dry 

thunderstorm activity.  Continuing to run these forecasts and verification 

statistics should give a better estimation of overall system performance in 

more normal (or more abnormal) environments.  

 Only a small sample of products and verification metrics are 

assessed in this study.  For example, though the perfect prog method is 
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applied to many predictands (Table 2.1), only the dry thunder fields are 

evaluated.  Further work on the verification of the lightning and precipitation 

predictands is recommended.  Lightning studies can assess the benefits of a 

12-yr climatology sample, and precipitation analysis could reveal strengths 

and weaknesses of using perfect prog, PCA, and logistic regression on the 

mostly non-linear field.  Work could be done to evaluate differences between 

using pentad climatology information versus other time averages (e.g., 3 

days) and the subsequent effects on the forecasts.  

Additionally, comparisons should be made between forecasts of dry 

thunder and the precipitation fields that exceed their thresholds.  

Comparisons of DRYTH1 and PTNTH could reveal if the DRYTH1 forecasts 

are essentially portraying a stronger bias towards lightning forecasts and 

need improvements in including dryness.  It is expected that the DRYTH1 

forecasts will be lower in areas where PTNTH forecast values are higher.  

Note that this does not necessarily mean that DRYTH1 forecasts will be 0 in 

areas with PTNTH forecasts.  Comparisons for DRYTH2 could be made with 

PQTR and PTNTH to assess the extent of effects of the higher precipitation 

allowance.  DRYTH2 has been shown to be more important and accurate in 

the East domain, so a separate East focus could be considered. 

An interesting effect regarding Day 4 (F072-F090) was observed in 

the verification statistics and the case studies in Alaska.  It is unclear at this 

time whether this is a common occurrence in the underlying GFS model or 
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associated with perfect prog/logistic regression.  More research should be 

conducted to better understand this unique feature.   

 To better assess dry thunderstorms with regard to fire ignition, the 

inclusion of fuels as a predictor should be studied, but most operational 

models to do not offer vegetation dryness as a field.  Instead, perhaps it 

would be more beneficial to create additional interactive predictors that were 

found to be closely associated with dry thunderstorms.  Some terms can be 

found from the groupings noted on the PC Loading analysis.  For example, 

combining vorticity divergence and the Laplacian of the Geopotential Height 

into a single field could explain much of the variance in a system.  Perhaps 

combining low level moisture terms with lapse rate could be an important 

predictor for the prediction of lightning/dry thunderstorms as these terms can 

distinguish between wet and dry thunderstorms (Rorig and Ferguson 1999).  

Adding DTPI as a predictor could be beneficial to distinguishing between wet 

and dry environments with regards to dry thunderstorm formation and 

potential ignition.  Useful combinations can only be found through testing.  

 Previous studies have found that a long-continuing current of lightning 

(often associated with multiple strokes) is the main reason lightning sparks a 

fuel (Kitagawa et al. 1962, Fuquay et al 1967).  Additionally, it has been 

found that low precipitation thunderstorms are often associated with positive 

CG flashes (Curran and Rust 1982; Beasley 2013, personal communication).  

Research that limits a dry thunderstorm to only positive CG flashes could 
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improve the predictions, but it should be reiterated that Rorig and Ferguson 

(1999) discuss that the fuel consideration is more important. 

Utilizing non-linear regression techniques to develop equations could 

also improve accuracy of lightning and precipitation forecasts.  For a different 

PCA technique, a T-mode analysis could reveal temporal trends of 

lightning/precipitation/dry thunderstorms over multiple years (not necessarily 

per month).  As lightning, especially in Alaska, is dependent on heat and 

moisture, a T-mode analysis could reveal changes related to climatological 

warming/cooling over the region.  

Regardless of the many possibilities for future research, this current 

method of predicting dry thunderstorms, similar to Bothwell (2002) and 

Buckey (2009), has shown to be beneficial to users by highlighting areas of 

risk up to a week prior to an event.  DRYTH1 and DRYTH2 are often 

overpredicted, but most users agree that overprediction is more acceptable 

than a missed forecast in rare-event phenomena.  It is hoped that such an 

experimental product can become a more standard guidance product for use 

by fire-weather forecasters (e.g., at the SPC), and by fire managers for crews 

and resources.  
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Appendix A 

Acronyms and Predictors 

Lists of acronyms and the set of predictors used for this project. 

Table A1: List of main acronyms used in the text. 

Acronym Name 

AK Alaska 

AGL Above Ground Level 

ALDN Alaska Lightning Detection Network 

BLM Bureau of Land Management 

CAPE Convective Available Potential Energy 

CC Congruence Coefficient  

CG Cloud-to-Ground (lightning) 

CONUS Contiguous United States 

DF Direction Finder 

DTPI Dry Thunder Potential Index 

GEMPAK General Meteorological Package 

GFS Global Forecast System 

GLM General Linear Model 

IC In-Cloud (lightning) 

JFS Joint Fire Sciences 

MOS Model Output Statistics 

MUCAPE Most Unstable (parcel) CAPE 

NARR North American Regional Reanalysis 

NLDN National Lightning Detection Network 

PC Principal Component 

PCA Principal Component Analysis 

PP Perfect Prognosis 

PRISM Parameter-Elevation Regressions on Independent Slopes 

SGSP Spurious Grid-Scale Precipitation 

SPC Storm Prediction Center 

TOA Time of Arrival 
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Table A2: List of predictors. 

Name   Description 
OMEG85   850 hPa Omega 

UREL85 

  

850 hPa U Wind Component 

VREL85 850 hPa V Wind Component 

RELH85 850 hPa Relative Humidity 

MFCN85 850 hPa Moisture Flux Convergence 

TWAD85 850 hPa Theta-W Advection 

WDIV85 850 hPa Wind Divergence 

RVRG85 850 hPa Relative Vorticity 

FRNT85 850 hPa Frontogenesis 

LHGT85 850 hPa Laplacian of the Geopotential Height 

LTHA85 850 hPa Laplacian of Theta (Potential Temperature) 

AWND85 850 hPa Ageostrophic Wind 

GRDO85 850 hPa Gradient of Omega 

THWC85 850 hPa Theta-W in Celsius 

THTE85 850 hPa Theta-E 

FRT8N85 850-1000 hPa Frontogenesis 

SH8N85 850-1000 hPa Speed Shear 

MT8N85 850-1000 hPa Max Thermal Wind 

OMEG70 700 hPa Omega 

UREL70 700 hPa U Wind Component 

VREL70 700 hPa V Wind Component 

RELH70 700 hPa Relative Humidity 

MFCN70 700 hPa Moisture Flux Convergence 

TWAD70 700 hPa Theta-W Advection 

WDIV70 700 hPa Wind Divergence 

RVRG70 700 hPa Relative Vorticity 

FRNT70 700 hPa Frontogenesis 

LHGT70 700 hPa Laplacian of the Geopotential Height 

LTHA70 700 hPa Laplacian of Theta (Potential Temperature) 

AWND70 700 hPa Ageostrophic Wind 

GRDO70 700 hPa Gradient of Omega 

THWC70 700 hPa Theta-W in Celsius 

THTE70 700 hPa Theta-E 

LP7870 700-850 hPa Theta Change/Pressure Difference 700-850 

FRT7870 700-850 hPa Frontogenesis 

SL7870 Sat. Theta-E Diff Divided by the 700-800 hPa Pressure Diff 
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Table A3: Predictors (Table A2) continued. 

Name   Description 
ML7870 

  

700-850 hPa Theta-E Diff Divided by the Pressure Diff 

SP7870 Saturated Geostrophic Potential Vorticity 700-850 hPa 

SP5770 Saturated Geostrophic Potential Vorticity 500-700 hPa 

SP3570 Saturated Geostrophic Potential Vorticity 300-500 hPa 

MP7870 Moist Geostrophic Potential Vorticity 700-850 hPa 

MP5770 Moist Geostrophic Potential Vorticity 500-700 hPa 

MP3570 Moist Geostrophic Potential Vorticity 300-500 hPa 

LC7870 Average Convergence of Theta Change/Pressure Difference 700-850 hPa 

LC5770 Average Convergence of Theta Change/Pressure Difference 500-700 hPa 

LC3570 Average Convergence of Theta Change/Pressure Difference 300-500 hPa 

SH7870 700-850 hPa Speed Shear 

MT7870 700-850 hPa Max Thermal Wind 

SH7N70 700-1000 hPa Speed Shear 

OMEG50 500 hPa Omega 

UREL50 500 hPa U Wind Component 

VREL50 500 hPa V Wind Component 

RELH50 500 hPa Relative Humidity 

LP5750 700-500 hPa Theta Change/Pressure Difference 

LPS550 Surface-500 hPa Theta Change/Pressure Difference 

FRT5750 500-700 hPa Frontogenesis 

SL5750 Sat. Theta-E Diff Divided by the 500-700 hPa Pressure Diff 

ML5750 500-700 hPa Theta-E Diff Divided by the Pressure Diff 

AWND50 500 hPa Ageostrophic Wind 

WDIV50 500 hPa Wind Divergence 

FRNT50 500 hPa Frontogenesis 

GRDO50 500 hPa Gradient of Omega 

RVRG50 500 hPa Relative Vorticity 

LHGT50 500 hPa Laplacian of the Geostrophic Height 

LTHA50 500 hPa Laplacian of Theta (Potential Temperature) 

SH5750 500-700 hPa Speed Shear 

MT5750 500-700 hPa Max Thermal Wind 

SH5850 500-850 hPa Speed Shear 

SH5N50 500-1000 hPa Speed Shear 

TL7550 700-500 hPa Temperature Difference 

LR7550 700-500 hPa Lapse Rate 

LR8550 850-500 hPa Lapse Rate 

OMEG30 300 hPa Omega 

 



123 

Table A4: Predictors (Table A2) continued. 

Name   Description 

UREL30 

  

300 hPa U Wind Component 

VREL30 300 hPa V Wind Component 

LP3530 300-500 hPa Theta Change/Pressure Difference 

FRT3530 300-500 hPa Frontogenesis 

SL3530 Sat. Theta-E Diff Divided by the 300-500 hPa Pressure Diff 

ML3530 300-500 hPa Theta-E Diff Divided by the Pressure Diff 

AWND30 300 hPa Ageostrophic Wind 

WDIV30 300 hPa Wind Divergence 

FRNT30 300 hPa Frontogenesis 

GRDO30 300 hPa Gradient of Omega 

RVRG30 300 hPa Relative Vorticity 

LHGT30 300 hPa Laplacian of the Geopotential Height 

LTHA30 300 hPa Laplacian of Theta (Potential Temperature) 

SH3830 300-850 hPa Speed Shear 

SH3530 300-500 hPa Speed Shear 

MT3530 300-500 hPa Max Thermal Wind 

SH3730 300-700 hPa Speed Shear 

SH3N30 300-1000 hPa Speed Shear 

AUAW30 300 hPa Magnitude of the Geostrophic Wind 

PVOR30 300 hPa Potential Vorticity 

CAPE30 MUCAPE between Surface-300 hPa 

CINS30 Surface-300 hPa Convective Inhibition 

PWTR0 Surface Precipitable Water 

THTA0 Surface Theta (Potential Temperature) 

CAPE0 Surface Based Cape 

CINS0 Surface Based Convective Inhibition 

LIFT0 Lifted Index based on MUCAPE Parcel 

HLCY0 Helicity 

CCTL0 Convective Cloud Top in meters 

TMPC0 Surface Temperature in Celsius 

MIXR0 Surface Mixing Ratio 

UREL0 Surface U Wind Component 

VREL0 Surface V Wind Component 

PMSL0 Mean Sea-Level Pressure 

LMSL0 Laplacian of the Mean Sea-Level Pressure 

RELH0 Surface Relative Humidity 

THTE0 Surface  Theta-E 

LTHA0 Surface Laplacian of Theta (Potential Temperature) 
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Table A5: Predictors (Table A2)continued. 

Name   Description 

ZMEG0 

  

Terrain Upslode/Downslope 

FRNT0 Surface Frontogenesis 

MFCN0 Surface Moisture Flux Convergence 

WDIV0 Surface Wind Divergence 

TWAD0 Surface Theta-W Divergence 

RVRG0 Surface Relative Vorticity 

THWC0 Surface Theta-W in Celsius 

AVETOTF Total Lightning Flashes Climatology 

AVECCFL Cloud Contained (Low kAmp) Flash Climatology 

AVEFONE One or More Lightning Flashes Climatology 

AVEFTHR Three or More Lightning Flashes Climatology 

AVEFTEN Ten or More Lightning Flashes Climatology 

AVEFTHT Thirty or More Lightning Flashes Climatology 

AVEFHUN One Hundred or More Lightning Climatology 

AVETSML Three Hour Segments of 15-Minute Lightning Bins Climatology 

BTOTF CAPE30 * AVETOTF 

BCCFL CAPE30 * AVECCFL 

BFONE CAPE30 * AVEFONE 

BFTHR CAPE30 * AVEFTHR 

BFTEN CAPE30 * AVEFTEN 

BFTHT CAPE30 * AVEFTHT 

BFHUN CAPE30 * AVEFHUN 

BTSML CAPE30 * AVETSML 

AVEPTOT Total Precipitation Climatology (inches) 

AVEPHDTH Hundredth or More Climatology 

AVEPTNTH Tenth or More Climatology 

AVEDRY1 Dry Thunder 1 Climatology (DRYTH1) 

AVEDRY2 Dry Thunder 2 Climatology (DRYTH2) 
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Appendix B 

Further Climatology Examples 

Images of lightning and precipitation climatology are found in this 

Appendix.  Following the pattern of DRYTH1 and DRYTH2 in Section 2.5, 

images represent values from every other pentad (10 days).  For lightning, 

the full May-Sep values of AVETOTF and AVEFONE are shown.  

Precipitation values include the climatology for AVEPTOT and AVEPHDTH.  

The timestamp format here (e.g. 000707/0000) represents the year, month, 

day, and hour (yymmdd/hhhh); all climatology grids are placed at a year 

2000 date. 

As mentioned in Chapter 2, the units for these parameters are 

different between the fields.  AVETOTF is measured in units of flashes, and 

AVEFONE values are measured in percentage.  AVEPTOT fields are 

represented by hundredths of an inch, while AVEPHDTH is described by 

percentage.  In other words, total amount parameters (AVETOTF and 

AVEPTOT) remain in their original units of measure.  Binary fields described 

by the thresholds in Table 2.1 result in an average value described by 

percentage.  Note that the magnitude of percentage may differ between the 

CONUS and AK domains.  

Lightning fields (AVETOTF and AVEFONE) for the CONUS are shown 

first, followed by the precipitation climatologies (AVEPTOT and AVEPHDTH).  

Fields for Alaska follow the CONUS examples.  Climatologies for other binary 

fields from Table 2.1 are not shown in this paper. 
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Figure B1: TOTF Climatology (AVETOTF) pentad examples for the CONUS from early May through early June – 00 UTC data. 
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Figure B2: TOTF Climatology (AVETOTF) pentad examples for the CONUS from mid June through mid July – 00 UTC data. 
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Figure B3: TOTF Climatology (AVETOTF) pentad examples for the CONUS from late July through late August – 00 UTC data. 
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Figure B4: TOTF Climatology (AVETOTF) pentad examples for the CONUS from September – 00 UTC data. 



 

1
30

 

 

Figure B5: FONE Climatology (AVEFONE) pentad examples for the CONUS from early May through early June – 00 UTC data. 



 

1
31

 

 

Figure B6: FONE Climatology (AVEFONE) pentad examples for the CONUS from mid June through mid July – 00 UTC data. 
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Figure B7: FONE Climatology (AVEFONE) pentad examples for the CONUS from late July through late August – 00 UTC data. 
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Figure B8: FONE Climatology (AVEFONE) pentad examples for the CONUS from September – 00 UTC data. 
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Figure B9: PTOT Climatology (AVEPTOT) pentad examples for the CONUS from early May through early June – 00 UTC data. 
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Figure B10: PTOT Climatology (AVEPTOT) pentad examples for the CONUS from mid June through mid July – 00 UTC data. 
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Figure B11: PTOT Climatology (AVEPTOT) pentad examples for the CONUS from late July through late August – 00 UTC data. 
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Figure B12: PTOT Climatology (AVEPTOT) pentad examples for the CONUS from September – 00 UTC data. 
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Figure B13: PHDTH Climatology (AVEPHDTH) pentad examples for the CONUS from early May through early June – 00 UTC data. 
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Figure B14: PHDTH Climatology (AVEPHDTH) pentad examples for the CONUS from mid June through mid July – 00 UTC data. 
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Figure B15: PHDTH Climatology (AVEPHDTH) pentad examples for the CONUS from late July through late August – 00 UTC data. 
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Figure B16: PHDTH Climatology (AVEPHDTH) pentad examples for the CONUS from September – 00 UTC data. 
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Figure B17: TOTF Climatology (AVETOTF) pentad examples for AK from early May through early June – 00 UTC data. 
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Figure B18: TOTF Climatology (AVETOTF) pentad examples for AK from mid June through mid July – 00 UTC data. 
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Figure B19: TOTF Climatology (AVETOTF) pentad examples for AK from late July through late August – 00 UTC data. 
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Figure B20: TOTF Climatology (AVETOTF) pentad examples for AK from September – 00 UTC data. 
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Figure B21: FONE Climatology (AVEFONE) pentad examples for AK from early May through early June – 00 UTC data. 
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Figure B22: FONE Climatology (AVEFONE) pentad examples for AK from mid June through mid July – 00 UTC data. 
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Figure B23: FONE Climatology (AVEFONE) pentad examples for AK from late July through late August – 00 UTC data. 
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Figure B24: FONE Climatology (AVEFONE) pentad examples for AK from September – 00 UTC data. 
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Figure B25: PTOT Climatology (AVEPTOT) pentad examples for AK from early May through early June – 00 UTC data. 
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Figure B26: PTOT Climatology (AVEPTOT) pentad examples for AK from mid June through mid July – 00 UTC data. 



 

1
52

 

 

 

Figure B27: PTOT Climatology (AVEPTOT) pentad examples for AK from late July through late August – 00 UTC data. 
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Figure B28: PTOT Climatology (AVEPTOT) pentad examples for AK from September – 00 UTC data. 
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Figure B29: PHDTH Climatology (AVEPHDTH) pentad examples for AK from early May through early June – 00 UTC data. 
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Figure B30: PHDTH Climatology (AVEPHDTH) pentad examples for AK from mid June through mid July – 00 UTC data. 
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Figure B31: PHDTH Climatology (AVEPHDTH) pentad examples for AK from late July through late August – 00 UTC data. 
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Figure B32: PHDTH Climatology (AVEPHDTH) pentad examples for AK September – 00 UTC data.  
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Appendix C 

Further PCA Discussion and Examples 

Principal Component Analysis (PCA) gathers Analysis information 

from Data using certain statistical techniques.  In particular, most of the 

analysis involves matrices.  Because a data set may have many variables 

and dimensions, the first step involves flattening information into a 2D matrix.  

For this study, the time dimension is flattened while the space and variables 

make up the rows and columns respectively.  This “time-flattening” works by 

appending information from multiple days (a single month) as rows to the 

matrix.  Figure C1 shows an example of this flattening process for this study.  

As mentioned in previous sections, the data matrix variables contain the 

predictors listed in Tables A2-A5.  

 

Figure C1: A 3-D data matrix is converted into a 2-D matrix by flattening with respect to time.  This 

means pattern analysis of variable across stations (grid points) holds more interest than temporal 

changes – they are not necessarily more important.  With this method, variables can be assessed 

for an entire month as preferred in this study.  The setup shown here most closely resembles R-

mode analysis.  

 Now the data matrix (Z) can be explained by the Scores (F) and 

Loadings (A) (as seen in Equation 1 in Sec. 3.2 – repeated below).  Using a 

Z = FAT                                           (1) 
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standardization method, like the one shown in Equation 2, allows the mean 

to remain the same while the variance changes.  X represents the data, 

                 
x

XX
Z




                                                 (2) 

 overbar denotes the mean, and σx is defined as shown in Equation 3 below.   

 
1

2







n

xx
x                                                (3) 

 A correlation of the data can be taken to implicitly scale the data and give 

each variable equal weight for consideration (Richman 1986).  This 

correlation matrix (R) can be described by Equation 4 or 5 where V 

represents the associated eigenvectors, and D is the associated diagonal 

matrix of eigenvalues.  Note that R is a square matrix by this point.   

                   R = ZTZ                                                          (4) 

 R = VDVT
                                                        (5) 

 Once eigenvalues/vectors are found, loadings can be computed 

(Equation 6).  Loadings can be rotated using a specific transformation matrix 

(T).  Only a certain number of PCs are rotated as mentioned in Section 3.2.  

 A = VD1/2
                                                       (6) 

Note that a Varimax (orthogonal) rotation method is used here.  That is, axes 

are rotated orthogonally to fit matches of PCs. Simple structure can be 

assessed following the rotation (Richman and Gong 1999) by assessing pair 

plots.  Good simple structure is noted when most points from comparing two 
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PCs fall along the axes.  Figure C2 shows a cartoon of rotation.  Simple 

structure is achieved when most points fall along the axis within a given 

cutoff value – magnitude 0.4 here.  Plots with several points outside of this 

cutoff and/or plots that portray diagonals do not count as simple structure.  

Only ~10% of the plots (C11-C22) do not contain simple structure (based on 

a simple count assessment), so Varimax is a valid rotation method for this 

study.   

 

Figure C2: Example of how rotating the loadings aligns more data with the axes and increases 

simple structure (less points in main quadrants between axes). 

One method of determining how many PCs to retain/rotate mentioned 

in the text comes from the CC Chart.  The variance explained by keeping a 

certain number of PCs (the dashed red line in the charts) gets calculated by 

summing over the loading variance for a certain number of PCs over the total 

number of PCs/predictors (Equation 7).  N represents the total number of 

predictors, k is the number of retained PCs, and aij is the loading for each 

index of a given PC.  Results from Buckey (2009) explained about 54% of 

the variance when keeping 12 PCs on the 45-km grid.  Charts from this study  
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                                                      (7) 

show a similar amount of variance explained ~55% for each month on the 

10-km AK domain when 12 PCs are retained.  Keeping 12 PCs explains 

~60% of the variance on the 40-km CONUS grid.  These values may seem 

low, but can be attributed to the fact that it becomes difficult to distinguish 

signal from noise with rare event data.  

The rotated loadings (B) shown in Equation 8 can be plugged back 

into Equation 1 in place of A (Equation 9).  Rotation helps patterns look more 

B = AT                                                (8) 

Z = FBT
                                                       (9) 

like meteorological patterns instead of the standard Buell patterns (North et 

al. 1982; Richman 1986) .  With some matrix manipulation, scores can be 

found (Equation 10).  Scores highlight deviations from the mean, which can 

then be associated with phenomena like dry thunderstorms. 

F = Z(B)((B)T(B))-1
                                               (10) 

The remainder of this Appendix contains Tables of PC groups (Tables C1-

C4), Jun CC Charts (Figs. C3-C4), Jun Score plots (Figs. C5-C10), and Jul 

Pair plots (Figs. C11-C22) for each domain.    
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Table C1: Predictors larger than the |0.4| cutoff that fall on each PC by month. Bold terms = 0.9, italicized 
terms are mixed across PCs. Purple (bottom) text = best guess of a process related to the group of terms. 

CONUS 

PC # May Jun Jul 

1 

VREL85, THWC85, THTE85, 
THWC70, THTE70, ML7870, 
MP7870, MP5770, ML5750, 
CAPE30, PWTR0, CAPE0, CCTL0, 
TMPC0, MIXR0, UREL0, THTE0, 
THWC0 

Low-Mid Lvl Moisture 

THWC85, THTE85, ML7870, 
MP7870, CAPE30, PWTR0, CAPE0, 
CCTL0, TMPC0, MIXR0, THTE0, 
THWC0, AVETOTF, AVECCFL, 
AVEFHUN, BTOTF, BCCFL, BFONE, 
BFTHR, BFTEN, BFTHT, BFHUN, 
BTSML  

 LTG Climo * MUCAPE & Low Lvl 

Moisture 

THWC85, THTE85, ML7870, 
MP7870, CAPE30, PWTR0, CAPE0, 
CCTL0, TMPC0, MIXR0, THTE0, 
THWC0, AVECCFL, BTOTF, 
BCCFL, BFONE, BFTHR, BFTEN, 
BFTHT, BFHUN, BTSML 

LTG Climo * MUCAPE & Low Lvl 

Moisture 

2 

RELH85, AWND85, SH8N85, 
LP7870, SL7870, SP7870, 
SP5770, MP5770, SH7N70, 
LP5750, LPS550, SL5750, 
ML5750, TL7550, LR7550, 
LR8550, PWTR0, THTA0, MIXR0, 
PMSL0, RELH0 

Low Lvl Moisture and Lapse Rate  

RELH85, AWND85, SH8N85, 
RELH70, LP7870, SL7870, SP7870, 
SP5770, MP5770, SH7N70, LP5750, 
LPS550, SL5750, ML5750, TL7550, 
LR7550, LR8550, PWTR0, THTA0, 

TMPC0, MIXR0, PMSL0, RELH0 
Low Lvl Moisture and Lapse Rate 

RELH85, AWND85, SH8N85, 
THWC70, THTE70, LP7870, 
SL7870, SP7870, SP5770, MP5770, 
MT7870, LP5750, LPS550, SL5750, 
ML5750, TL7550, LR7550, LR8550, 
PWTR0, THTA0, TMPC0, MIXR0, 

PMSL0, RELH0, AVEDRY1 

Low Lvl Moisture and Lapse Rate 

3 

MT7870, UREL50, UREL30, 
AWND30, SH5750, MT5750, 
SH5850, SH5N50, SH3830, 
SH3530, SH3730, SH3N30, 
MT3530, AUAW30 

Mid – Up Lvl Shear and Thermal 

Wind 

MT7870, UREL50, UREL30, 
AWND30, SH5750, MT5750, SH5850, 
SH5N50, SH3830, SH3530, SH3730, 
SH3N30, MT3530, AUAW30 
Mid – Up Lvl Shear and Thermal Wind 

UREL70, UREL50, UREL30, 
THWC70, THTE70, SH5750, 
MT5750, SH5850, SH5N50, 
ML3530, AWND30, SH3830, 
SH3530, SH3730, SH3N30, 
MT3530, AUAW30 
Mid-Up Lvl Shear and Thermal Wind 

4 

SP3570, MP3570, RVRG50, 

LHGT50, LTHA50, LP3530, 
SL3530, ML3530, RVRG30, 
LHGT30, MT3530, PVOR30 

Up Lvl Vorticity 

OMEG85, OMEG70, OMEG50, 
OMEG30, GRDO85, GRDO70, 
GRDO50, GRDO30, VREL50, 
RELH50, LC3570, WDIV30   

OMEG & Up Lvl Divergence 

OMEG70, OMEG50, OMEG30, 
GRDO85, GRDO70, GRDO50, 
GRDO30, VREL50, RELH50, 
RVRG50, WDIV30   

OMEG & Up Lvl Divergence 

5 

OMEG85, OMEG70, OMEG50, 
OMEG30, GRDO85, GRDO70, 
GRDO50, GRDO30, VREL70, 
VREL50, VREL30, RELH70, 
RELH50, LC7870, LC3570, 
WDIV30   

OMEG & Up Lvl Divergence 

SP3570, MP3570, RVRG50, LHGT50, 
LTHA50, SL3530, RVRG30, LHGT30, 
PVOR30 

Up Lvl Vorticity 

SP3570, MP3570, RVRG50, 
LHGT50, LTHA50, SL3530, 
RVRG30, LHGT30, PVOR30 

Up Lvl Vorticity 

6 

 AVETOTF, AVECCFL, AVEFONE, 
AVEFTHR, AVEFTEN, AVEFTHT, 
AVEFHUN, AVETSML, 
AVEPHDTH, AVEPTNTH, 
AVEDRY1, AVEDRY2 

Lightning Climatology 

VREL85, VREL70, VREL50, VREL0, 
THWC85, THWC70, THWC0, 
THTE85, THTE70, THTE0, PWTR0, 
CINS0, LIFT0   

Meridional Moisture Transport 

VREL85, VREL70, VREL0, 
THWC85, THWC70, THWC0, 
THTE85, THTE70, THTE0, PWTR0, 
CINS0, LIFT0, CCTL0, MIXR0   

Meridional Moisture Transport 

7 
OMEG85, MFCN70, WDIV70, 
FRNT70, LTHA70, FRT7870, 
LC7870, LC5770, FRT5750 

Mid Lvl Forcing 

MFCN85, WDIV85, RVRG85, 
FRNT85, LHGT85, LTHA85, 
FRT8N85, OMEG70, LC7870, 
WDIV50, FRNT0, MFCN0, WDIV0 

Low Lvl Forcing 

MFCN85, WDIV85, RVRG85, 
FRNT85, LHGT85, LTHA85, 
FRT8N85, OMEG70, FRT7870, 
LC7870, WDIV50, FRNT0, MFCN0, 
WDIV0 

Low Lvl Forcing 

8 
MFCN85, WDIV85, RVRG85, 
LHGT85, LTHA85, FRT8N85, 
LMSL0, FRNT0, MFCN0, WDIV0 

Low Lvl Forcing 

OMEG85, MFCN70, WDIV70, 
FRNT70, FRT7870, LC7870, LC5770, 
FRT5750 

Mid Lvl Forcing 

OMEG85, MFCN70, WDIV70, 
FRNT70, FRT7870, LC7870, 
LC5770 

Mid Lvl Forcing 

9 
MFCN85, WDIV85, FRNT85, 
OMEG70, LC5770, FRT5750, 
WDIV50, FRNT50, HLCY0  

Low – Mid Lvl Forcing 

RVRG85, RVRG70, RVRG50, 
LHGT85, LHGT70, LHGT50 

Low – Mid Lvl Vorticity 

AVETOTF, AVECCFL, AVEFONE, 
AVEFTHR, AVEFTEN, AVEFHUN, 
AVETSML, AVEPHDTH, 
AVEPTNTH, AVEDRY1, AVEDRY2 

Lightning Climatology 

10 

ML7870, CAPE30, CAPE0, 
CCTL0, BTOTF, BCCFL, BFONE, 
BFTHR, BFTEN, BFTHT, BFHUN, 
BTSML 

LTG Climo * MUCAPE 

 SH8N85, SH7870, SH7N70, SH5850, 
SH5N50, HLCY0 

Shear 

RVRG85, RVRG70, RVRG50, 
LHGT85, LHGT70, LHGT50 

Low – Mid Lvl Vorticity 

11 RVRG85, RVRG70, RVRG50, 
LHGT85, LHGT70, LHGT50 

Low – Mid Lvl Vorticity 

AVETOTF, AVECCFL, AVEFONE, 
AVEFTHR, AVEFTHT, AVEFHUN, 
AVETSML, AVEPHDTH, AVEPTNTH, 
AVEDRY1, AVEDRY2 

Lightning Climatology 

SH7870, MT7870, SH7N70, 
SH5850, SH5N50, HLCY0 

Shear 

12 
 UREL85, UREL70, UREL50, 
UREL30, VREL85, SH8N85, 
SH7N70, SH5N50, HLCY0, VREL0 

Wind and Shear 

 UREL85, UREL70, UREL50, 
UREL30, UREL0 

Zonal Wind 

 UREL85, UREL70, UREL50, 
UREL0  

Zonal Wind 
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Table C2: Continuation of Table C1 for August and September. 

CONUS 
PC # Aug Sep 

1 

THWC85, THTE85, ML7870, 
MP7870, CAPE30, PWTR0, 
CAPE0, CCTL0, TMPC0, MIXR0, 
THTE0, THWC0, BTOTF, BCCFL, 
BFONE, BFTHR, BFTEN, BFTHT, 
BFHUN, BTSML 
LTG Climo * MUCAPE & Low Lvl 

Moisture 

THWC85, ML7870, CAPE30, PWTR0, 
CAPE0, CCTL0, TMPC0, MIXR0, 
THTE0, THWC0, BTOTF, BCCFL, 
BFONE, BFTHR, BFTEN, BFTHT, 
BFHUN, BTSML, AVEPHDTH, 
AVEPTNTH 

LTG Climo * MUCAPE & Low Lvl 

Moisture 

2 

RELH85, AWND85, SH8N85, 
LP7870, SL7870, SP7870, 
SP5770, MP5770, LPS550, 
TL7550, LR7550, LR8550, 
PWTR0, THTA0, TMPC0, MIXR0, 
RELH0 

Low Lvl Moisture and Lapse Rate 

RELH85, SH8N85, LP7870, SL7870, 
SP7870, SP5770, SH7N70, LP5750, 
LPS550, SL5750,ML5750, TL7550, 
LR7550, LR8550,  THTA0, TMPC0, 
MIXR0, PMSL, RELH0 

Low Lvl Moisture and Lapse Rate 

3 

UREL70, UREL50, UREL30, 
THWC70, THTE70, SH5750, 
MT5750, SH5850, SH5N50, 
ML3530, AWND30, SH3830, 
SH3530, SH3730, SH3N30, 
MT3530, AUAW30 
Mid – Up Lvl Shear Thermal Wind 

UREL70, UREL50, UREL30, SH5750, 
MT5750, SH5850, SH7870, MT7870, 
SH5N50, AWND30, SH3830, 
SH3530, SH3730, SH3N30, MT3530, 
AUAW30 
Mid – Up Lvl Shear and Thermal Wind 

4 

GRDO85, GRDO70, GRDO50, 
GRDO30, OMEG70, OMEG50, 
OMEG30, VREL50, RELH50, 
WDIV30 

OMEG & Up Lvl Divergence 

RVRG85, RVRG70, RVRG50, 
LHGT85, LHGT70, LHGT50 
 

Low – Mid Lvl Vorticity 

5 
SP3570, MP3570, RVRG50, 
LHGT50, LTHA50, SL3530, 
RVRG30, LHGT30, PVOR30 

Up Lvl Vorticity 

SP3570, MP3570, RVRG50, LHGT50, 
LTHA50, LP3530, SL3530, ML3530, 
MT3530, RVRG30, LHGT30, PVOR30 

Up Lvl Vorticity 

6 

 VREL85, VREL70, VREL0, 
THWC85, THWC70, THWC0, 
THTE85, THTE70, RELH70, 
MP5770, ML5750, LP3530, 
PWTR0, CINS0, LIFT0, CCTL0   

Meridional Moisture Transport  

THWC85, THWC70, THTE85, 
THTE70, SL5750, TL7550, LR7550, 
LR8550 
Low – Mid Lvl THTE and Lapse Rate 

7 

MFCN85, WDIV85, RVRG85, 
FRNT85, LHGT85, LTHA85, 
FRT8N85, OMEG70, FRT7870, 
LC7870, WDIV50, FRNT0, 
MFCN0, WDIV0 

Low Lvl Forcing 

OMEG85, MFCN70, WDIV70, 
FRNT70, FRT7870, LC7870, LC5770, 
FRT5750 

Mid Lvl Forcing 

8 
OMEG85, MFCN70, WDIV70, 
FRNT70, FRT7870, LC7870, 
LC5770 

Mid Lvl Forcing 

MFCN85, WDIV85, RVRG85, 
FRNT85, LHGT85, LTHA85, 
FRT8N85, OMEG70, FRT7870, 
LC7870, FRNT0, MFCN0, WDIV0 

Low Lvl Forcing 

9 

AVETOTF, AVECCFL, AVEFONE, 
AVEFTHR, AVEFTEN, AVEFTHT, 
AVEFHUN,AVETSML, BFTEN, 
BFTHT, BFHUN, BTSML, 
AVEPHDTH, AVEPTNTH, 
AVEDRY1, AVEDRY2 

Lightning Climatology 

OMEG85, OMEG70, OMEG50, 
OMEG30, GRDO70, GRDO50, 
GRDO30, RELH70, RELH50, 
FRT3530, WDIV30   

OMEG & Up Lvl Divergence 

10 SH7870, MT7870, SH5850, 
SH5N50, HLCY0 

Shear 

UREL85, UREL70, VREL85, VREL70, 
VREL50, VREL30, VREL0, SH7N70, 
HLCY0 

Meridional Wind 

11 RVRG85, RVRG70, RVRG50, 
LHGT85, LHGT70, LHGT50 

Low-Mid Lvl Vorticity 

AVETOTF, AVECCFL, AVEFONE, 
AVEFTHR, AVEFTEN, AVEFTHT, 
AVEFHUN, AVETSML, BFTHT, 
BFHUN, AVEDRY1, AVEDRY2 

Lightning Climatology 

12  UREL85 
 

UREL85 (Summer Ridge) 

THWC85, ML7870, LP3530, PWTR0, 
CINS0, LIFT0, THTE0, THWC0 

Low Lvl Moisture 
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Table C3: Same as Table C1 for Alaska during May-Jul. 

AK 
PC # May Jun Jul 

1 

AVETOTF, AVEFONE, AVEFTHR, 
AVEFTEN, AVETSML, BTOTF, 
BFONE, BFTHR, BFTEN, BTSML,  
AVEDRY1, AVEDRY2, CAPE30 

Lightning Climatology 

 AVETOTF, AVEFONE, AVEFTHR, 
AVEFTEN, AVETSML, BTOTF, 
BFONE, BFTHR, BFTEN, BTSML,  

AVEDRY1, AVEDRY2, CAPE30, 
CCTL0 

Lightning Climatology 

AVETOTF, AVEFONE, AVEFTHR, 
AVEFTEN, AVETSML, BTOTF, 
BFONE, BFTHR, BFTEN, BTSML,  
AVEDRY1, AVEDRY2, CAPE30, 
CCTL0 

Lightning Climatology 

2 

SH3530, AWND30, SH3830, 
MT3530, SH3730, SH3N30, 
AUAW30,SH5750, MT5750, 
SH5850, SH5N50 

Mid – Up Lvl Shear and Thermal 

Wind 

SH3530, AWND30, SH3830,  
MT3530, SH3730, SH3N30, 
AUAW30,SH5750, MT5750, SH5850, 
SH5N50 
Mid – Up Lvl Shear and Thermal Wind 

RVRG85, LHGT85, RVRG70, 
LHGT70, RVRG50, LHGT50, 
RVRG30, LHGT30, SP5770, 
SP3570, MP5770, MP3570, 
PVOR30 

Mid Lvl Vorticity 

3 

THWC85, THWC70,  

MP3570,SP3570, THTE85, 
THTE70, LP3530, SL3530, 
ML3530, PVOR30, PWTR0, 
MIXR0, TMPC0, THTE0, THWC0 

Low Lvl Moisture and Lapse Rate 

RVRG85, LHGT85, RVRG70, 
LHGT70, RVRG50, LHGT50, 
RVRG30, LHGT30, SP5770, SP3570, 
MP5770, MP3570 
 

Mid Lvl Vorticity 

SH3530, AWND30, SH3830,  
MT3530, SH3830, SH3N30, 

AUAW30,SH5750, MT5750, 
SH5850, SH5N50, SH3730,  

Mid – Up Lvl Shear and Thermal 

Wind 

4 

LC5770, OMEG85, OMEG70, 
MFCN70, WDIV70, LC3570, 
FRT7570, WDIV50, FRT50 

 

Mid Lvl Forcing 

MFCN85, WDIV85, RVRG85, 
FRNT85, LHGT85, SH8N85, 
FRT7870, LC7870, ZMEG0,  

FRNT0, MFCN0, WDIV0  

Low Lvl Forcing 

OMEG85, OMEG70, OMEG50, 
OMEG30, GRDO85, GRDO70, 
GRDO50, RELH85, RELH70, 
RELH50, WDIV30, LC3570 
Mid – Up Lvl OMEG and Divergence 

5 

MFCN85, WDIV85, RVRG85, 
FRNT85, LHGT85, SH8N85, 
FRT7870, LC7870, ZMEG0, 
FRNT0, MFCN0, WDIV0  

Low Lvl Forcing 

SP5770, MP5770, LP5750, SL5750, 
ML5750, TL7550, LR7550, LR8550, 
LIFT0 

Mid Lvl Lapse Rate 

MFCN85, WDIV85, RVRG85, 
FRNT85, LHGT85, LTHA85, 
FRT8N85, FRT7870, LC7870, 
ZMEG0, FRNT0, MFCN0, WDIV0 

Low Lvl Forcing 

6 

THWC85, THTE85, SH8N85, 
LPS550, LP7870, SL7870, 
ML7870, SP7870, MP7870, 
LR8550, CAPE30, THTA0, LIFT0, 
TMPC0, RELH0, THTE0, THWC0 

Low-Mid Lvl Moisture 

OMEG85, OMEG70, OMEG50, 
OMEG30, GRDO85, GRDO70, 
GRDO50, GRDO30, RELH70, 
RELH50, WDIV30, LC3570 

Mid – Up Lvl OMEG and Divergence 

THWC85, THTE85, SH8N85, 
LPS550, LP7870, SL7870, ML7870, 
SP7870, MP7870, LR8550, 
CAPE30, THTA0, LIFT0, CCTL0, 
MIXR0, TMPC0, RELH0, THTE0, 
THWC0, AVEPHDTH 

Low-Mid Lvl Moisture 

7 

 

LP5750, SP5770, SL5750, 
ML5750, TL7550, LR7550, 
MP5770, LR8550, LIFT0 

Mid Lvl Lapse Rate 

THWC85, THTE85, SH8N85, 
LPS550, LP7870, SL7870, ML7870, 
SP7870, MP7870, LR8550, CAPE30, 
THTA0, LIFT0, CCTL0, MIXR0, 
RELH0, THTE0, THWC0, AVEPHDTH 

Low Lvl Moisture and Lapse Rate 

 
SP5770, MP5770, LP5750, SL5750, 
ML5750, TL7550, LR7550, LR8550, 
LIFT0 

Mid Lvl Lapse Rate 

8 

 

UREL85, UREL70, UREL50, 
UREL30, UREL0 

 

Zonal Wind 

 
UREL85, UREL70, UREL50, 
UREL30, UREL0 
 

Zonal Wind 

THWC85, THWC70, MP3570, 
SP3570, THTE85, THTE70, LP3530, 
SL3530, ML3530, PVOR30, PWTR0, 
MIXR0, THTE0, THWC0 

Low Lvl Moisture and Lapse Rate 

9 

AWND85, GRDO85, AWND70, 
GRDO70, AWND50, GRDO50, 
GRDO30,AVEPHDTH 

  

Ageostrophic Wind 

THWC85, THWC70, MP3570, 
SP3570, THTE85, THTE70, LP3530, 
SL3530, ML3530, PVOR30, PWTR0, 
MIXR0, TMPC0, THTE0, THWC0 

Low-Mid Lvl Moisture 

 
UREL85, UREL70, UREL50, 
UREL30, UREL0 
 

Zonal Wind 

10 
VREL85, RELH85, VREL70, 
RELH70, VREL0, PWTR0 

Low Lvl Moisture Transport ? 

VREL85, VREL70, VREL50, VREL30, 

VREL0, RELH70,  PWTR0 
Meridional Wind 

OMEG85, MFCN70, WDIV70, 
FRNT70, LC5770, FRT5750 

Mid Lvl Forcing 

11 

RVRG85, LHGT85, RVRG70, 
LHGT70, RVRG50, LHGT50, 
RVRG30, LHGT30, SP5770, 
SP3570, MP5770, MP3570 

Mid Lvl RVRG and LHGT 

OMEG85, MFCN70, WDIV70, 
FRNT70, FRT7870, LC7870, LC5770, 
FRT5750  

Mid Lvl Forcing 

 
VREL85, VREL70, VREL50, VREL 
30, VREL 0 
 

Zonal Wind 

12 

SH7870, MT7870, SH7N70, 
SH5850, SH5N50, HLCY0, 
SH5750, MT5750, SH3N30 

Low Lvl Shear and Helicity 

MT8N85, MT7870, SH7870, SH7N70, 
SH5850, SH5N50, HLCY0  
 

Low Lvl Shear and Helicity 

MT8N85, MT7870, SH7870, 
SH7N70, SH5850, SH5N50, HLCY0, 
MIXR0 

Low Lvl Shear and Helicity 
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Table C4: Continuation of Table C3 for Aug and Sep. 

AK 
PC # Aug Sep 

1 

SH7870, SH5750, MT5750, 
SH5850, SH5N50, UREL30, 
LP3530, AWND30, SH3830, 
SH3530, SH3730, SH3N30, 
AUAW30 

Mid – Up Lvl Shear and Thermal 

Wind 

SH5750, MT5750, SH5850, SH5N50, 
UREL50, UREL30, LP3530, ML3530, 
AWND30, SH3830, SH3530, SH3730, 
MT3530, SH3N30, AUAW30 
Mid – Up Lvl Shear and Thermal Wind 

2 

RVRG70, LHGT70, SP5770, 
SP3570, MP3570, SH7870, 
RVRG50, LHGT50, LP3530, 
SL3530, ML3530, RVRG30, 
LHGT30, PVOR30 

Mid Lvl Vorticity 

VREL85, VREL70, VREL50, VREL30, 
VREL0, RELH85, RELH70, RELH50, 
RELH0, SH8N85, OMEG70, OMEG 
50, OMEG30, PWTR0, HLCY0  

Meridional Moisture Transport 

3 

AVETOTF, AVEFONE, AVEFTHR, 
AVEFTEN, AVETSML, BTOTF, 
BFONE, BFTHR, BFTEN, BTSML,  
AVEDRY1, AVEDRY2 

 

Lightning Climatology 

RVRG70, LHGT70, SP5770, MP5570, 
SP3570, MP3570, SH7870, RVRG50, 
LHGT50, LP3530, SL3530, ML3530, 
RVRG30, LHGT30, PVOR30 

Mid Lvl Vorticity 

4 

VREL85, VREL70, VREL50, 
VREL30, VREL0, RELH70, 
PWTR0  
 

Meridional Wind 

MFCN85, WDIV85, RVRG85, 
FRNT85, LHGT85, FRT8N85, 
RVRG70, LHGT70, LTHA70, 
FRT7870, LC7870, ZMEG0, FRNT0, 
MFCN0, WDIV0 

Low Lvl Forcing 

5 

MFCN85, WDIV85, RVRG85, 
FRNT85, LHGT85, FRT8N85, 
FRT7870, LC7870, ZMEG0, 
FRNT0, MFCN0, WDIV0 

Low Lvl Forcing 

AVETOTF, AVEFONE, AVEFTHR, 
AVETSML, BTOTF, BFONE, BFTHR, 
BTSML,  AVEDRY1, AVEDRY2 

Lightning Climatology 

6 

SH8N85, LPS550, LP7870, 
SL7870, ML7870, SP7870, 
MP7870, LR8550,SH7N70,  
CAPE30, THTA0, LIFT0, CCTL0 
TMPC0, RELH0, THWC0, 
AVEPHDTH 

Low Lvl Moisture and Lapse Rate 

THWC85, THWC70, SL3530, 
ML3530, PWTR0, THTA0, TMPC0, 
MIXR0, THTE0, THWC0, AVEPHDTH 

Low-Mid Lvl Moisture 

7 

SP5770, MP5770, LP5750, 
SL5750, ML5750, TL7550, 
LR7550, LR8550, LIFT0 

Mid Lvl Lapse Rate  

SP5770, MP5770, LP5750, LPS550, 
SL5750, ML5750, TL7550, LR7550, 
LR8550, LIFT0 

Mid Lvl Lapse Rate 

8 

THWC85, THWC70, THTE85, 
THTE70, SL3530, ML3530, 
PWTR0, TMPC0, MIXR0, THTE0, 
THWC0 

Low Lvl Moisture 

AWND85, AWND70, AWND 50, 
GRDO85, GRDO70, GRDO50, 
GRDO30,  SH7870, MT7870, 
SH5850, HLCY0 

Ageostrophic Wind 

9 
UREL85, UREL70, UREL50, 
UREL30, UREL0 

Zonal Wind 

THTE85, THTE70, TL7550, LR7550, 
LR8550 

Mid Lvl THTE and Lapse Rate 

10 

OMEG85, MFCN70, WDIV70, 
FRNT70, LC5770, FRT5750, 
FRNT50 

Mid Lvl Forcing 

OMEG85, OMEG70, MFCN70, 
WDIV70, RVRG70, LC5770, 
FRT5750, WDIV50, FRNT50 

Mid Lvl Forcing 

11 

OMEG85, OMEG70, OMEG50, 
OMEG30, RELH70, RELH50, 
WDIV30, LC3570 

OMEG and Up Lvl Divergence 

UREL85, UREL70, UREL50, 

UREL30, UREL0 
 

Zonal Wind 

12 

AWND85, AWND70, AWND 50, 
GRDO85, GRDO70, GRDO50, 
SH7870, MT7870, HLCY0 

Ageostrophic Wind 

LP7870, SL7870, ML7870, SP7870, 
MP7870, LPS550, LR8550, THTA0, 
LIFT0   

Low Lvl Lapse Rate 
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Figure C3: CC Chart for CONUS May - Sep.  The majority of the line appears to be a good match when keeping 12 PCs (cyan).  Note: 00Z = 00 UTC.  August 

may be more erratic overall due to the warm summer ridge that often dominates weather patterns.   
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Figure C4: CC Charts for AK May - Sep.  The majority of the line appears to be a good match when keeping 12 PCs (cyan).  Note: 00Z = 00 UTC.  

 

  



 

1
68

 

 

Figure C5: CONUS Score plots for RPC 1-4.  Note that the scales vary, and spatial variation is important compared to intensity.  
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Figure C6: CONUS Score Plots for RPC 5-8.  Note that the scales vary, and spatial variation is important compared to intensity. 
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Figure C7:  CONUS Score Plots for RPC 9-12.  Note that the scales vary, and spatial variation is important compared to intensity. 
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Figure C8: AK Score Plots for RPC 1-4.  Note that the scales vary, and spatial variation is important compared to intensity. 
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Figure C9: AK Score Plots for RPC 5-8.  Note that the scales vary, and spatial variation is important compared to intensity. 
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Figure C10: AK Score Plots for RPC 9-12.  Note that the scales vary, and spatial variation is important compared to intensity. 
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Figure C11: CONUS Pair plots 
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Figure C12: CONUS Pair plots continued. 
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Figure C13: CONUS Pair plots continued. 
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Figure C14: CONUS Pair plots continued. 
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Figure C15: CONUS Pair plots continued. 
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Figure C16: CONUS Pair plots continued. 
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Figure C17: AK Pair plots. 
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Figure C18: AK Pair plots continued. 
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Figure C19: AK Pair plots continued. 
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Figure C20: AK Pair plots continued. 
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Figure C21: AK Pair plots continued. 
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Figure C22: AK Pair plots continued. 

 

 


