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Abstract 

Annual grasses and forbs comprise the dominant fuel bed layer in hot desert portions of Sonoran 

Desert in Arizona. Many parts of the Sonoran Desert are dominated by non-native invasive 

grasses and forbs that can increase the potential for uncharacteristic large and severe wildfires. 

Sonoran Desert thornscrub and upland vegetation is unaccustomed to fire can be slow to recover 

representing a loss of animal habitat and biodiversity. This research focused on developing 

remote sensing-based methods to map fine fuels and target invasive plants red brome (Bromus 

madriteneis), Sahara mustard (Brassica tournefortii), African buffelgrass (Cenchus ciliaris), 

Mediterranean grasses (Schismus spp.), and arugula (Eruca vesicaria v. sativa). Invasive plants 

were hypothesized to show a competitive advantage over native species such as growing cycle 

differences that can be recognized using high temporal resolution satellite imagery such as the 

Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM). 

We used a stratified random field sampling design and Habitat Suitability Models (HSM) for 

each target invasive species to sample sites with ≥0.90 suitability across a 66,541 Km
2
 study 

area. Field plots and sub-plots were designed to sample within MODIS (250 m) and TM (30 m) 

pixels. Point intercept and comparative yield methods were used to estimate plant cover and 

biomass. We used time-series imagery and phenenology metrics from spectral vegetation indices 

such as the Normalized Vegetation Index (NDVI) to estimate fine fuel biomass, cover, and 

invasive plant occurrence for the study area. Field sampling from 2011 and 2012 measured a 

total of 744 plots and 3,701 subplots. Herbaceous biomass and fine fuel production was 

extremely low on plots averaging <50 kg/ha because of little or no rainfall prior to the growing 

season. The TM sensor experienced a mechanical failure and was not used. MODIS image-based 

models of fine fuels proved difficult with poor prediction under trace biomass conditions. 

Additional biomass models from plots  measured in 2014 that used Landsat 8 NDVI provided 

improved fine fuel prediction for semidesert grassland sites (r
2
 = 0.56). Novel plant phenology-

based models developed in Google Earth Engine using MODIS and other predictor variables 

produced accurate models for the two  most abundant invasive plants in the study area Schismus 

spp. (AUC = 0.88) and B. tournefortii (AUC = 0.86).  Our results indicate that greater flexibility 

to sample sites during higher productivity years for hot desert for developing fine fuel biomass 

models. However, follow-on studies suggest that growing season NDVI values preceding large 

fires in the study area can be used to predict areas of high fuel hazard and risk.  
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Background & Purpose 

Substantial research and development has been devoted to mapping and characterizing forest 

fuels, as wildfire activity on forest lands is often at the forefront of public attention. Satellite 

based burned area estimates indicate that contemporary grass- and shrublands rival or surpass the 

number of forest hectares burned annually within the continental US (Zhang and Kondragunta 

2008). Non-forested landscapes frequently lack sufficient methods to capture the spatial and 

temporal variation in fuel-bed composition and structure necessary to evaluate potential fire 

behavior, hazard, and risk.  

This research addresses BLM\JFSP Project Announcement No.FA-RFA-10-0001 Task 4, 

“Improved fuels mapping in non-forested ecosystems” for the Sonoran Desert. Native and non-

native annual and perennial grasses and forbs comprise a majority of the flammable fuel-bed 

material in southwestern desert ecosystems (Esque and Schwalbe 2002). Variation in seasonal 

and annual precipitation mediates plant production cycles such that elevated rainfall periodically 

increases the amount and continuity of fine fuels (Patten 1978). Enhanced fuel beds consist of 

herbaceous plant biomass that fills interspaces between desert cacti, shrubs and other woody 

vegetation (Brooks and Matchett 2006). These conditions may persist for only a single fire 

season (June to September), or shorter durations, but have the potential to greatly augment fire 

hazard, risk and behavior in a given season or year (Esque and Schwalbe 2002).   

Fire is historically considered to be an infrequent and low intensity disturbance event in 

southwestern desert vegetation types (Weiss and Overpeck 2005). However, the Sonoran Desert 

in Arizona experienced several large and severe wildfires following an extremely wet winter in 

2004 and 2005, consuming as much as 10,000 ha of upland desert scrub vegetation in a single 

event (e.g., the King Valley Fire). In native and non-native dominated vegetation types, 

uncharacteristic fires of this magnitude are of particular concern since recovery of pre-

disturbance vegetation and critical habitat for federally listed endangered plant and animal 

species may not occur for centuries (Hobbs et al. 1992, Esque and Schwalbe 2002, Esque et al. 

2003). 

Indeed, the long-term effects of non-native invasive plants on the seasonality, frequency and 

severity of desert wildfires are a recognized threat to biodiversity in desert ecosystems (Brooks et 

al. 2004). Burned areas can become establishment sites for non-native invasive plants, which, in-

turn, promote an ‘invasive grass/fire cycle’ atypical of desert plant communities (D’Antonio and 
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Vitousek 1992). Of vital concern are a marked increase in non-native plant invasions by species, 

such as red brome (Bromus madriteneis), Sahara mustard (Brassica tournefortii), African 

buffelgrass (Cenchus ciliaris), and Mediterranean grasses (Schismus spp.), which can 

dramatically increase fine fuels accumulation on a site (Esque and Schwalbe 2002). These 

species have been linked to more frequent large fires in Sonoran and Mojave Desert ecosystems 

that have evolved primarily in the absence of fire (Weiss and Overpeck 2005, Swetnam and 

Beatancourt 1998, Tellman 2002).  

Remote sensing is rapidly becoming an indispensable tool for monitoring plant phenology 

related to global change (Cleland et al. 2007), detecting non-native plant invasions (Lass et al. 

2005), and quantifying fine fuels conditions on arid lands (Wessels et al. 2007, Verbesselt et al. 

2006). Recent work has shown that invasive plants can be identified based on annual and 

interannual phenological differences from native vegetation (Bradley and Mustard 2006, 

Peterson 2005). For example, earlier timing of green-up relative to native plants has been used to 

map the distribution of the invasive annual cheatgrass (Bromus tectorum) (Bradley and Mustard 

2006), while interannual variability in response to precipitation anomalies has been used to map 

the distribution of cheatgrass (Peterson 2005) and the non-native perennial Lehman lovegrass 

(Eragrostis lehmanniana) in Southwest desert environments (Huang and Geiger 2008).  

Study Description & Location 

This project focused on developing novel phenology-based remote sensing techniques to map 

native and non-native fine fuels production and occurrence across a 66,541-km
2
 region of the 

Sonoran Desert (Figure 1). Accurate and efficient field-based measurements of herbaceous 

biomass were used to parameterize models responsive to interannual variation in plant 

production. To accomplish this, we established new sampling protocols to train and test 

landscape- and region-scale (100 to>10,000 km
2
) models of herbaceous plant distribution, 

composition, and biomass (Wang et al. 2014). Spectral vegetation indices from satellite imagery 

were also related to plant processes, fine fuels accumulation, and the spatial extent of fuels to 

model where and when fire ignitions are more likely result in large fires (Gray et al. 2014).   

The study area included BLM (11,600 km
2
) and adjacent lands in the Sonoran Desert of 

southwestern Arizona (Figure 1). The area contains important levels of ecosystem heterogeneity 

and contiguous expanses of native habitats affected by large-scale fire and other disturbance 
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Figure 1. The 35,354-km
2
 study region located in 

southwestern Arizona and land jurisdictions considered 

for sampling.  
 

factors. The dominant plant communities are typified by the Sonoran Desert scrub, Arizona 

Upland, and Lower Colorado River 

Valley subdivisions (Brown 1994).  

Long-term average (1952-2007) 

precipitation from weather data collected 

at the nearby Yuma Proving Ground 

(YPG) and Kofa National Wildlife 

Refuge (KNWR) was 93 mm and 175 

mm, respectively, and mean minimum 

(Dec.) and maximum (July) temperatures 

ranged between 5.9 °C (YPG) and 39.8 

°C (KNWR) (Western Regional Climate 

Center 2009, 

www.wrcc.dri.edu/newweb.htm). 

Elevations range from <100 m in the 

lowlands to over 1500 m in the Dome 

Rock Mountains in the western part of 

the study area. Considerable topographic 

relief results from numerous small 

mountain ranges separated by expansive 

desert valleys, plains, and bajadas. Between 1970 and 2005, 1500 unique fire ignition events 

were recorded on the study area (Desert Research Institute 2006, www.cefa.dri.edu). Thirty-one 

percent of these events have occurred since 2000 and most were initiated in the agriculture and 

traffic corridors immediately adjacent to BLM lands. 

Objectives and methods for this project were focused on determining the relative contribution 

of native and non-native herbaceous grasses and forbs to fine fuel biomass in the Sonoran Desert 

study region. Each objectives outlined below was developed in conjunction with the matching 

project entitled “Integrating spatial models of non-native plant invasion, fire risk, and wildlife 

habitat to support conservation of military and adjacent lands in the Sonoran Desert” funded by 

the Department of Defense, Strategic Environmental Research and Development Program 

(SERDP; project RC-1722).   
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Principal study objectives were as follows:  

1. Design and develop a cross jurisdictional sampling protocol for common and targeted 

non-native invasive plant species and fine fuels in the region. 

2. Establish new sampling protocols to rapidly quantify fuel bed characteristics and biomass 

of herbaceous desert vegetation. 

3. Develop and test remote sensing and phenology-based methods to distinguish and map 

herbaceous fine fuels (native vs. non-native) and biomass. 

4. Improve methods to characterize fine fuel components of Sonoran Desert vegetation 

utilizing differences in phenology trajectories and spectral characteristics to distinguish 

native and non-native invasive plant groups. 

Key Findings 

A focus on non-native invasive plants and quantifying fine fuels required new techniques to 

effectively sample suitable sites across the study region for each target non-native invasive plant 

species;  red brome (Bromus rubens), Sahara mustard (B. tournefortii), African buffelgrass (C. 

ciliaris), Mediterranean grasses (Schismus spp.), and arugula (Eruca vesicaria v. sativa). The 

spatial distribution of each species varied depending on invasion potential and degree of 

establishment (i.e. long-term vs. relatively recent introductions) in the study region (Wang et al. 

2014). 

Objective 1. Sampling design 

A novel model- and random sampling-based approach was taken to effectively measure target 

invasive plant occurrence and fine fuel production across the study area. Existing invasive plant 

databases and plant occurrence locations were initially used to model species habitat suitability 

and develop a stratified random sampling design for the study area. A similar study by Crall et 

al. (2013) found that using HSMs to target sampling efforts for invasive plants improved 

sampling efficiency and detection rates above that of a non-targeted sampling design (e.g., 

completely randomized or gradient-based sampling). Habitat suitability model (HSM) and 

sampling details for this study are outlined in Wang et al. (2014). HSMs resulted in detecting at 

least one of the target plant species on 77% of plots in 2011 (Wang et al. 2014). Sample sites 

were selected for each target species for locations within 90
th

 percentile habitat suitability values 

for 2011 and 70
th

 percentile suitability values for 2012. Therefore, key findings from 2011 and 
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additional constraints placed on sample site selection improved detection rates to target plant 

species on 96% of plots in 2012 (Table 1).   

Table 1. Number and percentage of detections of five target species by plot and subplot sampled 

in the Sonoran Desert of Arizona during our 2011–2012 field seasons. 
 

 2011 Detections  2012 Detections  

Species Plot (n = 238) Subplot (n = 1,171) Plot (n = 506) Subplot (n = 2,530) 

Schismus spp. 133 (56%) 505 (43%) 473 (93%) 2020 (80%) 

B. tournefortii 113 (47%) 329 (28%) 260 (51%) 748 (30%) 

B.madritensis 15 (6%) 54 (5%) 11 (2%) 13 (0.5%) 

E. vesicaria 14 (6%) 32 (3%) 26 (5%) 77 (3%) 

C. ciliaria  21 (9%) 46 (4%) 3 (0.6%) 3 (0.1%) 

 

Wide spread and abundant invasive plants such as B. tournefortii showed a high degree of 

correspondence between predicted detection rates using generalized linear models (GLM) and 

habitat suitability (Figure 2). Invasive plants that were regionally rare, but locally abundant in 

the study region such as C. ciliaris and E. vesicaria showed a weak relationship between 

modeled detection rate and habitat suitability.   
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Figure 3. Number of species (black, gray, and white 

circles) detected in our study area in 2011. Colored 

areas show the number of habitat suitability models 

(Model 4 for winter annuals and Model 5 for 

Pennisetum) with predicted high habitat suitability (70th 

percentile). Darker colors indicate greater spatial 

overlap of high suitability across species. 

Figure 2. Relationship between predicted habitat suitability and modeled detection rate at 

subplots for each of the five habitat suitability models for each target invasive species. We used a 

generalized linear model to fit regression line between binary field detections in 2011 and 

predicted habitat suitability. Detections were modeled using a binomial distribution and a logit 

link function. For each target species, we show the average delta Akaike Information Criterion 

(∆AIC) ±95% confidence interval for models of detection rate that included predicted habitat 

suitability versus models that included an intercept term only. 

Subplots sampled in the field also showed good agreement between areas predicted to have 

high or low levels of habitat suitability and the number of target species detected. Two or more 

target species were typically detected in areas showing high habitat suitability for multiple 

species (Figure 3).  

Objective 2. Protocols to 

efficiently quantify fuel bed 

characteristics for herbaceous 

desert vegetation 

New field techniques to measure 

Sonoran Desert fine fuels were 

developed to complement conventional 

point intercept and modified 

comparative yield sampling methods 

that are widely applied in arid grass and 

shrublands (BLM 1996, Marsett et al. 

2006). We also considered the use of 

Moderate Resolution Imaging 

Spectroradiometer (MODIS) and 

Landsat Thematic Mapper (TM) 

satellite remote sensing systems for 

invasive plant occurrence, herbaceous 

biomass, and fine fuels modeling to 

appropriately develop plot sampling techniques. Therefore, nested subplots and plots were co-

registered with 30m TM and 250m MODIS pixels selected using HSM models (Figure 4A, B).  

Plots and subplots were measured during the peak annual and herbaceous plant productivity 
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period for the study area that is typically between January and March of each year (Marushia et 

al. 2010).  

 

Figure 4. Nested pixel plot design used to sample plants in the Sonoran Desert of Arizona. A) 

Plots were co-registered with the resolution and location of a MODIS image pixel, and included 

five nested subplots, each co-registered with the resolution and location of a Landsat TM image 

pixel. Target and alternate (used when the target subplot was inaccessible) subplots are in red 

and gray, respectively. B) Within each subplot, five point-intercept transects were established to 

measure attributes of species composition and herbaceous biomass at 5 m (n = 25) intervals in 

2011. C) The point sample interval was increased to every 1 m (n = 100) in year 2012 in addition 

to using comparative yield methods to estimate biomass on subplots (red symbols for samples 

clipped and weighed).   

Destructive and comparative yield biomass estimates were used on a 0.33 m
2
 circular 

micro-plot at 9 of the 25 point intercepts to estimate biomass from MODIS and TM pixel data. 

Biomass samples collected within micro-plots were placed into separate bags containing 

invasive plants from the current year’s production, target invasive plants from the previous year, 

native plants from the current year, and native plants from the previous year. Field separated 

biomass was used to facilitate plant drying, weighing, and data entry for each category.   

For a subset of subplots (n = 45), a spectrometer sampling protocol was developed to 

collect reflectance data using an ASD Inc. FieldSpec Max3 (350nm - 2,500nm range) from each 

of the 9 micro-plots (n = 405) where biomass samples were collected. A pistol grip and 

fiberoptic cable assembly were mounted on a specialized non-reflective (black) pole and 

leveling device to obtain un-shadowed spectral reflectance measurements from each 0.33 m
2
 

circular biomass collection point. To measure reflectance from only the clipping area, 
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spectrometer measurements were recorded from 1.3 m above the ground with the bare fiber 

cable end equivalent to a 25º field of view. All spectral measurements were taken prior to 

biomass clipping and calibrated to field illumination conditions with a white reference 

spectralon disk. Spectral samples were collected at point locations averaging 20 measurements 

for each of five separate spectra, taken in less than five seconds per each intercept once 

equipment and foreoptics were in position. 

Combined old and new herbaceous biomass (total biomass) was used as the principle 

response variable and spectral reflectance values as predictor variables using partial least 

squares regression (PLSR) models. PLSR is useful for analyzing highly correlated spectral data 

that is typical of high resolution spectrometers. All spectral values highly impacted by water 

vapor absorption and suspended solids such as dust, were removed prior to analysis. Resulting 

models indicated that field spectrometer measurements were likely impacted by extremely low 

biomass productivity on nearly all sites. Herbaceous biomass collected from plots ranged from 0 

to 110 g, with a majority the data points showing no herbaceous biomass.  As a result, very low 

variation was explained (29% maximum) by PLSR models with a maximum of 9 orthogonal 

factors and a maximum of 12% of the variance explained (6 factors) using 10 fold cross 

validation (Figure 5). Most samples were dominated by surface material such as rock, sand, soil 

crusts or dry woody material, resulting poor model performance when only trace amounts of 

herbaceous biomass exist within a micro-plot.    

 

 

 

 

 

 

 

 

 

 

Figure 5. Partial least squared regression results indicating total amount of variance explained by 
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A. B. 

the model and variance explained from 10-fold cross validation with an increased number of 

orthogonal factors. 

Spectrometer base-sampling methods may likely show improved results in grassland areas 

with consistently high herbaceous plant productivity. For this study, years 2011 and 2012 were 

marked by below average or no rainfall. Overall biomass estimates on subplots from comparative 

yield and destructive sampling were typically <17  kg/ha (Figure 6), compared to relatively wet 

years in the western Sonoran Desert that may range as high as 3,000 kg/ha in areas heavily 

invaded by buffelgrass (Martin et al. 1995).  We briefly outline new JFSP project work that has 

greatly improved herbaceous biomass field sampling using a Decagon Devices AccuPAR LP-80 

ceptometer and Leaf Area Index (LAI) below in the Ongoing Work section (see also Whitbeck 

and Grace 2006).   

 

 

 

 

 

 

 

 

 

 

Figure 6. Extremely low biomass (kg/ha) estimates estimated for subplots measured during 

below average or no rainfall years A) 2011 and B) 2012. Sampling was limited to a smaller area 

in year 2012 lite gray inset map.  
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Large fires 

Sample years 

Figure 7. MODIS 8-day NDVI time-series data for plots with B. tournefortii (BRTO), 

Schismus spp. (SCHIS), E. vesicaria (ERUVES) or without targeted non-native plants (No 

detection). Year 2005 experienced several uncharacteristically large fires in the study area 

whereas the 2011 and 2012 sample years experienced below average rainfall, low fuel 

production and no fire activity.  
 

Objective 3: Develop and test remote sensing and phenology-based methods to 

distinguish and map desert herbaceous fine fuels (native vs. non-native) and 

biomass     

Fuel parameters are not well quantified for desert landscapes because of high interannual 

variability and less attention paid to areas typically with lower fire potential. However, recent 

decades have shown increased fire behavior primarily in hot desert regions because of an 

increased abundance of non-native invasive annual grasses and forbs (Brooks 1999). Fuel 

models for the Sonoran Desert can change dramatically from year to year depending on rainfall 

and fine fuel production. We focused empirical herbaceous cover and biomass models on using 

MODIS and TM time-series imagery and spectral vegetation indices (VI) such as the Normalized 

Difference Vegetation Index (NDVI) to develop improved methods for estimating arid land fine 

fuel production and biomass. NDVI is calculated using red and near infrared (NIR) spectral 

ranges as Red-NIR/Red+NIR that is known to be sensitive to plant greenness, Leaf Area Index 

(LAI), biomass, and vigor (Huete et al. 2002). Improved methods to map fine fuels over time 

were sought as principal objective for this research because the five years preceding this study 

showed rapid increases in non-native plant production contributing to greater fuel-bed continuity 

(Figure 7).  
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Figure 8.  Study site biomass conditions for 

close to the same location in A) a year 

previous to the study period (March 23, 

2010) and B) during the study period (March 

11, 2011). Only a small number of sun-

bleached stems from the previous year’s 

Sahara mustard invasion can be seen in year 

2011 as most stems have blown away. 

A. Observation 2010 – Sahara mustard  

B.   Subplot 2011 – Sahara mustard  

Vegetation transects  

Fine fuels on our plots were mainly comprised of annual grasses and forbs. Separate live 

and dead fine fuel measurements were made on plots. We found low fuel accumulation present 

on plots from the previous year’s production, which can quickly break down and blow away in 

hot desert environments. Nevertheless, cover models were developed and tested for live and live 

+ dead herbaceous biomass on a plot.  

This aspect of the project was exceptionally difficult because of the low level of 

productivity observed for the Sonoran desert study area for 2011 and 2012 (Figures 6, 7). Areas 

of high target invasive plant productivity observed in previous years showed little or no fine fuel 

production during the field study (Figure 8). In 

addition, the higher spatial resolution TM sensor 

experienced a mechanical failure and was taken 

off line in November of 2011. Contingencies 

were used to aid in developing this aspect of the 

study because of the trace amounts of biomass 

measured in the field. We were less likely to 

accurately estimate herbaceous biomass and 

cover at the spatial scale of MODIS or TM 

pixels with low level and diffuse annual plant 

productivity. Therefore, we acquired higher 

spatial resolution SPOT-5 (10 m pixels) and 

Worldview-2 (WV2; 2 m pixels) imagery for a 

large portion of the study area in 2012 through 

the USGS commercial data purchased imagery 

program (https://lta.cr.usgs.gov/UCDP). Images 

were acquired during the peak productivity 

period for 2012 concurrent with field sampling. 

Higher spatial resolution satellite imagery 

generally lacks the time series capability of 

MODIS and TM imagery that are consistently 

acquired for desert regions. In addition, a separate effort was taken to use herbaceous biomass 

data collected in 2013 and 2014 from more productive Sonoran semidesert grasslands on Buenos 
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Aires National Wildlife Refuge (BANWR; JFSP Project 13-1-16-16), east of the principal study 

area (n = 136 plots). Biomass on BANWR plots averaged 605 kg/ha as compared to 51 kg/ha and 

44 kg/ha on average for plots within the JFSP-SERDP study area for 2011 and 2012 respectively. 

Approximately 550 kg/ha of continuous herbaceous biomass is needed to carry a fire in the 

Sonoran desert (Wade Reaves, personal communication).  

 For fine fuel cover and biomass predictive models, we used ordinary least squares (OLS) 

regression and Random Forest regression trees (Breiman 2001). We found that of the various 

satellite remote sensing platforms used to predict herbaceous biomass fine fuels cover in the 

SERDP-JFSP study area, MODIS performed the best when using intensively sampled 2012 plots 

and  plant cover (r
2
 = 0.63 live,  r

2
 = 0.64 live + dead; Table 2). NDVI from higher temporal 

resolution MODIS imagery provided a flexible platform to match annual herbaceous plant cover 

at or close to the time of sampling. In addition, improvements to the subplot sampling design 

also aided in good cover prediction. None of the herbaceous biomass models developed for the 

JFSP-SERDP study area performed well with such low annual plant production measured on 

plots. We anticipated that higher spatial and spectral resolution WV2 imagery (8 visible and near 

infrared) spectral bands would show improved cover and biomass estimates however this was 

not the case also because of extremely low productivity (Sankey et al. 2014).  

Landsat 8 was launched in February of 2013, replacing TM and Enhanced Thematic 

Mapper (ETM+) sensors. From our more recent semidesert grassland plots sampled for fine fuels 

on BANWR semidesert grassland site, Landsat 8 NDVI in addition to other environmental and 

disturbance variables performed better for predicting herbaceous biomass (r
2
 = 0.56), with the 

use of imagery closest to the sampling date (Table 2). Herbaceous cover estimates however 

performed poorly for these plots. Analyses for BANWR plots are still preliminary as other plots 

are currently being measured in addition to developing VI such as the Soil Adjusted Total 

Vegetation Index (SATVI) and Total Vegetation Fractional Cover (TVFC) following Marsett et 

al. (2006). We have also acquired high spatial (2 m – 4 m) and spectral resolution (16 visible and 

infrared spectral bands) Worldview 3 imagery during the peak summer growing season 

(September) in  2015 to test fine fuel cover and biomass model relationships with spectral VI.   

 



Table 2.  Herbaceous biomass model estimates from plots on JFSP-SERDP and JFSP-BANWR study areas.  

Model Type Image 

source 

Project Sample year Predictors
1
 Pixel scale (m) Response variable R

2
 

OLS quadratic model 

with square-root 

transformed response 

SPOT5 JFSP-SERDP  2012 Max NDVI 10 Biomass 0.18 

OLS quadratic model SPOT5 JFSP-SERDP 2012 Nearest NDVI 10 Cover 0.25 & 0.26
1
 

OLS WV2 JFSP-SERDP 2012 NDVI-B7, NDVI-B8
2
 30 Biomass 0.16 

OLS WV2 JFSP-SERDP 2012 NDVI-B7, NDVI-B8
2
 30 Cover 0.36 

OLS quadratic model 

with log-root 

transformed response 

eMODIS
2
 JFSP-SERDP 2012 Nearest NDVI 250 Biomass 0.17 

OLS quadratic model MODIS JFSP-SERDP 2012 Nearest NDVI 250 Cover 0.63 & 0.64 

Random forest Landsat 8 JFSP-BANWR 2013 & 2014 NDVI covariates 

(nearest, interpolated 

NDVI, integrated 

NDVI, growing season 

maximum, mean and 

SD of NDVI at the 

plot, and maximum 

post-growing season 

NDVI) + 

environmental 

predictors (years since 

last burn, vegetation 

height, fire frequency, 

landform, elevation, 

slope, and northness) 

30 Biomass 0.56 

Random forest Landsat 8 JFSP-BANWR 2013 & 2014 Same as above 30 Cover 0.24 
1
R-squared coefficient on left is from predictions for live biomass only and the coefficient on the right is from the sum of live and 

dead biomass.  
2
eMODIS 8- to 10-day composited NDVI layers



 In the absence of strong biomass model performance for the study area, we used the 

relationship between contemporary fire occurrence, Landsat TM NDVI, and other environmental 

variables to model the likelihood of large fires. We characterized fires occuring  between 1989 

and 2010 as either ‘large’ (i.e. ≥ 20 ha) or ‘small’ (i.e. < 20 ha) fires. Twenty hectares represents 

a low-end estimate of large fire size in desert fuels and is a threshold that characteristically 

identifies years when the annual fuel load is sufficient for fire spread (W. Reaves, BLM,  pers. 

comm.). We used fire occurrence data from two national level datasets (Finney et al. 2011, Short 

2013 and Fire Program Analysis, www.fpa.nifc.gov). A random sample of fires that burned < 20 

ha was eliminated from the dataset to establish a parsimonious 4:1 ratio of small to large fires 

(Brillinger et al. 2003). A mixed effects logistic regression model to estimate the relative 

probability of a large fire given a historical ignition event and conditioned on environmental 

covariates (fixed effects). 

We accounted for the direct effect of fine fuel loads on large fire probability using time-

series analysis and seasonal NDVI summaries. As a spatially and temporally ‘dynamic’ variable, 

it can be used to estimate fire risk over large, contiguous extents (Maselli et al. 2003). Yearly 

maximum NDVI in a given area was considered a proxy for the annual build-up of fuel (Box et 

al. 1989). To estimate yearly maximum NDVI values for 1988 to 2010 we obtained Landsat TM 

scenes covering our study area (n = 1114, temporal resolution = 16 days) from the US 

Geological Survey (USGS) Global Visualisation Viewer (http://glovis.usgs.gov, accessed 

November 2012). Our model included variables of the year-of-fire maximum NDVI value as 

well as the maximum NDVI value of the year before the fire. 

We used the model-averaged regression coefficients and a Geographic Information 

System (GIS) to implement the full model and produce probabilistic, spatially explicit maps for 

two analysis years (1996 and 2005) at a 30-m pixel resolution. We chose these years to illustrate 

dynamic large fire probability in a moderate fine fuel scenario (1996) and high fine fuel scenario 

(2005), and we refer to these as moderate and high large fire probability scenarios. For 1996, we 

reasoned that fuel loads were affected primarily by the wet winter of 1994 and therefore only 

moderately abundant. Fine fuels were uncharacteristically abundant across the study area in 

2005. Further details are found in Gray et al. (2014).  

 The compiled fire occurrence dataset included 316 small and 79 large fires that burned 

within the study area between 1989 and 2010. Over these 22 years, large fires burned a total of 
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Figure 9. Map-based prediction of large fire probability 

in the lower Sonoran Desert of southwestern Arizona, 

based on 2005 conditions (i.e. high large fire probability).  

The ignition points of large (≥20 ha) fires that burned in 

2005 are represented by black dots. 

High 

Large Fires 2005 

Low 

Large fire probability 

57,000 ha. The extremely high fire year of 2005 saw the greatest number of large fires (n = 36) 

and highest total area burned (51,700 ha). The median size of a large fire in 2005 was 95 ha, 

whereas the 22-year median size of a 

large fire was only 60 ha.  

The AIC of our full model of 

large fire probability was 71 units less 

than (i.e. better than) a null model 

containing only the random effects. 

The Hosmer–Lemeshow test did not 

indicate a significant lack of fit (P = 

0.25). The ROC value for this model 

was 0.85, suggesting excellent 

discrimination. Among explanatory 

variables, areas with high maximum 

annual NDVI (w + (j) = 1.00), low 

elevation (1.00) and low road density 

(1.00) were the most strongly 

associated with higher large fire 

probability. Low vegetation 

heterogeneity was a strong predictor 

(0.90), as were south-facing slopes 

(0.80). Maximum NDVI as a lagged variable was less influential than the year-of-fire maximum 

NDVI, but was still a strong predictor (0.70). Topographic roughness was also a strong predictor 

of large fire probability (0.58), but less than the other variables we considered. 

Random effects ranged from <10 to >300% of normal winter precipitation. The best 

linear unbiased predictors for the random effects (Faraway 2005) revealed that precipitation 

anomalies in the two antecedent winters had different predicted effects on large fire probability, 

but without discernible pattern.  

Maps of the moderate (1996) and high probability (2005; Figure 9) scenarios showed 

very different patterns of large fire probability across the study area. In 1996 there were only a 

few isolated patches of very high large fire probability (e.g., >60%), whereas in 2005 there were 
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much more widespread and spatially contiguous areas of very high probability. Over the entire 

study area, the mean probability of large fire was 0.13 (s.d. = 0.08) and 0.37 (0.21) in 1996 and 

2005.  

Objective 4: Improve methods to characterize fine fuel components of Sonoran 

Desert upland vegetation utilizing differences in phenology trajectories and spectral 

characteristics to distinguish native and non-native invasive plant groups 

Non-native invasive plants are an increasingly dominant proportion of annual fine fuel bed 

composition in southwester deserts, which can encourage a more frequent grassland fire cycle 

than has previously been acknowledged (de’Antonio and Vitousek 1992, Van Devender et al. 

1997). This aspect of the project focused on mapping the distribution of principal in non-native 

invasive plants B. tournefortii and Schismus spp. to help estimate areas potentially vulnerable to 

fire in relatively high productivity years (Table 1). All other target invasive plants in the study 

area were infrequently encountered on plots.  

We developed two spatial modeling approaches to detect areas likely be invaded by 

Schismus spp. and B. tournefortii. The first was a satellite image time-series approach which 

assumed that target invasive plants had unique phenology patterns (Marushia et al. 2010). As 

seasonal rainfall is spatially heterogeneous in the study area, we used varying spatial model 

weights to account for uneven growing season conditions. We termed this new method a 

Spatially Weighted Ensemble (SWE) approach where a number of “local” models have been 

trained using a spatial subset of the field data and, by logical extension, are “tuned” to the local 

discriminating conditions of that spatial subset (Olsson et al. in revision). A second approach 

used a broader suite of satellite VI, spectral bands, and other environmental variables stored and 

processed within Google Earth Engine (GEE) and the Google Cloud. The two approaches are 

further outlined with a description of key findings below.  

For the first approach, we used time-series VI and phenology and growing season metrics 

such as NDVI amplitude, maximum, start-of-season and end-of-season NDVI from MODIS 

imagery to characterize growing season differences between target non-native and native plants 

for developing predictive models to map probability of occurrence. To develop the SWE 

modeling approach, the spatial arrangement of plots within a subset of plots were used to derive 

an interpolated surface for each local model, described as an area of influence. The local models 

were then combined using linear combination, but with spatially varying weights. The weights of 
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each local model were normalized at each cell such that the sum of weights is equal to one, and 

these weights are used to combine model values in a linear weighted sum. We tested a variety of 

spatial interpolations and weighting schemes, including a hybrid between spatial weights and 

performance-based weights. Performance-based weighting integrates multiple contributing 

models into an ensemble wherein the weights are augmented by each model’s performance on a 

validation dataset, thus using intrinsic validation to guide weighting. For these models, we used 

the Random Forest algorithm to predict the likelihood of Schismus spp. and B. tournefortii 

occurrence using 2011 field data.   

We compared the performance of SWE to “regional models” that also used the Random 

Forest algorithm to estimate invasive plant occurrence, but lacked spatial weighting. Our results 

indicated that SWE models performed similarly according to Cohen’s kappa (k) that was 

observed for the regional models. For Schismus spp. k = 0.435 for the regional model and k = 

0.429 the SWE model. For B. tournefortii k = 0.561 for the regional model and k = 0.576 for the 

SWE model. We used each model type to map invasive plant occurrence (Figure 10 A-D) and 

compare differences (Figure 10 E-F).  Regional and SWE model outputs were also comparable 

with the exception of a few areas with much higher levels of occurrence predicted by the SWE 

model particularly with B. tournefortii (Figure 10 E-F). Higher SWE model predictions were 

consistent for sites with sandy soil conditions and greater levels of B. tournefortii cover during 

high productivity years.   

We developed a second phenology-based approach to estimate invasive plant occurrence, 

but considered a broader set of predictor variables using GEE as an analysis platform. The use of 

phenology variables alone with SWE or regional Random Forest models did not show good 

performance as observed from low Cohen’s kappa values above. As an alternative, we fit a 

single occurrence model for each species considering meteorological, geomorphological, and 

vegetation and surface reflectance variables simultaneously. Plots from both 2011 and 2012 were 

used for these models While it is possible to confound remote sensing-based occurrence models 

with measures of habitat suitability (Bradley et al. 2012), we believe that the coarse spatial 

resolution of environmental predictor variables (250m pixels), in addition to the way in which 

we derived the vegetation and surface reflectance variables, helped to alleviated this concern 

(Table 3).  
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Figure 10.  Model outputs from the A) SWE Schismus spp. (SCHIS) model, B) SWE B. 

tournefortii (BRTO) model, C) regional SCHIS model, and D) regional BRTO model. 

Differences between SCHIS and BRTO model outputs are shown in E) and F) respectively.  



Table 3. Features used to predict the occurrence and cover of the invasive targets using Google Earth Engine. The total number of 

features in each category is indicated parenthetically in the group column. 

Predictors 
Dataset Bands/variables Filters1 Reduction(s)2 Citation/source 

 

Meteorological  

(9 features) 

The Gridded Surface 

Meteorological 

(GRIDMET) dataset 

(daily) 

Precipitation, minimum and 

maximum temperature, and potential 

evapotranspiration 

1983-2012 (the 30-year window 

leading up to and through the 

sampling effort) AND the 1st day 

of the week AND winter season 

Mean and variance 

(Abatzoglou 2013)  

https://earthengine.google.org/#detail

/IDAHO_EPSCOR%2FGRIDMET 

The Palmer Drought 

Severity Index (PDSI) 

dataset 

Not applicable 1983-2012 AND winter season Anomaly3 

(Abatzoglou et al. 2014)  

https://earthengine.google.org/#detail

/IDAHO_EPSCOR%2FPDSI 

 

Geomorphological  

(10 features) 

The MODerate-

resolution Imaging 

Spectroradiometer 

(MODIS) Albedo 

product 

Visible, near-infrared, and shortwave 

white-sky albedo 
Winter season Mean and variance 

(USGS LP DAAC)  

https://earthengine.google.org/#detail

/MODIS%2FMCD43B3 

Shuttle Radar 

Topography Mission 

(SRTM, see Farr et al. 

2007) digital elevation 

data 

Elevation, slope, aspect (i.e., 

northness), and multi-scale TPI 

(sensu Theobald et al. In review) 

Not applicable Not applicable 
https://earthengine.google.org/#detail

/USGS%2FSRTMGL1_003 

 

Vegetation indices and 

surface reflectance  

(96 features) 

MODIS Vegetation 

Indices products (16-

day composite) 

NDVI and EVI. Blue, red, near-

infrared, and shortwave reflectances.  

Sampling year (for anomalies 

calculations) 

- Mean and variance 

- Anomalies4 

(USGS LP DAAC)  

https://earthengine.google.org/#detail

/MODIS%2FMOD13A1 

- The month preceeding data 

collection 

- The two months bounding the 

data collection event (before and 

after) 

- The 8-month window leading up 

to the data collection event 

- Max (for the first two 

filters) 

- Mean, min, max, and 

variance, as well as slope 

and intercept (for the final 

filter) 

1
The winter season was defined as December to March. Summer was defined as July to mid-September.  

2
All temporal reductions of image collections were followed with spatial reductions using the footprint of each plot. 

3
 The 30-year mean PDSI subtracted from PDSI at the time of sampling. 

4
The mean and variance of selected bands in the year in which sampling occurred, divided by the mean for the entire series (15 years).  



For this approach, we compared performance of Random Forest and Support Vector 

Machine (SVM; Cortes and Vapnik 1995) classifiers to select the algorithm a superior method. 

Models were tuned and trained using the caret package in R (Kuhn 2008). Each model was tuned 

to a training partition (70%) of the full dataset using repeated 10-fold cross-validation. Final 

models were applied to the testing data partition (30%) to generate more accurate estimates of 

out-of-bag sample error rates for model evaluation. We selected the best model using the H 

measure as part of model training and development (Hand 2009).  The best model was re-fit 

using the full dataset in and the best hyperparameter values identified during the tuning process. 

This GEE classifier was then used to generate spatially-explicit predictions of the occurrence for 

Schismus spp. and B. tournefortii.   

Occurrence probabilities were reclassified as present or absent if predictions greater or 

lower than a specified threshold as described below. We used the false positive rate balanced 

against false negatives by emphasizing the consequence of either error type. We used the 

Receiver Operating Characteristic (ROC) curve to visualizes and quantify the impact of the 

choice of threshold on the false-positive rate (FPR) and false-negative rate (TPR) tradeoff.  In the 

context of plant invasions, false negatives are more consequential than false positives (Smith et 

al. 1999). Therefore, we created a cost function for each occurrence model by assuming a cost of 

1 for false-positive cases and a cost of 2 for false-negative cases. An optimal ROC curve would 

go through the point (FPR, TPR) = (0, 1). 

We used the Area Under the Curve (AUC) to assess the likelihood that the classifier will 

rank a randomly chosen positive instance higher than a randomly chose negative instance 

(Fawcett 2006). Conventionally, AUC values of 0.5 indicate that the modeled occurrence values 

are no better than randomly selected values. AUC scores of 0.6 - 0.7 indicate a poor fit of the 

model to the data, whereas values of 0.7 - 0.8, 0.8 - 0.9, and 0.9 - 1.0 indicate a fair, good, and 

excellent fit, respectively. We used these breaks as a rough guide to evaluate occurrence model 

performance. If presence is considered a positive (1) and absence as a negative (0) result, then 

Figure 11 illustrates the tradeoff encountered upon specifying a reasonable threshold. If the 

threshold is increased, the number of false positives decreases, while the number of false 

negatives increases. 
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Figure 11. Jitter plot showing 

the distribution of absence and 

presence records (0 and 1 along 

the x-axis) for Schismus spp. on 

the predicted occurrence 

probabilities. An arbitrary 

threshold (horizontal black line) 

of 0.5 is displayed for 

illustration purposes only. 

 

 

 

Random Forest models outperformed SVM models and were used to predict the 

occurrence of each target species. The AUC for the SCHIS model was 0.877, while the AUC for 

the BRTO occurrence model was 0.855. Note that the cost associated with the arbitrary threshold 

of 0.5 shown in Figures 12 and Figure 13 is not minimized. The final threshold selected for 

Schismus, based on the cost function and the optimization criteria described above was 0.43. The 

threshold selected for Brassica was 0.38. These can be identified by the inflection point and 

greenest circles in their respective cost function curves (Figure 12b, 13b).  

 

Figure 12. a) Receiver Operating Characteristic curve and b) cost function for the Schismus spp. 

occurrence model. An arbitrary threshold of 0.5 was used here for illustration purposes only. The 

1:1 line in blue indicates a hypothetical ROC curve in which a model would perform no better 

than chance.  
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Figure 13. a) Receiver Operating Characteristic curve and b) cost function for the B. tournefortii 

occurrence model. An arbitrary threshold of 0.5 was used here for illustration purposes only. The 

1:1 line in blue indicates a hypothetical ROC curve in which a model would perform no better 

than chance.  

We considered models derived for Shismus spp. and B. tournefortii as falling within the 

‘good’ range according to conventions on AUC-related performance measures. The thresholds 

derived from the cost functions for each species were both < 0.5, which reflects the relative costs 

assigned to false-positive vs. false-negative cases a priori. We considered that false-negative 

cases were twice as costly as false-positive cases because the ecological consequences of 

Schismus spp. and B. tournefortii going undetected outweigh concern for overestimating their 

occurrence. The spatial distribution of predicted occurrence probabilities in the bottom row of 

Figure 14 and Figure 15 reflect these optimized cost parameter settings.  
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Figure 14. Predicted occurrence probability for Schismus spp. in 2005 and 2012 (left and right 

columns, respectively). Results shown in the maps in the bottom row of the figure have been 

masked using the threshold identified during the model evaluation step (i.e. 0.43). 
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Figure 15. Predicted occurrence probability for B. tournefortii in 2005 and 2012 (left and right 

columns, respectively). Results shown in the maps in the bottom row of the figure have been 

masked using the threshold identified during the model evaluation step (i.e. 0.38).  

The difference in the magnitude of predicted occurrence probabilities between the 2005 

high productivity period and 2012 period of below average rainfall was notable for both target 

invasive species (Figure 16, 17). Specifically, the predicted occurrence probability for Schismus 

spp. is not uniformly higher in the wetter, more productive year as it is (with very few 

exceptions) for B. tournefortii. Wetter, more productive conditions appeared to favor Schismus 

spp. southeast of Kofa National Wildlife Refuge while dry, unproductive conditions may slightly 

favor Schismus spp. across much of the south-central portion of the study area. Overall, Schismus 

spp. maintains a relatively stable and pervasive presence across the landscape and across years.  
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Figure 16. Difference between the 

predicted occurrence probabilities 

in 2005 and 2012 for Schismus spp. 

Blue regions indicate higher 

predicted occurrence probabilities 

in 2005 while red regions indicate 

higher predicted occurrence 

probabilities in 2012. 

 

 

 

 

 

Figure 17: Difference between the 

predicted occurrence probabilities 

in 2005 and 2012 for B. 

tournefortii. Blue regions indicate 

higher predicted occurrence 

probabilities in 2005 while red 

regions indicate higher predicted 

occurrence probabilities in 2012. 

 

 

 

 

 

Overall, we obtained strong predictive models for the two species that we had sufficiently 

large sample sizes (Table 1). While we did not have the sample sizes needed to create models for 

the other target species (i.e., B. madritensis, E. vesicaria, and C. ciliaris) the GEE modeling 

approach showed the most promise for creating accurate occurrence predictions. We highly 

recommend this approach if extending sampling efforts to overlap with more suitable sites for 

these species is undertaken in the future.  
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Management Implications 

Management implications from this study are that fine fuel production from both native and non-

native invasive plants can vary dramatically from year to year in the study area. Fuel models 

such as those from LANDFIRE program that are less frequently updated may greatly 

underestimate or overestimate the potential for large fires in a given year. For example, year 

2005 fire burned several large areas that likely surpassed GS1 and GS2 fuel models (Scott and 

Burgan 2015) typical for fire prone locations in the study area (Gray et al. 2014). Gray et al. 

(2014) found that maximum NDVI from the preceding growing season along with human 

infrastructure and biophysical variables were strong predictors of large fires. Therefore, accurate 

models of fine fuel biomass may not always needed for making valid estimates of fire hazard and 

risk in these environments. Contiguous areas of maximum NDVI reaching or exceeding 0.40 in 

this environment are potential candidates for large fires according to findings by Gray et al. 

(2014) and Gray et al. (2015).   

 Our ability to map fine fuels was mixed because of poor sampling conditions and low 

biomass production during this study. However, efforts to map non-native invasive plant 

distributions were successful for monitoring changing conditions over time. Previous to and 

during this study we observed a dramatic increases and decreases in fuel bed continuity and 

composition that were associated with annual increases and decreases in fire hazard (Gray et al. 

2014). From our plots, we observed greater fine fuel accumulations on sites with invasive plants 

suggesting that mapping their distribution or risk of invasion is coupled with the risk of large 

fires (Figure 18). Google Earth Engine provided an open-source and high-performance data 

processing platform that quickly integrated our field data to develop robust models of invasive 

plant distributions. We believe that this approach can be applied to accurately map invasive plant 

distributions and fine fuels in other desert and arid land locations when sufficiently 

parameterized with stratified and well distributed field data from an area of interest.   

 Additional field monitoring techniques are also greatly needed to further evaluate fine 

fuels and invasive plants into the future. Our study period covered extremely low productivity 

conditions for hot Sonoran desert. Future sampling efforts should consider sampling intervals 

that may better capture higher productivity patterns where the principal fuel-bed layer is 

comprised of annual grasses and forbs. We are currently developing new sampling techniques for 

plots in semidesert grasslands that we anticipate will greatly add to this study’s findings.  
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Figure 18. Comparison of mean 2012 subplot biomass on sites with and without target invasive 

plants (n = 2530).  

 

Ongoing Work 

Ongoing projects have extended this research which are the DoD SERDP (Project RC-1277) 

funded project, JFSP funded fire effects monitoring project on Buenos Aires National Wildlife 

Refuge (BANWR; Project 13-1-06-13), and other graduate student research in the Northern 

Arizona University Lab of Landscape Ecology and Conservation Biology. Follow-on studies 

from the SERDP project conducted by Gray et al. (2014, 2015) have added new modeling 

techniques to predict the  risk and spread of large fires in the study area that are valuable decision 

making tools for fire managers.  

A few of the unsuccessful efforts in this study have been revised and successfully 

developed for the JFSP project in semidesert grasslands at BANWR. We have developed new 

biomass field sampling, measurement and modeling techniques using a Decagon AccuPAR LP-

80 ceptometer that is rapid and accurate for estimating desert fine fuels accumulation on sites. 

Leaf Area Index (LAI) simultaneously is calculated from above and below fuel-bed 

measurements of photosynthetically active radiation (PAR) explain 75% of the variation of dry 

biomass weight from destructive sampling (Sesnie, unpublished data). Models calibrated from 

destructive sampling are being applied non-destructive samples being collected in the field. 

These measurements were also validated with separate canopy cover estimates from point 

intercept data showing a strong correlation between total plot herbaceous biomass and cover (r = 
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0.77). New high spatial and spectral resolution satellite imager collected with the Worldview 3 

sensor in September of 2015 (peak growing season) and future airborne laser altimetry data 

(LiDAR; acquisition planned for 2015 – 2016) will be used to assess fine and tree canopy fuels 

on BANWR in combination with semidesert grassland plots collected in 2014 and 2015.  

New and rapid methods are being developed to combine high-resolution (350 to 2500 nm, 

1.4 to 10 nm bands) field spectroscopy measurements with Worldview 2 and 3 image spectra to 

map invasive plants in the study area (Sankey et al. 2014). These efforts are aimed at reducing 

field sampling time and detecting invasive plant populations that may cover small areas, but can 

potentially spread to new areas and increase fire hazard. Mapping and monitoring incipient 

invasive plant populations, such as recently established C. ciliaris on BANWR is greatly needed 

to avoid larger-scale invasions and expensive mitigation and control efforts in the future.   

Future Work Needed 

Field sampling efforts for our study were undertaken during below average rain fall and low 

annual plant production years. Despite challenges such as the ephemeral nature of fine fuels in 

hot desert environments, further work is needed to quantify fuel bed characteristics conducive to 

large fires. Alternative methods were developed to assess these conditions using satellite data, 

NDVI and large fire perimeters (Gray et al. 2014), however assessing hazardous fuel conditions 

on the ground and relating them to satellite data is still a pressing need. This may require 

coordinated vegetation monitoring efforts by land management agencies to sample changing 

conditions as they occur. Multijurisdictional and coordinated field sampling at 2 to 3 year 

intervals may help to improve on techniques developed with this study. Targeting likely El Niño 

events (e.g. 2015-2016) and peak growing season for annual plants during January to March in 

this study area study area will be important as invasive plant control and mitigation is a shared 

goal among land management agencies.  

In addition, the Landsat TM sensor experienced a mechanical failure during this study 

and was replaced by Landsat 8. The launch of Landsat 8 creates greater opportunities to develop 

satellite-based estimates of fuel parameters for desert environments with greater bit depth (16-bit 

pixel values) and a better signal to noise ratio. Some preliminary tests with this remote sensing 

platform suggest that is has a spatial, spectral, and temporal resolution that is well suited to 

mapping and monitoring fine fuels in semidesert grasslands.   
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Deliverables 

Manager Workshops 

1. Western Wildland Environmental Threat Assessment Center (WWETAC) ArcFuels and 

fire modeling. Flagstaff, AZ September 27
th

 – 29
th

, 2010.
  
Attended by BLM, NPS, 

USFWS fire managers.  

2. Tool transfer, training, and presentations. Stakeholder meeting to present data and 

analyses contribute invasive plant and fire mitigation decision support to SERDP and 

JFSP project collaborators. Gila Bend Air Force Auxiliary Field, AZ, November 15, 

2013. 
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WorldView-2 high spatial resolution improves desert invasive plant detection. ASPRS – 

Photogrammetric Engineering and Remote Sensing. 80: 885-893. 

7. Wang, O., Zachmann, L.J., Sesnie, S.E., Olsson, A.D., and Dickson, B.G. (2014). An 

iterative and targeted sampling design informed by habitat suitability models for 

detecting focal plant species over extensive areas. PlosOne 9: 1-14. 
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