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Abstract 
Sahara mustard (Brassica tournefortii) is an invasive spe-
cies common to the Mojave and Sonoran Deserts in the 
southwestern US. Our objective was to assess WorldView-2 
(WV2) satellite imagery potential to detect Sahara mustard 
presence, cover, and biomass. We compared WV2 images 
(2.4 m and 30 m resolution) to Landsat ETM+ image both 
classified using a mixture tuned matched filtering (MTMF). 
A total of 1,885 field plots (30 × 30 m) were established 
across a 8,715 km2 study area in spring of 2012, an excep-
tionally dry year. Average target canopy cover (7.5 percent) 
and biomass (0.82 g/m2) were extremely low. The WV2 MTMF 
classification had a much greater overall accuracy of 88 
percent, while the resampled WV2 and the Landsat ETM+ 
MTMF classification overall accuracies were 67 percent and 
59 percent, respectively. Producer’s and user’s accuracies in 
target detection were 86 percent and 94 percent, respectively, 
although the exceptionally low canopy cover and biomass 
were not well correlated with image-based estimates. 

Introduction
Non-native plant invasions threaten to alter the structure and 
function of ecosystems globally (D’Antonio and Vitousek, 
1992). Highly invasive plant species can dramatically alter 
hydrologic and nutrient cycles, fire regimes, and other ecolog-
ical processes. Invasive plants cost the western US economy 
as much as 34 billion dollars per year (Barnett et al., 2007). 
An efficient method to detect and determine the distribution 
and abundance of non-native invasive plants over large areas 
is critically needed, particularly for species undergoing rapid 
expansion in fragile arid ecosystems. 

Remote sensing provides a promising tool for targeted 
monitoring or eradication by land management agencies 
(Lass et al., 2005; Bradley and Mustard, 2006; Noujdina and 
Ustin, 2008). Invasive species studies have successfully used 
hyperspectral data such as AVIRIS imagery with 20 m resolu-
tion and 224 bands and HyMap imagery with 3.5 m resolution 
and 126 bands (O’Neill et al., 2000; Root et al., 2002; Dudek 
et al. 2004; Parker Williams and Hunt, 2002, 2004; Glenn et 
al., 2005; Noujdina and Ustin, 2008). However, hyperspec-
tral imagery can be expensive to acquire and tends to cover 

relatively small spatial extents. Using freely available, moder-
ate resolution imagery such as Landsat can reduce costs and 
provide data at a temporal resolution suitable for monitoring 
changes in plant distributions, especially with the recent 
launch of the Landsat-8 satellite. However, moderate to coarse 
resolution data typically provide low rates of invasive plant 
detection because of the mixed cover types within each pixel, 
especially at early stages of invasion when invasive plant 
populations are small and sparsely distributed (Lass et al., 
2005; Mitchell and Glenn, 2009). 

Federal agencies in the US now have access to commer-
cial satellite data such as high resolution WorldView-2 (WV2) 
imagery using the US Geological Survey Commercial Remote 
Sensing Space Policy (CRSSP, 2003). Methods to effectively 
utilize imagery for early detection of invasive species are 
needed to add value to these data sources as other multispec-
tral and high resolution commercial satellite data become 
more readily available (Kruse and Perry, 2013). The availabil-
ity of high resolution data, combined with efficient classifica-
tion methods for invasive species, can potentially improve 
early detection rates thereby enhancing invasive species 
management and mitigation efforts.  

The WV2 satellite remote sensing system is a relatively new, 
high spatial resolution (2.4 m pixels) sensor that is the first of 
its kind to produce 8-band multispectral imagery (Figure 1) 
(Kruse and Perry, 2013). WV2 might provide a unique opportu-
nity to detect small populations of desert plants due to its high 
spatial and spectral resolution and bands in the red (630 to 690 
nm), red edge (705 to 745 nm), and near-infrared (770 to 895 
nm and 860 to 1040 nm) spectral regions (Figure 1). The fine 
spatial resolution of WV2 imagery has been demonstrated to im-
prove classification accuracy in forested environments, where 
overall accuracies reached 98 percent (Ozdemir and Karneli, 
2011; Garrity et al., 2012). Latif et al. (2012) and Immitzer et 
al. (2012) further document that the high spectral resolution 
of WV2 imagery result in successful tree species differentiation 
(overall accuracy of 82 percent), although producer’s accura-
cies at the species-level ranged widely between 33 percent and 
92 percent (Immitzer et al., 2012). WV2 data have also been 
shown to enhance classification accuracy for tree species dif-
ferentiation in a savanna ecosystem (Cho et al., 2012), cover 
types in urban areas (Zhang and Kerekes, 2012; Longbotham et 
al., 2012; Pu and Landry, 2012), and coral reef detection in ma-
rine environments (Botha et al., 2013). The utility of WV2 im-
agery for mapping invasive plants has not been fully explored 
in hot desert environments where invasive species can exhibit 
large interannual variability in distribution and abundance.
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Our objectives were to: (a) examine the utility of WV2 data 
for mapping small populations of Sahara mustard in the 
Sonoran desert of the southwestern US, and (b) compare WV2 
classification performance with the more readily available 
Landsat Enhanced Thematic Mapper Plus (ETM+) imagery. Spe-
cifically, we sought to determine if the higher spatial and spec-
tral resolution imagery can improve detection of small popula-
tions of invasive plants in desert environments (Figure 1).

Sahara mustard (Brassica tournefortii) is a desert winter 
annual forb that has commonly spread across much of the 
Mojave and Sonoran deserts of the southwestern US and 
northern Mexico. Sahara mustard has been identified as one 
of six invasive species with the greatest potential ecological 
damage in the Sonoran desert (Sánchez-Flores, 2007). In the 
context of global and regional climate change, the species is 
expected to further expand its range. Sahara mustard germi-
nates early in the winter and often reaches maturity before na-
tive annuals, which allows it to ultimately replace the native 
species and dominate a site sometimes with up to 100 percent 
canopy cover (Sánchez-Flores, 2007; Marushia et al., 2010). 
Dense stands of Sahara mustard pose a potential fire hazard 
in desert ecosystems by increasing fine fuels, particularly in 
locations where native plants are not fire-tolerant or are slow 
to recover (Engle and Abella, 2012; Balch et al., 2013), and 
where Sahara mustard can successfully establish following 
fire from the soil seed bank (Sánchez-Flores, 2007).  

Methods
Study Area
Our study was conducted in the lower Sonoran Desert of south-
western Arizona and encompassed an area of approximately 
8,715 km2 (Figure 2). Study area vegetation is dominated by na-
tive plant species typical of the lower Colorado River subdivi-
sion (Brown, 1994), including creosote bush (Larrea tridentata), 
palo verde (Cercidium microphyllum), jumping cholla (Opuntia 
bigelovii), and brittlebush (Encelia farinosa), along with annual 
grasses and forbs, such as desert sand verbena (Abronia villosa), 

and evening primrose (Oenothera caespitosa). In addition to 
Sahara mustard, other non-native invasive species of concern 
in the study area include red brome (Bromus rubens), Mediter-
ranean grass (Schismus arabicus and Schismus barbatus), and 
arugula (Eruca vesicaria ssp. sativa). Annual grasses and forbs 
in the Sonoran desert typically germinate following winter 
rains and grow through the months of December to April. Their 
production is heavily dependent on winter precipitation and 
can vary dramatically between years and locations (Reynolds 
et al., 2004). Average annual precipitation across the study area 
is 93 to 175 mm (PRISM; http://www.prism.oregonstate.edu). 
Average temperatures range between 8° to 40.5°C. Elevation 
ranges from 25 m to over 1,477 m. The topography is charac-
terized by desert valleys, plains, and bajadas, which are often 
intersected by xeroriparian (desert wash) features. 

Field Measurements
Field data on the presence or absence, cover, and biomass of 
Sahara mustard was collected at multiple sampling locations 
between February and April 2012 (Figure 2). Prior to field 
sampling, the study area was stratified based on a species 
distribution model for Sahara mustard and a prediction of 
habitat suitability (Wang et al., in revision). Field sampling 
locations were randomly selected within areas of the 70th 
percentile of habitat suitability, but confined to areas of low 
slopes and proximity to improved and unimproved roads. 
The rationale for selecting areas based on slope (≤10 de-
grees) and proximity to roads (250 m to 2 km) was to reduce 
the amount of effort required to access field locations and 
increase sample size in habitats preferred by Sahara mustard. 
Next, a spatially balanced approach was implemented to 
identify 2,500 potential sampling locations with a weighted 
representation of suitable habitats based on predicted habi-
tat suitability across available sampling areas. The approach 
used specific raster cell values (i.e., weights of habitat suit-
ability) to determine the inclusion probability of a location to 
be sampled (Stevens and Olsen, 2004; Theobald et al., 2007). 
Candidate sampling locations were constrained to clusters of 
four to five locations within 450 to 650 m of one another.

(a)

(b)

(c)

Figure 1. Field-measured mean reflectance spectra of the target species: (a) Sahara mustard, (b) the spectral bands of the World-
View-2, and (c) Landsat etm+ used in this study.
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Figure 2. Study area in southwestern Arizona, (inset). The black lines indicate the footprints of the satellite images used in this study: 
ten scenes of WorldView-2 data overlapping with one Landsat-5 etm+ image. The circular dots of all sizes demonstrate the spatial 
distribution of Sahara mustard presence and canopy cover ( percent) measured in the field. The size of the dots are proportional to 
the Sahara mustard canopy cover ( percent) measured in the field. 

Figure 3. Field sampling design used to detect and measure Sahara mustard canopy cover and biomass: (a) At each sampling loca-
tion, a cluster of five 30 × 30 m plots were established, each registered to a Landsat image pixel (30 × 30 m); (b) Within each 30 
× 30 m field plot, five 20 m line transects were established to record, at 1 m intervals, the presence/absence of the target species 
(presence highlighted with filled circles) and three other herbaceous cover types: perennial grass, annual grass, and forb (not high-
lighted). Total herbaceous biomass was approximately estimated within each plot using a modified comparative yield model and a 
location of reference maxima biomass of the target species (open circle) and native herbaceous species (cross).

At each sampling location, five 30 × 30 m plots (referred 
to as “sub-plots” in Wang et al., (in revision)) were generated, 
each matched to a 30 m Landsat pixel (Figure 3a). Using a 
global positioning system, we navigated to the southwest cor-
ner of each plot (Figure 3a). The entire plot was first searched 
systematically to determine the presence or absence of the 
target plant species, Sahara mustard. Next, five 20 m line 
transects were established within each 30 × 30 m field plot 

(Figure 3b). Along each line transect, a point intercept method 
was used to record the presence or absence of the target spe-
cies and three other herbaceous cover types: perennial grass, 
annual grass, and forb (Figure 3b). The point intercept method 
was used at 1 m intervals resulting in a total of 100 points per 
plot, which were then directly converted into percent cover 
estimates of the target species and the three herbaceous cover 
types at the 30 m plot scale. 
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Total herbaceous biomass was estimated within each 
plot using a modified comparative yield method (Haydock 
and Shaw, 1975). For this estimate, a location of maximum 
biomass of the target species and native herbaceous species 
(all native species combined) was found within each plot and 
labeled as a reference maxima for each (Figure 3b). The bio-
mass of the target species and native herbaceous species were 
then clipped within a 0.25 m2 hoop (BLM, 1996; Despain and 
Smith, 1997) at the two respective locations. Samples were 
oven dried and weighed to obtain dry weights of maximum 
herbaceous biomass for native and non-native plants. In the 
remainder of each plot, target species and native species 
biomass were visually ranked as a fraction of the reference 
maxima biomass in increments of 25 percent at 5 m intervals 
along the five 20 m transects. The mean of all biomass ranks 
for each cover type (n = 20 points) was then multiplied by the 
percent cover of each cover type to estimate total herbaceous 
biomass at the 30 m plot scale. 

Image Preprocessing
Imagery from both WV2 and ETM+ satellite sensors were 
collected during the peak winter growing season period for 
native and non-native annual plants in the Sonoran Desert. A 
total of ten WV2 scenes were selected from the study area (Fig-
ure 2). The scenes were acquired between 04 to 10 February 
04 2012 and delivered in calibrated radiance in 2.4 m resolu-
tion with ~5 m geometric accuracy. Multispectral bands were 
used in this study: coastal (0.477 μm), blue (0.477 μm), green 
(0.546 μm), yellow (0.607 μm), red (0.658 μm), red edge (0.723 
μm), near-infrared 1 (0.831 μm), and near-infrared 2 (0.908 
μm) (Figure 1). The swath width of each WV2 scene is 16.4 
km. One ETM+ scene (Path 38 and Row 37) from 23 Febru-
ary 2012 encompassing all of the WV2 scenes was used with 
all bands except band 6 (Figures 1 and 2). Both the WV2 and 
ETM+ data were corrected for atmospheric effects using the 
FLAASH module in ENVI image processing software v. 4.8 (ITT 
Industries Inc., 2008, Boulder, Colorado) and projected in UTM 
Zone 11N and NAD 1983 projection and datum. The WV2 im-
ages were orthorectified using a 10 m digital elevation model 
(www.ned.usgs.gov). All images were co-registered to orthorec-
tified 2007 NAIP digital imagery (all RMSE were <1 pixel). 

NDVI
WV2 data has two near-infrared bands: band 7 (0.831 μm) and 
band 8 (0.908 μm). This allowed calculations of two separate 
versions of Normalized Difference Vegetation Index (NDVI) 
(hereafter referred to NDVI-B7 and NDVI-B8, respectively). NDVI-
B7 and NDVI-B8 were calculated using the following equations 
(Equations 1 and 2) for both WV2 and the resampled WV2. 
ETM+ NDVI was also calculated using the bands 3 and 4:  

	
NDVI

B B
B B

=
−
+

5 7
5 7 	

(1)

	
NDVI

B B
B B

=
−
+

5 8
5 8

.
	

(2)

MTMF Classification  
Previous studies have recommended sub-pixel classification 
techniques such as the Mixture-Tuned Matched Filtering 
(MTMF), when using coarser resolution data such as Land-
sat TM and ETM+ (Root et al., 2004; Mladinich et al., 2006; 
Hunt and Parker Williams, 2006). MTMF is a spectral mixture 
analysis technique which estimates the relative proportion or 
abundance of a target cover type within each pixel. Spectral 
mixture analysis techniques are especially useful in arid and 
semi-arid environments, where a mixture of bare ground and 
vegetation is common within pixels (Noujidina and Ustin, 

2008; Sankey et al., 2010). Linear spectral mixture analysis 
produces a mixture which represents a linear combination of 
the endmembers or cover types weighted by the areal cover-
age of each endmember in a pixel (Rencz, 1999). Compared 
to linear spectral unmixing models, MTMF is thought to be 
better suited for mixed pixels with cover types having similar 
spectral signatures, because the MTMF suppresses background 
noise and provides a measure of false positive detection of 
target cover (Boardman, 1998) that are common in remote 
sensing of arid and semi-arid vegetation (Okin et al., 2001). 

All images from our study area were forward transformed 
using the Minimum Noise Fraction (MNF) rotation and clas-
sified using the MTMF technique in ENVI software to estimate 
sub-pixel Sahara mustard abundance and ultimately map its 
presence/absence. The MTMF classification was performed 
with: (a) WV2 imagery in their original pixel size (hereafter 
referred to as WV2), (b) WV2 data resampled to 30 m pixel size 
(hereafter referred to as resampled WV2), and (c) ETM+ image. 

An advantage of the MTMF technique is that it requires only 
endmember training spectra for target species as inputs, but 
not for background or non-target spectra. Endmember spectra 
for Sahara mustard was derived from field measurements of 
10 healthy green Sahara mustard plant canopy reflectance 
(350 to 2500 nm) using an ASD, Inc. FieldSpec 3Max spec-
trometer. A series of five measurements (25 replicates per 
measurement) were made per plant using a bare fiberoptic 
cable with a 25° field of view at 45 cm above the plants with 
dense, closed canopies. Reflectance was calibrated between 
samples using a non-calibrated diffuse white reference panel 
(ASD, Inc., Boulder, Colorado). Spectrometer measurements 
were acquired under clear sky conditions within one hour of 
solar noon on 24 February 2012. The mean value for all Sa-
hara mustard reflectance spectra was used as a single compos-
ite endmember (Figure 1). 

The MTMF classification produces two images that can be 
used together to classify a target cover: (a) matched filtering 
(MF) scores that estimate the target cover abundance within 
each pixel, and (b) infeasibility values which represent the 
likelihood of false positives in the MF scores. In the first im-
age, an MF score near 0 indicates background noise, while a 
score of 1 corresponds to approximately 100 percent cover 
of the target spectrum within a pixel. MF scores have been 
used as direct estimates of sub-pixel target cover abundance 
and correlated with field-based estimates of target canopy 
cover where R2 ranged between 0.32 to 0.69 (Parker Williams 
and Hunt, 2002; Mundt et al., 2007, Mitchell and Glenn, 
2009, Sankey and Glenn, 2011). MF scores, however, tend to 
underestimate abundance and present a complex mathemati-
cal problem (Mitchell and Glenn, 2009) because of its uncon-
strained estimations within pixels resulting in negative target 
cover values as well as values greater than 100 percent, which 
are difficult to correlate to field-based cover estimates that 
range between 1 and 100 percent. Furthermore, there is no 
automated method to combine the MF scores with the infeasi-
bility values to reduce false positives in the MF scores. A user 
defined approach was, therefore, used to produce a final map 
of the target cover (Mundt et al., 2007). 

To determine the best approach to combining the MF 
scores and infeasibility values, the relationship between the 
two bands in all images were examined using a regression 
approach (Sankey et al., 2010). The best fit regression model 
was then chosen for each image type based on its statistical 
significance (α = 0.05 for all variables), the value of the coef-
ficient of determination (R2), and model simplicity (i.e., fewer 
variables were preferred over more complex models with 
small increases in R2). The following three quadratic polyno-
mial regression models were chosen to combine the MF scores 
and the infeasibility values in the WV2, resampled WV2, and 
ETM+ images, respectively: 
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	 Y = 2.34 + 22.59*MF + 103.72 *MF2	 (3)

	 Y = 2.39 + 28.53*MF + 507.84* MF2	 (4)

	 Y = 0.64 – 0.97*MF + 0.05* MF2	 (5)

where the infeasibility values were the response variable 
and the MF scores, and quadratic terms were the predictor 
variables. After the regression models were fit to each image, 
all pixels that fell below the regression curve and one posi-
tive standard deviation above the regression curve that had 
matched filtering scores of 0 to 1 were classified as Sahara 
mustard presence (Plate 1). This approach allows the exclu-
sion of negative and >1 MF scores, which do not correlate to 
the field-based estimates of canopy cover and indicate target 
cover absence. The regression curve provides an objective 

and quantitative approach to determining a threshold in the 
infeasibility values. The positive standard deviation above the 
regression curve increases true positive detection by raising 
the upper limit of the infeasibility values while still limit-
ing unacceptably large infeasibility values and keeping the 
MF scores within the 0 to 1 range (Sankey et al., 2010). The 
standard deviation below the regression curve was not used 
because no minimum threshold was necessary for the low 
infeasibility values. All other pixels were classified as Sahara 
mustard absence. As a result, three separate binary maps of 
Sahara mustard presence/absence were produced: one at 2.4m 
resolution and two at 30 m resolution.  

Accuracy Assessment 
First, the binary classifications of Sahara mustard presence/
absence were assessed for accuracy (Story and Congalton, 
1986) using the field data. The binary map at 2.4 m resolution 

Plate 1. (A) An example of the regression approach used to combine the mf scores, and (B) infeasibility values from the mtmf classifi-
cation with the resampled WorldView-2 data. After the regression models (C) were fit to each of the images, all pixels that fell below 
the regression curve and one positive standard deviation above the regression curve that had matched filtering scores of 0 to 1 were 
classified as Sahara mustard presence (D). All other pixels were classified as (D) Sahara mustard absence. The overall accuracy in 
this example was 67.1 percent.
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was compared to the point data along the line transects (Fig-
ure 3b). To represent Sahara mustard presence and absence, 
700 points (equally divided between presence and absence) 
were randomly selected from a total of 27,100 points and 
from the entire area encompassing the images, which ensured 
that the selected points were spatially independent minimiz-
ing spatial autocorrelation. Furthermore, the field-mapped 
points were buffered with a 30 m radius to re-enforce a 
minimum distance between the selected points, because: (a) 
the point intercept method was used at 1 m intervals along 
each transect, and therefore, absence and presence points can 
be potentially found within a single 2.4 m pixel, (b) the GPS 
horizontal errors ranged up to 6.7 m, and (c) the WV2 data 
geometric accuracy was 5 m with RMSE <1 pixel. The buffer-
ing also insured that absence points with no target species 
present within a distance of two pixels were selected as 
absence pixels. The two binary maps at 30 m resolution were 
compared to an independent set of similarly selected random 
points of Sahara mustard presence (n = 370) and absence (n = 
524) within the 30 m plots (Figure 3a).

Second, the MF scores were correlated with the field-based 
Sahara mustard percent cover estimates using a simple linear 
regression. Only the resampled WV2 and ETM+ MF scores were 
analyzed, since Sahara mustard percent cover estimates were 
made at the 30 m plot scale only and no finer scale estimates 
were available. Sahara mustard percent cover estimates were 
also divided into three bins with 10 percent incremental in-
crease (i.e., 1 to 10 percent, 10 to 20 percent and >20 percent) 
to determine if a potential detection threshold existed. 

Last, Sahara mustard biomass and the native herbaceous 
biomass were correlated with the NDVI estimates. The refer-
ence maxima biomass measured at the point locations were 
correlated with the WV2 NDVI estimates, while the Sahara 
mustard biomass and total herbaceous biomass estimates at 
the 30 m plot scale were correlated with NDVI estimates from 
the resampled WV2 and ETM+ (Figure 3b). 

Results
Field Measurements
A total of 1,885 plots were established across the study area. 
Sahara mustard was detected in a total of 748 plots (40 per-
cent). Within these 30 ×30 m plots, Sahara mustard canopy 
cover averaged 7.5 percent (Table 1). Average reference 
maxima biomass of Sahara mustard was 2.19 g/m2 and the 
estimated average Sahara mustard biomass at plot scale was 
0.82 g/m2 (Table 1). The remaining plots had native vegeta-
tion species, sometimes mixed with other non-native invasive 
species. On average, native herbaceous cover was 11 percent. 
Average reference maxima for native herbaceous biomass was 
1.64 g/m2 and the average native herbaceous biomass was 
1.17 g/m2 across all plots. 

MTMF Classification of Sahara Mustard Presence and Absence
The WV2 MTMF classification using field collected spectra 
achieved an overall accuracy of 88 percent. Producer’s accura-
cies were 86 percent and 91 percent for presence and absence, 
respectively, while user’s accuracies were 94 percent and 79 
percent (Table 2). The resampled WV2 MTMF classification 
overall accuracy was 67 percent. Producer’s accuracies were 
47 percent and 84 percent for presence and absence, respec-
tively (Table 2). User’s accuracies were 70 percent and 66 
percent for presence and absence, respectively (Table 2). The 
ETM+ MTMF classification had an overall accuracy of 59 per-
cent. Producer’s accuracies were 0 percent and 100 percent 
for Sahara mustard presence and absence, respectively, while 
user’s accuracies were 0 percent and 59 percent (Table 2).  

MF Scores and Sahara Mustard Abundance Estimate
The WV2 scenes overlapped with 136 plots (30 × 30 m) with 
Sahara mustard canopy cover estimates. Of these plots, 102 
had target cover abundance of 1 to 10 percent. Target detec-
tion rate in these plots were 58 percent. A total of 29 plots 
had target cover abundance of 10 to 20 percent, while only 
five plots had >20 percent target cover abundance. These two 
bins were, therefore, combined into a single bin of >10 per-
cent abundance. Target detection rate in the combined bin of 
>10 percent abundance was similar at 57 percent. When WV2 
MF scores were correlated with Sahara mustard percent cover 
estimates, the coefficient of determination (R2) was extremely 
low at 0.004 with p-values of 0.473 and 0.011 for MF scores 
and infeasibility values, respectively. Many of the MF scores 
were negative values. When only the pixels with positive MF 
scores were correlated with Sahara mustard canopy cover 
estimates, the regression coefficient of determination was also 
only 0.06, but MF scores were a significant predictor variable 
(p-values of 0.002 and 0.264 for MF scores and infeasibility 
values, respectively). The R2 increased substantially to 0.21, 
when NDVI-B7 was added to the regression model as a predic-
tor variable (p <0.001). The R2 further increased to 0.36, when 
a second NDVI-B8 (p<0.001) was added to the model. 

The ETM+ MF scores produced a low coefficient of determi-
nation (R2) of only 0.02, when correlated with Sahara mustard 
percent cover estimates. The MF scores were a significant pre-
dictor variable (p = 0.04), although infeasibility values were 
not (p = 0.51) (n = 1,465). When only the plots with Sahara 
mustard canopy cover estimates >1 percent were correlated 
with the MF score (n = 266), the R2 was 0.08 (p <0.001 and 
0.74 for MF scores and infeasibility values, respectively). The 
R2 value did not increase, when NDVI was added to the regres-
sion model as a predictor variable (p = 0.20).

NDVI and Sahara Mustard Biomass 
WV2 NDVI-B7 and NDVI-B8 each produced R2 values of only 
0.03 (p < 0.001), when correlated with field-measured Sahara 
mustard biomass at point locations. Resampled WV2 NDVI-B7 
and NDVI-8 each had an R2 of 0.16 when regressed with Sahara 
mustard biomass estimated at the 30 m plot scale (p = 0.015 
and 0.010, respectively). A similar result was obtained when 
the same NDVIs were regressed with total native herbaceous 
biomass. ETM+ NDVI produced an R2 of 0.002 (p = 0.46) when 
regressed with Sahara mustard biomass. 

Table 1. Statistical Descriptions of the Sahara Mustard Distribution Ob-
served in 748 Field Plots (30 × 30 m) from a Total of 1,885 Field Plots 

across the Study Area

Variables measured Mean Minimum Maximum

Canopy cover 7.5% 0% 41%

Reference maxima biomass 2.19 g/m2 0.004 g/m2 19.29 g/m2

Estimated biomass 0.82 g/m2 0 g/m2 11.66 g/m2

Table 2. Accuracy Assessment of Sahara Mustard Presence and Absence 
Classification Using WorldView-2, Resampled WorldView-2, and Landsat 

etm+ Images

Image sources Producer’s  
accuracy

  User’s  
accuracy

Overall  
accuracy

Presence Absence Presence Absence

WorldView-2 86% 91% 94% 79% 88%

Resampled  
WorldView-2

47% 84% 70% 66% 67%

Landsat ETM+ 0% 100% 0% 59% 59%
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Discussion
WV2 Imagery and Invasive Plant Detection
Previous studies of desert vegetation have largely used 
moderate-coarse resolution data and concluded that much of 
the variability in desert vegetation cover remains unexplained 
(Casady et al., 2013). Successful remote sensing applications 
in desert environments have only provided a “proxy” of pho-
tosynthetic green vegetation dynamics and coarse-resolution 
pulses of vegetation green-up (Wallace and Thomas, 2008). 
Our study provides the first quantitative evaluation of desert 
invasive plant detection for the newly available, high-resolu-
tion WV2 data. Considering the challenges in a desert environ-
ment, the performance of WV2 data was sufficient for detect-
ing small populations of Sahara mustard in a dry year with 
relatively low plant productivity. Sahara mustard presence/
absence mapping with WV2 data produced an overall accu-
racy of 89 percent. This is similar to the accuracies presented 
in other studies that have tested WV2 data in other environ-
ments. WV2 thematic classification overall accuracy was 82 
percent in a forested environment (Immitzer et al., 2012), 77 
percent in a savanna environment (Cho et al., 2012), between 
57 to 100 percent in an urban classification (Zhang and Ker-
ekes, 2012), and 63 percent in an urban tree species classifica-
tion (Pu and Landry, 2012). While most of the previous WV2 
classification studies focused on broad land-cover types, some 
of the studies tested WV2 utility in individual species clas-
sification. Producer’s accuracies for individual tree species 
mapped with these studies ranged from 65 to 82 percent (Cho 
et al., 2012), 33 to 94 percent (Immitzer et al., 2012), to 16 to 
75 percent (Pu and Landry, 2012), while producer’s accuracy 
for Sahara mustard in this study was 86 percent.

WV2 data appears to provide a large improvement in ac-
curacies for detecting invasive plant populations in desert en-
vironments over moderate resolution satellite data. The WV2 
application in this study produced almost 30 percent greater 
accuracies over ETM+ classification. We attribute the increase 
in accuracy largely to the high spatial resolution of WV2 data. 
This is evidenced by the performance and lower classification 
accuracy of the resampled WV2 data. The WV2 data resampled 
to 30 m pixels produced 20 percent lower accuracy compared 
to the original WV2 data, although the same bands, field spec-
tra, and classification approach were used. The resampled 
WV2 binary classification of Sahara mustard presence and ab-
sence and sub-pixel abundance estimates had similar perfor-
mance to the ETM+ data. This likely indicates that the higher 
spatial resolution of WV2 data provides a key advantage in 
hot desert environments (Wallace and Thomas, 2008; Casady 
et al., 2013) where invasive plant populations can become 
sparse during extremely dry periods, but rapidly expand in 
favorable conditions. While target detection methods such as 
MTMF benefit from the high spatial resolution, sub-pixel veg-
etation abundance estimates remain to be a major challenge 
in these ecosystems even with a greater number of spectral 
bands. Future studies should be aimed at estimating sub-pixel 
plant abundance by refining field sampling techniques more 
suitable to the WV2 original pixel size. 

Desert vegetation is often distributed in small diffuse 
patches during dry years and their spectral signature is largely 
overwhelmed by the prominent reflectance from bare ground 
and geologic substrates (Shupe and Marsh, 2004). At the 30 
m plot scale in this study, average percent cover estimates of 
Sahara mustard and other herbaceous classes were extremely 
low at 7.5 percent and 11 percent, respectively. Taken togeth-
er, the total herbaceous cover is still less than the proposed 
detectable limit of 30 percent and 40 percent vegetation cover 
in desert environments with hyperspectral and multispectral 
Landsat TM data, respectively (Okin et al., 2001; Smith et al., 
1990). The ETM+ MTMF classification performed poorly at this 

level of vegetation abundance, although MTMF is a sub-pixel 
mapping method specifically developed to enhance target 
detection (Rencz, 1999). The ETM+ MTMF accuracy from this 
study is similar to a previous Landsat TM-based invasive 
detection application in the Sonoran desert, where accura-
cies ranged between 35 to 65 percent (Olsson et al., 2011). 
Although ETM+ MTMF overall accuracy was 59 percent in this 
study, MF scores were extremely low and MTMF did not detect 
any Sahara mustard presence given the low canopy cover in 
our study area.

WV2 Imagery and Herbaceous Plant Biomass
This study provides the first quantitative evaluation of high 
resolution WV2 data for estimating invasive and native winter 
annual biomass in an arid desert environment. These results 
can provide key information for land management strategies, 
including the appropriate response to fire, which has be-
come more common in this region of the Southwest in recent 
decades (Esque et al., 2013). Winter annual plants, such as 
the non-native Sahara mustard, are a primary source of fine 
fuels in hot desert environments (Brooks and Pyke, 2001). 
Unlike the extremely dry year sampled in this study, winter 
periods with above-average precipitation can be followed by 
large increases in annual native and non-native vegetation 
biomass and fine fuels, which significantly increases fire risk 
in a desert environment (Esque et al., 2013; Gray et al., (in re-
view)). Timely remote sensing assessment of desert fine fuels 
can, therefore, provide an important tool for land managers to 
monitor or mitigate damaging fire events in native vegetation 
communities of the southwestern US. 

Despite its high spatial and spectral resolution, WV2 NDVI 
appears to perform poorly in annual vegetation biomass esti-
mates in arid desert environments during extremely dry peri-
ods such as the spring 2012 sampled in this study, although 
WV2 performance in annual vegetation biomass estimates 
might be greater in average and above-average winter precipi-
tation years. The observed poor performance might be due to 
the georegistration errors in the image and the point locations 
of biomass data resulting in mismatched individual pixels 
with point locations. WV2 imagery offers two near-infrared 
bands allowing two separate calculations of NDVI. The two 
NDVI estimates, however, appear to both correlate poorly with 
field-measured annual vegetation biomass and offer no unique 
advantage under the extremely low productivity conditions 
characteristic of this study area during the dry year sampled. 
WV2 NDVI estimates appear to produce similar results to ETM+ 
NDVI and previous coarse-resolution satellite image applica-
tions in desert environments. Casady et al. (2013) found that 
the relationship between winter annual biomass and MODIS 
NDVI in the Sonoran and Mojave deserts produced R2 rang-
ing between 0.19 to 0.25 when excluding one productive site 
from their model. Wallace and Thomas (2008) demonstrated 
R2 of 0.47 when correlating annual plant canopy cover and 
MODIS EVI data in the Mojave desert.

To accommodate relatively high temporal and spatial 
variability in winter annual biomass in southwestern desert 
ecosystems, previous studies propose time-series applications 
in which pixels are compared to extremely dry years (Wal-
lace and Thomas, 2008) or locations (Casady et al., 2013) to 
calculate relative winter annual biomass. Similarly, multitem-
poral WV2 data might produce better results than a single date 
of imagery (Marshall et al. 2012). In future studies, we seek to 
explore multi-temporal WV2 data using the proposed methods 
to better capture temporal variability in winter annual vegeta-
tion biomass. We believe contrasting image dates of high and 
low annual productivity periods could likely produce better 
results than the moderate and coarse resolution time-series 
data, given the high spatial resolution and the promising 
results from the binary classification in this study.   
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Conclusions
This study demonstrates that WV2 imagery can perform well in 
detecting small populations of invasive plants in a desert eco-
system of the southwestern US. In particular, WV2 image sub-
pixel classification using the MTMF technique performs well in 
mapping winter annual invasive species, namely Sahara mus-
tard. We attribute the successful performance to the high spatial 
resolution of WV2 data. In comparison, resampled WV2 and 
ETM+ image classification using the same technique produced 
poor classification accuracies. These datasets also performed 
poorly in predicting Sahara mustard canopy cover and biomass 
at the 30 m plot scale. Similarly, the high-resolution WV2 had a 
low correlation with field-measured biomass at point locations. 
Although quantitative estimates of vegetation canopy cover and 
biomass during extremely dry years remain a challenge in arid 
ecosystems even with high resolution data, WV2 data analysis 
may perform better in years of average and high precipitation.
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