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Abstract. In the lower Sonoran Desert of south-western Arizona, climate change and non-native plant invasions have
the potential to increase the frequency and size of uncommon wildfires. An understanding of where and why ignitions are

more likely to become large fires will help mitigate the negative consequences of fire to native ecosystems. We use a
generalised linear mixed model and fire occurrence data from 1989 to 2010 to estimate the relative contributions of fuel
and other landscape variables to large fire probability, given an ignition. For the 22-year period we examined, a high value

for the maximum annual Normalised Difference Vegetation Index was among the strongest predictors of large fire
probability, as were low values of road density and elevation. Large fire probability varied markedly between years of
moderate and high fine fuel accumulation. Our estimates can be applied to future periods with highly heterogeneous

precipitation. Our map-based results can be used by managers to monitor variability in large fire probability, and to
implement adaptive firemitigation at a landscape scale. The approacheswe present have global applications to other desert
regions that face similar threats from changing climate, altered fuels and potential punctuated changes in fire regimes.
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Introduction

Invasions by non-native plants as well as global climate and land

cover changes are introducing novel and deleterious fire regime
characteristics to sensitive desert ecosystems worldwide
(D’Antonio 2000). In low-elevation deserts of western North

America, where perennial vegetation productivity is typically
low, long fire-return intervals and small patchy fires likely
characterise native fire regimes (Brooks and Minnich 2006).

Disruption of these fire regimes, in the form of larger and more
frequent fires, can diminish the long-term recovery potential of
native plant communities with limited resilience (Brooks and

Chambers 2011). These disruptions can lead to alternative stable
states dominated by non-native plants (D’Antonio et al. 2009),
which has occurred to a limited extent in middle and low ele-
vations of the Sonoran Desert (Esque and Schwalbe 2002;

Brooks and Minnich 2006). Large fires can also result in sig-
nificant reductions in habitat use by vulnerable wildlife that
rely on mature desert communities (e.g. Esque et al. 2013).

In systems where fine fuels control the spread of fire, up to
2 years of above-normal antecedent precipitation can drastically
change fuel loads and the likelihood of large fire (Littell et al.

2009; Krawchuk and Moritz 2011). These climate-driven
increases in fuel can be accompanied by very large increases

in the inter-annual and spatial variability of large fire occurrence
(Brooks and Matchett 2006; Littell et al. 2009). Ignition source,

weather patterns and moisture deficits in a given fire season are
among the key factors that may influence this variability (Littell
et al. 2009; Abatzoglou andKolden 2013). By identifyingwhere

large fires are more likely to occur in any given year due to fuel
loads and other landscape variables, managers would be better
equipped to control for this variability and adapt their actions.

The LANDFIRE project (http://www.landfire.gov, accessed
August 2014) is one source of national-scale data that has been
used to inform assessments of fire threat, including large fire

probability (e.g. Finney et al. 2011). LANDFIRE fuels datawere
most recently updated to reflect vegetation change and distur-
bance from 1999 to 2010, but the temporal resolution is still too
coarse to accommodate the highly ephemeral nature of deserts,

where fuel loads can change dramatically on an annual time
scale.

In desert regions, statistically robust estimates of annual

large fire occurrence need to account for the high levels of
heterogeneity in precipitation and fuel growth that typically
precede a fire event. Mixed models, which include both random

and fixed effects (i.e. variables), provide amulti-levelmodelling
structure to account for both of these variables while minimising
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confounding influences and allowing for more robust estimates
of fixed effects (Faraway 2006). The Normalised Difference
Vegetation Index (NDVI) is a spectral index derived from

remote sensing that indicates plant biomass, vigour and green-
ness, and has been used in parts of the Sonoran and Mojave
Deserts to estimate dynamic fuel availability at regional extents

(Casady et al. 2013; Van Linn et al. 2013). The availability of
high spatial and temporal resolution NDVI makes it a useful
variable for estimating the direct (and fixed, but unknown) effect

of highly dynamic fuel growth on large fire occurrence. Precipi-
tation can be invoked as a random effect in a model of large fire
occurrence to control for broad-scale patterns of inter-annual
variation (and any associated correlation structure) in fire

observations. By including it as a random effect, precipitation
variability is also identified explicitly and the scope of inference
can be extended to future periods (Gillies et al. 2006).

The lower Sonoran Desert of south-western Arizona is
generally too dry to support native vegetation that is sufficient
to carry large fires (Humphrey 1974). Prior to the grazing and

fire suppression era, fires in this system were infrequent and
small (Brooks and Minnich 2006). However, .70 000 ha have
burned since 2000, with most (.75%) of this area burning in

2005. Although it is difficult to know if this pattern represents
more frequent burning than has occurred in the past, conditions
favourable to large fire occurrence are likely to increase in the
Sonoran Desert (Abatzoglou and Kolden 2011). Accordingly,

land managers would benefit from information to help monitor
large fire occurrence and adapt to dynamic changes in the
environment, including fuels. Managers in the region are par-

ticularly concerned about the establishment of non-native, fire-
adapted grasses and forbs that introduce a novel fuel source to
the environment. These include red brome (Bromus rubens),

Mediterranean grass (Schismus arabicus or S. barbatus) and
Sahara mustard (Brassica tournefortii). Like many of the native
annual plants in the Sonoran Desert, these non-native annual
plants typically germinate in early winter and respond vigorously

to environmental fluctuations driven by rainfall (Venable and
Pake 1999). Poorly planned land use and restoration efforts
could further benefit these and other invasive plant species if

they do not account for the anticipated effects of climate
variability and change (Bradley et al. 2010).

In this context, the objectives of our research were to model

and map the probability that an ignition in the lower Sonoran
Desert of south-western Arizona will result in a large fire
(henceforth referred to as large fire probability), and to apply

an improved understanding of the dynamic variability in large
fire probability to recommendations for fire management.
Specifically, we sought to (1) capture variability in available
fuels by deriving estimates ofmaximumannual NDVI for 1988–

2010 from satellite imagery; (2) use a generalised linear mixed
model to estimate large fire probability, which treats antecedent
winter precipitation as a random effect and fuel availability and

other landscape variables as fixed effects; (3) extend this model
to produce high spatial resolution (i.e. 30 m) and up-to-date
maps of large fire probability across multiple jurisdictions; and

(4) use these results to explore patterns of large fire probability
that can inform future management activities concerned with
mitigating the individual or synergistic effects of fire and non-
native plant invasion in Sonoran Desert lowlands.

Materials and methods

Study area

The 45 100-km2 study area is located in south-western Arizona,
USA, and encompasses multiple jurisdictions that include
vast areas of Bureau of Land Management land, the USA

Army Yuma Proving Ground (YPG; 3360 km2), the Barry
M. Goldwater Air Force Range (BMGR; 7070 km2), as well as
the Kofa (KNWR; 2690 km2) and Cabeza Prieta National

Wildlife Refuges (CPNWR; 3468 km2) (Fig. 1). Mean elevation
is 372m (s.d.¼ 182m) and ranges from 26 m in the south-
western lowlands to 1480 m on the KNWR. Lower elevations

(,600m) primarily encompass the Lower Colorado River
subdivision of the Sonoran Desert (Brown 1994). This subdi-
vision is among the most arid of the North American deserts and

is characterised by sparsely vegetated desert shrublands domi-
nated by creosote bush (Larrea tridentata) and white bursage
(Ambrosia dumosa) (Brown 1994). Areas of higher topographic
relief fall within the Arizona Upland subdivision of the Sonoran

Desert and generally support more diverse perennial plant cover
(Brown 1994; Phillips and Comus 2000). Mean minimum
(December) and maximum (July) temperatures range between

5.98C (YPG) and 39.88C (KNWR). Of the long-term (1952–
2012) average annual precipitation at the YPG (95 mm) and
KNWR (162 mm), 58 and 92 mm fell in the winter (December–

February). The winter of 2004–05 was particularly wet for this
region, recording more than 300% of the average winter pre-
cipitation across the study extent (Western Regional Climate
Center, http://wrcc.dri.edu/, accessed December 2012). An

increase in cool season precipitation variability over the past
half century, coupled with disturbance from land use (e.g.
agricultural) activities, have facilitated increased invasion by

non-native plants (Abatzoglou and Kolden 2011). Since 2000,
increased temperature and reduced humidity in the spring and
summer months have also increased the frequency of days with

extreme fire danger (Abatzoglou and Kolden 2011).

Fire occurrence data

We compiled fire occurrence data for 1989–91 from the dataset
described in Finney et al. (2011) and for 1992–2010 from the
Fire Program Analysis Fire Occurrence Database (FPA FOD;

Short 2013). These data included natural- and human-caused
ignition points on both federal and non-federal lands, as well as
the latitude and longitude of the point of origin, date of ignition

and total area burned. We characterised all fires that burned
during the study period as either ‘large’ (i.e.$20 ha) or ‘small’
(i.e. ,20 ha) fires. Twenty hectares represents a low-end esti-
mate of large fire size in desert fuels and is a threshold that

characteristically separates years when the annual fuel load is
sufficient for fire spread (W. Reaves, pers. comm.).

Landscape variables

Weused a circularmovingwindow operation and focal statistics
in a geographic information system (GIS; ArcGIS v10.1,
Redlands, CA, USA) to summarise each of the following land-

scape variables within a 20-ha neighbourhood around each
ignition point. Although this approach was designed to
encompass the landscape factors that influence fire size within
our large fire threshold, it may not adequately account for the
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full array of factors that influence fire growth beyond 20 ha. All
landscape variables were derived as or converted to raster grids
with a 30-m pixel resolution. For all landscape variables except

the maximum NDVI, we standardised and rescaled values to a
mean of zero and unit variance at the full extent of our study
area. We used the ‘raster’ package (Hijmans and Van Etten
2012) in R 2.15.1 (R Development Core Team 2011) to extract

landscape variables from each ignition point before statistical
analysis.

We accounted for the direct effect of fuel loads on large

fire probability using a time series of the maximum annual
NDVI. We expected yearly maximum NDVI to be useful
for detecting dramatic fluctuations of annual fine fuel accumu-

lation (Casady et al. 2013). To estimate yearly maximumNDVI
values for 1988–2010 – the period coinciding with our fire
occurrence dataset – we obtained Landsat Thematic Mapper

(TM) scenes covering our study area (n ¼ 1114, temporal
resolution ¼ 16 days) from the US Geological Survey (USGS)
Global Visualisation Viewer (http://glovis.usgs.gov, accessed
November 2012) and atmospherically corrected all images

using ENVI 4.7 software (Exelis Visual Information Solutions,
Boulder, CO, USA). Our model included variables of the year-
of-fire maximum NDVI value as well as the maximum NDVI

value of the year before the fire. The lagged year variable was
included to account for senesced biomass that remained stand-
ing as fuel for a subsequent fire season, designated asApril–June
for this region (Crimmins and Comrie 2004).

Within the GIS, we derived an NDVI-based variable to
represent the horizontal spatial structure of perennial vegetation.
Similarly, previous research in the Mediterranean region of

Spain successfully used Landsat TM to characterise the hori-
zontal heterogeneity of vegetation by taking the standard devia-
tion of Landsat bands in a local window (Vega-Garcı́a and

Chuvieco 2006). Therefore, we approached our work in the
context of far-reaching, uniform shrublands and sparsely vege-
tated areas in the Sonoran Desert, where large interspaces have

been observed to amass continuous fine fuels after heavy
precipitation. We hypothesised that these homogenous commu-
nities favoured the spread of fire, following wet conditions
that would propagate fine fuels. Our variable for perennial

60
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Fig. 1. The 45 100-km2 study area used to model large fire probability in the lower Sonoran Desert of south-

western Arizona, 1989–2010. Black dots represent fire ignition points recorded during the analysis period.
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vegetation heterogeneity was the standard deviation of maxi-
mum NDVI in 1989 – a dry year when NDVI was most likely
dominated by perennial growth.

Our modelling approach also accounted for multiple terrain
variables that directly influence fire spread and indirectly
influence vegetation growth and flammability (Syphard et al.

2008). Using a digital elevation model obtained from the USGS
(http://ned.usgs.gov/, accessed March 2011), we derived esti-
mates of elevation, aspect (in degrees), and terrain roughness

(standard deviation of slope; Preisler et al. 2011) within the GIS.
We used the cosine transformation of aspect to provide an index
that ranged between �1 (1808, south-facing slopes) and 1 (0 or
3608, north-facing slopes).

Our study area included large expanses of federal and
military lands with limited or no public road access, which we
expected to have a positive influence on large fire probability

(Hawbaker et al. 2013). Therefore, we used the GIS and 2011
US Census Bureau TIGER line data (http://census.gov/geo/
www/tiger, accessed November 2011) to estimate a simple road

density (km km�2) variable that could serve as a proxy for
human accessibility and help to differentiate where fires were
more or less likely to become large.

Statistical and spatial modelling

We used mixed-effects logistic regression to estimate large fire

probability, conditioned on the seven explanatory variables
(i.e. fixed effects) described above. The binary response in this
model was an ignition event that resulted in either a large (‘1’)

or small (‘0’) fire. Therefore, our derived estimates were con-
ditional probabilities of large fire given an ignition (Preisler
et al. 2004). A random sample of small fires (n ¼ 371) was
eliminated from our dataset so as to arrive at a more parsimo-

nious 4 : 1 ratio of small to large fires (Brillinger et al. 2003;
Syphard et al. 2008). This sampling scheme was expected to
produce smaller standard errors without biasing the estimates of

our regression coefficients (Allison 2012).
We included the winter precipitation anomaly immediately

preceding a fire event and one lag season precipitation anomaly

as crossed random effects (Bolker et al. 2009). Precipitation
anomalies, based on 1981–2010 normals, were derived from
800-m gridded data as the percentage of normal precipitation

from October through March (Western Regional Climate Cen-
ter, http://wrcc.dri.edu/monitor/WWDT/archive.php, accessed
November 2011). For parsimony, and to account for the variance
associated with winter precipitation totals, we categorised each

random effect into five quantiles. We used the raster package in
R to extract the year-of-fire and lag year winter precipitation
anomaly from each ignition point before statistical analysis.

To account for any spatial autocorrelation present in the fire
occurrence data, we applied an unbiased covariance estimator
for cluster-correlated data (Williams 2000; Bigler et al. 2005).

Specifically, this ‘sandwich’ estimator allowed for arbitrary
dependence structure among clustered response data and
relaxed assumptions of constant variance in the residuals. We
used this estimator to compute the variance–covariance matrix

of the fixed effect parameters.
We used an information–theoretic approach andmulti-model

inference to estimate and evaluate the importance of explana-

tory variables (Burnham and Anderson 2002) within a ‘full’

model that included all seven fixed effects and two random
effects. We used maximum likelihood to estimate model-
averaged regression coefficients (~�b) for our fixed effects and

Akaike’s Information Criterion (AIC) to evaluate model selec-
tion uncertainty and reduce model selection bias (Burnham &
Anderson 2002). We computed AIC weights (w) to evaluate the

weight of evidence in favour of a fixed effect variable, based on
all combinations of variables (Burnham and Anderson 2002;
Doherty et al. 2012). Specifically, we summed the AIC weights

across all models in which a given variable (j) occurred and
considered a cumulative AIC weight (wþ (j))$0.50 to be strong
evidence for a response to that variable (Barbieri and Berger
2004).We used the difference in AIC (DAIC) values to evaluate
the performance of the full model against a null model with only
random effects, and considered a DAIC value.4.0 to be a good
approximation of the data (Burnham and Anderson 2002). We

also used DAIC values to evaluate the performance of the full
model using all fire occurrences to the reduced dataset model
(i.e. with a 4 : 1 ratio). We used the Hosmer–Lemeshow statistic

to evaluate goodness of fit (a ¼ 0.05; Hosmer and Lemeshow
2000). To evaluate model classification accuracy, we computed
the area under the receiver operating characteristic (ROC) curve

(Hosmer and Lemeshow 2000). This ROC value provided a
likelihood-based measure of discrimination between predicted
small and large fire occurrence. We considered ROC values
.0.70 as indicative of good discrimination (Hosmer and Leme-

show 2000). We conducted all of the above analyses using R
2.15.1 (R Development Core Team 2011) and SAS 9.2 software
(SAS Institute Inc., Cary, NC, USA).

We used the model-averaged regression coefficients and
GIS to implement the full model and produce probabilistic,
spatially explicit maps for two analysis years (1996 and 2005) at

a 30-m pixel resolution. We chose these years to illustrate
dynamic large fire probability in a moderate fine fuel scenario
(1996) and high fine fuel scenario (2005), and we refer to these
as moderate and high large fire probability scenarios. For 1996,

we reasoned that fuel loads were affected primarily by the wet
winter of 1994 and therefore only moderately abundant. Fine
fuels were uncharacteristically abundant across the study area in

2005 (see below).

Results

Fire occurrence

The compiled fire occurrence dataset included 316 small and
79 large fires that burned within the study area between 1989
and 2010. Over these 22 years, a total of 57 000 ha burned in

large fires. The year 2005 resulted in the greatest number of
large fires (n¼ 36) and total area burned (51700 ha). Themedian
size of a large fire in 2005 was 95 ha, whereas the 22-year

median size of a large fire was 60 ha. A pilot analysis of NDVI
values preceding a subset of large fires in 2005 indicated a
strong relationship between annual NDVI values and large fire
occurrence (Fig. 2).

Statistical and spatial modelling

Our full model of large fire probability was 71 AIC units lower
(i.e. better) than a null model containing only the random

effects. The full model that was implemented with all fire
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occurrences was 58 AIC units lower than the null model. This

13-unit difference suggests that less information (i.e. more
‘noise’) was present in the larger dataset. Thus, we proceeded
with model evaluation and inferences based on the reduced
dataset that included 316 small and 79 large fires. The Hosmer–

Lemeshow test did not indicate a significant lack of fit
(P ¼ 0.25). The ROC value for this model was 0.85, indicating
excellent discrimination. Among the explanatory variables

we evaluated, areas with high maximum annual NDVI

(wþ ( j)¼ 1.00), low elevation (1.00) and low road density (1.00)

were the most strongly associated with higher large fire
probability (Table 1). Low vegetation heterogeneity was a
strong predictor (0.90), as were south-facing aspects (0.80). The
lagged variable of maximumNDVI was not as influential as the

year-of-fire maximum NDVI, but was still a strong predictor
(0.70). Topographic roughness also was a strong predictor of
large fire probability (0.58), but less of a driver than the other

variables we considered.

Fire date
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Fig. 2. Trends in the Normalized Difference Vegetation Index (NDVI) from 2000–2005within the perimeter of

two large fire events. Relative to background years (i.e., 2000–2003), there was a dramatic increase in NDVI

in the winter of 2004 and leading into 2005. The King Valley fire (top) burned in September–October 2005, and

the Goldwater fire (bottom) burned in June 2005.
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The random effects ranged from ,10 to .300% of normal
winter precipitation (Table 2). The best linear unbiased pre-
dictors for the random effects (Faraway 2006) revealed that

precipitation anomaly in the two antecedent winters had differ-
ent predicted effects on large fire probability, but without any
discernible pattern (Table 2).

Maps of the moderate (1996; Fig. 3) and high probability
(2005; Fig. 4) scenarios showed very different patterns of large
fire probability across the study area. In 1996 there were only

a few isolated patches of very high large fire probability
(e.g. .60%), whereas in 2005 very high probability was much
more widespread and spatially contiguous. Considering the

entire study area, the mean probability of large fire was 0.13
(s.d. ¼ 0.08) and 0.37 (0.21) in 1996 and 2005.

Discussion

In the face of ongoing climate and land cover changes, our

results provide a timely assessment of large fire occurrence.
When exposed to fire sizes and frequencies outside of their
historical range of variability, desert ecosystems with a low

resilience to fire are especially susceptible to vegetation type
conversion dominated by invasive plant species (D’Antonio
et al. 2009). In hot desert shrublands, resilience to fire and

resistance to type conversion tends to decrease from high to low
elevations, where fires have historically been the least frequent
(Brooks and Chambers 2011). This trend predisposes the lowest
elevations of the Sonoran Desert to rapid environmental change

if fire frequency increases. The relative importance and influ-
ence of landscape variables lend insight into the drivers of large
fire and are robust to variability in winter precipitation that

might be recorded over a given 22-year period.
Highly heterogeneous precipitation and fuel growth in the

lower Sonoran Desert should be accounted for in a model of

large fire probability. Our modelling approach was focussed on
estimating the fixed effect of dynamic fuels, largely because
reliable data to represent fuels is available at high spatial and

temporal resolutions. NDVI data were derived directly at a 30-m
resolution, and provided a continuous measure of plant vigour
and biomass that was congruent with the high spatial resolution
of other important landscape variables. In contrast, precipitation

data are often only available at a coarse spatial resolution, and in
our case were derived from 4-km resolution, interpolated data.
We chose to represent precipitation as a categorical, random

effect of precipitation anomaly in order to capture low-level
variation in large fire probability over time. This mixed model
approach allowed us to integrate the important effects of both

antecedent winter precipitation and fuel growth into models and
maps of large fire probability.

Perhaps not surprisingly, areas of high probability shifted
over the analysis period and were strongly influenced by values

for annual maximum NDVI. Significant increases in fine fuels
that contribute to changes in large fire probability can be
comprised mostly of non-native biomass or mostly of native

biomass (Esque and Schwalbe 2002; Brooks and Matchett
2006). Infrequent years of high rainfall can permit native
annuals to contribute sufficient biomass to carry fire through

the interspaces among larger perennial plants (Brooks and
Minnich 2006). For example, the native annual desert Indian
wheat (Plantago ovata) fuelled a large fire event in our study

area in 2005 and fire effects were consistent with those observed
from fires fuelled by non-natives (Esque et al. 2013). Neverthe-
less, recent invasions by non-native annual plants provide a
significant new fuel source that may act to amplify fire–climate

relationships in the Sonoran Desert region (Esque and Schwalbe
2002). Mediterranean grass species, given their tolerance for
extreme drought, are capable of proliferating in this harsh and

changing environment and have the potential to establish more
persistent and contiguous fuel beds than native annuals (Brooks
and Minnich 2006). Similarly, Sahara mustard is likely to

augment the fine fuel bed when conditions are appropriate
(Brooks and Pyke 2001). This highly invasive forb can grow
.1m high and .1m wide, and is a prolific seed producer
(Brooks and Minnich 2006). The potential for both native and

Table 1. Explanatory variables (fixed effects) used to estimate large

fire probability in the lower Sonoran Desert of south-western Arizona,

1989–2010

Cumulative Akaike’s Information Criterion weights (wþ (j)), model-

averaged regression coefficients (~�b) and unconditional standard errors

(s.e.) were estimated with logistic regression using all possible subsets

(n¼ 128) of the full model. The binary response in the model was ‘small’ or

‘large’ fire. NDVI, Normalised Difference Vegetation Index

Variable wþ ( j) ~�b s.e.

Maximum annual NDVI 1.000 0.047 0.008

Road density 1.000 �0.974 0.238

Elevation 1.000 �0.958 0.223

Vegetation heterogeneity 0.903 �0.742 0.425

Aspect (north-ness) 0.801 �0.262 0.189

Lag-1 maximum NDVI 0.704 0.013 0.011

Topographic roughness 0.579 0.191 0.220

Intercept – �4.251 0.621

Table 2. Best linear unbiased predictors of random effects used to

estimate large fire probability in the lower Sonoran Desert of south-

western Arizona, 1989–2010.

Levels of the random effects represent the precipitation anomaly in the

winter season immediately before fire season (i) or in the lag year winter

season ( j). PON, percentage of normal precipitation based on 1981–2010

normals. g, best linear unbiased predictor

Level PON g

(i)

1 4.4–43.3 �4.041

2 43.3–91.7 �4.635

3 91.7–163.0 �4.413

4 163.0–238.0 �3.656

5 238.0–324.0 �4.452

(j)

1 7.3–54.3 �4.858

2 54.3–81.2 �4.119

3 81.2–141.0 �3.672

4 141.0–191.0 �4.231

5 191.0–314.0 �4.311
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non-native plants to alter fire regimes highlights the importance
of monitoring the total accumulation of grasses and forbs.

Since the influence of maximum NDVI on large fire probability
does not distinguish between native and non-native plants, it is
an important proxy for total fuel accumulation in the lower

Sonoran Desert.
High values for maximumNDVI in the year before large fire

occurrence demonstrated that annual plants might remain avail-

able to fuel large fires in the subsequent fire season. This pattern
may become evenmore important with changing fuel conditions
and composition. For example, Mediterranean grass species
tend to decompose more slowly than native grasses and persist

longer into subsequent years (Brooks and Minnich 2006). The
predictive capacity of both year-of-fire and lag year NDVI

variables provides a powerful forecasting tool, or ‘early warning
system’, for land managers concerned with fire.

Our results suggested that lower elevations had a higher

probability of large fire, given an ignition in the period we
examined. These areas generally comprise the Lower
Colorado River subdivision and are expected to exhibit lower

fire resilience, such that native vegetation could be more
vulnerable to the effects of repeated fire. Four of the largest
fires that collectively burned .50 000 ha in 2005 all burned
between elevations of 160 and 600m. If similar fuel conditions

Large fire probability

Low

High

0 10 20 40 60 80
Kilometers

N

Fig. 3. Map-based prediction of large fire probability in the lower Sonoran Desert of south-western Arizona,

based on 1996 conditions (i.e. moderate large fire probability). The ignition points of large ($20 ha) fires that

burned in 1996 are represented by black dots.
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persist, future repeated fire events in low-elevation areas have

great potential to initiate an invasive plant–fire cycle and
homogenise vegetation composition and structure over large
areas (D’Antonio and Vitousek 1992).

Although proximity to roads is likely a strong driver of fire
ignition (Fig. 1), we found that the probability of an ignition
becoming a large fire is highest in areas of low road density. We

attribute this primarily to difficult access for fire suppression
efforts (Dickson et al. 2006). Fire spread rates typically are
highest in grass and shrubland fuels and fire can quickly grow
larger in more remote regions (Scott and Burgan 2005). Indeed,

our study region comprises vast roadless and designated

wilderness areas, as well as military installations where limited

accessibility is likely to hinder fire suppression. For example, in
2005, the 13 000-ha King Valley fire started in an isolated area
of the YPG and quickly spread to the adjacent KNWR wilder-

ness. The 11 000 ha Growler Peak fire of 2005 spread mostly in
the less frequented areas of the BMGR.

Our results showed that some of themost common vegetation

communities in the region might be especially prone to large
fires when fuel conditions are favourable. For example, peren-
nial vegetation homogeneity contributed to higher probability of
large fire during the analysis period, as indicated by contiguous

areas of similar NDVI signal. Open desert shrub communities

Large fire probability

Low

High

0 10 20 40 60 80
Kilometers

N

Fig. 4. Map-based prediction of large fire probability in the lower Sonoran Desert of south-western Arizona,

based on 2005 conditions (i.e. high large fire probability). The ignition points of large ($20 ha) fires that burned in

2005 are represented by black dots.
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of creosote bush and white bursage extend for thousands of
hectares in the low bajadas and plains of our study area (Phillips
and Comus 2000). A high degree of homogeneity related to

dominant perennial vegetation would likely represent the con-
ditions where uniform structure and interspaces are present, or
areas that are perennially sparsely vegetated. With sufficient

precipitation, these interspaces and barren surfaces can become
contiguous fuel beds that facilitate the spread of fire.

We found that south-facing aspects, which face the direction

of prevailing winds out of the south and south-west, facilitated
large fires. Perhaps this is not surprising since south-facing
aspects tend to be more arid environments for vegetation.
Indeed, the maximum effect of weather, topography and fuel

on fire spread occurs when wind direction is directly aligned
with aspect (Whelan 1995). Thus, the effects of aspect on
spreading fire fronts and on fuel characteristics and flammability

likely combined to influence large fire probability during the
period we examined.

The combined influence of topographic roughness and ele-

vation indicated that fires are more likely to become large in low
elevations with somewhat rough terrain. This pattern suggests
greater probability of large fires in low-lying xeroriparian

networks, which are micro-topographic features widespread
throughout our study area. These ephemeral networks can
support a high density of plant species after seasonal pulses of
rainfall and flood flows, which are capable of sustaining the

spread of fire (Stromberg et al. 2009). Changes in xeroriparian
plant communities can affect an array of ecosystem functions
and uncharacteristic fire should be considered a potential

stressor (Stromberg et al. 2009).

Conclusions and management implications

Our modelling approach and associated map products can be

used to monitor ignitions and mitigate the occurrence or nega-
tive consequence of large fire in the lower SonoranDesert.Maps
of large fire probability will be useful for management decisions

such as fuels reductions, prevention programs to curb human-
caused ignitions and suppression planning in advance of fire
occurrence that could result inmore rapid response. Our scenario-
based maps will allow managers to base these decisions on

empirical average and ‘worst-case’ conditions reflected by the
22-year time period we examined. For instance, management
actions based on the high-probability scenario could make the

landscape more resilient to extreme events such as those that
occurred in 2005. These activities, including implementation of
adaptive prevention and suppression plans, will be especially

important when and where fire season weather is extreme and
likely to exacerbate the probability of an ignition becoming a
large fire over time.

Scenario-based maps of large fire probability also can be

used to establish spatially referenced plots for the targeted and
long-term observation of fuel conditions. For instance, man-
agers can use these maps together with modelled habitat of non-

native plants to determine where large fires might initiate or
exacerbate positive feedbacks between invasive plants and fire
(Brooks and Chambers 2011). In this case, managers might be

interested in monitoring areas under both moderate- and high-
probability scenarios, as these areas might signal where the

invasive grass–fire cycle is more likely to establish even under
average conditions.

Lastly, our model-averaging approach provides interpret-

able, relative measures of importance for the explanatory
variables that drive large fire probability. Given the high
relative importance of maximum annual NDVI, managers

should be aware of NDVI patterns that precede the onset of
the fire season, which can be easily monitored on an annual
basis. The availability of high spatial and high temporal

resolution satellite imagery (e.g. Landsat TM or Moderate
Resolution Imaging Spectroradiometer (MODIS) data) permits
the practical integration of time series NDVI into fire forecast-
ing. For example, time series of NDVI data can be used to

monitor dramatic fluctuations in winter annual production that
would indicate increases in the probability of ignitions becom-
ing large fires (Casady et al. 2013). Relative to maximum

annual NDVI, low-elevation areas with low road densities also
are strong contributors to large fire probability and should be
considered important in fire planning decisions. In general,

managers can use the relative importance of variables to
prioritise decisions that mitigate negative fire effects across
the lower Sonoran Desert region.

The work and applications we have presented here are
transferable to other deserts globally, where annual plant pro-
duction can be an important component of fuels and where
precipitation is highly heterogeneous. In the Monte Desert of

Argentina, for example, Mediterranean grass lacks competition
from other winter annuals and can accumulate large amounts of
biomass following sporadic winter rains (Pucheta et al. 2011).

The statistical and map-based approaches that we have applied
to the Sonoran Desert would be useful to assess the probability
of large fires in the Monte Desert, due in part to the introduction

of Mediterranean grass. As deserts globally are threatened by
ongoing land cover and climate changes, spatial and temporal
dynamics in precipitation, fuels and subsequent large fire
occurrence will become an increasingly important factor in

effective fire planning and management.
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