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Abstract. Understanding where and when on the landscape fire is likely to burn (fire
likelihood) and the predicted responses of valued resources (fire effects) will lead to more
effective management of wildfire risk in multiple ecosystem types. Fire is a contagious and
highly unpredictable process, and an analysis of fire connectivity that incorporates
stochasticity may help predict fire likelihood across large extents. We developed a model of
fire connectivity based on electrical circuit theory, which is a probabilistic approach to
modeling ecological flows. We first parameterized our model to reflect the synergistic
influences of fuels, landscape properties, and winds on fire spread in the lower Sonoran Desert
of southwestern Arizona, and then defined this landscape as an interconnected network
through which to model flow (i.e., fire spread). We interpreted the mapped outputs as fire
likelihood and used historical burned area data to evaluate our results. Expected fire effects
were characterized based on the degree to which future fire exposure might negatively impact
native plant community recovery, taking into account the impact of repeated fire and major
vegetation associations. We explored fire effects within habitat for the endangered Sonoran
pronghorn antelope and designated wilderness. Model results indicated that fire likelihood
was higher in lower elevations, and in areas with lower slopes and topographic roughness. Fire
likelihood and effects were predicted to be high in 21% of the currently occupied range of the
Sonoran pronghorn and 15% of the additional habitat considered suitable. Across 16
designated wilderness areas, highest predicted fire likelihood and effects fell within low
elevation wilderness areas that overlapped large fire perimeters that occurred in 2005. As
ongoing changes in climate and land cover are poised to alter the fire regime across extensive
and ecologically important areas in the lower Sonoran Desert, an analysis of fire likelihood
and effects can contribute new and important information to fire and fuels management. Our
novel approach to modeling fire connectivity addresses challenges in quantifying and
communicating wildfire risk and is applicable to other ecosystems and management issues
globally.

Key words: circuit theory; fire connectivity; fire effects; fire likelihood; fire risk management; Sonoran
Desert; Sonoran pronghorn; wilderness fire management.

INTRODUCTION

Rapid changes to fire regimes are occurring globally,

unfolding in many regions with anomalously large or

frequent wildfires that can destabilize whole ecosystems

(Pausas and Keeley 2009). Strategic planning for high

consequence fires requires an a priori understanding of

where and when on the landscape fire is likely to burn

(fire likelihood) and the predicted response of valued

resources (fire effects; Fairbrother and Turnley 2005).

Indeed, estimating fire likelihood and effects at mean-

ingful spatial scales may be the most challenging part of

fully communicating fire risk for management (Ager et

al. 2012). In this paper, we present a circuit-theoretic

model of fire connectivity as a novel approach to

estimate fire likelihood, which we couple with a fire

effects analysis in support of strategic fire and resource

planning across a large heterogeneous region of the

lower Sonoran Desert in Southwestern Arizona.

Numerous models and tools have been applied to

landscape-scale analyses of fire likelihood, although

most were designed to replicate the perimeter spread of

individual fires (e.g., Parisien et al. 2012, Thompson et

al. 2013). For example, simulation models based on the

physical and empirical properties of spread, such as

FARSITE (Finney 2004) and Prometheus (Canadian

Wildland Fire Growth Model Steering Committee

2004), predict the deterministic spread of fire as it is

influenced by variable weather, fuel, and topography.

The large-fire simulation system (FSim; Finney et al.

2011) uses a computationally efficient formulation of

FARSITE to generate Monte Carlo simulations of fire

spread and derive the probability of burning for any one
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location. Similarly, BURN-P3 (Parisien et al. 2005) uses

the Prometheus fire spread model to simulate a very

large number of fires in multiple hypothetical fire

seasons to determine overall fire likelihood. The

reliability of these Monte Carlo-based simulation

methods depends on representing the natural variability

in fire ignition and spread by simulating discrete fires

with deterministic outcomes. These methods require

substantial data collection and calibration efforts to

capture the range of variability, including fuel models

that feed into fire spread simulations, knowledge of

where fire is more likely to start, and historical records

of observed fire progression and weather (e.g., Parisien

et al. 2012). Where such data is available, results of

studies utilizing these methods have agreed well with

observed fire occurrence (e.g., Paz et al. 2011) and

contributed to significant advancements in landscape-

scale fire risk analyses (Miller and Ager 2013).

Our alternative approach to modeling fire likelihood

incorporates the spatiotemporal variability in fire spread

without relying on the replication of discrete fire events.

To begin, the whole landscape is represented as a

network, which is a collection of nodes and edges

interacting as a system (Proulx et al. 2005). The BurnPro

model (Davis and Miller 2004) also uses a network-

based approach to analyze the accumulated time of fire

spread through a landscape network, where accumulat-

ed time is based on the rate of forward spread of a

simulated fire. This model estimates fire likelihood based

on the length of time between an ignition occurrence and

a weather-stopping event and assumes still that fire

moves in a deterministic manner by spreading from a

source to a target in the least amount of time. Similarly,

our network-based approach provides a means to

explore the role of spatial context (i.e., the landscape

network topology) in influencing the fire contagion

process, which is extremely important in predicting fire

likelihood (Miller and Ager 2013). However, our

approach accommodates important stochastic proper-

ties of fire by considering only nearest neighbor effects in

the network topology, i.e., a user-defined, adjacent

neighborhood is the only influence on fire spread

probabilities. Moreover, the approach offers a useful

new perspective for investigating fire likelihood across

broad spatial and temporal scales and when the

objective is not to simulate discrete fire spread at narrow

time intervals.

Mathematical approaches to analyzing the behavior

of networks, such as graph theory and electronic circuit

theory, have been widely used elsewhere in ecology to

estimate landscape connectivity for animal populations

(e.g., Urban and Keitt 2001, McRae et al. 2008).

Landscape connectivity has been defined as ‘‘the degree

to which the landscape facilitates or impedes movement

[of a process] among resource patches’’ (Taylor et al.

1993). To estimate fire likelihood, we shift the emphasis

to overall landscape conductance, i.e., the ability of the

whole landscape to facilitate the spread of fire, without

regard to a patch-based network. In contrast to models

that simulate fire perimeter spread based on physical

and empirical properties (e.g., FARSITE and Prome-

theus), existing mathematically analogous fire models

leverage the similarities between fire behavior and

mathematical concepts, such as percolation theory and

cellular automata (Sullivan 2009). Circuit theory also

provides a rigorous mathematical framework that has

greatly improved understanding of how environmental

factors influence the movement of ecological processes

across large landscapes (McRae and Beier 2007, McRae

et al. 2008). Ecological connectivity models based on

circuit theory are concerned with the stochastic move-

ment of an entity (e.g., a dispersing animal) across an

underlying circuit network (McRae et al. 2008). The

spread of fire through a circuit network is analogous to

the movement of random walkers with no knowledge of

the landscape beyond their nearest neighbors. In this

case, fire spreads probabilistically to any of the adjacent

neighbors in the network. The resultant predictions

provide a likelihood-based interpretation of fire-envi-

ronment interactions, which take into account all

possible pathways of fire spread. The specific spatial

and temporal environment of most interest for fire and

fuels management is defined in the flexible parameter-

ization of the circuit network. Circuit-theoretic models

can be run efficiently on very large landscapes (e.g., .1

million cells) and are robust to the spatial resolution of

analysis (McRae et al. 2008), which also make them

useful for fire likelihood analyses at scales that are

meaningful to fire and fuels management planners.

Understanding the spatiotemporal dynamics of fire

likelihood is critical in the desert shrublands of North

America, where fire frequency and size have historically

been low, but have increased in recent decades (Brooks

and Pyke 2001). Introduced annual grasses are a

primary driver of increased fire activity in desert

shrublands, reinforcing the conversion of native habitats

to annual grasslands (Brooks and Matchett 2006, Balch

et al. 2013). Together with climatic changes, these

introduced grasses also contribute to increasingly

dynamic and distinct differences in interannual fuel

loads (Abatzoglou and Kolden 2011), which are difficult

to represent in current methods to model fire likelihood.

Many extant fire spread models such as FARSITE rely

on fuel models to generalize the fuel complex and model

the combustion process (e.g., Scott and Burgan 2005).

The Fuel Characteristic Classification System was

designed to facilitate the creation of customized fuel

models (Ottmar et al. 2007) because these models can be

inaccurate if they are not generated on a regular basis or

calibrated against field observations of fire behavior

(Cruz and Alexander 2010). Parameterization of circuit-

theoretic models is flexible enough that fuels can be

represented in a way that is most appropriate to the

focal ecosystem and management objective. In the

hottest and driest desert shrubland of North America,

the lower Sonoran Desert, heterogeneous annual fuel
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loads are amongst the most limiting factors for large fire

occurrence, and need to be well represented in a model

of fire likelihood (Gray et al. 2014). Other factors known

to influence large fires, such as fuel bed composition and

fuel moisture, are less important for fire spread than the

amount of accumulated fine fuels that fill the interspaces

of otherwise sparse vegetation (Brooks and Pyke 2001).

When large fires do occur in the lower Sonoran

Desert, they can have cascading effects on the ecosys-

tem, including loss of habitat for vulnerable wildlife

species (e.g., Esque et al. 2013). The long-term fire

effects in deserts are related to the capacity of plant

communities to recover following fire, known as fire

resiliency (Brooks and Chambers 2011). Accordingly,

models of fire likelihood across ecological resource

gradients can be used to predict fire effects in the lower

Sonoran Desert to inform management. Existing man-

agement strategies for the endangered Sonoran prong-

horn antelope (Antilocapra americana sonoriensis), in

particular, would benefit from fire likelihood and effects

analyses across the current and potential range of the

species. In the United States, the current range of the

species is restricted to an approximately 7300-km2 area

in southwestern Arizona, and in 2013 a nearby

experimental population was reintroduced into its

historic range (A. Alvidres, personal communication).

Given recent patterns of habitat loss, the most effective

recovery effort may be to expand populations into their

historic range (Wilson et al. 2010). Since increasing fire

frequency and size may further impact or eliminate

important habitat attributes, a fire likelihood and effects

analysis in areas predicted to be suitable for Sonoran

pronghorn can help to guide ongoing and future

translocation efforts in the lower Sonoran Desert

(O’Brien et al. 2005). Similarly, it’s desirable for

managers to understand fire likelihood and effects

across protected areas in this region so that ad hoc

management does not compromise the natural or social

value of these places. The unique ecosystem character-

istics of the Sonoran Desert, including low human

population densities and intactness of natural habitat,

hold global significance for biodiversity conservation

(Mittermeier et al. 2003). Nearly 12 000 km2 of

southwestern Arizona is protected as federal wilderness

and managed specifically to preserve the natural and

wild characteristics of the Sonoran Desert.

Within this context, the principal objectives of our

research were to model and map fire likelihood and

effects across much of the lower Sonoran Desert in

southwestern Arizona, and to demonstrate the applica-

tion of these outputs in a spatially explicit management

framework. Specifically, we sought to (1) parameterize

the landscape conductance for fire spread in this region;

(2) use the resulting conductance surface to produce a

fire connectivity model and translate outputs to maps of

fire likelihood; and (3) produce a map of expected fire

effects based on existing knowledge of fire resiliency in

the lower Sonoran Desert. Our primary goal was to

demonstrate how circuit-theoretic and model-based

estimates of fire likelihood can be coupled with expected

fire effects to inform regional habitat and wilderness

management in the Sonoran Desert. Our approach to

modeling fire connectivity is highly transferable to other

ecosystems where fire dynamics are manifest over broad

spatial and temporal extents and across multiple

jurisdictions.

METHODS

Modeling fire connectivity

The underlying networks in circuit-theoretic models

are analogous to electrical circuits and are defined by a

graph structure of interconnected nodes and conductors

(McRae 2006). The application of circuit-theoretic

models is rooted in the connection between electrical

networks and random walks, where equations describing

current flow through an electrical circuit can be used to

estimate the expected movement of random walkers on a

corresponding circuit network (e.g., McRae 2006). In

this network, a random walker moves from node x to

adjacent node y with probability given by

Pxy ¼
Cxy

Cx

where Cxy is the conductance from x to y and Cx ¼P
yCxy (Doyle and Snell 1984). Whole contiguous

landscapes can be modeled as circuit networks by

representing landscape grid cells as nodes connected to

adjacent nodes by conductors, which we refer to as a

conductance surface (the inverse of a resistance surface;

McRae et al. 2008). An ecological flow is represented by

a current input that originates from a source and moves

through the network until it reaches a target. Circuit and

random walk theory show that the resulting current

density ixy between any two adjacent nodes is equal to

the net, directionless likelihood of flow passing between

those nodes, such that

ixy ¼ uxPxy � uyPyx

�
�

�
�

where ux and uy are the expected number of times flow

passes through x and y, respectively (Doyle and Snell

1984). Put more simply, the current passing between a

pair of nodes is the expected net number of times a flow

would move between them on its way from source to

target, where ‘net’ means that flow one way and back

again is erased. In the following paragraph, we describe

how these general methods of circuit theory and

landscape connectivity can be applied to fire spread

and estimates of fire likelihood.

Landscape conductance in a circuit-theoretic model is

a surrogate for the ease of movement through the

modeled environment (McRae et al. 2008), and we begin

by parameterizing the conductance surface for fire

spread. Logistic regression models are commonly used

to derive continuous maps of the conditional probability

that an ignition occurrence will become a large fire (e.g.,
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Preisler et al. 2011, Hawbaker et al. 2013, Gray et al.

2014). The probabilities reflect an isolated likelihood

that an ignition will result in a fire of at least some

observed size, and do not account for fire spread

dynamics beyond that specific location and size thresh-

old. In contrast to simulation tools that account for

contagion, such as FARSITE and Prometheus, these

statistically derived outputs are limited in their capacity

to predict fire likelihood (Thompson and Calkin 2011).

In a circuit-network representation of these models, the

statistically derived probabilities would presumably

have a large influence on the strength of conductors,

reflecting the probability of individual ignitions becom-

ing large and spreading to adjacent nodes. Therefore,

our fire connectivity model treats the conditional

probability of large fire as one parameter in defining

landscape conductance. Terrain-influenced wind speeds

and directions are also incorporated as additional

parameters in defining conductance. Thus, large fire

probability and wind vector maps are the principal data

that comprise a conductance surface. Since the relative

influences of spatial controls on fire vary between

landscapes (e.g., Rollins et al. 2002), parameterizing

the conductance necessarily requires a local- to land-

scape-scale approach. When fire spreads through the

circuit network, resulting estimates of current density

are equivalent to the net passage probabilities of

modeled fire spread (i.e., fire likelihood) that account

for landscape-specific spread dynamics.

Study area

Our 45 100-km2 study area is located in the lower

Sonoran Desert of southwestern Arizona, USA (Fig. 1).

The mean elevation of the study area is 372 m, and

FIG. 1. The 45 100-km2 study area used to estimate fire likelihood and fire effects in the lower Sonoran Desert of southwestern
Arizona, USA. This subdivision of the Sonoran Desert is extremely hot and dry and is not well adapted to fire. However, it is likely
that future climate change and invasions by nonnative plants will contribute to increased fire occurrence.
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ranges from ,100 m to nearly 1500 m. Numerous small

mountain ranges are separated by expansive desert

valleys, plains, and bajadas that typify the Lower

Colorado River subdivision of the Sonoran Desert

(Brown 1994). Portions of the Arizona Upland subdi-

vision of the Sonoran Desert that fall within the study

area generally support more diverse perennial plant

cover (Phillips and Comus 2000). Mean minimum

(December) and maximum (July) temperatures range

approximately between 68C and 408C. Long-term (1952–

2012) average annual precipitation was 95 mm at lower

elevations and 162 mm at higher elevations, and

approximately 60% fell in the winter (December–

February; data from National Climatic Data Center,

available online).4 The winter of 2004–2005 recorded

more than 300% of the average winter precipitation

across the study extent (PRISM Climate Group, data

available online).5 In 2005, 519 km2 of the study area

burned, representing 89% of the total area burned

between 1989–2010. Long fire return intervals are

characteristic of the study area, and recurrent fire even

at low intensities can significantly reduce native cover

and create niches for nonnative invasive plants (Brown

and Minnich 1986). Within the study area, our modeling

excluded the Gila and Colorado River corridors,

agricultural lands, and developed areas, since we were

only interested in fire likelihood in desert scrub

vegetation.

Estimating fire likelihood

Conditions for large fire occurrence are rare in our

study area and we were primarily concerned with a

worst-case scenario of fire likelihood, which we repre-

sented with conditions of high fire hazard (Hardy 2005).

To model fire likelihood under high fire hazard, we first

used a spatial database of fire occurrence spanning 22

years, multiple phenometric and other landscape vari-

ables, and mixed-effects logistic regression to estimate

the conditional probability of a large (�20 ha) fire (Gray

et al. 2014). We chose 20 ha as the large fire size

threshold because fires of this size are a good indication

that the annual fuel load is sufficient for further fire

spread (W. Reaves, personal communication). Increased

fire activity in the lower Sonoran Desert that depends

predominantly on increased production of annual plants

is strongly influenced by heterogeneous precipitation

patterns (Crimmins and Comrie 2004). The final

conditional probability model, which provided strong

evidence to historical data, derived estimates of fuel-load

variables that are robust to heterogeneous antecedent

precipitation occurring over a 22-year time period. The

maximum annual Normalized Difference Vegetation

Index (NDVI) of the fire year, and the year prior to fire

occurrence, can be used as proxies of the total available

fuel load (Gray et al. 2014). Both of these variables were

considered strong drivers of large fire probability, along

with elevation, road density, vegetation heterogeneity,

and slope aspect. In our study area, annual fuel loads

sprung up in the winter of 2004 and proliferated into

2005, contributing to a year of relatively high fire

probability in the 22 years that we examined. From the

logistic regression model, we derived a map using

estimates of the maximum NDVI from 2004 and 2005,

to represent annual large fire probability under condi-

tions of high fire hazard. We used a geographic

information system (GIS; ArcGIS v10.1, Esri, Redlands,

California, USA) to generate model inputs and map

predictions at a 450-m resolution, such that each grid

cell was 20 ha. This grain size corresponded with the

large fire threshold, and was thus a minimum, sufficient

grain size to introduce into a conductance surface.

Next, we considered the interaction between wind and

topography as an important control on fire spread. The

maximum effect of wind and topography on fire spread

occurs when wind direction is directly aligned with

aspect (Whelan 1995). When fuel loads are sufficient to

carry fire in the lower Sonoran Desert, fuel moisture

does not seem to significantly influence area burned

(Crimmins and Comrie 2004). Rather, favorable fire

weather brings dry hot winds that interact with

topographic features and strongly influence burn pat-

terns. We used the program WindNinja (v2.1.3, Mis-

soula Fire Sciences Laboratory, Missoula, Montana,

USA) to simulate the effect of terrain on wind flow

across the study extent. The program requires an initial

domain-averaged wind speed and direction, and com-

putes the spatial variation in these parameters based on

topography and dominant vegetation. To determine the

initial inputs, we generated long-term (1986–2009)

monthly averaged wind roses from Meso West (data

available online).6 For the most active fire months in our

study region (May–July) and daily burning period, the

dominant winds were south-southwest with observed 10-

minute average speeds of 12.9–20.9 km/h. Since peak

winds within 10-minute averages significantly affect fire

growth, we used a probable maximum 1-minute speed of

30 km/h (Crosby and Chandler 2004). Thus, we ran

simulations for both 1808 (south) and 2258 (southwest)

wind directions and wind speeds of 30 km/h. Following

the fire modeling standard (Scott 2012), we categorized

the terrain-influenced winds by their direction relative to

the upslope direction (1, downslope winds; 2, quarter-

downslope winds; 3, cross slope winds; 4, quarter-

upslope winds; 5, upslope winds). In addition, we

categorized the terrain-influenced winds by their speed

relative to the initial input of 30 km/h (1, wind speeds

�30 km/hour; 2, wind speeds .30 km/h). Using the
GIS, we derived a 450-m resolution grid based on an

4 http://www.ncdc.noaa.gov/cdo-web/datasets/ANNUAL/
stations/COOP:024702/detail

5 http://prism.nacse.org/recent/

6 http://mesowest.utah.edu/cgi-bin/droman/mesomap.cgi?
state¼AZ&rawsflag¼3
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equal-weighted overlay of the wind speeds and direc-

tions.

The cumulative conductance values used to estimate

fire likelihood were an additive combination of condi-

tional large fire probability (scaled from 0 to 1) and

spatially varying winds (rescaled from 0 to 1). We

assumed a greater influence of fuels on fire spread and

therefore assigned half the weight to winds as to large

fire probability. The summed values comprised a

conductance surface that was represented as a circuit

network in the fire connectivity model, to reflect the

probability of fire spread between adjacent ‘‘ignited’’

nodes. To estimate fire connectivity, we used Circuit-

scape (v3.5.8), an open source software program that

applies circuit theory to predict current flow across large

landscapes (McRae and Shah 2011). We used a ‘‘wall-to-

wall’’ approach (Anderson et al. 2012, Pelletier et al.

2014) to account for overall landscape conductance by

implementing two model runs: one that forced current

vertically north-south and south-north, and one that

forced current horizontally east-west and west-east. This

was done by assigning one horizontal or vertical edge of

the study extent as a single source region and the

opposite, parallel edge as a target region, where each

edge was one grid cell in width (i.e., 450 m). We repeated

this method for two conductance scenarios (1808 and

2258 winds), for a total of four model runs. The map

outputs resulted in a current density for every grid cell,

which is equivalent to the net, directionless likelihood of

fire spreading through that cell. Within the GIS, we

summed these grid-based model outputs together and

used the result to represent the cumulative fire likeli-

hood. This approach differs from other methods to

estimate fire likelihood that are based on distributed fires

across a landscape with individual starting and stopping

events (e.g., Finney et al. 2011, Ager et al. 2012). These

events are typically drawn from probability distributions

of burn duration and fire-season weather, so that the

results represent long-term, annualized burn probabili-

ties. Without sufficient data to model such events, our

approach was meant to avoid these assumptions and to

fully represent all possibilities of fire spread in a year

with high fire hazard (i.e., 2005). Additionally, Ager et

al. (2012) were only concerned with larger fires and

conditioned their estimates of burn probability on fire

events that exceeded 1000 ha. Our results are also

conditional on large fire occurrence (i.e., 20 ha), but this

definition of large fire can be considered unique to our

study area.

To examine the predictive performance of the fire

connectivity model, and compare it to readily available

FSim burn probability estimates in our study area, we

used a method that relies on burned area data and makes

no assumptions about areas that have not burned. Boyce

et al. (2002) presented a similar approach with presence-

only validation data to assess the ability of resource

selection functions to consistently predict habitat use

within levels of suitability. We used 13 years (2000–2012)

of moderate resolution imaging spectroradiometer

(MODIS) satellite-based burned area data (500-m pixel

resolution) to identify grid cells used in the evaluation

(data available online).7 We distributed all fire likelihood

cells into 10 quantiles and calculated the proportion of

evaluation cells observed to occur within each quantile

‘‘bin.’’ We repeated this for FSim burn probability

estimates derived by the Fire Program Analysis System

and clipped to our study area (data available online).8 We

also calculated the proportion of all fire likelihood (or in

the case of FSim, burn probability) cells to occur within

each bin and considered this the proportion expected by

chance. The ratio of observed to expected proportions

within each bin indicates a frequency of fire presence

relative to chance, and lower ranked bins should have a

ratio less than one, whereas higher ranked bins should

have a ratio increasingly greater than one (Hirzel et al.

2006). To evaluate model performance, we also plotted

this ratio against the ranked bins and calculated a

Spearman rank correlation coefficient (rS). High positive

values of rS would result from an increasing curve and

would indicate that the ratio increases as fire likelihood or

burn probability increases. We considered values of rS .

0.80 as indicative of exceptional support. In addition to

assessing the predictive performance of the cumulative

connectivity model, we compared the predictive perfor-

mance of each model run individually. This allowed us to

examine the sensitivity of the final connectivity model to

individual scenarios of wind direction and source-target

pairing.

Evaluating fire effects

Taking into account the impact of repeated fire and

major vegetation associations in the lower Sonoran

Desert, we characterized fire effects based on the degree

to which future fire exposure is expected to negatively

impact native plant community recovery. This approach

relied on the notion that higher productivity and

diversity of native plants increases fire resiliency

(Wisdom and Chambers 2009), and that repeated fire

will differentially impact plant communities based on

their fire resiliency (Brooks and Chambers 2011).

Differences in plant productivity and diversity were

broadly grouped into the two ecological subdivisions of

our study area: the Lower Colorado River subdivision

and the Arizona Upland subdivision. While these

subdivisions were created solely in reference to the

vegetation, they parallel other ecological gradients that

influence fire resiliency, such as available precipitation

(Shreve and Wiggins 1964, Comrie and Broyles 2002).

The Arizona Upland subdivision harbors higher plant

productivity and richness and thus was assumed to

display higher fire resiliency. We retrieved a shapefile of

these subdivisions, which was digitized from the original

7 http://modis-fire.umd.edu/BA_getdata.html
8 http://www.forestsandrangelands.gov/WFIT/applications/

FPA/index.shtml
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1980 map Biotic Communities of the Southwest (Brown

and Lowe 1980; shapefile available online).9 We also

used mapped fire perimeters from the Monitoring

Trends in Burn Severity project, which provides a

consistent and continuous source of mapped fire

perimeters .405 ha, from 1984 to 2011 (data available

online).10 We used these data to determine whether a

specific location had burned within the perimeter of a

large fire in the recent past. We merged these two data

sets in the GIS and assigned the outputs to relative

classes of fire effects based on the association with

expected fire resiliency. We assumed that fire would have

the least negative effect in unburned extents of the

Arizona Upland subdivision, with more negative effects

in unburned extents of the Lower Colorado River

subdivision or burned extents of the Arizona Upland

subdivision, and the most negative effects in burned

extents of the Lower Colorado River subdivision. Since

the lower Sonoran Desert is not well adapted to fire and

large fire anywhere is expected to have at least

moderately negative effects, we assigned these outputs

to moderate, high, and very high fire effect classes,

respectively.

Next, we focused on understanding the potential

negative effects of large fire on two assets of ecological

and conservation significance in the study area, namely,

habitat for endangered Sonoran pronghorn antelope

and federally designated wilderness areas. We acquired a

shapefile of the current Sonoran pronghorn range from

the U.S. Department of Defense and potential Sonoran

pronghorn habitat data from the Arizona Game and

Fish Department (O’Brien et al. 2005). We acquired GIS

data for all wilderness areas in the study area from a

national public database (available online).11 Hereafter,

we refer to areas within the 80th percentile of our fire

likelihood estimates as areas of relatively high fire

likelihood (HFL). For pronghorn current range and

potential habitat and for each wilderness area, we

calculated the area of HFL by fire effects class.

RESULTS

Fire likelihood

Our historical fire evaluation data set consisted of

4003 burned pixels comprising approximately 2% of the

study area. Our mapped predictions offered exceptional

empirical support (rS ¼ 1.00) when evaluated with the

MODIS burned area data (Figs. 2 and 3). In addition,

the cumulative model smoothed over variation among

the four individual model runs. For the vertical

implementation of the model (2258 winds, rS ¼ 0.99

and 1808, rS ¼ 0.96), and for the horizontal implemen-

tation of the model (2258, rS¼ 0.87 and 1808, rS¼ 0.82).

By comparison, the FSim model for our study area

offered somewhat less empirical support (rS¼ 0.72). The
ratio of observed to expected frequency of burned areas
was greatest in the 80th percentile of burn probability,

but decreased to below one in the highest bin (Fig. 2).
This indicated that the highest FSim predicted proba-

bilities actually burned less frequently than expected by
chance. In contrast, the ability of our model to

differentiate high fire likelihood from chance expecta-
tion increased within the 80th percentile of predictions

(Fig. 2), providing strong support for our decision to use
this percentile class to define HFL. Across the study

area, 19% of predictions were classified as HFL, and of
this area, 7% was estimated to have very high negative

fire effects, 85% was estimated to have high effects, and
8% was estimated to have moderate effects.

We observed patterns of terrain-influenced winds on
fire likelihood that substantially overlapped prominent

topographic features in our study area, namely the
numerous mountain ranges that are oriented in a

southeast-northwest direction (Figs. 1 and 4). Consid-
ering simulated winds out of the southwest, areas most

conducive to burning were consistently on the immedi-
ate windward side of mountain ridgelines, whereas areas

least conducive were on the leeward side. Areas of
intermediate fire likelihood were typically found in the

valleys between these mountain ranges. Simulations
based on winds out of the south showed similar patterns,

although areas on the windward side of ridgelines

FIG. 2. The ratio of observed to expected (by chance)
frequency of fire within 10 quantile bins of fire likelihood, for
the fire connectivity model depicted in Fig. 4, and the FSim
model of burn probability in our study area (Finney et al.
2011). Fire observations were derived from 2000–2012 moder-
ate resolution imaging spectroradiometer (MODIS) burned
area data. The ratio indicates a frequency of fire relative to
chance. For the fire connectivity model, this ratio was
increasingly greater than zero overall, and increasingly greater
than one above the 80th percentile of predicted fire likelihood.
For the FSim model, the ratio was greatest in the 80th
percentile but decreased to below one in the highest bin,
indicating that the highest burn probability over predicted
actual fire occurrence.

9 http://azconservation.org/downloads/biotic_communities_
of_the_southwest_gis_data

10 http://www.mtbs.gov/data/customquery.html
11 http://www.wilderness.net/NWPS/advSearch
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showed lower fire likelihood. In general, HFL tended to

disperse over larger areas where wind direction would

most facilitate the spread of fire. In contrast, HFL

tended to concentrate in narrow corridors, or completely

avoid areas where dominant winds would move

downslope. Across the study area, areas of HFL had

an elevation of 295 6 122 (mean 6 SD), a slope of 68 6

138, and a mean topographic roughness (i.e., the

standard deviation of slope) of 1.35 6 2.90. In contrast,

areas not characterized as HFL had an elevation of 396

6 186 m, a slope of 88 6 168, and a topographic

roughness of 2.12 6 3.89.

Fire effects in Sonoran pronghorn habitat

HFL overlapped with 550 km2 (21%) of suitable

habitat in the current range of the Sonoran pronghorn

FIG. 3. Detail insets showing the agreement between estimates of fire likelihood and previously burned areas in four locations
(shown in insets) of the lower Sonoran Desert: (A) King Valley Fire (see Plate 1), (B) Crater Fire, (C) Goldwater Fire, and (D)
Bighorn and Eagle Eye Fire. These fires all burned in 2005, which was a year of unprecedented fuel growth and large fire occurrence
in the lower Sonoran Desert.
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(Fig. 5). Of this area, 8%, 91%, and 1% of HFL was

estimated to have very high, high, and moderate

negative fire effects, respectively. HFL overlapped with

3092 km2 (15%) of the additional habitat considered

suitable but not in the current range. These areas were

primarily in lower elevations to the north and south of

the Gila River corridor, as well as immediately west of

the currently occupied range. Large contiguous extents

of additional suitable habitat that did not overlap with

HFL were on La Posa Plain and extending up to the

Kofa Mountains, the Castle Dome Plain extending up to

the foothills of the Castle Dome Mountains, and the

Lechuguilla Desert (Fig. 5).

Fire effects in wilderness

We estimated HFL in 1740 km2 (14.5%) of the 16

wilderness areas within the study area (Fig. 6), with

19%, 74%, and 7% of HFL expected to have very high,
high, and moderate negative fire effects, respectively. By

total area HFL, the Cabeza Prieta (787 km2) and Kofa

(365 km2) Wilderness areas were most at risk and
expected to have high or very high effects. The areas of

very high effects overlap with two of the largest fires that

occurred in 2005, the King Valley fire (130 km2; see Plate
1) in the Kofa Wilderness and the Growler Peak fire (110

km2) in the Cabeza Prieta Wilderness. Similarly, HFL

was estimated in large portions of the North Maricopa

FIG. 4. Map of fire likelihood across the lower Sonoran Desert of southwestern Arizona, based on a circuit-theoretic model of
fire connectivity. Warmer colors indicate relatively high current density, or higher likelihood of fire, and cooler colors indicate
relatively low current density, or lower likelihood of fire. This map depicts a high fire hazard scenario of fire likelihood and is based
on fuel conditions in 2005. Moderate resolution imaging spectroradiometer (MODIS) burned area data shows where fire occurred
between 2000 and 2012.
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Mountains (180 km2) and Woolsey Peak (177 km2)

Wilderness areas, although much of these areas fall

within the Arizona Upland subdivision and have not

experienced a large fire event since 1984. The Muggins

Mountain (49%) and the East Cactus Plain (47%)

Wilderness areas had the highest percentage of HFL,

with all of this area expected to have high effects. Only

the New Water Mountains Wilderness was estimated to

have no HFL.

DISCUSSION

Across extensive areas and multiple jurisdictions,

resource and fire management efforts can benefit from

fire likelihood analyses that account for the highly

stochastic nature of fire spread (Miller and Ager 2013).

Drawing on concepts from electronic circuit theory, we

leveraged a well-established, probabilistic method to

derive novel models and maps of fire connectivity, and

to produce meaningful interpretations of fire likelihood.

Our estimates of the likelihood that an area will burn

contribute important information to the overall fire risk

in a system, which does not neglect the fire contagion

process. For instance, large fires in this region were

found more likely to originate from ignitions occurring

in lower elevations with rougher terrain (Gray et al.

2014). This pattern differs from results shown here,

FIG. 5. Estimates of high fire likelihood (HFL) within the current range and potential habitat of the Sonoran pronghorn. Large
areas of potential habitat not delineated as HFL may indicate sites suitable for ongoing or future translocations. Estimates are cut
off in the northern tip of the study area because this was the extent of the original model of potential Sonoran pronghorn habitat
(O’Brien et al. 2005).
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where lower elevations and less rough terrain were more

likely areas to actually burn. Desert wash systems are

prominent micro-topographic features that weave

throughout the lower elevations of our study area. It is

likely that fires easily ignite in these densely vegetated

washes but then more readily spread through fine fuels

in the intervening, lower-relief terraces.

Our connectivity model further addresses the chal-

lenge of spatial scale in communicating and quantifying

wildfire risk for management. The nearly infinite number

of possible interactions between landscape features and

weather conditions has been a major challenge to

characterizing fire likelihood in large heterogeneous

landscapes (Finney 2005). Monte-Carlo-based simula-

tion methods that take advantage of extant fire spread

models to efficiently estimate burn probability have

gained considerable traction in the past few years

because they address this challenge. Similarly, fire

connectivity models embedded in a fire likelihood

analysis offer new flexibility and efficiency in meeting

fire management objectives, with some added advantag-

es.

As a first step in our approach, we were able to

capture the critical effect of annual fuel loads in a

statistical model of large fire probability, which provided

a reliable, empirically based scenario of high fire hazard

for input into a fire connectivity model. Although this

model captured only a snapshot in time, it represented a

worst-case scenario in the recent past, reflecting condi-

tions likely to become more common in the future with

FIG. 6. Estimates of high fire likelihood (HFL) by fire effects level within 16 federally designated wilderness areas (some road
corridors of non-wilderness have been removed for display purposes): (1) Gibraltar Mountain, (2) East Cactus Plain, (3) Big Horn
Mountains, (4) New Water Mountains, (5) Eagletail Mountains, (6) Trigo Mountain, (7) Sierra Estrella, (8) Signal Mountain, (9)
Woolsey Peak, (10) North Maricopa Mountains, (11) South Maricopa Mountains, (12) Muggins Mountain, (13) Hummingbird
Springs, (14) Cabeza Prieta, (15) Organ Pipe, and (16) Kofa. HFL is defined as the 80th percentile of predicted fire likelihood under
high fire hazard conditions. Effects are relative to the fire resilience and recent fire history of a given area.
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changing climate and fuels (Abatzoglou and Kolden

2011). As fuel conditions change due to large-scale

wildfires or other disturbance events, the model could be

re-run with, for example, updated projections of the

maximum annual NDVI in an updated conductance

surface. Resulting fire likelihood estimates would

continue to be relevant to real, changing conditions

important for fire and fuels planning. As a second step,

this high fire hazard scenario was coupled with terrain-

influenced winds to directly reflect the probability that a

fire would ‘‘burn through’’ a conductor. After account-

ing for fire spread in all four cardinal directions and

across the whole landscape, accumulated current density

that passes through a conductor is equivalent to the

overall fire likelihood. This is much different from a

mechanistic model of fire spread such as FARSITE that

burns through fuel models in a deterministic manner and

is then used to estimate burn probability. In contrast,

our method to estimate fire likelihood as a function of

overall landscape conductance considered all possible

pathways of fire spread across a broad, heterogeneous

landscape. The cumulative output that combined

scenarios of wind direction and source-target pairing

outperformed each individual model run and offered

much stronger empirical support than FSim burn

probability estimates for our study area. The FSim

model estimated some of the highest burn probabilities

in the upland regions and over predicted actual fire

occurrence in these areas. Our new approach to

modeling fire likelihood is easily transferable to other

ecosystems (e.g., forested ecosystems) where fuel models

have not been reliably calibrated against empirical data

or observations of fire behavior, or where a paucity of

empirical data otherwise inhibits the parameterization of

burn probability models.

Applying fire connectivity models to risk assessment and

management

Our results can aid in the management of critical

habitat features for sensitive or listed species, including

the highly isolated and endangered Sonoran pronghorn.

This species was listed as endangered by the U.S. Fish

and Wildlife Service in 1967 and recovery efforts were

recently reviewed in light of the Final Revised Recovery

Plan of 1998 (U.S. Fish and Wildlife Service 1998),

which had anticipated a down listing by 2005 (Wilson et

al. 2010). Reproduction and resource use by the species

are closely tied to seasonal precipitation events and

access to high quality forage (Hervert et al. 2005).

Although long term effects of fire on forage quality are

PLATE 1. Abundant annual fuel growth in the winter of 2004–2005 led to several large fires throughout the study area in 2005,
including the 13 000 ha King Valley fire pictured here (Sonoran Desert, Arizona, USA). Photo credit: Susanna Henry, U.S. Fish
and Wildlife Service.
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not known, Sonoran pronghorn currently rely on a

diversity of plant species that provide sources of water

when primary forage has desiccated or is unavailable

(Hervert et al. 2005). Therefore, efforts to expand their

habitat should consider specific areas where this

diversity is least likely to be threatened by fire dynamics,

such as the three areas identified in our analysis.

Throughout the United States, designated wilderness

areas also serve to protect wildlife habitat, rare and

endangered species, watersheds, and the solitude that

benefits both humans and non-humans alike (Scott

2004). Although wilderness lacks any direct develop-

ment or degradation by humans, the indirect and

external influences of humans can still impact natural

conditions in these areas (Noon and Dickson 2004). The

question of whether to actively manipulate fire within

and around wilderness poses a serious dilemma for

managers today (Cole 2001). Increases in nonnative fuel

loads coupled with predicted changes in climate will

likely challenge existing wilderness fire management

policies in the lower Sonoran Desert (Miller et al. 2011).

Our results indicated that the Kofa and Cabeza Prieta

Wilderness areas in the lower Sonoran Desert may be

particularly threatened by fire, as well as large portions

of the Muggins Mountain and East Cactus Plain

Wilderness areas. Developing and implementing viable

response and mitigation measures for these areas should

be a high priority for federal wilderness fire manage-

ment.

Model uncertainties and limitations

Our model of fire likelihood was intentionally derived

at relatively coarse spatial and temporal resolutions, and

necessarily incorporates assumptions about many fine-

scale processes. For example, the propagation of fire

from one cell to another does not account for some

explicit fire behavior characteristics. One such fire

behavior is spotting, which causes accelerated growth

by igniting spot fires far ahead of the main fire perimeter

(Albini et al. 2012). Although the explicit incorporation

of spotting behavior was beyond the scope of research,

our connectivity model suggested strong overlap be-

tween areas of high fire likelihood and areas that had

previously burned.

A related source of uncertainty comes from assigning

relative conductance values to an inherently heteroge-

neous process (i.e., fire spread). Conductance to fire

spread can potentially take on a range of values at any

one location (or cell). The methods we have described

rely on merging spatial landscape features with wind

scenarios to come up with a single landscape conduc-

tance value at each grid cell. We believe that parame-

terizations of conductance values for modeling fire

connectivity will be an active area of future research.

Next steps for estimating fire connectivity

Contemporary approaches to estimating landscape

connectivity have great potential for improving the

realism and application of fire modeling efforts. For

example, the concept of centrality could be readily

applied to future models of fire connectivity. Node

centrality can be described as the importance of a node

(e.g., a patch of contiguous fuel or a population center)

to facilitating the movement of flow across a network

(Freeman 1979), and in a circuit-theoretic model it is

measured by considering all flow pathways between all

pairwise combinations of nodes (e.g., Brandes and

Fleischer 2005, Dickson et al. 2013). Fire connectivity

models, such as ours, can easily be integrated into

centrality analyses using available computer programs

(see Carroll et al. 2012). Conceivably, these analyses

could present a more complete picture of relative node

importance, considering the complex topology of fuels,

weather patterns, and fire spread, where unique nodes

might represent expanding or future areas of nonnative

plant invasion.

We also envision integrating modeled fuels and fire

behaviors (e.g., rate of spread) into fire connectivity

analyses. The minimum travel time algorithm is an

efficient formulation of FARSITE that stores cumula-

tive fire arrival times from an ignition source and

identifies minimum-time contours to approximate fire

growth (Finney 2002). A circuit-theoretic model of fire

connectivity, where landscape conductance is propor-

tional to fire rates of spread, could show comparable

patterns of fire movement. However, the probabilistic

(vs. deterministic) method of movement may be better

suited to the stochastic nature of fire. Estimates of fire

connectivity that are based on fuel models and fire

behavior could potentially integrate fireline intensity to

determine spotting and fire effects (Finney et al. 2011).

Assuming reliable fuel models are available, this

approach would also be transferable between forested

and non-forested ecosystems.

The new approach we have presented to modeling fire

likelihood has great potential to further the reach of

landscape-scale risk analyses in wildfire applications, in

multiple ecosystem types and management settings.

From a fire and fuels modeling perspective, the lower

Sonoran Desert is a highly dynamic and heterogeneous

system, which adds to the challenge of quantitative risk

analysis. As ongoing changes in climate and land cover

are poised to alter the fire regime across extensive and

ecologically important areas, fire and resource manage-

ment in the lower Sonoran Desert is addressing the

potential for increased likelihood of fire. Comprehensive

and multi-jurisdictional planning efforts at a regional

scale will be enhanced by fire risk analyses, which

incorporate the overall likelihood of burning and

potential fire effects.
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