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ABSTRACT 

 

Landscape-Scale Models and Maps of Fire Risk  

and Connectivity in the Lower Sonoran Desert 

 

Miranda Gray 

 

In the lower Sonoran Desert of southwestern Arizona, heterogeneity in the 

amount and location of precipitation can result in extreme inter-annual fluctuations in 

fine fuel accumulations. Coupled with ongoing climate change and invasion by non-

native grasses and forbs, this pattern has the potential to contribute to more frequent and 

larger fires that were historically uncommon.  Where sparse vegetation and mild weather 

one year might regulate the frequency and spread of fire, contiguous beds of plant 

biomass and anomalous weather the next year can spread fire across large extents. 

Appropriate fire management in this region will require an improved understanding of 

landscape-scale fire risk under variable climatic and fuel conditions, as well as the 

implications of increased large fire likelihood. Generalized linear mixed modeling is used 

to estimate the relative contributions of fuel attributes (e.g., loading and configuration), 

landscape characteristics, and human infrastructure to large fire risk. These results 

suggest that inter-annual fluctuations in large fire risk can be captured with a variable of 

the maximum annual Normalized Difference Vegetation Index (NDVI). To account for 

the contagious property of fire, a connectivity model is used to estimate where on the 

landscape fire is likely to burn, under high risk conditions.  Coupled with an a priori 

knowledge of the factors that influence fire resiliency, these results identify areas on the 

landscape that contribute most to the high consequence of fire likelihood, which can help 

inform fire management across broad scales and multiple jurisdictions.  

 

 

 

 

 

 

 



 
 

3 
 

Table of Contents 

 

 

Abstract............................................................................................................................    2 

Table of Contents.............................................................................................................    3 

List of Tables……………………………………………………………………………   4 

List of Figures..................................................................................................................    5 

1.0 Introduction................................................................................................................    6 

 1.1 Research objectives and hypotheses………………………………………..    8 

2.0. Modeling and mapping dynamic variability in large fire risk in the lower Sonoran     

Desert of southwestern Arizona......................................................................................   10 

2.1 Introduction………………………………………………………………...   10 

2.2 Methods.........................................................................................................   13 

2.2.1 Study area.......................................................................................   13 

2.2.2 Fire occurrence data……………………………………………...   14 

2.2.3 Landscape variables.......................................................................   15 

2.2.4 Statistical and spatial modeling.....................................................   17 

2.3 Results..........................................................................................................    20  

2.3.1 Fire occurrence..............................................................................   20 

2.3.2 Statistical and spatial modeling………………………………….   20 

2.4. Discussion...................................................................................................    23 

2.4.1 Conclusions and management implications……………………..    28 

3.0 Analyzing fire likelihood with landscape-scale models and maps of fire connectivity 

in the lower Sonoran Desert of southwestern Arizona...................................................   30 

3.1 Introduction………………………………………………………………...   30 

3.2 Methods.........................................................................................................   33 

3.2.1 Modeling fire likelihood as current flow........................................  33 

3.2.2 Study area.......................................................................................   34 

3.2.3 Fire likelihood in the lower Sonoran Desert……………………...  36 

3.2.4 Fire impacts in the lower Sonoran Desert.......................................  39 

3.3 Results………………………………………………………………………  41 

3.3.1 Fire likelihood.................................................................................  41 

3.3.2 Fire impact case studies..................................................................  44 

3.4 Discussion.....................................................................................................   47 

3.4.1 Applying fire connectivity models to risk assessment and 

management............................................................................................   49 

3.4.2 Model uncertainties and limitations...............................................   51 

3.4.3 Next steps for estimating fire connectivity.................................................  52 

References.......................................................................................................................   56 

 

 



 
 

4 
 

 

List of Tables 

 

Table 2.1 Environmental variables (fixed effects) used to estimate large fire risk in the 

lower Sonoran Desert of southwest Arizona, 1989-2010…………………………….     21 

 

Table 2.2 Best linear unbiased predictors of random effects used to estimate large fire 

risk in the lower Sonoran Desert of southwest Arizona, 1989-2010……………...….     22 

 

Table 3.1 Values of the kappa statistic (κ) used to evaluate the level of agreement 

between historical fire perimeters and estimated High Fire Likelihood (HFL)……….    42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

5 
 

 

List of Figures 

 

 

Fig. 2.1 The 45,100-km
2  

study area used to model fire risk in the lower Sonoran Desert 

of southwestern Arizona, 1989 - 2010……………………………………………….      14 

 

Fig. 2.2 Trends in NDVI from 2000-2006 within the perimeter of two large fire  

events…………………………………………………………………………………     20 

 

Fig. 2.3 Map-based result for estimate of large fire risk in the lower Sonoran Desert of 

southwestern Arizona, based on 2005 conditions (i.e., high fire risk map)…………       23 

 

Fig. 2.4 Map-based result for estimate of large fire risk in the lower Sonoran Desert of 

southwest Arizona, based on 1996 conditions (i.e., moderate fire risk map)………..      24 

 

Fig. 3.1 The 45,100-km
2  

study area used to model fire likelihood in the lower Sonoran 

Desert of southwestern Arizona……………………………………………………..       35  

 

Fig. 3.2 Alignment of wind direction and aspect used as a parameter in estimating the 

landscape conductance to fire spread………………………………………………..       38 

 

Fig. 3.3 Current flow map of fire likelihood across the lower Sonoran Desert of 

southwestern Arizona………………………………………………………………..       43 

 

Fig. 3.4 Fire likelihood and fire impacts in the Kofa wilderness……………………       45 

 

Fig. 3.5 Fire likelihood and fire impacts in the Rainbow Valley……………………       46 

 

Fig. 3.6    Estimated High Fire Likelihood (HFL) within the current range and potential 

habitat for the endangered Sonoran pronghorn………………………………………      47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

6 
 

1.0 Introduction 
 

Before 1970 wildfire was not considered an important element of community 

change in the Sonoran Desert (Esque and Schwalbe 2002). With the increase in 

abundance of invasive grasses that are capable of starting and carrying fires very long 

distances, wildfire is now a serious concern in a system adapted to small and infrequent 

fires (Abatzoglou and Kolden 2011). Non-native grasses respond more favorably to 

frequent fire than do native desert plants and eventually propagate what is known as the 

grass/fire cycle, which reduces abundance of native plants and increases the abundance of 

non-native plants (D’Antonio and Vitousek 1992). Although the potential for rapid and 

dramatic change due to the invasive grass/fire cycle is well appreciated, little work has 

been devoted to understanding fire patterns in the lower Sonoran Desert, which would 

help inform management policy. This research applies landscape connectivity methods to 

evaluate landscape-scale patterns of fire likelihood (e.g. the likelihood of a site burning 

based on landscape characteristics, accumulation of fine fuels, etc) in the lower Sonoran 

Desert of southwestern Arizona.  

Deserts tend to experience less fire than other ecosystems due to limited 

production of fuels, therefore little research has been committed to desert fires. It is 

recognized that landscape-scale models of fire need to be expanded to a broader spectrum 

of ecosystem types and climatic zones (Gardner et al. 1999). In the Sonoran Desert of the 

southwestern US, there is concern that climate change and land use activities are 

increasing fire risk through establishment and spread of non-native, fire adapted grasses 

and forbs, including African buffelgrass (Pennisetum ciliare), red brome (Bromus 

rubens), Sahara mustard (Brassica tournefortii), and Mediterranean grass (Schismus 



 
 

7 
 

arabicus and S. barbatus). Because precipitation and temperature significantly influence 

plant habitat suitability, climate change is likely to alter the distribution of these species 

(Brown 1994). The plants might also expand dramatically in response to land use 

activities (Bradley et al. 2010). 

Heterogeneity in precipitation in the Sonoran Desert can result in extreme inter-

annual fluctuations of fuel accumulation (Crimmins and Comrie 2004). Large, 

uncharacteristic wildfires in dry seasons are thought to be primarily fueled and spread by 

contiguous beds of non-native plant biomass following years of very high precipitation 

(Swetnam and Betancourt 1998). On the other hand, in 2005 a 10,000 hectare fire was 

carried primarily by a native plant following one of the wettest periods recently recorded 

in southwestern Arizona (Webb et al. 2007). These conditions illustrate the pressing need 

to understand the overall contributions of fuel, landscape and climatic variables to fire 

disturbance in this region.  

Connectivity as an ecological concept is most often applied in conservation 

biology to assess the dispersal capabilities of individuals and genes among populations 

and generations (Rayfield et al. 2011). Robust connectivity is acknowledged as critical to 

maintaining viable populations and as a result there is extensive literature devoted to the 

appropriate choice of connectivity models, for the specific species or process under study 

(Urban and Keitt 2001, McRae et al. 2008, Pinto and Keitt 2008). Fire is a fundamentally 

different process than animal dispersal and interacts with the terrain to define the unique 

functional connectivity of a landscape. In this context, functional connectivity determines 

landscape conductance to fire, or the ability of the landscape to facilitate the spread of 

fire.   
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A connectivity model of fire disturbance describes coarse spatial and temporal 

scale processes, and makes simplified assumptions about, for example, the fine-scale 

processes of fire spread. Fire prediction models currently emphasize the fine-scale 

dynamics of fire behavior with the purpose of understanding fire events over the length of 

a single fire. The models, commonly called mechanistic simulation models (Finney 

1999), deterministically simulate the spread of fire based on detailed thermodynamics 

and the physical and chemical characteristics of fuels (e.g. Albini 1976, Finney 2004, 

Peterson et al. 2009). A different approach to fire behavior modeling captures broader 

scale patterns with a probabilistic model of fire spread (e.g. Clarke et al. 1994, He and 

Mladenoff 1999, Hargrove et al. 2000). A connectivity model is most similar to these 

models; the propagation from one cell to another is not based on physical laws but rather 

it is probabilistic and depends on the amount of accumulated fuel, weather, terrain, etc. 

 

1.1 Research objectives and hypotheses 

 The specific objectives of my research were to:   

(1) Use a generalized linear mixed modeling (GLMM) approach to estimate and 

map large fire risk in the lower Sonoran Desert of southwestern Arizona 

HR1: Inter-annual shifts in large fire risk can be captured with a variable 

representing the annual maximum Normalized Difference Vegetation 

Index (NDVI), coupled with a variable representing antecedent 

precipitation and landscape variables.  

(2) Parameterize a conductance surface for fire spread for input into a circuit-

theoretic model of connectivity, such that the environmental factors and 
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component processes thought to contribute most to large-sale patterns are 

accounted for and accurately characterize fire spread probabilities.  

HR2: Borrowing methods from landscape connectivity, the individual and 

synergistic influence of fuels, landscape characteristics, and weather on 

large fire risk can be extrapolated to fire likelihood that accounts for fire 

spread.  

(3) Derive a model of fire connectivity for a heterogeneous landscape in the lower 

Sonoran Desert of southwestern Arizona. 

HR3: A fire connectivity model can identify specific areas on the landscape 

through which fire has the highest likelihood of passing.  

 

The threat of an invasive grass/fire cycle in the lower Sonoran Desert calls for an 

implementable landscape-scale approach to fire modeling that gives fire managers a tool 

to mitigate rapid and dramatic changes to this diverse ecosystem. Because fire threatens 

desert ecosystems worldwide, my research can contribute to rigorous and contemporary 

efforts to understand desert fire regimes.   

The following two chapters are written as co-authored articles to be submitted to 

peer-reviewed journals, and as a result some redundancy will appear between the two 

chapters. Chapter 2 addresses objective (1) of my research, while chapter 3 addresses 

objectives (2) and (3) of my research.  
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2.0 Modeling and mapping dynamic variability in large fire risk in the lower 

Sonoran Desert of southwestern Arizona 

2.1 Introduction 

 Global climate and land cover changes are introducing novel and deleterious fire 

regime characteristics to  sensitive desert ecosystems worldwide (D’Antonio 2000). In 

low elevation deserts of western North America, where perennial vegetation productivity 

is typically low, long fire return intervals and small patchy fires likely characterize native 

fire regimes (Brooks and Minnich 2006). Disruption of these fire regimes, in the form of 

larger and more frequent fires, can diminish the long-term recovery potential of native 

plant communities with limited resiliency (Brooks and Chambers 2011). These 

disruptions can lead to alternative stable states of herbaceous cover dominated by non-

native plants (D’Antonio et al. 2009), which has occurred to a limited extent in middle 

and low elevations of the Sonoran Desert  (Esque and Schwalbe 2002, Brooks and 

Minnich 2006). Recurrent fires that collectively homogenize vegetation over large areas 

are also detrimental to native animal species of concern, including the Sonoran desert 

tortoise (Gopherus morafkai) and endangered Sonoran pronghorn (Antilocapra 

americana sonoriensis) (Esque et al. 2002, Hervert et al. 2005). 

  Increased fire activity in desert regions depends predominantly on antecedent 

soil moisture to stimulate vegetative growth (Krawchuck and Moritz 2011). In systems 

where fine fuels control the spread of fire, the globally consistent strength of antecedent 

moisture correlations demonstrates that up to two years of above-normal precipitation can 

drastically change fuel loads and the propensity of an area to burn (Littell et al. 2009, 

Krawchuck and Mortiz 2011). These climate-driven increases in fuel can be accompanied 
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by very large increases in inter-annual and spatial variability of large fire occurrence 

(Brooks and Matchett 2006, Littell et al. 2009). Ignition sources and continuity of fuels in 

a given year are two factors that influence this variability (Littell et al. 2009). Large fire 

risk, which is the chance that a fire ignition might become a spreading fire due to natural 

and human factors, provides a probabilistic concept for fire management (Hardy 2005). 

Although large fires only represent a small number of all fires, they account for most of 

the burned area (Meyn et al. 2007). By identifying areas of large fire risk, managers 

would be able to better design and coordinate adaptive fire management strategies.  

In arid ecosystems, statistically robust estimates of annual large fire risk need to 

account for the high levels of inter-annual variation in precipitation and fuel factors that 

typically precede a fire event. Previous modeling studies in arid and semiarid 

environments have shown the utility of the Normalized Difference Vegetation Index 

(NDVI) to estimate dynamic fuel conditions and fire risk at a regional extent (Russell-

Smith et al. 2007, Turner et al. 2011). These and other studies have reported the separate 

effect of drought and rainfall indices on fire occurrence (Preisler et al. 2011). However, 

antecedent precipitation and fuels presumably act together to influence fire risk, and this 

synergism may differentially influence other landscape variables. Thus, it is necessary to 

account for the effect of antecedent precipitation on large fire risk in a way that can be 

integrated with highly dynamic fuel conditions and landscape information. Primarily as a 

consequence of human activities and the prevalence of invasive plant species, more than 

70,000 ha of the lower Sonoran desert of southwestern Arizona have burned since 2000, 

with most (> 75%) of this area burning in 2005. In light of these events, there have been 

no published fire studies in this region to inform how land managers might monitor large 



 
 

12 
 

fire risk and adapt to dynamic changes in the environment. Managers in the region are 

particularly concerned about the establishment of non-native, fire adapted grasses and 

forbs, including red brome (Bromus rubens), Mediterranean grass (Schismus arabicus 

and S. barbatus), African buffelgrass (Pennisetum ciliare), and Sahara mustard (Brassica 

tournefortii). Poorly planned land use or restoration efforts could further benefit invasive 

plant species, if they do not account for the anticipated impacts of climate variability and 

change (Bradley et al. 2010). 

The objectives of our research were to model and map large fire risk across the 

lower Sonoran desert in southwestern Arizona and to apply an improved understanding of 

dynamic fire risk to recommendations for the management of fire in the region. 

Specifically, we sought to: (1) couple the interaction between precipitation and fuel 

conditions by deriving estimates of the maximum annual NDVI for 1989-2010 from 

satellite imagery; (2) incorporate these estimates of NDVI into a probability-based 

statistical model of large (≥ 20 ha) fire risk that simultaneously considered antecedent 

precipitation and the influence other environmental variables; (3) extend this model to 

produce high spatial resolution (i.e., 30 m) and up-to-date maps of dynamic large fire risk 

across multiple jurisdictions; and (4) use these results to explore patterns of fire risk, and 

inform future management activities concerned with mitigating the individual or 

synergistic impacts of fire and non-native plant invasion in Sonoran desert lowlands.  

 

 

 

 



 
 

13 
 

2.2 Methods 

2.2.1 Study area  

The 45,100-km
2
 study area is located in southwestern Arizona, USA, and 

encompasses multiple jurisdictions that include vast areas of Bureau of Land 

Management land, the U.S. Army Yuma Proving Ground (3,360 km
2
), the Barry M. 

Goldwater Air Force Range (7,070 km
2
), as well as the Kofa (2,690 km

2
; KNWR) and 

Cabeza Prieta National Wildlife Refuges (3,468 km
2
) (Fig. 2.1). Mean elevation is 372 m  

(SD = 182 m) and ranges from 26 m in the southwestern lowlands to 1,480 m on the 

KNWR. Lower elevations (< 600 m) on the study area are comprised primarily of the 

Lower Colorado subdivision of the Sonoran desert (Brown 1994). This subdivision is  

among the most arid of the North American deserts and is characterized by sparsely 

vegetated desert shrublands dominated by Creosote bush (Larrea tridentata) and White 

bursage (Ambrosia dumosa) (Phillips and Comus 2000). Areas of higher topographic 

relief fall within the Arizona Upland subdivision of the Sonoran desert, and generally 

support more diverse perennial plant cover (Brown 1994, Phillips and Comus 2000). 

Mean minimum (Dec.) and maximum (July) temperatures range between 5.9 °C (YPG) 

and 39.8 °C (KNWR). Of the long-term (1952-2012) average annual precipitation at the 

YPG (95 mm) and KNWR (162 mm), 58 mm and 92 mm, respectively, falls as winter 

precipitation. The winter of 2004-2005 was particularly wet for this region, recording 

more than 300 percent of the average winter precipitation across the study extent 

(Western Regional Climate Center 2009, www.wrcc.dri.edu). These wet years, coupled 

with historical land use (e.g., agricultural) activities, have facilitated increased invasion 
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by non-native invasive plants (Brooks and Pyke 2001).  

 

2.2.2 Fire occurrence data 

We compiled fire occurrence data from two databases that included natural and human-

caused point ignitions on both federal and non-federal lands (Short 2013, Fire Program 

Analysis, http://www.fpa.nifc.gov/) 

 
Fig. 2.1      The 45,100-km

2  
study area used to model fire risk in the lower Sonoran 

Desert of southwestern Arizona, 1989-2010. Black dots represent large (≥ 20 ha) fire 

ignition points recorded during the period 1989-2010. 
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We used records from the period 1989-2010 that included the latitude and 

longitude of the point of origin, date of ignition, and total area burned. Using a 

Geographic Information System (GIS; ArcGIS v10.1, Esri, Redlands, CA), we extracted 

information on all large (≥ 20 ha) fires that burned during the study period. Twenty 

hectares represents a low-end estimate of large fire size in desert fuels, and is a threshold 

that characteristically separates years when the annual fuel load is sufficient for fire 

spread (Wade Reaves BLM, personal communication). We used the GIS to convert our 

final occurrence dataset to a shapefile and related these data to modeled variables prior to 

statistical analysis. 

 

2.2.3 Landscape variables 

We accounted for the direct effect of fine fuel loads on large fire probability using 

a time-series analysis and derivatives of the NDVI. Yearly maximum NDVI is a measure 

of vegetation greenness derived from satellite imagery, which can be used as a proxy for 

annual fuel accumulations (Turner et al. 2011). The index also provides a spatially and 

temporally dynamic variable for estimating fire risk over extensive areas (Maselli et al. 

2003). To estimate yearly maximum NDVI values for 1988-2010, coincident with our 

fire occurrence database, we obtained Landsat Thematic Mapper 5 scenes for five 

path/rows covering our study area (n = 1114) from the U.S. Geological Survey (USGS) 

Global Visualization Viewer (http://glovis.usgs.gov), and atmospherically corrected all 

images using ENVI software (v4.7, Exelis Visual Information Solutions). Our model 

included variables of the year-of-fire maximum NDVI value as well as the maximum 
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NDVI value of the year prior to the fire year. The lagged year variable accounts for 

senesced biomass that can remain standing as fuel for two subsequent fire seasons.  

Within the GIS, we derived a NDVI-based variable to represent the horizontal 

spatial structure of perennial fuels. Previous research in the Mediterranean region of 

Spain used Landsat TM to relate fire hazard to the horizontal distribution of vegetation 

(Vega-García and Chuvieco 2006). Those results indicated that a locally repeating 

vegetation signal, or in other words homogeneity of fuels, favors the spread of fire. We 

considered this result in the context of far-reaching, homogenous shrublands in the 

Sonoran Desert, which can amass continuous extents of fine fuels and similarly favor the 

spread of fire. Thus, our variable for horizontal fuel structure was the standard deviation 

of maximum NDVI in 1989, representing fuel heterogeneity at the beginning of our 

analysis period.  

Our modeling approach also accounted for multiple terrain variables that directly 

influence fire spread  and indirectly influence vegetation growth and flammability 

(Syphard et al. 2008). Using a digital elevation model obtained from the U.S. Geological 

Survey (http://ned.usgs.gov/) , we derived estimates of elevation, aspect (in degrees), and 

terrain roughness (standard deviation of mean slope; Preisler et al. 2011) within the GIS. 

We used the cosine transformation of aspect to provide an index that ranged between -1 

(180°, south-facing slopes) and 1 (0° or 360°, north-facing slopes).  

Our study area included large expanses of federal and military lands with limited 

or no public road access. Therefore, we used the GIS and US Census Bureau TIGER line 

data (2011; www.census.gov/geo/www/tiger) to estimate a simple road density (in 
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km/km
2
) variable that could serve as a proxy for human accessibility and help to 

differentiate where fires are more or less likely to become large.  

All variables were derived as or converted to raster grids with a 30-m pixel 

resolution. We computed mean or standard deviation focal statistics for each variable 

using a moving window operation in the GIS and a 15×15-pixel neighborhood. We used 

the Raster package in the R statistical environment (v2.15.1; www.r-project.org) to 

extract environmental variables from each point ignition. Prior to implementing our 

statistical model, we standardized and rescaled values of all continuous landscape 

variables to a mean of zero and unit variance. 

 

2.2.4 Statistical and spatial modeling 

We used mixed-effects logistic regression to estimate the probability of a large 

fire, given a natural or human caused ignition event, and conditioned on the seven 

environmental variables (i.e., fixed effects) described above. The binary response in this 

model was an ignition event that resulted in a large fire (‘1’) or that did not grow larger 

than 20 ha (‘0’), resulting in a ‘small’ fire. A random sample of small fires was 

eliminated from our dataset so as to arrive at a more parsimonious 4:1 ratio of small to 

large fires (Brillinger et al. 2003). This sampling scheme increased the ratio of ones to 

zeros without biasing the coefficient estimates (Syphard et al. 2008, Allison 2012). 

We included the immediate winter growing season precipitation anomaly and one 

lag season precipitation anomaly as crossed random effects. By including these variables 

as random effects,  available moisture variability was identified explicitly and the scope 

of inference can be extended to any given year within a 22-year period (Gillies et al. 
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2006). This also allowed us to merge the dynamic precipitation variables with vegetation 

indices (i.e., time-series NDVI) without confounding the two effects, and provide more 

robust estimates of the fixed effect parameters (Faraway 2006). Precipitation anomalies, 

based on 1981-2010 normals, were derived from 800-m gridded data as the percent of 

normal precipitation from October through March (Western Regional Climate Center; 

http://www.wrcc.dri.edu/monitor/WWDT/archive.php). For parsimony, and to account 

for the variance associated with winter precipitation totals, we categorized each random 

effect into five quantiles.    

To account for spatial autocorrelation in the fire occurrence data, we applied an 

unbiased covariance estimator for cluster-correlated data (Williams 2000, Bigler et al. 

2005). Specifically, this ‘sandwich’ estimator allowed for arbitrary dependence structure 

among clustered response data and relaxed assumptions of constant variance in the 

residuals. We used the estimator to compute the variance-covariance matrix of the fixed 

effect parameters.  

We used an information-theoretic approach and multi-model inference to identify 

and contrast explanatory variables within a ‘full’ model that included all seven fixed 

effects and two random effects (Burnham and Anderson 2002). We used maximum 

likelihood to estimate model-averaged regression coefficients for our fixed effects ( ) 

and Akaike’s Information Criterion (AIC), to derive robust estimates that accommodate 

model selection uncertainty (Burnham and Anderson 2002). We computed AIC weights 

to rank and evaluate the weight of evidence in favor of a fixed-effect variable given all 

possible models combinations (Burnham and Anderson 2002). We summed the AIC 

weights across all models in which a given variable (j) occurred and considered a 


~
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cumulative AIC weight (w+(j)) ≥ 0.50 to be strong evidence for a response (i.e., 

probability of a large fire) to that variable (Barbieri and Berger 2004). We used the 

difference in AIC (∆AIC) values to evaluate the performance of the full model against a 

null model with only random effects, and considered a ∆AIC value > 4.0 to be a good 

approximation of the data (Burnham and Anderson 2002). We also used the Hosmer-

Lemeshow statistic to evaluate goodness of fit (Hosmer and Lemeshow 2000). 

To evaluate model classification accuracy, we computed the area under the 

receiver operating characteristic (ROC) curve (Hosmer and Lemeshow 2000). This ROC 

value provided a likelihood-based measure of discrimination between predicted small and 

large fire occurrence. We considered ROC values > 0.70 as indicative of good 

discrimination (Hosmer and Lemeshow 2000). We conducted all of the above analyses 

within the SAS and R Statistical Programming environments (GLIMMIX procedure in 

SAS v9.2, SAS Institute, Cary, North Carolina, USA; and R Statistical Package v2.15.1). 

We used model-averaged regression coefficients and a GIS to implement the full 

model and produce a probabilistic, spatially explicit response surface for two analysis 

years, 1996 and 2005, at a 30-m pixel resolution. We chose these years to illustrate 

dynamic risk in a moderate fine-fuel scenario (1996) and high fine-fuel scenario (2005), 

and we refer to the maps as moderate and high fire risk scenarios, respectively. For 1996, 

we reasoned that fuel loads were affected primarily by the wet winter of 1994 and 

therefore only moderately abundant.  Fine fuels were uncharacteristically abundant across 

the study area in 2005 (see below). 
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2.3 Results 

2.3.1 Fire occurrence 

Our final dataset included 316 ‘small’ fires and 79 ‘large’ fires that burned 

between 1989 and 2010 across the study area. Over these 21 years, a total of 57,000 ha 

burned in large fires. The year 2005 resulted in the greatest number of large fires (n = 36) 

and total area burned (51,700 ha). The average size of a large fire in 2005 was 1,436 ha 

(SD = 4,178), whereas the 21-year average size of a large fire was 712 ha (2,910). A pilot 

analysis of NDVI values preceding a subset of large fires in 2005 indicated a strong 

relationship between annual NDVI values and large fire occurrence (Fig. 2.2). 

 

    

Julian Day 
 

Fig. 2.2 Trends in NDVI from 2000-2006 within the perimeter of two large fire events. The King 

Valley fire (left) burned in Septemer-October 2005, and the Goldwater fire (right) burned in June 

2005.  

 

 

2.3.2 Statistical and spatial modeling 

 Our full model of large fire risk, including all seven environmental variables, was 

71 ∆AIC units lower (i.e., better) than a null model containing only the random effects. 

N
D

V
I 
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The Hosmer-Lemeshow test did not indicate a significant lack of fit (p = 0.25). The ROC 

value for this model was 0.85, indicating good discrimination. Among the environmental 

variables we evaluated, areas with relatively high maximum annual NDVI (w+(j) =1.00), 

low elevation (1.00), and low road density (1.00) were the most strongly associated with 

higher risk of large fire (Table 2.1). Low vegetation (fuel) heterogeneity was a strong 

predictor (0.90), as were south-facing aspects (0.80). The lagged variable of maximum 

NDVI was not as influential as the year-of-fire maximum NDVI, but was still a strong 

predictor (0.70). Topographic roughness also was a strong predictor of large fire 

probability (0.58), but less of a driver than the other environmental variables we 

considered. 

 

 
Table 2.1      Environmental variables (fixed effects) used to estimate large fire risk in the 

lower Sonoran Desert of southwestern Arizona, 1989-2010. 
Cumulative Akaike’s Information Criterion (AIC) weights (w+(j)), model-averaged regression coefficients 

( ), and  unconditional standard errors (SE) were estimated using all possible subsets (n = 128) of the full 

model. 

 

Variable (i) w+(j) 
 

 

SE 

Maximum annual NDVI
 
 1.000 0.047 0.008 

Road density 1.000 -0.974 0.238 

Elevation 1.000 -0.958 0.223 

Fuel heterogeneity 0.903 -0.742 0.425 

Aspect (northness) 0.801 -0.262 0.189 

Lag-1 maximum NDVI
 
 0.704 0.013 0.011 

Topographic roughness 0.579 0.191 0.220 

Intercept -- -4.251 0.621 
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Table 2.2     Best linear unbiased predictors of random effects used to estimate large fire risk in the 

lower Sonoran Desert of southwest Arizona, 1989-2010. 

Levels of the random effects represent the precipitation anomaly in the winter season 

immediately prior to fire season (i) or in the one lag-year winter season (j). 

 

Level  PON
A
 

γi 
B 

   (i) 

   1                                                  

   2 

   3 

   4 

   5 

   (j) 

   1                                                                                           

   2                                           

   3                                         

   4                                       

   5 

 

4.4 - 43.3 

43.3 - 91.7 

91.7 - 163.0 

163.0 - 238.0 

238.0 - 324.0 

 

7.3 - 54.3 

54.3 - 81.2 

81.2 - 141.0 

141.0 - 191.0 

191.0 - 314.0 

 

0.210 

-0.384 

-0.162 

0.595 

-0.201 

 

-0.607 

0.132 

0.579 

0.020 

-0.060 

  
 

A 
Percent of normal precipitation based on 1981-2010 normals 

B 
Best linear unbiased predictor  

 

The random effects ranged from below ten percent to above 300 percent of 

normal winter precipitation (Table 2.2). The best linear unbiased predictors for the 

random effects revealed that precipitation anomaly in the two antecedent seasons had 

quite different effects on the probability of large fire.  Maps of the high (2005; Fig. 2.3) 

and moderate fire risk (1996; Fig. 2.4) scenarios showed very different patterns of large 

fire probability across the study area. In 1996 there were only a few isolated patches of 

very high risk (e.g. > 60 percent) (Fig. 2.4), whereas in 2005 very high risk was much 

more widespread and spatially contiguous (Fig. 2.3).  Considering the entire study area, 

the mean probability of large fire was 0.37 (SD = 0.21) and 0.13 (0.08) in 2005 and 1996, 

respectively.  
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Fig. 2.3    Map-based result for estimate of large fire risk in the lower Sonoran Desert of 

southwestern Arizona, based on 2005 conditions (i.e., high fire risk).  The ignition point 

of large (≥20 ha) fires that burned in 2005 are represented by black dots.  

 

 

2.4 Discussion 

When exposed to fire sizes and frequencies outside of their historical range of 

variability, desert ecosystems with a low resiliency to fire are especially susceptible to an 

alternative, fire-promoting stable state dominated by invasive plant species (D’Antonio et 

 

Large Fire Risk 

 

 Low 

High 
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al. 2009). In hot desert shrublands, resilience to fire and resistance to alternative states 

tends to decrease down an elevation and productivity gradient, where fires have  

 

Fig. 2.4 Map-based result for estimate of large fire risk in the lower 

Sonoran Desert of southwest Arizona, based on 1996 conditions (i.e., 

moderate fire risk). The ignition point of large (≥20 ha) fires that 

burned in 1996 are represented by black dots. 

 

historically been the least frequent (Brooks and Chambers 2011). This predisposes the 

lowest elevations of the Sonoran Desert to rapid environmental change. In the face of 

ongoing climate and land cover changes, our results provide a timely assessment that can 

be used to help deter negative consequences of large fire events in the lower Sonoran 

desert.  

Large Fire Risk 
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Our results show that the important synergism between antecedent precipitation 

and fuel growth can be integrated into models and maps of large fire risk. Since the exact 

effects of precipitation on fuel growth and fire risk can be unpredictable, the random 

effects in our models captured low-level variation in risk over time. Perhaps not 

surprisingly, our results indicated that areas of high fire risk fluctuate over time and are 

strongly influenced by values for annual maximum NDVI. After high rainfall years, 

significant increases in fine fuels that contribute to large fire risk can be comprised 

mostly of non-native biomass or mostly of native biomass (Esque and Schwalbe 2002, 

Brooks and Matchett 2006). Infrequent years of high rainfall can permit native annuals to 

contribute sufficient biomass to carry fire through the interspaces among larger perennial 

plants (Brooks and Minnich 2006). For example, the native annual desert Indian wheat 

(Plantago ovata) fueled a large fire event in 2005 (Webb et al. 2007). Nevertheless, 

because non-native plants played a co-dominant role in fueling the fires of 2005, they 

highlight the importance of monitoring the overall response of grasses and forbs to heavy 

precipitation. Recent invasions by non-native annual plants have introduced novel fuel 

conditions and may act to amplify fire-climate relationships in the Sonoran desert region 

(Esque and Schwalbe 2002). Mediterranean grass, for example, given its tolerance for 

extreme drought, is one of the few annuals capable of proliferating in this harsh and 

changing environment and has the potential to establish more persistent and contiguous 

fuel beds than native annuals (Brooks and Minnich 2006). Similarly, Sahara mustard is 

likely to augment the fine fuel bed when conditions are appropriate (Brooks and Pyke 

2001). This highly invasive forb can grow > 1 m high, > 1 m wide, and is a prolific seed 

producer (Brooks and Minnich 2006).  
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Our results suggested that areas of lower elevation, which generally comprise the 

Lower Colorado subdivision, are at higher risk of large fire than adjacent uplands in the 

study area. These areas are also expected to exhibit lower fire resiliency, and native 

vegetation could be more vulnerable to the effects of repeated fire. Four of the largest 

fires that collectively burned > 50,000 ha in 2005 all burned between elevations of 160 m 

and 600 m. Repeated fire events in low elevation areas has great potential to initiate an 

invasive grass/fire cycle and homogenize vegetation over large areas (D’Antonio and 

Vitousek 1992).  

We found fire risk to be highest in areas of low road density, which we attribute 

primarily to difficult access for fire suppression (Syphard et al. 2008). Fire spread rates 

typically are highest in grass and shrubland fuels and can quickly grow larger in more 

remote regions (Scott and Burgan 2005). Indeed, our study region is comprised of vast 

roadless and designated wilderness areas, as well as military installations where limited 

accessibility is likely to hinder fire suppression. For example, in 2005, the 13,000 ha 

King Valley fire started in an isolated area of the U.S. Army Yuma Proving Ground and 

quickly spread to the adjacent Kofa wilderness. The 11,000 ha Growler Peak fire spread 

mostly in the less frequented areas of the Barry M. Goldwater Range.  

Our results showed that some of the most common communities of native 

perennial vegetation in our study area might be especially prone to large fires. For 

example, risk was highest in more uniform distributions of vegetation across the 

landscape, as indicated by similar maximum NDVI signal. Open desert shrub 

communities of Creosote bush and White bursage extend for thousands of hectares in the 

low bajadas and plains of our study area (Phillips and Comus 2000). These relatively 
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homogenous communities are subject to accumulations of fine fuel in their interspaces 

and may facilitate ignitions becoming large fires.   

We found that south facing aspects, which face the direction of prevailing winds 

out of the south and southwest, facilitated small fires becoming large. The maximum 

effect of weather, topography, and fuel on fire spread occurs when wind direction is 

directly aligned with aspect (Whelan 1995). At the same time, south facing aspects tend 

to be more arid and drier environments for vegetation. Thus, the effects of aspect on 

spreading fire fronts and on fuel characteristics and flammability likely combine to 

influence large fire risk.  

High values for maximum NDVI in the year prior to large fire occurrence 

demonstrated that annual plants might remain available to fuel large fires for at least two 

consecutive fire seasons. This pattern may become even more important with changing 

fuel conditions and composition, for example, given that Mediterranean grass tends to 

decompose more slowly than native grasses and persist longer into subsequent years 

(Brooks and Minnich 2006). The predictive capacity of both year-of-fire and lag-year 

NDVI variables provides a powerful forecasting tool, or ‘early warning system,’ for land 

managers concerned with fire. The availability of high spatial and high temporal 

resolution satellite imagery (e.g., Landsat TM) permits the practical integration of NDVI 

patterns into risk forecasting. 

The combined influence of topographic roughness and elevation indicated that 

fires are more likely to become large in low elevations with somewhat rough terrain. This 

pattern suggests greater risk of large fires in low-lying xeroriparian networks, which are 

micro-topographic features widespread throughout our study area. These ephemeral 
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networks can support a high density of plant species after seasonal pulses of rainfall and 

flood flows, which are capable of sustaining the spread of fire (Stromberg et al. 2008) 

(Fig. 2.4). Changes in xeroriparian plant communities can affect an array of ecosystem 

functions provided by these important microhabitats, and uncharacteristic fire should be 

considered a potential stressor (Stromberg et al. 2008).  

 

2.4.1 Conclusions and management implications 

Our modeling approach and associated map products can be used to monitor and 

mitigate fire risk, and can help land and resource managers to maintain landscape 

resiliency to fire and resistance to extensive invasion by non-native plants. As a means of 

monitoring the risk of large and potentially damaging fire events, we recommend 

applying monitoring efforts to specific locations for risk mitigation. This might mean that 

management is first prioritized based on an a priori understanding of the ecological 

conditions that influence ecosystem resilience and resistance (Brooks and Chambers 

2011). For instance, managers can use modeled habitat of non-native plants to determine 

where fire risk might exacerbate the potential for an invasive/fire cycle (Olsson et al. in 

review). Our results could, in turn, be used to focus mitigation efforts on areas of high 

fire risk, to curb ignition potential or to prioritize fuel treatments on the landscape. Since 

fire is primarily limited by the amount of fuel rather than fire season weather, fuel 

treatments in high risk areas could reduce the vulnerability and increase the fire resilience 

of native Sonoran vegetation communities. 

Managers should also be alert to increased variability in winter precipitation 

ahead of the spring and summer periods, when fires are most likely to ignite (Abatzoglou 
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and Kolden 2011). Effective management of fire should consider the temporal dynamics 

of climate and fuels, as demonstrated by our models of moderate and high risk scenarios. 

Most of the landscape features related to large fire occurrence can be thought of as 

environmentally stable factors that show unchanging geographical variations in fire risk. 

However, distinct differences in inter-annual risk are captured with simple NDVI metrics 

integrated with landscape characteristics. Near-term spatial monitoring tools are manifest 

in seasonal or annual maps of large fire risk. These fire risk maps also can provide 

spatially explicit, monitoring locations for proximate land management jurisdictions. 

Risk that transmits across jurisdictional boundaries can introduce ex situ risk, and should 

encourage managers to coordinate their fire and fuel management objectives. Over the 

long-term, modeling results should be reevaluated to incorporate more years of 

comprehensive fire data and maintain the scope of inference for up-to-date management 

(Brooks and Matchett 2006).  As desert fire regimes are threatened by ongoing land cover 

and climate changes, temporal dynamics will become an increasingly important factor in 

fire planning and management.    
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3.0 Analyzing fire likelihood with landscape-scale models and maps of fire 

connectivity in the lower Sonoran Desert of southwestern Arizona 

3.1 Introduction 

 Landscape-scale analyses of fire risk are critical when anomalously large, stand-

replacing wildfires are destabilizing whole ecosystems (Pausas and Keeley 2009). 

Strategic planning for ecosystem resilience to large fires requires an a priori 

understanding of where on the landscape fire is likely to burn (fire likelihood) and with 

what consequence to valued resources (fire impacts) (Miller and Ager 2013). Indeed, 

estimating fire likelihood and impacts at scales relevant to ecosystems may be the most 

challenging part of fully communicating fire risk for management (Ager et al. 2012). In 

this chapter we present a circuit theoretic model of fire connectivity as a novel approach 

to estimate fire likelihood, which we use to explore fire impacts in support of strategic 

planning across large landscapes.  

 As a contagious process, the spatial context of fire is extremely important in 

predicting whether a particular location is likely to burn (Miller and Ager 2013). A 

network, which is a collection of nodes and edges interacting as a system, provides a 

means to explore the role of spatial context in influencing contagion (Proulx et al. 2005). 

Mathematical approaches to analyze the behavior of networks, such as graph and circuit 

theory, have been widely used in ecology to measure landscape connectivity (e.g., Urban 

and Keitt 2001, McRae et al. 2008). Landscape connectivity is “the degree to which the 

landscape facilitates or impedes movement (of a process) among resource patches” 

(Taylor et al. 1993). Landscape network measures typically emphasize how routes 

between resource patches, and the topological properties of patches, contribute to overall 



 
 

31 
 

connectivity (Calabrese and Fagan 2004, Rayfield et al. 2011). In this paper we shift the 

emphasis to overall landscape conductance, i.e. the ability of the landscape to facilitate 

the spread of fire.  

 Circuit theory provides a rigorous mathematical framework that has greatly 

improved understanding of how landscape characteristics influence the flow of ecological 

processes across large landscapes (McRae and Beier 2007, McRae et al. 2008). 

Connectivity models based on circuit theory, or ‘current flow’ models, are concerned 

with the blind, undirected movement of an entity (e.g., an animal, fire) across an 

underlying conductive surface (i.e., a network that conducts current) (Carroll et al. 2011). 

In contrast to deterministic movement, in which fire would take the ‘best’ route to a 

predetermined target, fire moving through a circuit network acts like random walkers that 

have no knowledge of the landscape beyond their immediate neighbors (Borgatti 2005). 

The resultant circuit-theoretic predictions provide concrete ecological interpretations, 

which can be used to identify landscape features through which fire has a high likelihood 

of passing (McRae et al. 2008). Current flow models can be run easily and efficiently on 

very large landscapes (e.g. > 1 million cells) and are robust to changing scale (McRae et 

al. 2008). 

 Understanding the spatiotemporal dynamics of fire likelihood is critical in the 

desert shrublands of North America, where fire frequency and size have historically been 

low (Brooks and Pyke 2001). Increased fire activity due to global climate and land cover 

changes has potential to catalyze the conversion of native shrublands into grasslands, 

threatening the loss of habitat for sensitive animal species and alteration to surface 

hydrology (Brooks and Chambers 2011, Balch et al. 2013). While fire at any intensity 
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level is of concern, the impact of fire to ecological resources is influenced by the 

heterogeneity inherent in deserts, based on dominant patterns of net primary productivity, 

vegetation types, precipitation, or other ecological gradients (Crimmins and Comrie 

2004, Brooks and Matchett 2006, Balch et al. 2013). Fire impacts are relative to the 

amount of fire that an area can withstand before new alternative states establish, known 

as fire resiliency (Brooks and Chambers 2011). The spatiotemporal relationships between 

fire likelihood and fire impacts can be used to explore wildfire exposure across ecological 

resources and management jurisdictions (Ager et al. 2012).  

 The objectives of our research were to model and map fire likelihood and fire 

impacts across much of the lower Sonoran Desert in southwestern Arizona, and to 

demonstrate their application in a spatial management framework to advance strategic 

wildland fire planning.  Specifically, we sought to: (1) parameterize a conductance 

surface for fire spread accounting for environmental factors and component processes 

that contribute to large fire occurrence, and that accurately characterize fire spread 

probabilities under high risk conditions; (2) use the conductance surface to produce a 

current flow model of fire likelihood, and translate categorized outputs to a map of high 

fire likelihood; (3) produce a map of predicted fire impacts based on knowledge of fire 

resiliency in the lower Sonoran Desert; and (4) demonstrate how estimates of fire 

likelihood can be coupled with expected fire impact in a spatial management framework.  
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3.2 Methods 

3.2.1 Modeling fire likelihood as current flow 

The underlying networks in current flow models are analogous to electrical 

circuits and are defined by a graph structure of interconnected nodes and resistors that 

conduct current  (McRae et al. 2008). The strength of a resistor (i.e., its resistance, or 

inversely, conductance) reflects the probability of movement between its incident nodes, 

thereby setting up the model as a probabilistic analysis of flow (Carroll et al. 2011). 

Whole contiguous landscapes can be modeled as circuit networks by representing 

landscape grid cells as nodes connected by resistors (Rayfield et al. 2011). When an 

ecological flow originates from a source node and randomly moves through the network 

until it reaches a target node, circuit theory equates the likelihood of flow passing through 

any intermediate node to the current density. In the following paragraph, we describe 

how these general current flow and landscape connectivity methods can be applied to 

estimates of fire likelihood that account for fire spread.  

 Models built from historical fire data can be used to create continuous maps of 

large fire occurrence, or risk (i.e., probability of an ignition becoming larger than some 

size threshold; Preisler & Westerling, 2007). While this method accounts for large fire 

originating from an isolated location, it does not account for spread dynamics, for 

example, to adjacent grid cells in a raster, and is therefore limited in its capacity to 

predict whether a particular location is going to burn (Thompson and Calkin 2011). A 

current flow model treats the risk of large fire as one parameter in the conductance of the 

landscape to fire spread. Additional spatial controls on fire spread that are not accounted 

for in a risk model, such as the local variability of wind direction and speed, can be 
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incorporated as additional conductance parameters. Therefore, conductance is 

proportional to the probability of the landscape sustaining a large fire and reflects 

additional costs to fire spread. As the landscape is now an interconnected network, the 

current flow model accounts for spread to adjacent cells.  Conductance can be defined 

according to and tested for the region under study, so as to reflect the regional importance 

of spatial controls on fire spread.  

 

3.2.2 Study area 

 The 45,100-km
2 

study area is located in southwestern Arizona, USA (Fig. 3.1). 

The study area includes the U.S. Army Yuma Proving Ground (YPG; 3,360 km
2
) and the 

Barry M. Goldwater Air Force Range (BMGR; 7,070 km
2
), the two largest military 

installations in Arizona, as well as the Kofa (KNWR; 2,690 km
2
) and the Cabeza Prieta 

National Wildlife Refuges (CPNWR; 3,468 km
2
), two of the largest U.S. Fish and 

Wildlife Service National Wildlife Refuges in the continental United States, and the 

Organ Pipe Cactus (OPCNM; 1,335 km
2
) and Sonoran Desert National Monuments 

(SDNM; 1,971 km
2
). The study area encompasses multiple land-management 

jurisdictions, important levels of ecosystem heterogeneity, and contiguous expanses of 

native habitats affected by large-scale fire and non-native plant invasion. 

 The mean elevation of the study area is 372 m, and ranges from < 100 m on the 

western lowlands of the BMGR to nearly 1500 m on the KNWR. Numerous small 

mountain ranges are separated by expansive desert valleys, plains and bajadas that typify 

the Lower Colorado subdivision of the Sonoran Desert (Brown 1994). Portions of the  
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Arizona Upland subdivision of the Sonoran Desert that fall within the study area 

generally support more diverse perennial plant cover (Phillips and Comus 2000). Mean 

minimum (Dec.) and maximum (July) temperatures range between 5.9 °C (YPG) and 

39.8 °C (KNWR). Of the long-term (1952-2012) average annual precipitation at the YPG  

(95 mm) and KNWR (162 mm), 58 mm and 92 mm, respectively, falls as winter 

precipitation.  The winter of 2004-2005 was particularly wet for this period and region, 

recording more than 300 percent of the average winter precipitation across the study 

extent (Western Regional Climate Center 2009, www.wrcc.dri.edu). These wet years, 

coupled with historical land use (e.g., agricultural) activities, have facilitated increased 

invasion by non-native invasive plants (Brooks and Pyke 2001). In addition, more than 

Fig. 3.1    The 45,100-km
2  

study area used to model fire 

likelihood in the lower Sonoran Desert of southwestern Arizona. 
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70,000 ha have burned since 2000, with most (> 75%) of this area burning in 2005. Long 

fire return intervals are characteristic of the entire study area and fire at any level is a 

concern to native plant species (Brooks and Chambers 2011). 

 

3.2.3 Fire likelihood in the lower Sonoran Desert 

Here we derive a current flow model of fire likelihood for the study area. To map 

fire likelihood based on high risk fuel conditions, we first used a spatial fire occurrence 

database from 1989-2010 and mixed-effects logistic regression to estimate the probability 

(i.e., risk) of a large (≥ 20 ha) fire across the study area (see Chapter 2). We used a 

Geographic Information System (GIS; ArcGIS v10.1, ESRI, Redlands, CA) to map the 

modeled predictions across a 450 m (20 ha) gridded landscape of the study area. In this 

model, we incorporated variables derived from the Normalized Difference Vegetation 

Index (NDVI) and other landscape variables to estimate annual fire risk. Increased fire 

activity in the Sonoran Desert depends predominantly on increased production of annual 

plants (Rogers and Vint 1987). We produced a high fire risk map using maximum NDVI 

estimates from a year with very high fuel loads (2005). This fire risk map represented one 

of the parameters used to estimate conductance to fire spread.  

Next, we accounted for the interaction between wind direction and topography as 

an additional conductance parameter. The maximum effect of weather, topography and 

fuel on fire spread occurs when wind direction is directly aligned with aspect (Whelan 

1995). When fuel loads are sufficient to carry fire in the lower Sonoran Desert, fuel 

moisture does not seem to significantly influence area burned (Crimmins and Comrie 

2004). Rather, favorable weather for fire brings dry hot winds that interact with 
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topographic features and will strongly influence burn patterns. We used the program 

WindNinja (v. 2.1.3; Forthofer et al. 2009) to simulate the effect of terrain on wind flow 

across the study extent. The program requires an initial domain-averaged wind speed and 

direction, and outputs the spatial variation based on topography and dominant vegetation. 

To determine the initial inputs, we generated long-term (1986-2009) monthly averaged 

wind roses from the Western Regional Climate Center (www.wrcc.dri.edu). For the most 

active fire months in our study region (April-September), the dominant wind direction 

was south-southwest and an upper average wind speed was 21 km/hour. We ran 

simulations for both 180° (south) and 225° (southwest) winds at 21 km/hour. We 

combined the wind direction outputs and an aspect raster in the GIS to translate the 

alignment of wind and aspect into a categorized conductance to fire spread (Fig. 3.2). 

This formed the second parameter used to estimate conductance.  The final conductance 

was an additive combination of fire risk and wind influences.  

The current flow model was implemented in the Circuitscape environment, an 

open source software that uses circuit theory to predict connectivity across large 

landscapes (McRae and Shah 2011). To get at overall landscape conductance, we used a 

‘wall-to-wall’ approach by running the model with one whole edge of the study extent 

assigned as the source and the opposite edge as the target (Anderson et al. 2012) . We 

repeated this method for each of four source-target pairings (north-south, south-north, 

east-west, west-east) and each of two conductance scenarios (180° and 225° winds), for a 

total of eight model runs.  We summed the results of these model runs, and the combined 

output was a high risk scenario of fire likelihood. Hereafter, we refer to the 80
th

 percentile 

of fire likelihood as relatively high fire likelihood (HFL). 
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Fig. 3.2    Alignment of wind direction and aspect used as a parameter in estimating the landscape 

conductance to fire spread. Larger, red arrows represent lower cost to fire spread and smaller, blue 

arrows represent higher cost to fire spread, for 180 degree winds (left) and 225 degree winds (right). 

 

  

To assess the accuracy of our high likelihood estimates, we evaluated contiguous 

areas of HFL against historical fire perimeter data. We used fire perimeters that were 

delineated as part of the Monitoring Trends in Burn Severity (MTBS) project 

(www.mtbs.gov), which maps fires that burned greater than 1000 acres since 1984. The 

measure of association used was the kappa coefficient,  

κ = 
   

   
 , 

where the observed proportion, P,  represents the proportion of the historical fire 

perimeter that was estimated as HFL, and the expected proportion, E , represents a 

random proportion of association (Morais 2001). The value of kappa ranges between -1, 
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which represents perfect disagreement between predicted HFL and historical burned area, 

and 1, which represents perfect agreement. Values close to zero indicate that the 

agreement is no better than would be expected by chance.  We used the R statistical 

environment (v2.15.1; www.r-project.org) to calculate values of P and E for each fire 

perimeter. To calculate E, we generated 1000 random distributions of the historical fire 

perimeter data, and calculated the mean value of E for each perimeter.  

 

3.2.4 Fire impacts in the lower Sonoran Desert 

We demonstrated how HFL can be integrated into a spatial management 

framework with information on how fire might impact resources that are highly valued 

by society. We first categorized the degree to which future fire exposure is expected to 

impact native plant community composition, taking into account major vegetation 

associations and impact of repeated fire. This approach relied on the notion that higher 

productivity in functionally diverse native plants increases the capacity of native 

communities to compete with invasives and recover after fire (Wisdom and Chambers 

2009). Thus, repeated fire may differentially impact plant communities based on their 

capacity for fire resiliency (Brooks and Chambers 2011). Differences in plant 

productivity were broadly grouped into the two major subdivisions of our study area – the 

Lower Colorado subdivision and the Arizona Upland subdivision. While these 

subdivisions were created solely in reference to the vegetation, they parallel other 

ecological gradients that influence fire resiliency, such as available precipitation and 

nutrient resources (Shreve and Wiggins 1964, Comrie and Broyles 2002). The Arizona 

Upland subdivision harbors higher plant productivity and diversity and thus was assumed 
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to display higher fire resiliency. We used the MTBS fire perimeters to determine whether 

a specific location had burned in an extent greater than 405 ha (1000 ac) between 1984 

and 2010. We merged these two datasets in the GIS, and the resultant data layer 

comprised three relative categories of fire impact – moderate, high and very high.  

Moderate fire impact was assigned to unburned areas of the Arizona Upland subdivision, 

high fire impact was assigned to unburned areas of the Lower Colorado subdivision or 

burned areas of the Arizona Upland subdivision, and very high fire impact was assigned 

to burned areas of the Lower Colorado subdivision. 

We identified three important ecological attributes in our study area that are 

directly at risk of large fire and whose loss or degradation would negatively affect other 

ecosystem processes, namely wilderness areas, ephemeral and intermittent streams, and 

habitats for sensitive species of wildlife, specifically the endangered Sonoran pronghorn 

(Antilocapra Americana sonoriensis) . Designated wilderness provides important, largely 

undisturbed habitat for wildlife and plant species in the region. We acquired GIS data for 

all wilderness areas in the study area from a public database (www.wilderness.net). 

Ephemeral and intermittent streams support rich plant diversity during episodic water 

pulses (Stromberg et al. 2008). Changes to their associated plant communities would 

disrupt important microhabitats and wildlife corridors, as well as hydrologic connectivity 

(Levick et al. 2008). We acquired GIS data for major ephemeral washes from The Nature 

Conservancy’s Arizona Freshwater Assessment (www.azconservation.org). Fire effects 

on plant community composition and ecosystem processes are also a primary concern to 

habitat quality for wildlife species with narrow habitat requirements. We acquired a 

shapefile of the current Sonoran pronghorn range from the BLM 
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(www.blm.gov/az/st/en/prog/planning/son_des/docs/lsf-sdnm-gis.html) and potential 

Sonoran pronghorn habitat data from the Arizona Game and Fish Department (O’Brien et 

al. 2005). The current occupied range for the Sonoran pronghorn is approximately 4,595 

km
2 

within the southern extent of our study area, and 18,870 km
2  

of our study area has 

been identified as additional suitable habitat (O’Brien et al. 2005). We focused our 

analysis on three case studies within the study area – the Kofa wilderness, the Rainbow 

Valley, and suitable habitat for the Sonoran pronghorn – to offer examples for managers 

concerned with fire. 

 

3.3 Results 

3.3.1 Fire likelihood 

The wind and terrain influences on fire spread showed strong patterns that were 

congruent with the topography of our study area. Low-lying bajadas that are 

characteristic of the lower Sonoran Desert are intersected throughout by ridgelines 

oriented in a predominant southeast-northwest direction. For 225 degree winds, areas 

most conducive to fire spread were consistently on the immediate windward side of 

ridgelines, whereas areas least conducive were on the leeward side. Intermediate areas 

were typically found in the valleys between ridgelines. The influence of 180 degree 

winds showed similar patterns, but in general, areas on the windward side of ridgelines 

were less conducive to fire spread.  

 For the current flow model, the average value of kappa was κ = 0.53 (n=16), 

indicating moderate agreement between what actually burned and our estimates of high 

fire likelihood (Table 3.1; Monserud and Leemans 1992).  The map output showed 
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current flow across the study area, representing fire likelihood under high risk conditions 

(Fig. 3.3). 19% of the study area was estimated as HFL, and of this area, 7% was 

estimated to have very high fire impact, 85% was estimated to have high impact, and 8% 

 

Table 3.1     Values of the kappa statistic (κ) used to evaluate the level of agreement between  

historical fire perimeters and estimated High Fire Likelihood (HFL). 

Values range from -1 (perfect disagreement) to 1 (perfect agreement). 

 

Fire Name              Fire Size (ha) kappa (κ) 

King Valley 

Eagle Eye 

Bighorn 

Bobby 

2000 

Unnamed 

Camino 

Growler Peak 

Theba 

Goldwater 

Sand Tank 

Tracks 

Crater 

Home 

Getting 

Montezuma 

 

13,836 

932 

2,377 

2,038 

918 

3,860 

463 

11,000 

2,350 

26,365 

4,908 

2,282 

5,447 

594 

572 

2,682 

 

0.96 

0.83 

0.62 

0.64 

0.56 

-0.07 

1.00 

0.99 

0.41 

0.48 

0.43 

-0.21 

0.93 

-0.22 

0.60 

0.49 

   

 Total: 80,624                                      Mean: 0.53 

   

was estimated to have moderate impact. The patterns of high current flow reflected those 

of high fire risk but were generally more spatially contiguous. Flow tended to be 

concentrated over larger areas where wind direction would most facilitate the spread of 

fire. In contrast, flow tended to channel through or avoid areas where wind moves 

downslope.  
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Fig. 3.3    (a) Current flow map of fire likelihood across the lower Sonoran Desert of southwestern 

Arizona. Warmer colors indicate relatively high current density, or higher likelihood of fire, and colder 

colors indicate relatively low current density, or lower likelihood of fire. (b) Detail of the 2005 King Valley 

Fire. (c) Detail of the Growler Peak, Crater, and Goldwater fires, all large fires that burned in 2005.  
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3.3.2 Fire impact case studies  
 

1. Wilderness  

HFL was estimated in 36,530 ha (17.5%) of the Kofa wilderness, with 27%, 69% 

and 4% of HFL predicted to have very high, high and moderate fire impacts, respectively 

(Fig. 3.4). The 27% estimated to have very high impact covered one contiguous patch in 

the Lower Colorado subdivision, which previously burned in the 2005 King Valley fire. 

The 69% of HFL estimated to have high impact was also within the Lower Colorado 

subdivision and primarily extended from the King Valley burn perimeter, but has not 

burned in a large fire since 1984. Smaller patches of moderate impact HFL were 

estimated in areas of higher topographic relief in the wilderness, where in some areas it 

connected with patches of high impact HFL in the adjacent lowlands. The prevailing 

pathway of HFL crossed the boundary with the YPG on the south, and passed through 

KNWR non-wilderness further north. 

2. Ephemeral and Intermittent Streams 

 Of roughly 90,000 ha that comprise the Rainbow Valley, 48,000 ha (53%) were 

estimated as HFL and were concentrated on the northeastern side of the main Waterman 

Wash (Fig. 3.5). Of this, 91% was predicted to have high fire impact and occurred mostly 

as one spatially contiguous patch in the Lower Colorado subdivision. Nine percent was 

estimated to have moderate fire impact, and these areas extended from HFL in the valley 

lowlands to upland headwaters in the Sierra Estrella and Maricopa mountains. Three 

major pathways of HFL crossed over the Waterman Wash, including one pathway that 

covered the majority of a critical habitat linkage (Beier et al. 2008). The habitat linkage 
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delineates a total of 12,107 ha across the valley, of which 9,777 ha (81 %) was estimated 

as HFL. 

              

Fig. 3.4    Fire likelihood and fire impacts in the Kofa wilderness. (a) Location of the Kofa wilderness 

within the study area. The wilderness encompasses a total of 208,900 ha within the KNWR and ranges 

between 205 m and 1,480 m elevation.  The entire wilderness is managed by the US Fish and Wildlife 

Service, and is bordered on the south and east by the YPG and on the north, west and east by Bureau of 

Land Management (BLM) lands. (b) Estimated High Fire Likelihood (HFL) categorized by expected fire 

impact in the Kofa Wilderness. HFL expected to have very high impact occurs in the burn perimeter of the 

2005 King Valley fire, and high impact HFL extends beyond the burn perimeter and within the Lower 

Colorado subdivision of the Sonoran Desert.   

 

3. Sonoran pronghorn habitat 

HFL occurred in 1,165 km
2
 (25%) of the currently occupied range of the Sonoran 

pronghorn (Fig. 3.6). Of this area, 13%, 85%, and 2% of HFL was estimated to have very 

high, high and moderate fire effects, respectively. HFL occurred in 3,342 km
2 

(18%)
 
of  

the additional suitable habitat that has been identified across the study area. These areas 

were primarily in lower elevations to the north and south of the Gila River corridor, as 

(a) 

(b) 

Very high impact 
High impact 
Moderate impact 

Kofa wilderness 
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well as immediately west of the currently occupied range. Some large contiguous extents 

of additional suitable habitat that were not delineated as HFL were on La Posa Plain and 

extending up to the Kofa Mountains, the Castle Dome Plain extending up to the foothills 

of the Castle Dome Mountains, and the Lechuguilla Desert. 

 

 

                

 Fig. 3.5    Fire likelihood and fire impacts in the Rainbow Valley. (a) Location of the Rainbow Valley 

within the study area. (b) Estimated High Fire Likelihood (HFL) categorized by expected fire impact in the 

Rainbow Valley. The valley lies between two prominent mountain ranges in the study area, the Sierra 

Estrellas and the Maricopas, which create numerous small washes converging into the larger Waterman 

Wash. Portions of the valley have been systematically identified as a critical habitat linkage (Beier et al. 

2008). Fire exposure across the valley would be expected to have high impact on the system of ephemeral 

and intermittent streams that provide corridors for wildlife dispersal. 

(a) 

(b) 

Fire impact 

Very high 

Moderate 
High 

Ephemeral  

Streams 

Wildlife Linkage 
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Fig. 3.6    Estimated High Fire Likelihood (HFL) within the current range and 

potential habitat for the endangered Sonoran pronghorn. Large areas of potential 

habitat not delineated as HFL may offer potential sites for translocations.  

 

 

 

 

 

3.4 Discussion 

 The management of ecosystems will benefit from fire likelihood analyses that 

account for the local influences on large fire risk, as well as the movement of fire over 

larger areas. Leveraging models of the local influences on fire occurrence (i.e., using a 
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GLMM and wind simulations), we have applied a practical and intuitive landscape 

connectivity model to account for fire spread. Typically, the applications of landscape 

connectivity encapsulate questions about which patches should be connected to maintain 

landscape connectedness for an organism. In this context, explorations of fire 

connectedness may seem less intuitive. Nevertheless, emergent approaches to estimate 

overall landscape conductance as a function of connectivity capture the essence of 

landscape-level fire risk analyses (Miller and Ager 2013). Our approach allows large 

landscapes to be efficiently analyzed, without neglecting the contagious property of fire 

or assuming where fire starts or stops.  

Fire connectivity models embedded in a fire exposure analysis offer unique 

flexibility and efficiency in meeting management objectives. For instance, landscape-

scale estimates of fire likelihood for strategic planning do not need to rely on fire 

behavior models as they have until now (Thompson and Calkin 2011, Miller and Ager 

2013).  The use of fire behavior models to simulate an array of fire weather and fuel 

complex scenarios has the potential to propagate errors, often stemming from a model 

under-prediction bias (Cruz and Alexander 2010).  In the lower Sonoran Desert, distinct 

differences in inter-annual fuel loads that contribute to fire likelihood are a main concern 

to fire managers. Estimates of fire likelihood using fire behavior models will rely on 

custom fuel models, which are likely to be unsuccessful if they are not calibrated against 

field observations (Cruz and Alexander 2010). Our approach relied on the application of 

robust fire risk estimates that accounted for annual fuel loads (see chapter 2). Subsequent 

translation of our connectivity model into a spatial management framework will aid in 

strategic planning across the lower Sonoran Desert landscape.  
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3.4.1 Applying fire connectivity models to risk assessment and management 

Disruptions to fire regimes that influence the conversion of native desert to non-

native invasive grasslands have ecosystem effects that transcend individual jurisdictions 

(Chambers et al. 2009). Therefore, the need exists for all landowners to work together to 

strategically address fire management. In the face of global climate and land cover 

changes, wilderness areas will provide important strongholds for watershed protection, 

species preservation and habitat conservation, and the role of fire within wilderness 

should be carefully considered (Miller et al. 2011). Due to the lack of accessibility and 

high rates of spread, fires that enter wilderness areas are more likely to escape 

suppression efforts and grow large, when fuel loads are sufficient (see chapter 2). The 

introduction of human caused ignitions when lightning is absent, as well as the increase 

of non-native fuels, increases the potential for large fires in wilderness areas (Miller et al. 

2011). Our results provide an example of how human caused ignitions proximate to 

wilderness can be strategically mitigated in order to deter the negative impacts of 

wilderness fire. Fuels treatments can also be strategically placed to deter fire spread into 

wilderness. Future fire within the Kofa wilderness, at a high to very high cost to 

wilderness resources, is most likely to originate from an in-holding of non-wilderness, or 

from the adjacent YPG. This provides the YPG and KNWR spatially explicit locations of 

where to coordinate fire management, and specifically where to closely monitor human 

activities that contribute to increased ignitions.  

 Our results also demonstrated a case where high fire likelihood threatens a large 

network of ephemeral washes. Repeat photography from the 13,000 ha King Valley burn 

site on KNWR provides comparable prospects for long term recovery of xeroriparian 
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networks after fire (Webb et al. 2010).  Even without repeated disturbance, it may take 

hundreds to thousands of years for mature xeroriparian plant communities to reestablish, 

thus disrupting continuous and diverse chains of vegetation that dispersing wildlife rely 

on for food and cover  (Levick et al. 2008). These dispersal mechanisms in the Rainbow 

Valley provide important wildlife connectivity between the Sierra Estrella and Maricopa 

Mountains, where proposed urban developments already threaten connectivity, and 

would likely increase human-caused ignitions at the wildland urban interface (Beier et al. 

2008). The BLM is the major federal landowner within the valley and on either side of 

the habitat linkage, and therefore has an interest in preventing fires spreading from 

adjacent state and private lands. A memorandum of understanding between BLM and 

local jurisdictions, in which the BLM provides wildland firefighting capacity, and local 

land use plans take fire prevention measures, would be one option to mitigate fire 

likelihood in the Rainbow Valley.  

 Our map-based results can aid in the management of critical habitat for sensitive 

and endangered animal species, including the Sonoran pronghorn. Reproduction and 

resource use by the Sonoran pronghorn are closely tied to precipitation and access to 

quality forage, and severe drought conditions in 2001-2002 brought the subspecies 

population down to only 21 individuals (Hervert et al. 2005). Because the population is 

isolated in their current habitat, the impact of drought is exacerbated by the fact that they 

cannot pass barriers to find better forage and water (McCullough et al. 2005). Although 

the impacts of repeated fire to long term forage quality are not known, Sonoran 

pronghorn currently rely on a diversity of plant species that provide sources of water 

when grasses and forbs become desiccated (Hervert et al. 2005). Fire threatens to 
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eliminate this important patch structure of vegetation. Given the vulnerability of the 

current isolated population, quantitative assessments of HFL and fire impacts, coupled 

with new models of suitable habitat, could help inform future translocation efforts 

(O’Brien et al. 2005).  

 

3.4.2 Model uncertainties and limitations 

 Our fire likelihood model was derived at relatively coarse spatial and temporal 

scales, and incorporates simplistic assumptions about many fine-scale processes. For 

example, the propagation of fire from one cell to another is not based on fire behavior, 

but rather it is based partially on probabilistic estimates of an ignition event becoming a 

large fire. Therefore, complex fire behavior or very unusual weather events that can play 

out over a single fire event may not be captured in a connectivity model. For example, by 

excluding a few of the smaller areas burned that did not show agreement with our 

estimates, our model actually showed good agreement with historical data. In spite of its 

inability to capture fine-scale processes or features, a landscape-level connectivity model 

can identify large areas of fire likelihood that will likely account for most of the area 

burned on a landscape. 

 A related source of uncertainty comes from assigning relative conductance values 

to an inherently heterogeneous process. Conductance to fire spread can potentially take 

on a range of values at any one location. The methods we have described rely on merging 

spatial landscape features with wind scenarios to come up with a single landscape 

conductance value at each grid cell. Specifying how these two parameters interact to 

influence fire spread, as well as the number of weather scenarios to include, remain rather 
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subjective in our methodology. Indeed, the nearly infinite number of possible interactions 

between landscape features and weather sequences has been a major challenge to 

characterizing fire likelihood for large heterogeneous landscapes (Finney 2005). We 

believe that parameterizations of conductance values for modeling fire connectivity will 

be an active area of future research. 

 

3.4.3 Next steps for estimating fire connectivity 

 Recent advances in approaches to estimating landscape connectivity have great 

potential for improving the realism and application of fire modeling efforts. The concept 

of betweenness centrality is one such example (Freeman 1979). Centrality can be 

described as the importance of a node to facilitating the movement of flow across a 

network. The essence of a betweenness centrality metric is to evaluate the amount of flow 

in the network that would not occur if a node were not present (Borgatti and Everett 

2006). It is measured by determining the number of times a node is traversed when 

considering paths between all pairwise combinations of nodes. Current flow models, such 

as ours, can be integrated into betweenness centrality analyses using available computer 

programs, in order to present a more complete picture of node importance (Carroll et al. 

2011).  

 We also envision integrating an algorithm of minimum fire travel time into a 

betweenness centrality analysis. Specifically, the Minimum Travel Time (MTT) approach 

efficiently solves for simulated fire arrival time across a landscape (Finney 2002).  

Recent advances in likelihood analyses use MTT to simulate thousands of fires on the 

landscape and estimate burn probabilities for every landscape grid cell (Miller and Ager 
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2013). In much the same way that computer programs currently integrate least cost path 

algorithms into centrality analysis, MTT could also be used to estimate node centrality 

(Carroll et al. 2011).  One variant of the betweenness metric sets a limit on the distance 

between pairwise nodes, so that unrealistically long distances do not contribute to a 

node’s betweenness (Borgatti and Everett 2006). This has been proposed to reduce 

computational requirements and to more accurately model processes with limited ranges, 

such as fire spread (Carroll et al. 2011). Considering the complex topology of fuel 

patterns, weather sequences, and fire spread, ‘bounded distance’ betweenness centrality 

based on MTT could provide similar but more robust information than burn probabilities. 

Since it is based on fire behavior simulations, this connectivity method would more easily 

integrate fireline intensity to determine fire effects, and the effect of spotting, accounting 

for accelerated growth from multiple locations (Finney et al. 2011). 

 As ongoing changes in climate and land cover are poised to alter the fire regime 

across a broad scale, land management in the lower Sonoran Desert must address 

likelihood of the high consequence of fire. Conservation planning at both the local and 

regional scale can be done with respect to efficient, connectivity-based estimates of fire 

likelihood and impacts. We have presented a novel approach to modeling fire likelihood 

that we believe will have applications in other fire-prone ecosystems and will be flexible 

in meeting management objectives across broad scales and multiple jurisdictions.  
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4.0 Conclusions 

As in other desert ecosystems, fire management objectives in the lower Sonoran 

Desert need to focus on maintaining or increasing fire resilience, prior to the 

establishment of an invasive plant/fire cycle (Brooks and Chambers 2011). The issue of 

fire has only recently begun to enter land management plans in the region, including 

plans for the YPG and BLM (Bureau of Land Management 2012, US Army Garrison 

Yuma Proving Ground 2012). Contemporaneous integration of the most appropriate fire 

risk science and technology would contribute to more effective policy from the 

offset (Daniels and Walker 2001). This thesis has demonstrated how models and maps of 

large fire risk and fire likelihood can help to promote ecological fire resilience. However, 

it’s equally important to consider the resiliency of management policy in the region, or 

the institutional capacity to respond to and prevent negative fire consequences. Resilience 

would be maintained when effective fire management is integrated and prioritized within 

broader ecosystem management goals. 

As demonstrated by the first chapter, the use of an NDVI metric in an early 

warning system for managers would be an appropriate first step to integrate technology 

into fire management. NDVI metrics can be derived from high spatial and temporal 

resolution imagery and made available through GIS servers across the region. This 

provides a low cost, implementable action to serve as a first step in raising fire risk 

consciousness. 

The contributing factors to an invasive plant/fire cycle are all present in the lower 

Sonoran Desert, including established non-native invasives, large wildfire potential, and 

land use and climate changes that enhance invasion potential (Esque and Schwalbe 
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2002). Therefore, cues from other desert ecosystems and recent large fire events are 

sufficient evidence to continue to raise the issue of fire as a problem. Investing in and 

building on incremental changes, such as the integration of NDVI into risk forecasting, 

would begin to make room for resilient fire management.  Eventually, longer term 

strategic planning that integrates estimates of fire likelihood, might have an important 

niche in ecosystem management policy. Incremental integration of fire risk science and 

technology could cumulatively build the fire resiliency of the lower Sonoran Desert. 
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