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a  b  s  t  r  a  c  t

Remotely  sensed  datasets  are  increasingly  being  used  to model  habitat  suitability  for  a  variety  of  taxa.
We review  habitat  suitability  models  (HSMs)  developed  for both  plants  and  animals  that  include  remote
sensing  predictor  variables  to determine  how  these  variables  could  affect  model  projections.  For  models
focused  on  plant  species  habitat,  we find  several  instances  of  unintentional  bias  in HSMs  of  vegetation
due  to  the  inclusion  of  remote  sensing  variables.  Notably,  studies  that include  continuous  remote  sensing
variables  could  be  inadvertently  mapping  actual  species  distribution  instead  of  potential  habitat  due  to
unique  spectral  or  temporal  characteristics  of  the  target  species.  Additionally,  HSMs including  categorical
classifications  are  rarely  explicit  about  assumptions  of habitat  suitability  related  to  land  cover,  which
could  lead  to  unintended  exclusion  of  potential  habitat  due  to current  land  use. Although  we  support
the  broader  application  of  remote  sensing  in  general,  we caution  developers  of  HSMs  to be aware  of
introduced  model  bias.  These  biases  are  more  likely  to  arise  when  remote  sensing  variables  are  added
to  models  simply  because  they  improve  accuracy,  rather  than  considering  how  they  affect  the  model
results  and  interpretation.  When  including  land  cover  classifications  as predictors,  we  recommend  that

modellers  provide  more  explicit  descriptions  of how  habitat  is defined  (e.g.,  is deforested  land  considered
suitable  for  trees?).  Further,  we suggest  that  continuous  remote  sensing  variables  should  only  be  included
in habitat  models  if authors  can  demonstrate  that  their  inclusion  characterizes  potential  habitat  rather
than  actual  species  distribution.  Use  of  the term  ‘habitat  suitability  model’  rather  than  ‘species  distribution
model’  could  reduce  confusion  about  modelling  goals  and  improve  communication  between  the  remote
sensing  and  ecological  modelling  communities.
© 2012 Elsevier B.V. All rights reserved.

ontents

1. Introduction  . .  . . . .  . .  .  . . .  .  . . .  .  . . .  .  . .  .  . . .  .  . . . .  . .  .  . . . .  . . . .  . . . .  . . . . . . . . . .  . .  .  .  . .  .  . . .  . . .  . . . . . .  . . . . . . .  . . . . . . .  .  . . . . . . .  .  . . .  .  . . .  .  . . . . .  . . .  . .  . . . . . . . . . .  . .  .  . . .  . .  .  .  . 58
2. Terminology  . .  .  . .  .  . .  .  . . .  .  . . .  .  . . .  .  . . .  . . .  . . .  .  . . .  .  .  . .  . . . .  .  . . .  . . . .  . . .  . . . .  .  .  . . .  . . .  .  . . .  . . .  . . . . . . .  . . . . . . .  .  .  . .  . . .  . . .  .  .  . . .  .  . . .  . . .  .  . .  .  . . .  .  .  .  . .  . . . . . . .  . . .  .  .  .  .  . .  .  . 58
3. Remotely  sensed  data  as  predictors  of  animal  habitat  suitability .  . .  .  . .  . . .  . . . . . . .  . . .  . . . . . .  .  . . .  . . . .  . . . . . . .  .  . . . . . .  .  .  . . .  .  . . .  .  . . . . . .  .  . . .  .  .  .  . . .  .  . . . .  .  . . . . 59
4. Remotely  sensed  data  as  predictors  of  plant  habitat  suitability  .  . .  .  . .  .  .  . . . . . . . .  . . . . .  . .  .  . .  . . .  .  .  . . . . . .  .  .  . . .  . .  .  . . . .  .  . .  .  .  .  . . . .  .  . . . .  .  . .  .  . .  .  . . .  . . . . . . . . .  . 60

4.1.  The  chicken  and  egg  problem:  do trees  only  grow  in forests?  . . . .  .  .  . . . . .  . . .  . . . .  . . . . . . .  .  . .  . . . .  .  . . . . . . .  . . .  . . . . . . .  .  .  . . . . .  . . . . . . .  .  .  .  . .  . .  . .  .  . .  .  . 60
4.2.  Mistaking  actual  species  distribution  for  potential  species  distribution  .  .  . . .  . . . . .  . .  .  . . . .  .  . .  . . .  . . .  .  . . .  .  . .  . . . .  .  .  . . .  .  .  . .  . .  .  . . . . . . . . .  .  . .  .  . .  .  . . . 60
4.3.  Sacrificing  at  the  altar  of accuracy  . . .  .  . .  .  .  . .  .  . . .  .  . . . . . . .  . . . . . .  .  . . .  . . .  . . .  .  . .  .  . . . . . .  . . .  . . . .  .  . . .  . .  . . . . .  . .  .  . . . . . .  .  . . . .  . .  . . . . . . . . . .  . .  .  .  .  .  .  . . . . . .  . . 62
5.  Recommendations  for  remote  sensing  in  habitat  suitability  models  .  . . . . 

6. Conclusions  . . .  . . .  . . . .  .  . . .  . . . .  . . .  .  . . .  .  . .  .  .  . .  .  .  . .  .  . .  .  .  .  .  .  .  . .  .  . . .  .  . . .  . . . .  .  . .  . . .
Acknowledgment  . . .  .  . . .  . . .  .  . . .  . . . .  . . .  .  . . .  .  . . .  .  . . .  .  . . .  . . .  .  . . . .  . . .  . . . .  . . . . . . 

References  .  .  . .  . . . .  .  .  . .  .  .  . . .  . . .  .  . . .  . .  . .  . . . .  . . . .  . . .  .  . . .  .  . . .  . . .  .  . . .  . . .  . . . . . . .  .  .

∗ Corresponding author at: 160 Holdsworth Way, Amherst, MA  01003, United States. T
E-mail  address: bbradley@eco.umass.edu (B.A. Bradley).

304-3800/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.ecolmodel.2012.06.019
. .  . . . . . . .  .  . .  . . .  .  . . .  . . . .  .  .  . . . .  .  .  . . . . . . .  . . . .  . . .  .  . .  .  . . . . . . . . .  .  . . .  . .  .  . .  .  . . . .  . . 62
 .  . .  .  . . .  .  . .  . . . . . .  . . . . .  . .  .  .  . . .  . . .  . . . . . .  .  . . . .  . .  .  .  . . .  .  .  . . . . .  .  . . . .  . . .  .  . .  . . . .  . . 62
. .  . . .  . . . . .  .  . . .  .  .  . . . .  .  . .  . . .  . . .  .  . . .  .  . . . . . . . .  . . .  .  .  . . .  .  .  . .  .  . . . . . .  .  . .  .  .  .  . . . . . .  . 63

 .  . . . .  . . . .  . . .  . .  .  .  . . .  . . .  . . . . . . .  .  . . .  . . .  .  . . .  .  . . . .  . . . . .  .  .  .  . .  .  . . . .  .  .  . . .  .  . . .  . .  .  . 63

el.: +1 413 545 1764; fax: +1 413 545 4358.

dx.doi.org/10.1016/j.ecolmodel.2012.06.019
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:bbradley@eco.umass.edu
dx.doi.org/10.1016/j.ecolmodel.2012.06.019


5 ical Modelling 244 (2012) 57– 64

1

i
2
s
f
l
(
u
2
q
(
t
l
t

a
H
m
u
e
p
(
H
p
2
2
a
i
a
i
P

a
i
s
S
a
c
a
a
t
(
t
a
f
o
e

N
t
o
e
o
U
i
c
N
t
a
p
s
i

h

Fig. 1. Phenological metrics derived from time series of remotely sensed vegeta-
tion indices (e.g., NDVI) could provide novel predictor variables for animal and plant
habitat models (Tan et al., 2011). (A) Example phenology metrics derived from sin-
gle  year or annual average vegetation phenology. Start of season (SOS) and end of
season (EOS) are in this case based on the time when overall ecosystem green-
8 B.A. Bradley et al. / Ecolog

. Introduction

Remotely sensed data are widely recognized for their applicabil-
ty to ecological research (Kerr and Ostrovsky, 2003; Pettorelli et al.,
005). Ecological applications of remotely sensed data include clas-
ification and quantification of land features, modelling ecosystem
unction (e.g., to predict net primary productivity), and mapping
and cover change (e.g., to identify habitat loss or afforestation)
Kerr and Ostrovsky, 2003). Remotely sensed data have also been
sed as a proxy for species richness and biodiversity (Gillespie et al.,
008; Turner et al., 2003). As remotely sensed datasets are more fre-
uently and readily available, including the Landsat image archive
Woodcock et al., 2008) and moderate resolution imaging spec-
roradiometer (MODIS) phenology products (Tan et al., 2011), it is
ikely that ecological modellers and biogeographers will continue
o expand their use of remotely sensed data.

Habitat suitability modelling in particular has seen consider-
ble recent growth in the application of remotely sensed data.
abitat suitability models (HSMs; also termed species distribution
odels, ecological niche models, or bioclimatic envelope models)

se empirical relationships between a species’ distribution and
nvironmental variables (e.g., climate, topography, and soils) to
redict potential suitable habitats across a landscape or region
Franklin, 1995; Guisan and Zimmermann, 2000). Applications of
SMs include ecological reserve planning (e.g., Kremen et al., 2008),
rediction of non-native species invasions (e.g., Thuiller et al.,
005), and risk assessments for native species (e.g., Thomas et al.,
004). Remotely sensed data can directly measure, or serve as

 proxy for variables that affect habitat suitability. As a result,
ncluding remotely sensed data as variables can improve the over-
ll accuracy of predictive models, making them attractive for use
n HSMs (Bradley and Fleishman, 2008; Leyequien et al., 2007;
ettorelli et al., 2011).

Species habitat is affected by a range of environmental vari-
bles at varying scales. At regional to continental scales, suitability
s most influenced by climate while, at landscape scales, climate
uitability is modified by land use, land cover and topography.
uitability is further modified at local scales by soil conditions
nd micro-topography (Pearson and Dawson, 2003). Unfortunately,
ontinuous spatial measurements of these environmental vari-
bles can be difficult to acquire, and many environmental variables
re increasingly derived from remotely sensed data. Examples of
hese products include the normalized difference vegetation index
NDVI) as a proxy for ecosystem greenness (Fig. 1), the shuttle radar
opography mission (SRTM) for high resolution topographic data,
nd emerging light detection and ranging (LIDAR) data as a proxy
or vegetation community structure (for more details on these and
ther remote sensing products, see Gillespie et al., 2008; Pettorelli
t al., 2005).

Remotely sensed measures of vegetation productivity (e.g.,
DVI, enhanced vegetation index—EVI) and biophysical parame-

ers (leaf area index—LAI) have been used extensively as predictors
f habitat characteristics for animals (Pettorelli et al., 2011). How-
ver, a number of recent studies have applied vegetation proxies
r land cover data to models of plant species habitat (Table 1).
nfortunately, the potential benefit of these remotely sensed data

n HSMs constructed for plants is less clear. Plant habitat models
ould be biased by remotely sensed measures of vegetation like
DVI, resulting in outcomes that underestimate the species’ poten-

ial distribution due to correlations between species distribution
nd spatial patterns identified by remote sensing. Remotely sensed
roxies for vegetation could also highlight disturbed areas or other

patially heterogeneous patterns (e.g., recent precipitation history
n arid lands; Fig. 2) that are poorly linked to habitat suitability.

In this context, we review remote sensing applications for
abitat suitability modelling, briefly covering novel applications
ness  reaches half of its maximum value. (B) Example time series showing high
inter-annual variability in vegetation productivity, potentially a predictor of habitat.

for animal habitat modelling (reviewed comprehensively by
Leyequien et al., 2007; Pettorelli et al., 2011), and then focusing
on the use (and possible misuse) of remotely sensed variables for
plant habitat modelling.

2. Terminology

The science of habitat modelling based on empirical rela-
tionships between species distribution and spatially explicit
environmental variables suffers from numerous near-synonymous
terms (see Franklin, 2009 for a full discussion). One  of the most
widely used terms is species distribution model (SDM), which is
generally understood by the ecological modelling community to
mean a model of potential species distribution.

Unfortunately, this term in particular can cause confusion
amongst the remote sensing community because remote sens-
ing typically focuses on modelling the actual species distribution
(e.g., Kerr and Ostrovsky, 2003; Xie et al., 2008). Remote sensing
studies might aim to model the distribution of individual plant
species (termed ‘species mapping’, Nagendra, 2001), while others
model the distribution of dominant vegetation types (termed ‘land
cover classification, Kerr and Ostrovsky, 2003; Xie et al., 2008).
Hence, there is a strong potential for confusion when terminol-
ogy is poorly defined. Note, however, that there is less potential
for confusion in animal studies because remotely sensed data are

never used to detect actual animal distribution, only plant distribu-
tion. In this review, we will instead use the term habitat suitability
model (HSM) to describe empirical models of potential species



B.A. Bradley et al. / Ecological Modelling 244 (2012) 57– 64 59

Table  1
Reference list of habitat suitability models for plants that include remotely sensed variables.

Remotely sensed predictor variables Target species References

Spectrally homogenous land cover classification based on
Landsat

Dyers woad (Isatis tinctoria) Dewey et al. (1991)

European land cover (PELCOM) from AVHRR aggregated to
50  km

European tree species Thuiller et al. (2004)

Land  cover of Britain (2000) & automated land cover map
derived from Landsat

Four plant species: Rhynchospora alba, Erica tetralix,
Salix herbacea & Geranium sylvaticum.

Pearson et al. (2004)

ASTER-based classification of snow cover Arctic dwarf shrub (Dryas octopetala) Beck et al. (2005)
MODIS-derived phenology metrics based on NDVI and EVI Tamarisk (Tamarix spp.) Morisette et al. (2006)
MODIS  NDVI for summer-fall of 2000 Purple loosestrife (Lythrum salicaria) Anderson et al. (2006)
NDVI,  wetness index, temperature, and soil brightness

derived from Landsat
19 trees in the Great Basin, USA Zimmermann et al. (2007)

MODIS  LAI, veg moisture from Qscat and MODIS NDVI Three Amazon trees: Calophyllum brasiliensis, Carapa
guianensis,  Virola surinamensis

Prates-Clark et al. (2008)

QSCAT backscatter for canopy roughness and MODIS LAI
phenology metrics

Five widespread commercial timber trees Saatchi et al. (2008)

MODIS  phenology metrics derived in house from 2001 to
2007 time series

Pine (Pinus spp.) and white oak (Quercus spp.) Cord et al. (2009)

MODIS phenology metrics, tree cover Dalmatian toadflax, Musk thistle, Cheatgrass, White
sweet clover

Stohlgren et al. (2010)

Forest  type classes based on visual interpretation of
satellite imagery

Rare tree: Pittosporum eriocarpum Padalia et al. (2010)

Global land cover 2000, % tree cover in 2001, AVHRR
average NDVI 1985–1988

Twenty-nine palm species in Africa Blach-Overgaard et al. (2010)

MODIS  EVI and land surface temperature Tamarisk (Tamarix spp.) Cord et al. (2010)
MODIS phenology metrics Two central American trees: Broumum alicastrum and

Liquidambar macrophylla
Cord et al. (2011)

MODIS mean EVI and annual range of EVI Tamarisk (Tamarix spp.) Jarnevich et al. (2011)
Landsat NDVI, greenness and brightness indices Rosa rubiginosa in Argentina Zimmermann et al. (2011)
Landsat spectral indices and NDVI Generalist shrub species in Spain Morán-Ordóñez et al. (2012)

Fig. 2. Three Landsat TM colour composite images (bands 4, 3 and 2) of the Sierra Pinacate in northern Sonora, Mexico, each acquired in early September. Red colours identify
a onme
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reas  with actively growing vegetation (similar to high NDVI) in a hot desert envir
aused  by asynchronous plant growth due to isolated rainfall events. If used in a
nter-annual variability (Fig. 1B). (For interpretation of the references to colour in th

istribution based on environmental correlates (which might
nclude remotely sensed data).

. Remotely sensed data as predictors of animal habitat
uitability

There are numerous examples of remote sensing variables being
ested and applied to animal habitat modelling (Leyequien et al.,
007; Pettorelli et al., 2011; Vierling et al., 2008). In many (but
ot all) cases, the addition of remotely sensed data improves the
ccuracy of the habitat model (Pettorelli et al., 2011). In most of
hese studies, remote sensing variables serve as proxies for vegeta-
ion (e.g., structure, composition, and land cover change) or other
ttributes of habitat quality. For example, Willems et al. (2009)
sed NDVI to model habitat of the vervet monkey in Africa, with

reas of high NDVI acting as a proxy for food availability and low
isibility for predators. Bergen et al. (2007) used biomass measure-
ents derived from RADAR to model North American bird habitat,
ith RADAR-derived biomass acting as a proxy for forest structure.
nt where precipitation drives phenology. The spatially heterogeneous patterns are
at suitability model, the model prediction could vary considerably depending on
ure legend, the reader is referred to the web  version of the article.)

Peterson et al. (2006) used time series of land cover classifications
to model corvid habitat in Mexico, with changes in land cover acting
as a proxy for habitat loss.

The use of NDVI or land cover classifications in conjunction with
climatic variables often does not improve habitat models because
these variables can be highly collinear, particularly at regional
scales (e.g., Thuiller et al., 2004; Zimmermann et al., 2007). Remote
sensing variables have the greatest potential benefit when they
provide information distinct from climate. This may occur in areas
of broadly similar climate where other features such as soils or dis-
turbance alter vegetation characteristics. In other cases, remotely
sensed vegetation indices could be more reflective of climate con-
ditions than interpolated climate because weather stations are
hundreds of kilometres apart (e.g., the Amazon; Saatchi et al., 2008).
In addition to vegetation indices, other novel remote sensing prod-

ucts and techniques are promising for habitat modelling.

Technological and scientific advances have created new proxies
for vegetation characteristics that are quite distinct from climate:
RADAR/LIDAR-based vegetation structure and temporal patterns of
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egetation phenology. High-resolution (e.g., <5 m pixel) RADAR and
IDAR measurements are increasingly being used to characterize
hree-dimensional vegetation community structure (Bergen et al.,
009; Vierling et al., 2008). RADAR and LIDAR are active sensors,
hereby a long-wavelength or laser pulse is directed at the Earth’s

urface. The returned waveform or coordinates can be used to esti-
ate detailed horizontal and vertical vegetation attributes, such as

orest canopy height and aboveground biomass (Lefsky et al., 2002).
n one example application, Buermann et al. (2008) used RADAR
ensitivity to estimate canopy roughness at 1 km resolution as a
redictor of bird habitat in the Amazon. The National Aeronautics
nd Space Administration (NASA) is likely to launch a RADAR satel-
ite aimed at measuring ecosystem structure in 2016 (DESDynI),

hile the European Space Agency (ESA) will launch the RADAR
ission Sentinel-1 in 2013. Meanwhile, state-wide airborne LIDAR

ata are becoming more readily available (e.g., Asner et al., 2011).
A second novel predictor of vegetation characteristics that con-

ribute to animal habitat suitability is phenology, or the annual and
nter-annual timing of biological events. Average annual phenology
s broadly correlated with climate, particularly start of season with
emperature (e.g., Stöckli and Vidale, 2004), and may  serve as a
limate proxy in poorly gaged areas. Spatial variation in phenology
an identify differential responses, even within similar ecosystems,
hat could affect habitat quality (e.g., Fisher and Mustard, 2007;

orisette et al., 2009), while inter-annual phenology can serve as
n indicator of vegetation variability, which may  be important for
ong-lived animals. Phenological metrics, typically derived from
DVI time series, include start of season, length of growing sea-

on, and inter-annual variability (Tan et al., 2011) (Fig. 1). As a
redictor of animal habitat, vegetation phenology has been, for
xample, correlated with mosquito life cycles resulting in malaria
utbreaks in Africa (Rogers et al., 2002), habitat of Great Bustards
n Spain (Osborne et al., 2001) and moose body mass in Norway
Herfindal et al., 2006). Newly available phenology metrics derived
rom high temporal resolution imagery such as MODIS (Tan et al.,
011) at 250 m to 1 km resolution and advanced very high resolu-
ion radiometer (AVHRR; http://phenology.cr.usgs.gov/index.php)
t 1–8 km resolution should increase the applications of this poten-
ial predictor in animal habitat modelling.

. Remotely sensed data as predictors of plant habitat
uitability

Although remotely sensed variables are widely used to model
nimal habitat (Leyequien et al., 2007; Pettorelli et al., 2011), the
ractice has been less common in models of plant habitat. However,
pplications for plant habitat modelling are on the rise (Table 1).
odelling plant habitat requires more care because remotely

ensed variables and land cover classifications often directly mea-
ure the attributes of the same plant species whose habitat the
odel aims to predict. This point seems to be underappreciated

n plant habitat modelling. Below, we review potential sources of
ias that remotely sensed data can introduce into HSMs, and how
hey have been handled (or mishandled) in recent research.

.1. The chicken and egg problem: do trees only grow in forests?

Are forests the only locations that should be defined as poten-
ial tree habitat? The answer to this question lies at the heart of
hether and how land cover classifications and continuous vari-

bles should act as proxies for vegetation cover (e.g., NDVI) and

e used to predict plant and animal habitat suitability. If distribu-
ion data occur only in currently forested areas (recently collected
ata are more likely to reflect current land use/land cover patterns),
hen including these variables will effectively exclude presently
odelling 244 (2012) 57– 64

‘non-forested’ land from potential habitat. For example, Prates-
Clark et al. (2008) use leaf area index (LAI) and RADAR as predictor
variables for habitat of three rare Amazon trees. The use of LAI in
this instance excluded deforested lands, which had low LAI values.
Similarly, by including NDVI in habitat suitability models, Cord et al.
(2009) exclude agriculture, urban, and degraded lands from poten-
tial habitat for pine and oak species in Mexico. In both of these
cases, the model of suitable tree habitat excludes human modified
landscapes. This assumes that potential tree habitat is defined rela-
tive to current land use, but the assumption is never made explicit.
If currently deforested or non-forested areas are considered to be
unsuitable for tree species, then these areas should be excluded
prior to further analysis.

Conversely, Zimmermann et al. (2011) use remote sensing-
derived brightness and greenness indices to detect forest clearance
as a predictor of the invasive shrub Rosa rubiginosa in Argentina.
In this case, the authors are explicit about their definition of habi-
tat suitability (or invasibility) as stemming directly from existing
land clearing and disturbance. The specific interpretation of remote
sensing variables in Zimmermann et al. (2011) makes the result-
ing model more readily understandable and applicable to invasive
plant management.

The same problem of defining habitat relative to current land
cover potentially applies to any use of land cover classifications,
even in the absence of anthropogenic factors. For example, Thuiller
et al. (2004) note that modelled habitat suitability for the Euro-
pean tree Quercus petraea is positively associated with percentage
forest cover (derived from land cover classifications). Similarly, the
modelled habitat of the rare tree Pittosporum eriocarpum in India
is best described by including forest composition classes (Padalia
et al., 2010). In these examples, the resulting habitat models will
be biased towards current forest, and away from currently non-
forested land, suggesting that climatically suitable non-forest is
unsuitable habitat for trees.

To overcome this ‘chicken and egg’ problem, habitat suitability
modelling efforts that include land cover classifications (or proxies
for land cover) should be explicit about their goals and applica-
tions, and discuss how the inclusion of land cover classes influences
their interpretation. For example, Pearson et al. (2004) argue that by
including land cover in a habitat model of the flower Erica tetralix,
they were able to differentiate between range contraction caused
by climate and range contraction caused by land use. Beck et al.
(2005) use a remote sensing based classification of snow cover
to exclude habitat for the Arctic shrub Dryas octopetala,  which
does not grow if the climate is moist enough to produce snow.
Morán-Ordóñez et al. (2012) show that current land cover limits a
generalist species more than climate alone. In all of the above exam-
ples, the authors provide a clear interpretation of how the inclusion
of remotely sensed variables alters their models of habitat.

4.2. Mistaking actual species distribution for potential species
distribution

The use of continuous remote sensing variables (e.g., spectral
bands, NDVI, LAI) can be a problem if these variables act as prox-
ies for land cover (see previous section), or if they are sensitive
to unique spectral or temporal properties of the target species
itself (Fig. 3). This is of particular concern if the target species is
common, grows in patches with high abundance that could be
detected remotely, or has a unique phenology (e.g., Bradley and
Mustard, 2005; Tuanmu et al., 2010). For example, Zimmermann
et al. (2007) used time series of Landsat-derived NDVI to develop

habitat models for 19 tree species across a Utah landscape at
90 m spatial resolution. The 19 species ranged from rare to com-
mon, but those for which habitat models were most improved
using remote sensing were broadleaf, deciduous species that are

http://phenology.cr.usgs.gov/index.php
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Fig. 3. (A) Aerial photograph taken near Tucson, AZ, which is undergoing invasion by Pennisetum ciliare.  The mapped boundary of a large and dynamically expanding patch
is  shown in outline. Because of its cold intolerance, P. ciliare tends to colonize south-facing slopes in this part of its range. Inset shows this location in relation to the state
of  Arizona, USA. (B) NDVI of the invasion site is higher than on neighbouring south-facing slopes due to denser cover of P. ciliare. But, NDVI is similar to surrounding, more
heavily  vegetated north-facing slopes where P. ciliare is rare or absent. (C) Habitat suitability model of P. ciliare derived from topographic variables (elevation, slope, aspect)
using  presence and absence data collected throughout the area and based on a Random Forest regression tree model (Breiman, 2001). Note that areas of highest suitability
(light  shades) are associated with south-facing slopes. This model explained 2.6% of the variance. (D) Habitat suitability model of P. ciliare derived from topographic variables
plus  NDVI. Because NDVI acts as a proxy for species actual distribution, the predicted suitability model identifies only areas where P. ciliare is already present, yet P. ciliare
has  been doubling in area at this site every 2–5 years since 1989 (Olsson et al., 2012). This model explained 38.1% of the variance (an “improvement” of model accuracy).
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asier to discriminate using multi-temporal satellite data because
f their seasonal phenology. This is one example of including a pre-
ictor variable that models actual species distribution rather than
otential habitat. Hence, the resulting model likely underestimated
otential suitability because it essentially included a proxy for cur-
ent distribution. In contrast, Saatchi et al. (2008) included RADAR
nd LAI in a habitat model for five widespread commercial timber
rees in the Amazon at 1–2 km spatial resolution, while Cord et al.
2011) used MODIS phenology as a predictor for two tree species
n Mexico at 1 km spatial resolution. The coarse spatial resolution
f these studies combined with high tree diversity in both tropical
egions likely prevented remote sensing bias from entering either
odel. However, including remotely sensed data in habitat models

or common species should always be treated with caution because
ommon or abundant species are more likely to directly influence
easurements obtained from remotely sensed data.
Other examples of this phenomenon come from the invasive

pecies literature. Invasive plants can grow as a monoculture
hat can be spectrally or phenologically unique (e.g., Bradley and
ustard, 2005; Casady et al., 2005; Huang and Geiger, 2008;
esasco et al., 2007), or can grow in spectrally unique areas, such
s abandoned farmland (e.g., Elmore et al., 2006). Characterizing
hese distinguishing features in remote sensing is frequently the
most successful method for mapping invasive species at both land-
scape (e.g., Landsat) and regional (e.g., MODIS) scales. Hence, HSMs
created for common invasive plants could be easily biased with the
addition of remotely sensed data (Fig. 3).

For example, Stohlgren et al. (2010) predicted invasive plant
habitat suitability for Linaria dalmatica in Yellowstone National
Park, and for Bromus tectorum in Sequoia and Kings Canyon National
Parks based on phenological metrics derived from MODIS NDVI at
250 m resolution. However, L. dalmatica has been shown to be spec-
trally unique in Yellowstone (Rew et al., 2005), while B. tectorum is
phenologically unique throughout much of its range (Bradley and
Mustard, 2005; Peterson, 2005), and both species often occur in
extensive monocultures. Hence, it is possible that remotely sensed
variables used in the habitat suitability models were biased by inva-
sive species’ actual distributions, thereby underestimating invasion
risk.

In a second example, Morisette et al. (2006) used phenologi-
cal metrics from MODIS NDVI and EVI to model habitat suitability
for Tamarix spp. across the U.S. at 250 m resolution. Correlation

along the 1:1 line between annual NDVI and EVI values was iden-
tified as one of the best remotely sensed predictors of tamarisk
habitat suitability. However, the authors hypothesize that this rela-
tionship occurs where tamarisk canopy cover is thick enough to
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Table 2
All three of the criteria below must be met  in order for a target plant species to influence remotely sensed variables (NDVI or reflectance spectra) in a way that could model
actual  species distribution rather than model potential habitat.

1. Species is part of the overstory
Examples Forest canopy trees Any plant species in single-level vegetation communities (grassland, shrubland)

2.  Species is common relative to the spatial resolution of the remote sensing instrumenta

Examples
Dominant native species
Invasive plants existing in high abundance across landscapes

Work around?
Choose imagery dates prior to invasion
Use coarser spatial resolution imagery

3.  Species has a unique phenological or spectral signal
Examples

Species is the first to green up in the spring or is highly
responsive to precipitation
Flowers are prominent and a unique colour or leaves are

Work around?
Avoid using phenological metrics, avoid imagery coinciding
with unique phenological stages
Avoid flowering times, avoid unique spectral bands
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spectrally distinct from other vegetation

a E.g., abundant across 30 m × 30 m areas for Landsat or 1 km2 areas for MODIS.

ask underlying soil. If true, the resulting habitat model was  biased
owards locations where tamarisk already occurs and could under-
stimate invasion risk in uninvaded areas suitable for establishing
ew populations. An update of the tamarisk habitat suitability
odel (Jarnevich et al., 2011) also included MODIS EVI, however,

he remotely sensed variable was of low importance in the newer
odel and these results are unlikely to be biased.
Problems with introduced bias are less likely to occur if the tar-

et plant species is rare or if the remotely sensed variables do not
easure vegetation directly (e.g., land surface temperatures; Cord

t al., 2010; microtopography from LIDAR; Sellars and Jolls, 2007). If
 species is rare or in low abundance, remotely sensed variables will
e responsive to the habitat characteristics rather than the species

tself. If the species is common or abundant, the same result could
e accomplished by using remotely sensed data at a much coarser
esolution than the species extents (Anderson et al., 2006; Saatchi
t al., 2008; Cord et al., 2011). For invasive species, satellite data
hat pre-date infestations could provide unbiased information on
uitable habitat (Dewey et al., 1991), although new infestations
esulting from recent land use would not be captured. If detection
ias continues to be a potential problem, researchers should forego
sing remotely sensed variables unless they can convincingly argue
hat those variables do not bias the habitat model.

.3. Sacrificing at the altar of accuracy

Overall model accuracy is most often the measuring stick used to
nclude or exclude predictor variables from habitat suitability mod-
ls. However, unbiased HSMs will almost always have lower overall
ccuracy than biased HSMs because maps of species distribution
ave lower overprediction rates than models of habitat suitability.
hus, achieving higher overall accuracy should not be the sole crite-
ion for evaluating inclusion of remote sensing variables in habitat
uitability models. In addition, researchers must consider whether
r not there is any a priori reason to suggest that remote sensing
ariables will improve the characterization of suitable habitat, but
ot of actual species distribution. If this second criterion can be

ustified, then the model can be considered unbiased.

. Recommendations for remote sensing in habitat
uitability models

A first important step towards reducing confusion when includ-
ng remote sensing variables would be to clarify terminology. The
erm species distribution implies actual distribution when it should
ean potential distribution. For example, Saatchi et al. (2008)
se the term ‘species distribution’ interchangeably with potential
ange, potential distribution, and suitable habitat. This mixing of
erms can be of particular concern when communicating with the
remote sensing community, where species distribution model is
apt to be interpreted as ‘mapping species distribution’. We prefer
the terminology of Kearney (2006),  where ‘habitat’ is defined as
the physical characteristics of the place where an organism poten-
tially lives, and thus a habitat suitability model projects suitable
habitat for that organism. However, any terminology will suffice
provided the authors explicitly define their goals relative to actual
and potential distribution.

Second, climate variables used in HSMs are typically selected
either a priori based on species physiology, or empirically based on
the best statistical relationship. In the former case, the influence of
predictor variables on species habitat is assumed, while in the latter
it is often interpreted. The same approach should be taken with
remotely sensed predictor variables. Rather than just selecting and
including variables that improve overall accuracy, defining a priori
the role of remote sensing variables, or interpreting their role after
the fact would greatly help the interpretation and application of
such models.

Third, we  emphasize the need for caution when including con-
tinuous remotely sensed variables in models where there is reason
to believe remote sensing might map  actual species distribution.
Confusion of potential habitat with actual distribution is most likely
if the target plant species exists in high abundance within por-
tions of its range. It is also more likely if the target plant species is
itself spectrally or phenologically unique from surrounding vegeta-
tion such that remote sensing variables could identify its presence
(Table 2).

Finally, habitat suitability modelling studies that include remote
sensing variables need to be more explicit about their definition
of habitat. Remotely sensed variables reflect the current state of
anthropogenic influence on the Earth’s surface. Hence, their inclu-
sion in habitat models, both animal and plant targeted, makes the
most sense when land use or land cover change is an explicit con-
sideration in the definition of potential habitat (for example, should
a deforested area be excluded from suitable habitat for a given tree
species). Depending on the goals of the modelling exercise, and
the timeline for which it is appropriate, excluding particular land
cover types may  or may  not be appropriate. Better defining habi-
tat suitability relative to climate and land use would facilitate the
interpretation and application of model results.

6. Conclusions

We  have shown in this review that, while the use of remote
sensing variables has been widely and reasonably applied to mod-

elling animal habitat, there is substantial potential for bias when
remote sensing variables are included in models of plant habitat.
This is a young field, so the literature on this topic is relatively
sparse (Table 1). However, the growing availability of remotely
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ensed data suggests that their application to habitat suitability
odels will continue to increase. We  strongly encourage both plant

nd animal habitat modellers to interpret remote sensing predictor
ariables relative to the habitat they aim to model by develop-
ng hypotheses about the ecological relationships those variables

ight reveal. This practice, along with explicitly stating how habi-
at is defined relative to existing land use or land cover, will reduce
he likelihood of developing biased models and improve overall

odel interpretation and application.
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