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I. ABSTRACT 

Our research used light detection and ranging (LiDAR) systems coupled with sequential 

harvesting of Pitch pine (Pinus rigida Mill.) to quantify canopy fuels in three dimensions across a 

large, heterogeneous landscape impacted by multiple wildfires, prescribed burns and insect 

defoliation events.  We used a three-tiered approach; 1) calibration of upward sensing profiling 

LiDAR data with sequential harvesting of 20 x 20 meter plots to quantify the mass of foliage, 

branches and stems in Pitch pine canopies in 1-meter height layers, 2) scaling results to the 

landscape scale using previously-published relationships between upward sensing and 

downward sensing scanning LiDAR systems in similar Pitch pine stands, and 3) evaluation of 

predicted canopy fuel loading using an independent set of 20 x 20 meter field plots.   

 

Five 20 x 20 m plots were harvested, ranging in total live tree biomass from 67 to 108 Mg ha-1.    

Crown fuel weight (CFW; kg m-2) ranged from 0.83 to 1.16 kg m-2, and maximum canopy bulk 

density (CBD; kg m-3) ranged from 0.15 to 0.23 kg m-3.  Allometric relationships between 

parabolic bole volume, calculated from height and DBH measurements, and available fuels, 

needle mass, and 1-hour and 10-hour fuels were highly significant, with regression coefficients 

ranging from 0.89 to 0.91.  Regression coefficients calculated for maximum CBD and its height 

using biometric data were 0.81 and 0.72, respectively.   

 

Relationships between upward-sensing profiling LiDAR returns and available fuels, needle mass, 

and 1-hour and 10- hour fuels biomass of canopy fuels were highly significant, and regression 

coefficients were > 0.9 between crown fuel weight or maximum CBD and LiDAR returns.  Across 

all equations, the poorest fits were for 1000-hr fuels and dead needle mass.   Previous research 

has demonstrated that relationships between upward sensing profiling LiDAR and downward 

sensing scanning LiDAR are highly significant in Pitch pine – dominated stands, facilitating the 

scaling of crown fuel estimates across the landscape.      

 

Initial analyses of data from validation plots indicate that biometric and LiDAR-derived 

estimates of CFW and maximum CBD are not significantly different; CFW estimates were 1.15 ± 
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0.27 vs. 1.22 ± 0.28 kg m-2 (n = 17, Paired-sample T = 0.22, ns) and maximum CBD estimates 

were 0.22 ± 0.08 vs. 0.22 ± 0.08 kg m-3 (n = 17, Paired-sample T = 0.59, ns) for biometric and 

LiDAR-derived estimates, respectively.   

 

The results of our project will assist state and federal wildland fire managers, because highly 

accurate canopy fuel maps can be produced for large forested areas in the Pinelands, and for 

areas in and near wildland-urban interface.   Our results can also be used to evaluate the 

effectiveness of prescribed burns and mechanical canopy fuel reduction treatments.  In 

addition, we can now generate highly accurate estimates of crown bulk density (CBD) and other 

canopy fuel characteristics, which are appropriate for current fire behavior models such as the 

FVS-Fire and Fuels Extension, and for the next-generation of fire behavior models such as 

WFDS, which require high resolution canopy fuel loading information.  

 

Keywords:  Canopy fuels, Crown bulk density, Crown fuel weight, Pitch pine, Crown fires, 

LiDAR.   

 

II. BACKGROUND and PURPOSE   

 

The incidence of stand-replacing crown fires in ecosystems where frequent surface fire 

regimes have historically occurred is a result of a number of factors, including long-term effects 

of fire suppression and forest regeneration, insect invasions and subsequent mortality, and 

large fluctuations in climatic regimes. Crown fires move faster and are more destructive than 

surface fires. Controlling crown fires is one of the most difficult and dangerous tasks for 

wildland fire managers.  Crowning behavior dictates the type and proximity of suppression 

activities, and crown fires are much more difficult and expensive to suppress. The impact of 

crown fires to forest resources, wildland fire personnel, and public safety highlight the 

importance of quantifying canopy fuels accurately.   Despite a strong understanding of the risks 

and costs associated with crown fires, accurate scaling of three-dimensional canopy fuel 
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estimates across forests with heterogeneous structure is a limitation to our fire modeling 

efforts, and our ability to improve upon wildfire mitigation strategies.   

 

Metrics used to characterize canopy fuels include crown fuel weight (CFW, kg m-2 

ground), canopy bulk density (CBD, kg m-3), and canopy base height (CBH, meters)(Wagner 

1993, Scott and Reinhardt 2001, Reinhardt et al. 2006, Duveneck and Patterson 2007).  Crown 

fuel weight is defined as the total fuel available within the canopy per unit ground area, 

typically expressed as kg fuel per m-2 ground area. Canopy bulk density is defined as the mass of 

available canopy fuel per unit canopy volume (kg m-3). It is a stand-level property, although 

individual tree measurements are frequently used to estimate CBD. CBD is defined 

operationally for fire behavior models as the available fuel that would be consumed in the  

 

                       

 

Figure 1.  Crown fire burning in a dense Pitch pine scrub oak in the Pinelands National Reserve 
of Southern New Jersey.  

 

flaming front of a fully active crown fire. It is assumed that live and dead foliage is consumed, 

and that portions of the live and dead stem wood, typically measured as 1-hour and 10-hour 



JFSP Project  10-1-02-14  Assessing Canopy Fuels Using LiDAR                              
 

6 
 

woody fuels, are also consumed. CBD estimates are used in a number of fire behavior models, 

for example, the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS; 

Reinhardt and Crookston 2003).  Canopy base height (CBH) is the lowest height above the 

ground at which there is a sufficient amount of canopy fuel to propagate fire vertically into the 

canopy. CBH is straight forward to measure on individual trees, but is more difficult to quantify 

at stand to landscape scales. This is especially true in multistory stands or stands where sub-

canopy trees and large shrubs comprise ladder fuels. In terms of an operational definition for 

crown fire initiation, CBH is the lowest height above the ground at which there is sufficient 

canopy fuel to propagate fire vertically through the canopy. Using this definition, ladder fuels 

such as draped needles, lichens, dead branches, understory trees and large shrubs are 

incorporated into available fuel estimates. The FFE-FVS simulator uses this approach, and 

canopy base height is defined as the lowest height above which at least 0.011 kg m -3 of 

available canopy fuels are present. 

 

Commonly-used techniques to assess canopy fuel characteristics are 1) harvest and 

biometric or inventory based techniques, 2) indirect, ground-based optical techniques, and 3) 

remote sensing approaches.  Harvest techniques are typically used to develop allometric 

equations, so that canopy fuel characteristics can be scaled from tree dimensions, usually 

diameter at breast height (DBH) and tree height (Scott and Reinhardt 2001, Duveneck and 

Patterson 2007, Reinhardt et al. 2006).  Allometric equations can then be used with forest 

inventory data such as available from the USFS Forest Inventory and Analysis program 

(http://fia.fs.fed.us/) or other forest census datasets to estimate CBD and CFW over larger 

areas.  Allometric equations from published studies also exist to predict foliar and branch 

biomass from tree dimensions (e.g., Whittaker and Woodwell 1968, Jenkins et al. 2003, Seo et 

al.  2012). These estimates can be used with species lists from inventory data to estimate 

foliage and branch biomass of various diameters to approximate canopy fuels. 

 

Ground-based optical techniques typically employ light attenuation by the canopy to 

estimate crown fuel characteristics (e.g., Keane et al. 2005).   Instruments such as Li-Cor LI-2000 
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Plant canopy analyzer (Li-Cor Inc., Lincoln, Nebraska USA), AccuPar light ceptometer (Decagon 

Devices, Inc., Pullman, Washington USA), and hemispherical photography have been used to 

infer canopy density. These techniques have also been extensively evaluated by the larger 

ecological community for estimating leaf and branch surface area (e.g., Ameriflux sites; 

http:/public.ornl.gov/ameriflux/). Typically, calculations are used to first estimate leaf area 

index (LAI) and branch cover. LAI can then be converted to an estimate of foliar biomass usi ng 

specific leaf area relationships and approximate canopy fuel loading.  Published values for 

specific leaf area exist for many conifer species, or can be developed rapidly using a leaf area 

meter (e.g., LiCor LI-3000). 

 

In the past, crown bulk density, crown closure, and canopy height have been estimated 

from maps based upon aerial photography interpretation and field census data. More recently, 

satellite-based sensors such as Landsat TM, SPOT, and MODIS have been used to measure 

NDVI, and estimate leaf area (LAI) at landscape to regional scales (e .g., Pan et al. 2006, Erdody 

and Moskal 2010).  Similar to ground-based optical techniques, LAI can then be converted to an 

estimate of foliar biomass using specific leaf area relationships and approximate canopy fuel 

loading. 

 

Benefits of these approaches are that stand-level assessments of canopy fuel 

characteristics can be highly accurate, and that they provide parameters that can be used 

directly in current fire behavior models. Both biometric and optical techniques are suitable 

across large, relatively homogeneous stands, and remote sensing applications can be used to 

scale estimates to much larger, but relatively homogeneous, areas. However, a major problem 

arises because it is difficult to scale canopy fuel characteristics accurately across larger 

landscapes characterized by heterogeneous canopy structure.  A second problem arises with 

optical and remotely sensed techniques, because canopy fuel characteristics are estimated i n 

only two dimensions on a m2 to km2 basis, precluding accurate estimates of vertical fuel 

distributions or the location of maximum CBD in the canopy.  Destructive harvest 

measurements can result in accurate 3-dimensional data (e.g., Duveneck and Patterson 2007), 
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but are highly time-consuming and beyond the scope of most fire management agencies to 

accomplish. A potential solution for uniform stands is that CBD can be computed as the 

available canopy fuel load divided by canopy depth, calculated as crown height – crown base 

height. This method assumes that fuels are distributed uniformly within the canopy, which is 

highly unlikely even in stands with relatively simple, homogeneous structure. Complex, 

multistoried stands are likely to be poorly represented using this approach. Thus, plot-based 

canopy fuel models do not adequately describe site to site variability in CBD at larger scales, 

and spectral reflectance data cannot accurately describe smaller scale variability in canopy fuel 

loading, or its 3-dimensional structure. A third major drawback with all of the currently used 

approaches to estimate canopy fuels is that they largely neglect (or at least undersample) 

ladder fuels.  There is no accepted or operational method to estimate ladder (or transition) 

fuels formally in fire behavior models.  They are often accounted for by adjustment of 

simulated surface fire intensity, essentially a “fudge factor”.  

 

Collectively, these limitations lead to an inability to accurately assess canopy fuel 

loading in complex and varied landscapes, particularly those found within the WUI, or in 

forested landscapes previously damaged by wildfires, insects, windstorms or other 

disturbances.  This inability can impact suppression activities, and reduces our ability to 

efficiently target and evaluate fuel reduction treatments. Additionally, as numeric wildfire 

spread models increase in complexity and predictive power, shortfalls in the availability and 

accuracy of spatially explicit data on canopy fuels have become a serious limitation. 

 

Recently, LiDAR (Light detection and ranging) systems are proving to be indispensible 

tools for estimating 3-dimensional structure of forest canopies at landscape to regional scales 

(Riano et al. 2004, Skowronski et al. 2007, 2011, Mutlu et al. 2008a, Erdody and Moskal 2010, 

Asner et al. 2012, Contreras et al. 2012, Jakubowski et al. 2013).  A more accurate approach to 

quantifying 3-dimensional canopy fuel characteristics across large, heterogeneous landscapes is 

to combine destructive sampling and allometric relationships with sequential LiDAR sampling.  

This is often the crucial step that is omitted from fuel inventories using LiDAR technology.    
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III. STUDY DESCRIPTION and LOCATION 

Project Objectives:  Our research approach utilizes 1) sequential destructive sampling of Pitch 

pine (Pinus rigida Mill.) in 20 x 20 meter plots to quantify foliage and live and dead 1-, 10-, 100- 

and 1000-hr fuels in the canopy in 1-meter layers, combined with simultaneous sampling with 

an upward sensing backpack mounted LiDAR system to develop calibrated CFW and CBD height 

profiles in 1-meter layers, 2) downward sensing scanning LiDAR data combined with the 

recently-determined relationships between upward sensing and downward sensing systems to 

scale estimates over a large, heterogeneous landscape, and 3) a second set of independent, 

randomly located plots within the scanning LiDAR acquisition to evaluate model predictions of 

CFW and CBD height profiles in Pitch pine – dominated stands in the Pinelands of New Jersey.  

Finally, we are producing high-resolution maps to assist suppression activities and to guide fuel 

reduction treatments, and digital datasets for modeling purposes using WFDS and other 

models.       

 

Methods 

Site Description 

Research sites were located in Burlington and Ocean Co. in the Pinelands National Reserve in 

southern New Jersey (Figure 2). The Pinelands contain the largest continuous forested 

landscape on the Northeastern coastal plain. The climate is cool temperate, with mean monthly 

temperatures of 0.3 and 23.8 °C in January and July, respectively (1930-2009; State 

Climatologist of NJ; http://climate.rutgers.edu/stateclim_v1/data/). Mean annual precipitation 

is 1142 ± 160 mm. Soils are derived from the Cohansey and Kirkwood Formations, and are 

sandy, coarse-grained, and extremely oligotrophic (Tedrow 1986). This landscape is also 

characterized by a high frequency and intensity of wildfires relative to other forest ecosystems 

in the northeastern US (Little & Moore 1949, NIFC 2013, Figure 3).  

 

Upland forests comprise ca. 62% of the forested areas in the Pinelands National 

Reserve, and are dominated by three major forest communities; 1) oak - pine, consisting of 
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black oak (Quercus velutina Lam.), chestnut oak (Q. prinus L.), white oak (Q. alba L.), and pitch 

(Pinus rigida Mill.) and shortleaf pine (P. echinata Mill.), 2) pine - oak, consisting of pitch pine 

with mixed oaks in the overstory, and 3) pine - scrub oak, dominated by pitch pine with scrub 

oaks (Q. ilicifolia Wang. and Q. marlandica Muench.) in the understory (McCormick & Jones 

1973, Lathrop & Kaplan 2004, Skowronski et al. 2007, FIA data at www.fia.gov, Figure 2). A 

fourth forest community, the pine plains, consisting of short-statured pitch pine and scrub oaks, 

is also recognized in the vicinity of Coyle Field, Warren Grove Bombing Range, and Stafford 

Forge Wildlife Management Area.  All stands have ericaceous shrubs in the understory, 

primarily huckleberry (Gaylussacia bacata (Wang.) K. Koch, G. frondosa (L.) Torr. & A. Gray ex 

Torr.) and blueberry (Vaccinium spp.). Sedges, herbs, mosses and lichens also are present 

(Wright et al. 2007).  Pitch pine-dominated stands are of major concern to wildland fire 

managers in the Pinelands because of their propensity to crown during wildfires, and their 

proximity to WUI areas along the eastern boundary of the Pinelands National Reserve.   

 

http://www.fia.gov/
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Figure 2.  Pinelands National Reserve in Southern New Jersey.  
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Figure 3. Wildfire occurrence in and surrounding the Pinelands National Reserve.  Data are from 

NJ Forest Fire Service. 

 

Tree harvests plots and biometrics:    We selected five 20 m x 20 m plots for sequential harvest 

and upward sensing profiling LiDAR acquisitions, following the protocol in Skowronski et al. 

(2011).  All plots had been burned repeatedly in wildfires in the past, with the most recent 

occurring in May 2007.  The 2001 NJ Land-Use/Land Change map (Lathrop & Kaplan, 2004) was 

first used to delimit areas consisting of  >75% pitch pine overstory in pitch pine – dominated 

stands.   The UTM co-ordinates of the plot corners were recorded using a high-accuracy, 

differentially corrected GPS (Pathfinder ProXT, Model # 52240-20, Trimble Navigation Limited, 

Sunnyville, CA) in order to accurately georeference the scanning LiDAR point clouds to the plot 

locations.  We then recorded tree species, estimated crown class (dominant, co-dominant, 

intermediate, or suppressed), and measured all trees over 2 meter height (the height at which 

they would be detected by the upward-looking LiDAR sensor) for DBH and height using a 

hypsometer (Haglof VL400, Haglof Sweden AB, Langsele, Sweden).  Table 1 shows initial plot 

descriptions and biometric data.   
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Initial upward sensing LiDAR transects were then laid out and sampled (see below).  The 

first five trees were then harvested one at a time by chainsaw.  Tree selection was employed to 

minimize damage to the tree and to the remaining stand when felling.  Each tree was measured 

on the ground with a loggers tape, 1-meter segments were marked carefully with tree paint, 

and segments were then cut into 1-meter segments.   Live and dead foliage, cones, 1-hour 

(twigs), 10-hour (stems), 100-hour (stems) and 1000-hour fuels were separated in the field and 

placed in labeled paper bags.  Boles were weighed in the field, and a “cookie” was cut from 

each 1-meter segment to convert wet, field weight to dry biomass.  After five trees were 

harvested and separated, LiDAR transects were sampled again, and another five trees were 

harvested.  We repeated this process until all trees were removed from the plots.  In the five 

plots, a total of 181 live trees and 85 snags were harvested, separated into 1-meter segments, 

and weighed.   

 

           

 

Figure 4.  One of the 20 m x 20 m harvest plots containing wildfire-damaged Pitch pine in the 

New Jersey Pinelands.  This stand was burned in the 2007 Warren Grove wildfire.     
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Profiling LiDAR data:  Upward scanning profiling LiDAR data were collected concurrently with 

the tree harvests in each plot.  The backpack-mounted LiDAR system consisted of a discrete-

return Riegl Laser Rangefinder (Model # LD90-3100VHS-FLP, Riegl USA, Orlando, FL) connected 

to a PDA which collected first returns at 100 Hz via the RS-232 port.  The system had a range of 

0.1–200 m, and a spot size of 12.4 cm2 at 1 m to 25.6 cm2 at 50 m (Parker et al. 2004). The 

instrument was paced at a constant rate along 21 north–south oriented transects spaced 1 m 

apart before any trees were harvested, and following the removal of five trees in each plot.  Sky 

shots (laser pulses that passed through the canopy) were recorded as null values.  We paced 

the LiDAR along transects three times per transect, and then averaged the data for each 

transect.   

 

Sample processing in the Laboratory:   For larger samples, we used a wet weight / dry weight 

ratio calculated from the appropriate sub-sample to estimate dry mass of the sample.   

 All large samples were weighed, and the wet weight recorded.  A sub-sample was weighed 

wet, dried at 70 °C until dried, and then weighed again.  Smaller samples were dried at 70 °C 

until dry, and the final dry mass weight recorded.   

 

Scaling 3-Dimensional CDB estimates to the landscape level:  Scanning LiDAR acquisitions and 

the known relationship between upward profiling and downward scanning LiDAR systems 

(Skowronski et al. 2011) were used to produce maps of canopy fuel loading across selected 

pitch pine-dominated forests.  A number of scanning LiDAR acquisitions were used to scale 

estimates up to the landscape level, including an acquisition over a high intensity wildfire (2008, 

207 km2, 4 returns/m2), and two countywide acquisitions (2010 and 2013).  Some of these 

acquisitions overlap spatially, and can be used to characterize canopy fuel profiles pre- and 

post- disturbance.  Using this approach, we can evaluate the effects of a number of prescribed 

burns conducted by the New Jersey Forest Fire Service  (e.g., Skowronski et al. 2007, see 

“Management Implications” below).  LiDAR data analyses followed Skowronski et al. (2011), 

and we produced plot, landscape and regional-scale high-resolution (20m x 20m horizontal, 1-m 
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vertical) raster stacks of LiDAR derived canopy fuel profiles, which provide detailed information 

on canopy gaps, ladder fuels, and three-dimensional canopy structure. 

 

Validation plots:  Validation plot locations were generated using random UTM coordinates in 

Pitch pine – scrub oak stands that were at least 4 ha in size.  Plots (n = 20, 20 x 20 m in size) 

were buffered by a minimum of 100 m from the edge of the stand, and at least 100 m apart 

from each other.  The UTM co-ordinates of the plot corners were recorded, and we then 

recorded species and crown class, and measured diameter at breast height (DBH) and tree 

height using a Hypsometer for each tree > 2 m height in each plot.   The profiling LiDAR was 

then paced along 21 transects spaced 1 meter apart, and data were binned to produce 1-meter 

fuel estimates for each plot.   

 

Statistical analyses:  We developed a range of equations to calculate CFW and the mass of 

individual fuel components, maximum CBD, the height of maximum CBD, and CBD for individual 

meter layers from the harvest and LiDAR datasets.  The first set of equations are based solely 

on standard forest census data, specifically tree height and DBH measurements, which are 

recorded routinely during our other research efforts, and are an integral part of FIA datasets 

and other forest census work conducted by the NJ Department of Forestry.  We then developed 

and present a range of equations for use with upward sensing profiling LiDAR data to calculate 

canopy fuel characteristics, typically for use with 20 m x 20 m forest census plots (e.g., 

Skowronski et al. 2011, JFSP project 12-1-03-11).  Finally, we are developing and refining a third 

set of equations to predict CFW, maximum CBD, and CBD in selected meter height bins using 

downward sensing scanning LiDAR (ALS) datasets.   

 

Harvest plots and allometric equations:  We used standard allometric analyses for the sampled 

trees to produce linear regression equations to predict CFW, maximum CBD, and CBD in 1-

meter layers from height and DBH measurements for each tree, following the approaches in 

Whittaker and Woodwell (1968) and Duveneck and Patterson (2007).   Individual tree height 

and DBH data were used to calculate a parabolic volume (V):  
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     V = 0.5 π (dbh/2)2 h     (1) 

Where dbh is tree diameter at breast height (m), and h = tree height (m).  SigmaPlot (Systat, 

Inc., Sunnyvale, CA) was then used to calculate regression coefficients for CFW, maximum CBD 

and the weight of various canopy components.       

 

Upward sensing LiDAR data:  All LiDAR returns were summed for each harvest interval, and 

analyzed against remaining available fuels and fuel components separately.  Following 

Skowronski et al. (2011), upward sensing LiDAR data were then processed to estimate canopy 

height profiles in 1-meter layers for each harvest interval.  Regression equations were then 

developed to predict CFW, maximum CBD and CBD in 1-meter layers from these canopy height 

profiles (e.g., Skowronski et al. 2011).   

 

Downward sensing LiDAR data:  Downward sensing LiDAR data acquisitions were processed to 

estimate canopy height profiles in 1-meter layers.  Using the known relationships between 

upward sensing and downward sensing LiDAR in Pitch pine canopies, we developed multiple 

linear regression equations to predict CFW, maximum CBD and CBD in 1-meter layers from the 

canopy height profiles (e.g., Skowronski et al. 2011).   

 

Evaluation of model predictions:  We evaluated LiDAR-derived estimates of canopy fuels by 

comparison to biometric predictions from allometric equations in the validation plots.  We 

predicted CFW, maximum CBD, and CBD in 1-meter layers from the biometric data, and 

compared predictions to the estimates calculated from the upward sensing profiling data.  We 

are currently evaluating estimates using the downward sensing scanning LiDAR data for 

validation plots and a series of previously sampled plots in the Pinelands.   
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IV. KEY FINDINGS 

Harvest plots and allometric equations:  Descriptive statistics for trees in the five calibration 

plots are shown in Tables 1 and 2.  Total tree biomass and basal area ranged between 67 and 

108 tons ha-1, and between 19.9 and 23.7 m2 ha-1, respectively (Table 1a).  The greatest number 

of trees occurred in the shortest stand (HR1).  Snag density ranged from none to 39 snags in 

each 20 x 20 m plot (Table 1b).      

 

Table 1a.  Biometric information for live trees in the five calibration plots dominated by Pitch 

pine that were destructively harvested in 2010-2012.   

______________________________________________________________________________ 

Plot       Trees        Height              DBH         Basal area    Biomass          Foliage      

              (#)             (m)      (cm)          (m2 ha-1)        (t ha-1)          (g m-2)  

____________________________________________________________________________ __ 

HR1   57           7.6 ± 1.8 13.2 ± 4.4 21.5          67.0    448.7         

HR2   46         10.3 ± 1.2 15.9 ± 4.1 23.7          92.4    573.0    

HR3   32         10.2 ± 2.2 17.3 ± 4.3 19.9          78.4    384.1       

DH1   19         14.6 ± 3.1 23.0 ± 7.1 21.5        107.9    613.5 

DH2   27         12.2 ± 5.3 18.3 ± 9.5 22.4        106.7    579.0 

______________________________________________________________________________ 

Mean                10.8 ± 2.7 17.5 ± 3.6     21.8 ± 1.4   90.3 ± 17.8  519.7 ± 98 

 

Table 1b.  Biometric information for snags in the five calibration plots dominated by Pitch pine 

that were destructively harvested in 2010-2012.   

______________________________________________________________________________ 

Plot            Snags       Height            DBH         Basal area 
    (#)     (m)               (cm)          (m2 ha-1) 

______________________________________________________________________________ 

HR1  32 5.3 ± 1.4 7.8 ± 2.3 4.1 

HR2  39 6.2 ± 1.8 9.1 ± 2.4 6.8  

HR3  13 6.1 ± 3.1 8.2 ± 2.5 1.8  

DH1  1     12.4        14  0.4 

DH2  0       ---        ---   --- 

_________________________________________________________________________  
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Table 2.  Contribution of each fuel class to total canopy biomass for all trees in the five harvest 

plots.   Total canopy biomass is defined as all foliage, branches and reproductive material 
excluding mainstems.  Units are kg m-2.   

____________________________________________________________________________  

      Fuel Class    Mass ± 1 SD     % of Total Canopy Biomass  

         (kg m-2) 

____________________________________________________________________________ 

Needles live   0.520 ± 0.098           22.1 ± 4.2 

Needles dead   0.002 ± 0.002             0.1 ± 0.1 

1-hr live                0.239 ± 0.043           10.1 ± 1.8 

1-hr dead   0.126 ± 0.021             5.4 ± 0.8    

10-hr live   0.369 ± 0.085           15.7 ± 3.6 

10-hr dead   0.139 ± 0.045             5.9 ± 1.9 

100-hr live   0.590 ± 0.253           25.1 ± 10.7 

100-hr dead   0.132 ± 0.159             5.6 ± 2.5 

1000-hr live   0.069 ± 0.054             2.9 ± 2.2 

1000-hr dead        0.005 ± 0.003             0.2 ± 0.1 

Reproductiveall  0.164 ± 0.080             7.0 ± 3.4 

___________________________________________________________________________   

Total canopy biomass    2.356 ± 0.744               100.0 % 

___________________________________________________________________________  

 

Crown fuel weight of the five destructively-harvested plots ranged between 0.83 and 

1.16 kg m-2 (Table 3).   Crown fuel weight averaged 43.6 ± 5.7 % of total crown biomass. 

Maximum canopy bulk density in 1-meter height classes ranged between 0.15 and 0.23 kg m-3, 

and occurred at 7 (HR1) to 13 (DH1) meters (Figure 5).  Canopy base height ranged between 4 

and 11 meter height (Table 3, Figure 5).    
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Table 3.  Fuel loading characteristics for the five calibration plots dominated by Pitch pine that 

were destructively harvested in 2010-2012.  

______________________________________________________________________________ 

Plot   CFW   Maximum CBD CBD max height CBH            
                                      (kg m-2)         (kg m-3)             (m)  (m)                 

______________________________________________________________________________ 

HR1  0.953           0.184                 7    4 

HR2  1.162           0.229     9    6 

HR3  0.828           0.165     9    7 

DH1  1.110           0.154   13  11 

DH2  1.079           0.167   12  10 

______________________________________________________________________________ 

Mean ± 1 SD       1.026 ± 0.135         0.180 ± 0.030        10.0 ± 2.4          7.6 ± 2.9 

_____________________________________________________________________________ 
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Figure 5.  Canopy bulk density profiles for the five harvest plots before harvesting.   
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Relationships between parabolic volume and available fuel, live foliage, and 1- and 10-

hour fuels were all linear (Figures 6-8).   Allometric equations to predict available fuels, live 

foliage, and 1 + 10 hour fuels developed from biometric measurements are in Table 4; 

equations are highly significant for crown fuel weight and the weight of most individual canopy 

components that comprise available fuels (needles, 1 – hour live and dead stems, and 10-hour 

dead stems), with r2 values generally exceeding 0.8.  The poorest fit was for live and dead 1000-

hr fuels, which formed very low mass (Table 2).  Dead 1-hour fuels, which were abundant in two 

of the plots that had been burned severely in the 2007 Warren Grove wildfire, but not in the 

other three plots, were also predicted poorly.  These also comprised a low proportion of the 

overall canopy biomass in all plots (5.4 %).  In general, larger, dead woody fuels were more 

difficult to predict than other fuel types. 

 

Table 4.  Selected allometric relationships based on parabolic volume calculated from tree 

height (m) and DBH measurements (cm).  Live trees in all plots were used to develop these 
equations, and data were fit to y = αx + β.  Units are kg fuel class per tree.  SE = standard error 

of the estimate.   

______________________________________________________________________________ 

Fuel class             α  β          r2            F       P                 SE 

______________________________________________________________________________ 

Available fuels1   66.12 ±   1.57       1.61 ± 0.35      0.910     1693.5 < 0.0001   3.42 

All needles    38.63 ±   0.99       0.41 ± 0.22      0.897     1461.3 < 0.0001   2.15 

1-hr and 10-hr    55.27 ±   1.28       1.39 ± 0.29      0.914     1775.0 < 0.0001   2.79 

Total canopy2  171.29 ±   5.75      0.44 ± 1.28      0.836       845.4 < 0.0001 12.51 

Total biomass  676.11 ± 11.08      1.84 ± 2.47      0.955     3547.6 < 0.0001 24.11 

_____________________________________________________________________________________________  

1 Available fuels are defined as live and dead needles, live and dead 1-hour fuels, and dead 10-

hour fuels.   
2 Total canopy is defined as needles, branches and reproductive material, but not boles.  
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Figure 6.  Relationship between parabolic volume calculated from height and dbh 
measurements and available fuels for live tress on all five harvest plots.   

                

Figure 7.  Relationship between parabolic volume calculated from height and dbh 
measurements and live and dead needle mass for live tress on all five harvest plots.   
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Figure 8.  Relationship between parabolic volume calculated from height and dbh 

measurements and live and dead 1-hour and 10-hour fuels for live tress on all five harvest plots.   
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Relationships between parabolic volume and calculated maximum canopy bulk density 

are shown in Table 5 and Figures 7-8.   Log-log plots between parabolic volume and CBDmax 

resulted in a slightly better fit than linear equations (Table 5).  

  

Table 5.  Relationship between parabolic volume and maximum canopy bulk density for the five 

harvest plots.  Data were fit to linear or log-log plots, where y = α x + β. 

____________________________________________________________________________  

Function             α  β  r2  F  P 

____________________________________________________________________________  

Linear  12.71 ± 0.49      1.08 ± 0.11   0.79  636.7  <0.0001    

Log-log  0.679 ± 0.025    1.064 ± 0.029  0.81  744.7  <0.0001 

___________________________________________________________________________  
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Figure 9a and b.  Relationship between parabolic volume and maximum canopy bulk density on 

a per-tree basis.  Data are presented as a) linear and b) log-log relationships.   
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Equations were also generated for predicting the height of CBDmax from the biometric data.  

This relationship was best approximated as a non-linear power function, and a log-log plot 

resulted in a slightly better fit (Table 6, Figures 9-10).  All relationships were significant, with r2 

values exceeding 0.70.   

 

Table 6.  Relationship between parabolic volume and height of maximum canopy bulk density 

for trees in the five harvest plots.  Data were fit to power function, where y = α + β x γ  or a log-

log plot, where y = α x + β. 

____________________________________________________________________________  

Function      α          β                  γ                      r2     F          P 

____________________________________________________________________________  

Power  -0.027                  15.288     0.262      0.70   203.3     <0.0001 

Log-log        0.268 ± 0.013     1.181 ± 0.015        ---                     0.72  447.8     <0.0001 

____________________________________________________________________________  
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Figure 10 a and b.  Relationship between parabolic volume and the height of maximum canopy 

bulk density on a per-tree basis.  Data are presented as a) power function and b) log-log 
relationships.  
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Profiling LiDAR data for calibration plots:  Parameter values and statistics for the relationships 

between upward sensing profiling LiDAR data and crown fuel weight, and for selected fuel 

components during harvesting were all linear and highly significant (Figures 11-13).  For 

example, crown fuel weight and fuel loading variables were linearly related to the ratio of 

intercepted to total LiDAR returns in the HR3 plot as trees were sequentially harvested; 

regression equations had r2 values < 0.9, and all equations are significant at P < 0.0001 (Table 

7).     

 

Table 7.  Linear regression parameters and statistics for the relationships between crown fuel 
weight, live and dead needles, or 1-hour and 10-hour fuels and LiDAR returns, expressed as the 

ratio of intercepted to total pulses from the upward sensing profi ling LiDAR above 2 meter 

height for one of the harvest plots (HR3) during sequential harvesting.  Data were fit to y = αx + 
β.  Parameter values are ± 1 SE, and units are kg m-2.   Examples of these relationships are 

shown in Figure 11 for available fuels, Figure 12 for live needles, and Figure 13 for 1-hour and 

10-hour fuels.   

______________________________________________________________________________   

Fuel class            α       β     r2             F         P 

______________________________________________________________________________ 

Available fuel  1.426 ± 0.057        0.030 ± 0.023 0.986           635.4 < 0.0001 

Needles  0.669 ± 0.041        0.035 ± 0.017 0.967         261.5 < 0.0001 

1-hr and 10-hr  1.279 ± 0.042        0.017 ± 0.017 0.990         924.3 < 0.0001 

______________________________________________________________________________  
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Figure 11.  The relationship between upward sensing profiling LiDAR returns ( expressed as the 

ratio of intercepted to total pulses) and crown fuel weight as the HR3 plot was sequentially 

harvested.   Five trees were harvested between each point in the 20 m x 20 m plots.   

 

                 

Figure 12.  The relationship between upward sensing profiling LiDAR returns and live needle 
mass as the HR3 plot was sequentially harvested.   
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Figure 13.  The relationship between upward sensing profiling LiDAR returns and 1-hour and 10-

hour fuels as the HR3 plot was sequentially harvested.   

 

 

We then compared canopy height profiles derived from upward sensing profiling LiDAR data 
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of regression equations were then developed to predict crown fuel weight and canopy bulk 
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9).   Although a polynomial equation provided the best fit, estimates based on this equation 

tended to lead to erroneous values because LiDAR apparent cover tends to saturate in dense 

canopies.  We used the linear equation for all further analyses here. 
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Figure 14. Upward profiling LiDAR data expressed as a color-coded canopy height profile for a 

20 m x 20 m plot before initial harvest.   
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Figure 15.  Available fuel (solid symbols) and LiDAR apparent cover (horizontal bars) by meter 

height in three of the harvest plots.  LiDAR apparent cover was calculated as a ratio of 

intercepted to total LiDAR returns for each 1-meter height bin.  Values are means of the 20 
profiling LiDAR sampling lines ± 1 SE before harvest.  Available fuels were calculated from 

harvest data (shown in Figure 5).     
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Table 8.  Statistics and parameters for the relationship between available fuels and LiDAR 

apparent cover by 1-meter heights before harvesting of the five calibration plots.  Values are 
given for linear (y =  α * x + β) and polynomial (y = α + β*x + γ*x2) equations.    

______________________________________________________________________________   

Function          α             β               γ          r2      F          P 

_____________________________________________________________________________  

Linear             0.917 ± 0.004 -0.009 ± 0.004                        0.887            567.9      <0.0001 

Polynomial    0.003 ± 0.004      0.304 ± 0.103    3.371 ± 0.537     0.927  457.3      <0.0001                

_____________________________________________________________________________  

        

Figure 16.  The relationship between available fuels and apparent cover derived from LiDAR 

data in 1-meter height bins.  Data were fit to a polynomial equation, Y = α + β*x + γ*x2.   
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Table 9.  Linear regression equations and statistics to predict crown fuel weight for available 

fuels and canopy fuel classes from LiDAR returns, expressed as the proportion of intercepted 

pulses divided by the total pulses emitted in all five plots.  Units are kg m-2. 

_____________________________________________________________________________ 

Fuel Class            Equation    r2  F  P 

______________________________________________________________________________ 

Available Fuels* y = 2.012 x + 0.009  0.94          901.9       <0.0001 

  Needles live  y = 0.998 x + 0.013  0.89          451.6       < 0.0001 

  Needles dead  y = 0.008 x – 0.001  0.36            31.0        < 0.0001 

  1-hr live  y = 0.426 x + 0.007  0.87          363.6       < 0.0001             

  1-hr dead  y = 0.255 x – 0.001  0.93          727.8       < 0.0001  

  10-hr live  y = 0.662 x + 0.001  0.82          257.9       < 0.0001 

  10-hr dead  y = 0.326 x – 0.009  0.92          613.4       < 0.0001 

  100-hr live  y = 0.930 x + 0.056  0.53            62.1       < 0.0001 

  100-hr dead  y = 0.248 x + 0.009  0.56            70.8       < 0.0001 

  1000-hr live  y = 0.056 x + 0.016  0.08  4.5          0.0382 

  1000-hr dead  y = 0.042 x + 0.001  0.08  4.5          0.0370      

  Reproductive all y = 0.355 x + 0.012  0.63            93.5       < 0.0001 

____________________________________________________________________________  
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Table 10.  Linear regression equations and statistics to predict available fuels or the mass of 

individual fuel components from binned LiDAR data for all height bins (i.e. as a proportion of 
intercepted and total LiDAR returns by 1-meter height bin).  Units are kg m-3.   

_____________________________________________________________________________ 

Fuel Class  Equation   r2  F  P 

______________________________________________________________________________ 

Available Fuels y = 1.0084 x + 0.0187  0.82         2736.9         <0.0001 

  Needles live  y = 0.6280 x + 0.0055  0.89         4271.1         <0.0001 

  Needles dead  y = 0.0064 x – 0.0001  0.25           202.9         <0.0001 

  1-hr live  y = 0.2725 x + 0.0022  0.84         2850.1         <0.0001 

  1-hr dead  y = 0.1612 x + 0.0008  0.87         4144.0         <0.0001 

  10-hr live  y = 0.4195 x + 0.0036  0.84         2929.5         <0.0001 

  10 –hr dead  y = 0.2058 x + 0.0003  0.84         3215.8         <0.0001 

  100-hr live  y = 0.6299 x + 0.0075  0.71         1455.8         <0.0001 

  100-hr dead  y = 0.1977 x + 0.0002  0.65         1077.8         <0.0001 

  1000-hr live  y = 0.0378 x + 0.0017  0.10             64.6         <0.0001 

  1000-hr dead  y =   2E-05 x + 0.0002  0.00               0.0           0.9808 

  Reproductive all y = 0.2497 x + 0.0016  0.70         1286.8         <0.0001 

_____________________________________________________________________________  

 

Canopy fuel loading predicted from calibrated scanning LiDAR datasets: 

The relationship between upward sensing profiling LiDAR and downward scanning LiDAR 

developed from an independent set of Pitch pine-dominated plots is shown in Table 11.  To 

evaluate this comparison for estimating canopy fuels, Skowronski et al. (2011) derived canopy 

bulk density estimates from upward sensing profiling LiDAR (n = 5 20m x 20m plots, n = 480 

bins, r2 = 0.827) and compared to downward scanning LiDAR (n = 5 plots 20m x 20m plots, n = 

380 1-meter bins, r2 = 0.818) (Figure 17).  Figure 18 shows an example of a calibrated maximum 

canopy bulk density map for the Cedar Bridge area in the Greenwood Wildlife Management 

Area in the Pinelands.  
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Table 11.  The relationship between LiDAR parameters derived from upward sensing profiling  

LiDAR to downward sensing scanning LiDAR for n = 19 20 m × 20 m plots dominated by Pitch 
pine in the New Jersey Pinelands. Means and standard deviations from upward and downward 

senors and equations for their relationships are presented.  Correlation coefficients (r2) are 

Pearson's product moments.  Correlations are all significant at P <0.01 with the exception of the 

equation indicated with a “*”.  Adapted from Skowronski et al. 2011.   

____________________________________________________________________________   

Parameter         Profiling     Scanning          Equation               r2 

       LiDAR       LiDAR 

____________________________________________________________________________  

Standard LiDAR-derived parameters 

  Mean return height, hmean     6.54 ± 1.48      7.71 ± 1.66      y = 0.735 x + 0.940     0.98 

  Maximum return height, hmax  12.04 ± 3.07    12.40 ± 2.29      y = 1.288 x − 3.599     0.82 

  90th percentile height, h90     8.85 ± 1.83    10.00 ± 2.00      y = 0.746 x + 1.451     0.96 

  75th percentile height, h75     7.80 ± 1.72      9.00 ± 1.88      y = 0.692 x + 1.652     0.94 

  25th percentile height, h25     5.51 ± 1.43      6.51 ± 1.54      y = 0.662 x + 1.276     0.94 

  10th percentile height, h10     4.41 ± 1.23      5.36 ± 1.31      y = 0.713 x + 0.640     0.90 

  Canopy density, D(%)    44.5 ± 17.9      87.8 ± 9.61      y = 1.262 x − 62.1       0.86 

  Coefficient of variation, CV     0.26 ± 0.03      0.24 ± 0.43      y = 0.540 x + 0.128     0.67 

Canopy height bins 

  All height bins (n=475)     0.04 ± 0.06      0.14 ± 0.19      y = 0.320 x − 0.001     0.85 

Selected 1-m height bins (n = 5 for each bin) 

  3-4 m height       0.01 ± 0.01      0.05 ± 0.06      y = 0.081 x + 0.009     0.38* 

  8-9 m height       0.16 ± 0.09      0.40 ± 0.20      y = 0.398 x − 0.016     0.86 

13-14 m height      0.03 ± 0.04      0.11 ± 0.11      y = 0.224 x − 0.001     0.93 

_____________________________________________________________________________   
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Figure 17. Predicted values of CBDbin from equations for upward profiling LiDAR (open symbols) 

and downward scanning LiDAR (closed symbols), plotted against biometric estimates of CBDbin 

in 1-meter layers.  From Skowronski et al. 2011.   
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Figure 18.   Calibrated maximum canopy bulk density map for the Cedar Bridge area in the 

Greenwood Wildlife Management Area in the Pinelands (from Skowronski et al. 2011).    
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Evaluation of LiDAR predictions with independent field plots:   

We sampled an additional 20 20 x 20 meter plots throughout Pitch pine dominated forests to 

evaluate LiDAR-derived estimates of selected canopy fuel parameters.  Descriptive statistics for 

trees in the validation plots are in Table 12, and canopy fuel characteristics are shown in Table 

13.   

 

Table 12.  Summary of biometric information for the (n = 20) validation plots dominated by 

Pitch pine.   

_____________________________________________________________________________  

Variable     Number     Snags     Height      DBH 

            (m)       (cm)         

 _____________________________________________________________________________  

  Mean ± SD  67.8 ± 38.8  11.5 ± 8.6  9.4 ± 2.0 13.9 ± 3.1 

  Minimum         30          1       6.1        9.0  

  Maximum                   195        34                 13.6      20.3  

_____________________________________________________________________________  

 

Table 13.  Canopy fuel characteristics predicted for the n = 20 validation plots.  Total tree 

biomass and available fuels were calculated from biometric equations in Tables 2-4. 

____________________________________________________________________________ _   

Statistic    Biomass       CFW  Maximum CBD 

      (t ha-1)     (kg m-2)       (kg m-3) 

_____________________________________________________________________________ 

Mean ± SD  97.8 ± 32.0  1.170 ± 0.386  0.211 ± 0.082 

Minimum       19.6         0.238          0.043 

Maximum     142.6         1.930          0.347 

_____________________________________________________________________________       
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Seventeen of the 20 plots had complete LiDAR data, and biometric vs. LiDAR-derived estimates 

of crown fuel weight and maximum canopy bulk density were compared using pair-sample T-

tests (Table 14).  We have collected upward sensing profiling LiDAR data and downward sensing 

scanning LiDAR at and above these plots, and are currently comparing predictions to biometric 

estimates.   

 

Table 14.  Comparison of biometric and LiDAR derived estimates of crown fuel weight and 

canopy bulk density for n = 17 validation plots.  Comparisons were made with paired sample T-

tests. 

____________________________________________________________________________  

Variable  Biometric  LiDAR derived                T              Significance 

____________________________________________________________________________  

CFW (kg m-2) 

  Mean ± 1 SD  1.153 ± 0.272  1.217 ± 0.279  0.216  ns 

  Maximum        1.914         1.619 

  Minimum       0.582         0.606 

 

Maximum CBD (kg m-3) 

  Mean ± 1 SD  0.223 ± 0.078  0.217 ± 0.079  0.587  ns 

  Maximum       0.470         0.398 

  Minimum       0.101         0.081 

___________________________________________________________________________  

 

Summary of Key Findings  

 

Our study focused on the quantification of canopy fuels across a heterogeneous 

landscape in the Pinelands of New Jersey.  We improved estimates of canopy fuel loading in 

Pitch pine (Pinus rigida L.) stands by integrating destructive harvests with sequential upward 

sensing profiling LiDAR data, and then used extensive scanning LiDAR data to scale data to the 

landscape.  We provide a wide range of equations, from both the biometric and the LiDAR 
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datasets, to calculate CFW, maximum CBD and CBD in 1-meter bins.  Using previously sampled 

plots reported in Skowronski et al. (2011), we determined the relationship between upward 

sensing profiling LiDAR and downward sensing scanning LiDAR in 20 x 20 m plots dominated by 

Pitch pine.  We can now produce accurate maps of canopy fuel characteristics throughout Pitch 

pine dominated stands in the Pinelands, and have developed a sampling framework that is 

appropriate for determining canopy fuels in other forested ecosystems.    

 

We note that LiDAR data has been used frequently for fuel assessments in forests and 

shrublands.  Calibrated LiDAR has the advantages over allometric, plot-based approaches 

because:  1) Large, landscape to regional scale inventories can be accomplished in a systematic 

manner, 2) Processing time is limited by data-processing time, not by field crews, access and 

scheduling, and 3) Damaged, non-uniform crowns can be quantified accurately.  However, for 

an accurate determination of canopy fuel loading, it is essential to evaluate LiDAR signals 

against destructively harvested data, preferably with sequential harvesting and concurrent 

LiDAR data collections, following the approach developed here.   

 

V. MANAGEMENT IMPLICATIONS 

 

This research provides important, useful information for the New Jersey Forest Fire Service, and 

will directly inform their decision-making during wildfire suppression activities, and for 

evaluating the effectiveness of prescribed burns as they move forward with their extensive 

fuels management program.  We have worked extensively with NJFFS to provide fuel loading 

and fuel consumption data, with an eye on providing estimates of fuels treatment effectiveness 

(e.g., Skowronski et al. 2007, 2011, Clark et al. 2009, 2010).  For example, we are currently 

linking the information derived from this research with an evaluation of a series of prescribed 

burns conducted in March 2013 over much of the area shown in Figure 19a-c.  We now have 

the ability to provide well-calibrated, accurate canopy fuel maps of areas like this.   
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Figure 19a. An aerial photo of the 

Cedar Bridge area.  19 b and c.  
Scanning LiDAR estimates of 

understory fuel density, showing 

the effect of a series of prescribed 

burns conducted in March 2008.  
Green indicates low fuel loading 

density, and red indicates high 

density.   
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We are also using these data to provide calibrated maps of fuels and wildfire hazard within WUI 

areas at the margins of the Pinelands National Reserve.  In addition, we are also working the 

New Jersey Department of Forestry and USFS Forest Inventory and Analysis program to provide 

biometric information for fuel loading and biomass of Pitch Pine, based on the harvest data 

collected during this research.   

   

VI. RELATIONSHIP TO ONGOING RESEARCH EFFORTS 

Our results and products are directly applicable to JFSP 12-1-03-11, “Evaluation and 

Optimization of Fuel Treatment Effectiveness with an Integrated Experimental and Modeling 

Approach”, Nicholas Skowronski, PI.   This research will integrate LiDAR measurements of three-

dimensional canopy structure and field consumption measurements, using both a space-for-

time and remeasurement approaches, with fire intensity and spread simulated with the 

Figure 20.  Canopy fuel loading 
estimated from scanning LiDAR 

following the 2007 Warren 

Grove wildfire.   Extensive WUI 

is in the center right portion of 
the image.   
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Wildland-Urban Fire Dynamics Simulator (WFDS; Mell et al. 2007).   Our project contributes to 

the characterization of three-dimensional canopy fuel loading across a heterogeneous 

landscape, and to the characterization of the physical changes to the canopy that occur during 

fuel reduction treatments.  Accurate canopy fuel estimates will be used to parameterize WFDS 

for simulating fire behavior, thus the integration of treatment-dependent canopy structure 

derived from the LiDAR with WFDS simulations will be used to evaluate realistic treatment 

scenarios over a wide range of fire weather conditions.  The integration of remote sensing, 

extensive field sampling and modeling in this research will provide a powerful approach for 

evaluating fuel treatment effectiveness in a variety of other forest and shrub-dominated 

systems. 

 

 

  

Figure 21.  Canopy height 
profile derived from scanning 

LiDAR data near the Warren 

Grove Bombing Range.  This 

stand was burned in a highly 
instrumented fire in March 

2013.   
 



JFSP Project  10-1-02-14  Assessing Canopy Fuels Using LiDAR                              
 

45 
 

Our project results are also well-integrated with JFSP 09-1-04-1, “Development of 

Modeling Tools for Predicting Smoke Dispersion from Low-intensity Fires”, Warren Heilman, PI.  

They evaluated several state-of-the art, fine-scale atmospheric dispersion models and CFD 

models, with an emphasis on their performance in simulating local-scale flows and near-surface 

conditions.  Their overall goal is to improve our understanding of the influence of forest 

vegetation layers and local terrain-induced circulations on smoke emissions, dispersion, and 

transport within and above forest canopies.  The LiDAR-derived estimates of canopy fuel 

loading can be used to improve the accuracy of modeling of atmospheric turbulence within and 

above vegetation layers.  For example, Heilman et al. (2013) show the importance of 

interactions between the forest canopy and turbulence in the fire environment, further 

stressing the importance of accurate estimates of canopy structure.    
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