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Emerging interests in wildland fire behavior and risk, bioenergy utilization, carbon 

sequestration, and wildlife conservation increasingly rely on accurate assessments of the 

amount and location of biomass within the dominant plants on the landscape, often at 

finer scales than traditional methods have provided. At the tree scale, current studies 

often distribute biomass uniformly through simple volumes (e.g., cones and cylinders).  

However, biomass is heterogeneous at a variety of scales from needle clusters to groups 

of trees. This thesis presents techniques for using terrestrial laser scanning data to define 

crown profiles and describe within-crown heterogeneity in Pseudotusga menziesii, Pinus 

ponderosa, and Abies lasiocarpa of the Interior Northwest. Crown profiles were modeled 

using parametric curves applied to crown-length normalized laser point clouds, 

dimensioned by height above ground and distance from bole-centroids. A crown-base 

metric was derived from the laser data and compared to conventional field measurements. 

For all species, a modified Weibull curve fit crown points with significantly smaller error 

than a beta curve, cone, or cylinder; crown profile Weibull curves were species-specific 

and not interchangeable without producing signifcantly greater error. Within-crown 

patterning was described using a 3-D form of the Ripley’s K function. Ripley’s K 

analysis detected maximum clustering occuring at scales of 1.25 – 2.50 percent of crown 

length (e.g., 25-50 cm radius clusters in a 20 meter crown).  P. ponderosa demonstrated 

clustering over the largest range of scales and to the greatest degree, while A. lasiocarpa 

exhibited clustering over the smallest range of scales.  The scale of clustering did not 

change when points roughly corresponding to branchwood were excluded from the 

analysis. This study provides groundwork for predicting the spatial distribution of 

biomass with tree crowns. Limitations of the work include uncertainty regarding the 

impacts of occlusion of inner crowns and the relationships between laser points and 

foliage-branch elements, and the lack of spatial explicitness inherent to Ripley’s K.  

Future work should examine these issues with an eye toward refinement of predictive 

models linking traditional biomass allometry with spatial arrangement of canopy 

material. 
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Chapter 1.  Introduction 

Overview 

 Understanding the distribution of the above-ground biomass of the dominant plants on a 

lanscape is of critical and growing importance in forest conservation and management.  Emerging 

interests in wildland fire behavior and risk (Ottmar et al. 2012, Parsons et al. 2011, Hiers et al. 

2009), bioenergy utilization (Dassot et al. 2012, Fernandez-Sarria et al. 2013), carbon sequestration 

(Clark et al. 2011), and wildlife conservation (Lesak et al. 2011, Palminteri et al. 2012) among 

others, increasingly rely on accurate assessments of the amount and location of biomass, often at 

finer scales than traditional methods have provided.  As field measurements are not always a viable 

option for every application, many scientists and managers employ models to infer biomass from 

tree lists, stand tables, and maps of vegetation composition and structure. The conventional 

approach to assess tree biomass is to measure tree diameters by species and then to estimate 

biomass from allometric relationships derived from destructive sampling studies.  Studies that rely 

on destructive sampling can be limited by small sample sizes and restricted geographic 

distributions, and there is renewed interest in revisiting tree allometries to improve prediction 

effectiveness and remove bias. 

For example, in the northern Rocky Mountains, Affleck and Turnquist (2012) are re-

calibrating many of Brown’s (1978) equations for estimating standing crown biomass using 

randomized branch sampling (RBS).  RBS overcomes the sample size limitation by measuring only 

small parts of individual trees.  It uses the correlation between foliar/branch mass and branch basal 

diameter to select a subsample of branches within each crown to be weighed and measured.  

Because of the limited sampling of each tree, RBS allows sampling of larger number of trees in the 

same amount of time as previous methods that processed entire trees; this permits more extensive 

sampling over wider geographic and size class distributions.   These revised allometric 



2 
 

relationships are expected to produce more robust estimates of crown biomass and provide 

enhanced utility for the interests mentioned above.   

In addition to knowing the amount of biomass in a forest, stand, or tree, there is growing 

interest in understanding how that biomass is distributed within individual tree crowns.  The 

within-crown arrangement of vegetation is becoming particularly important to wildland fire 

modelers and managers who wish to understand fire behavior and effects at finer scales than have 

been studied in the past (Hoffman 2012, Parsons et al. 2011).  A suite of new fire models and a 

growing appreciation for the complexities of fire behavior are stimulating interest in linking 

traditional allometric approaches with information about where tree biomass is found in space.   

The denouement of this approach is to develop predictive models that will take a tree list, populate 

it with reasonable estimates of biomass, and provide spatially explicit parameters for that biomass.  

The RBS approach described previously addresses estimation of biomass by species, and 

this thesis considers where that biomass occurs within tree crowns.  In order to understand the 

spatial distribution of crown biomass, a first step is to quantify the space that the crown occupies, 

then describe the internal heterogeneity of material, and, finally, to allocate biomass in a spatially-

explicit, realistic manner, based on our understanding of heterogeneity.  Here, I consider the initial 

two steps – crown volume and internal heterogeneity for three conifer species of the Northern 

Rocky Mountains.  I do so by utilizing an emerging technology (terrestrial laser scanning) to collect 

detailed 3-dimensional data for many tree specimens, integrating the data to produce species-

specific crown shapes, and characterizing internal crown structure by species.  

 

Background 

The focus of this study (characterizing tree crown architecture using laser scanning for 

wildland fire simulation) demands an understanding of several bodies of work.  Modeling crown 

architecture encompasses describing both the bounding volume of the crown (as delineated by a 
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crown profile) and the internal structure, and past approaches to each are described below.  

Additionally, an introduction to terrestrial laser scanning and some of its applications to tree crown 

and canopy work is given.  Lastly, implications of canopy structure assumptions to fire behavior 

modeling are considered, as well as how this study may impact implementation of the newest fire 

behavior models.          

Most approaches to modeling crown profiles can be classed as either direct or indirect 

methods.  Indirect methods begin by first predicting branch attributes (e.g. length and angle) and 

then computing the crown envelope from the resulting trigonometric relationships (Roeh and 

Maguire 1997, Deleuze et al. 1996, Cluzeau et al. 1994).  Direct methods utilize regression analysis 

to calculate crown width as a function of other, more easily measurable tree attributes such as total 

tree height, crown ratio or crown length, relative height within the crown or largest crown width 

(Crecente-Campo et al. 2009, Marshall et al. 2003, Hann 1999, Baldwin and Peterson 1996, Biging 

and Wensel 1990).  In either case, detailed field measurements are needed, but can only be 

obtained through costly and time-consuming destructive sampling.   

Using a different approach, and one more similar to terrestrial laser scanning (TLS) than the 

destructive sampling described above, Gill and Biging (2002) modeled crown profiles derived from 

photographs taken from a single perspective.  In stands that had been thinned within three years or 

clearcut in the past year, they targeted stands across a range of densities (basal areas from <29.8 

m2/ha – >57.4 m2/ha), and selected trees across a span of height classes (<18.3m – >36.6m).  Each 

image was scanned, and the crown profile digitized from the scan.  Gill and Biging acknowledge that 

in most cases only one side, left or right, of the profile was visible (the other being blocked by 

vegetation between the camera and the tree of interest), that in some cases the tree crown edge 

was difficult to distinguish due to shadowing, and that the images as scanned were distorted by an 

average of 3% (with a high of 14%) which was deemed an acceptable level.  The protocols used in 

this work are well-suited to address those limitations.  First, an unobstructed line-of-sight was 
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created between every sample tree and the laser.  Second, due to the 3-dimensional nature of TLS, 

information can be captured about the entire canopy, not just a single profile slice.  Thus while Gill 

and Biging had at most two profiles per tree (left and right) to inform their models, TLS provides an 

essentially unlimited number of potential profiles to incorporate.  Third, because laser scanning is 

an active remote sensing technology, problematic shadowing is minimal.  Because contiguous 

vegetation was removed before scanning, the points comprising the tree of interest were clearly 

separate from neighboring trees and surrounding vegetation.  Lastly, photographic distortion is not 

an issue with laser scanning.  Although utilizing TLS to capture crown profiles in situ address many 

limitations associated with photography, it does introduce other potential sources of error.  For 

example, although sampling was not conducted in strong winds that visibly moved the crown, light 

breezes could stir individual needle clusters or branch tips, resulting in their being scanned 

multiple times, potentially affecting the resultant profile.  Additionally, although there was a clear 

line of sight between the laser and the sample tree, because scanning was conducted roughly 2m 

above ground (the height of the support tripod for the laser), lower portions of the tree itself can 

partially or fully obscure the upper portions of the tallest trees  

Although crown profiles can be used to estimate overall crown volume, they do not inform 

distribution or arrangement of material within the volume.  Internal canopy structure refers to the 

spatial arrangement of tree components, and is reflected in many ecological measures such as leaf 

area index (LAI), gap fraction, radiative transfer modeling and bulk density.  Most of the work 

involving non-random groupings of crown vegetation has focused on implications for within-crown 

light regimes using simulated canopies (e.g. Oker-blom and Kellomaki 1983, Da Silva et al. 2008, 

Parveaud et al. 2008, Duursma 2007).  There has been some work to capture the structure of actual 

plants, and early attempts to use 3D digital imaging were moderately successful, but were limited 

by available technology (Sinoquet and Rivet 1997).  Sonohat et al. (2006) considered “exhaustive” 

3D digitizing the most accurate way to describe plant architecture, but acknowledged its limitations 
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at the time when applied to larger plants and trees.   Utilizing more recent technological advances, 

terrestrial laser scanning has been shown to capture the vertical and horizontal patchiness within a 

crown and is capable of characterizing the deviation from uniformity (Takeda et al. 2008).  In 

agricultural systems, laser scanning was determined to be one of the most promising techniques for 

capturing the geometry of tree crops (Rosell and Sanz 2012), and should be equally useful when 

applied to non-agricultural trees.        

Time-of-flight terrestrial laser scanning (TLS) works by emitting pulses of light that are 

intercepted by objects and returned to the scanner.  Knowing the angle of the scanner and the 

timing between emittance and reception allows calculation of where the pulse was intercepted 

(relative to the scanner).  With a sufficient number and density of pulses, the 3-D structural 

characteristics of a solid-with-interstices object (such as vegetation) can be captured.    TLS has 

been applied to studies of leaf area (Beland et al. 2011, Sanz-Cortiella et al. 2011, Delagrange and 

Rochon 2011, Henning and Radtke 2006, Lovell et al. 2003), gap fraction (Danson et al. 2007, 

Moorthy et al. 2011), radiative transfer modeling (Cote et al. 2009), and bulk density (Skowronski 

et al. 2011).  Although these studies were not explicitly developing models of the within-crown 

heterogeneity, they demonstrate a potential for that application.   

Important to fire modeling, canopy bulk density has shown to be non-homogeneous at the 

stand and plot level, and has been successfully modeled using terrestrial, airborne and satellite 

laser scanning data (Riano 2003, Riano 2004, Erdody and Moskal 2010, Garcia et al. 2012).  

However, very few studies have examined crown bulk density at the individual tree scale.  Riano’s 

(2004) use of airborne laser scanning to characterize individual tree crown bulk density was 

unsuccessful due to the difficulty of assigning laser pulses to specific trees and low data density.   

Current wildfire simulation models such as FARSITE (Finney 1998) or the Fire and Fuels 

Extension (FFE; Reinhardt and Crookston 2003) of the Forest Vegetation Simulator (FVS; Dixon 

2002a, Crookston and Dixon 2005), assume a uniform distribution of  crown biomass over an 
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estimated crown length (a uniform CBD).  In order to parameterize CBD, vegetation is field sampled 

at discrete locations in the crown and those results are applied over the entire canopy.  Reconciling 

total biomass, bulk density and fire behavior is difficult within the limitiation of the current 

modeling systems.  CBD is known to vary within a stand (Reinhardt et al. 2006, Keane et al. 2005) 

but a single CBD value representing vegetation that is packed tightly enough to burn is needed to 

produce modeled fire behavior that is reasonable.  This uniform application of CBD to a given 

canopy volume overpredicts total biomass.  Conversely, if the actual total biomass was distributed 

uniformly throughout the crown volume, calculated CBD would be uncharacteristically low and the 

modeled fire behavior would be unrealistic.  Newer, physics-based models (e.g. FIRETEC [Linn 

2002] or WFDS [Mell 2006, Mell 2009]) can accept non-uniform (spatially heterogeneous) canopy 

fuels as model inputs – thus reconciling observed CBDs with actual biomass, and improving fire 

behavior modeling.  Parsons et al. (2011) demonstrated the impact of using non-uniform fuel 

models on modeled fire behavior, although there is little detailed vegetation data to act as inputs.  

Ultimately, the work of this thesis will be part of improving those inputs – better estimates of crown 

biomass, more realistic crown shapes and volumes, and characterization of where that biomass is 

located within the crown.    

 

Goals and Objectives 

The overarching goal of this work is to provide species-specific information about crown 

architecture that could lead to predictive models for distributing biomass realistically within tree 

crowns.   Many TLS studies focus on detailed characterization of a limited number of trees or small 

plots (e.g. Beland et al. 2011, Henning and Radke 2006, Hosoi and Omasa 2006).  Because this study 

intended to make some generalized statements about species crown shape and structure, a larger 

sample was needed.  This drove the sampling technique, in which many trees were scanned from 

one angle instead of one or a few trees being scanned from many angles.  Although limiting the 
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information collected for any one tree, the approach provides data well suited to making 

generalized observations about universal characteristics.        

The goals and objectives are outlined below, as is a short discussion of what is not 

addressed in this study. 

Goal 1.  To develop an objective measure of crown base height derived solely from TLS data. 

 In order to reduce the reliance on field data collection and increase objectivity, a crown base 

metric was derived directly from the TLS data.  Field measures of crown base metrics are commony 

done using a handheld laser rangefinder and are subject to field crew judgement and precision.  

Results were compared to two different field-measured crown base metrics and the reasons for 

variation among measures were considered.  

 Objective 1.1 Define an objective, repeatable metric. 

 Objective 1.2 Assess differences in LiDAR-derived versus conventional field-measured crown 

base metrics: crown base height (CBH) and height to live crown (HLC).  

Goal 2.  To develop species-specific crown profile curves.   

Defining the crown profile is important because, when rotated about its central axis, it 

defines the crown volume.  In the context of this study, crown volume is the initial parameter of 

spatial organization for predicted biomass.  As noted previously, crown profiles have been modeled 

using several methods, each with their own limitations.  TLS is able to capture the crown extent in 

three dimensions, without destructive sampling, overcoming many of those limitations.  By folding 

3-dimensional data into two dimensions, information about the extent of the entire sampled crown 

(not just one slice) is retained.  For each tree within a species, width percentiles of the laser returns 

were calculated at a series of height increments and aggregated into one composite, species-specific 

profile.  Parametric curves were fit to the collection of points and assessed for accuracy.  The 

implications of using different width percentiles, simplified geometries and other species’ curves 

were considered. 
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 Objective 2.1 Compare differences in crown profile shapes and volumes using different crown 

width percentiles. 

 Objective 2.2 Determine, through goodness-of-fit comparison, the best-fitting modeled curve 

for each species.     

 Objective 2.3 Assess the accuracy of the modeled curves relative to those resulting from simple 

geometric shapes (e.g. a cone or cylinder). 

 Objective 2.4 Examine species-specificity by exploring permutations of pairings between 

modeled curves of one species and crown profile points of another.  

Goal 3.  To characterize patterns of within-crown laser return spatial heterogeneity. 

 Describing within-crown spatial patterning is the second step of predicting where biomass 

is located within a crown.  An initial characterization of patterning is simply to identify if a 

deviation from spatial randomness is observed, and if so, what type of pattern exists.  This deviation 

could be clustering or regularity; in this study, due to the known framework of branches that 

vegetation is organized around, I expected to see clustering.  Another characterization of patterning 

is determining the scale at which it occurs (i.e. at what size clusters tend to occur).  Using a 3D 

distance matrix, Ripley’s K and L functions were calculated to provide a measure of 3D clustering 

using the point clouds for each tree.  Ripley’s K uses a count of all the events within some radius of 

the event in question, iterated over all events (for this study, an event is a laser return from the 

crown of interest).  For a given radial increment, when the event count is higher than what would 

be expected under complete spatial randomness, this indicates clustering at that scale.  The 

comparison to randomness is made at multiple radii, developing the shape of the function.  

Differences in clustering patterns were compared among species and within different parts of the 

crowns.   

 Objective 3.1 Identify the occurrence of within-crown clustering by comparing laser point 

patterns to spatial randomness. 
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 Objective 3.2 Explore differences in clustering due to canopy position (upper versus lower 

canopy) and vegetative type (e.g. fine foliage versus branchwood). 

 Objective 3.2 Determine the scales at which clustering occurs. 

Study Bounds 

 This work provides species-specific crown profile models for three Northern Rocky 

Mountain conifers and considers the accuracy of each.  It also describes the scale and extent of 

clumping of laser points by species.  An important limitation of the latter effort is that TLS does not 

directly characterize biomass in terms of amount, size, or type. Rather, it identifies the locations of 

reflective materials whose other properties are unknown.  Although some inference about the type 

and size of materials is possible using laser intensity data, this thesis does not explicitly address 

biomass prediction.  More significantly, the internal crown structures described in this study are 

not inherently spatially explicit.  Therefore, this research does not yet provide logic for rational 

allocation of crown biomass in space and additional work is needed to enable full parameterization 

of tree lists.   

 

Organization 

 This thesis is organized in four chapters.  Following this introduction (Chapter 1), the study 

methods comprise Chapter 2, the results make up Chapter 3, and a discussion of the findings and 

limitations of this work, as well as possible future directions, are contained in Chapter 4.  Following 

the body of the thesis are appendices containing detailed, supplemental information.  In this work, I 

show how crown profile models vary among and within species, as well as the implications for 

choosing a particular model on calculated crown volume and profile accuracy.  I show the 

differences in clustering functions associated with different species and different partitions of the 

crown volume.  I also consider the potential applications and necessary limitations of this work in 
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allometric and fire behavior modeling contexts.  Lastly, I propose directions for future work that 

build on and enhance this study’s findings.   
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Chapter 2.  Methods 

Study Sites 

 During the summers of 2011 and 2012, three northern Rocky Mountain conifer species 

(Pseudotsuga menziesii [Douglas fir – DF], Pinus ponderosa [ponderosa pine – PIPO] and Abies 

lasiocarpa [subalpine fir – SAF]) were sampled on 15 study sites in eastern Washington, northern 

Idaho and western Montana that coincided with the biomass allometry study of Affleck and 

Turnquist (2012) (Figure 1 and Table 1).  Stands were chosen to represent a variety of elevations, 

tree densities and site conditions; stand selection was constrained by landowner permission to fell 

trees.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Sample site locations across WA, ID and MT showing relative counts of trees at each site.  

Pseudotsuga menziesii is shown in blue, Pinus ponderosa in green and Abies lasiocarpa in red. 

 

Multiple trees were sampled at each site; thus, the UTM coordinates given in Table 1 should 

be considered the general area in which sampling occurred.  DF and PIPO were most often sampled 
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from mixed conifer stands comprised of varying balances of Pseudotsuga menziesii, Pinus ponderosa, 

Pinus contorta, Larix occidentalis and others.  SAF was sampled from stands comprised primarily of 

Abies lasiocarpa, Picea engelmannii, Abies grandis, and others. Sites ranged in elevation from 700 –

1900 meters (Table 1): DF was sampled at sites between 700 – 1850m, PIPO at sites between 950 – 

1850m, and SAF at sites between 1350 – 1900m.  Again, because multiple trees were sampled at 

each site, elevations as given in Table 1 are approximate elevations for the general sample area. 

Table 1.  Study site information: name, sampled species, location and elevation. 

Site 
Species 

Sampled 
UTM 
Zone 

Easting Northing Elevation (m) 

Ambrose Saddle DF, PIPO, SAF 12 277750 5154750 1800 

Bandy DF, PIPO, SAF 12 330650 5218450 1350 

Bonner’s Ferry PIPO, SAF 11 532930 5391612 1500 

Deer Creek PIPO 12 277950 5189800 1300 

Granite Pass SAF 11 682250 5168250 1900 

Kootenai DF, PIPO 11 650650 5416450 1000 

Lubrecht Garnet DF, PIPO 12 321779 5188647 1850 

Lubrecht Section 1 SAF 12 325599 5196356 1900 

Lubrecht Stinkwater SAF 12 316750 5192250 1550 

Morrell Creek DF, PIPO 11 315109 5231482 1350 

Nine Mile DF, PIPO 11 699970 5220532 1400 

Plant Creek DF 11 278151 5178450 1300 

Priest River PIPO 11 514050 5356150 950 

Swan-hemlock DF 12 291614 5263745 1200 

Wellpinint - Tomine DF 11 431013 5303639 700 

 

Stands ranged in basal area (measured around each sample tree) from 20 – 300 ft2/acre 

(Figure 2): DF sample sites ranged between 4.6 – 34.4 m2/ha, PIPO sample sites ranged between 2.3 

– 36.7 m2/ha, and SAF sample sites ranged between 9.2 – 68.9 m2/ha.  “Typical” basal area ranges 

for a forest type are dependent on many factors (site quality, age, treatment history, etc...).  

Nevertheless, the stand basal areas measured in this study are consistent with those found in other 

studies, albeit weighted toward lower values due to sampling constraints (as discussed below).  

Cochran et al. (1994) model stocking level curves for Pseudotsuga menziesii over a basal area range 

from 11.5 – 55.1 m2/ha, and for Pinus ponderosa over a basal area range from 3.4 – 41.3 m2/ha.  
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Studies done in a variety of mixed conifer forests of the Inland Northwest with a significant 

proportion of Pseudotsuga menziesii  and/or Pinus ponderosa reported basal areas of 9.6 and 12.6 

m2/ha (Reinhardt and Ryan 1998), 11.0 – 62.4 m2/ha (Moore et al. 1991), 14.0 – 17.2 m2/ha 

(VanderSchaaf 2008) and 30.5 – 37.7 m2/ha (Reinhardt et al. 2006).  Stage et al. (1988) present 

yield tables for natural stands that include Abies lasiocarpa: given a site index of 21.3m (which they 

present as being the plurality for Inland Northwest forests), the stand basal area is expected to 

range from 0.2 – 60.6 m2/ha, depending on site age.  Edminster (1987) found basal areas of Picea 

engelmannii – Abies lasiocarpa – Pinus contorta stands in the central Rocky Mountains with the 

highest stand density indices ranged from 55.1 – 97.6 m2/ha, which can thus be considered an 

upper limit of expected values.  Although most of the trees sampled in this study were located in 

areas with basal areas toward the lower end of other observed and predicted values, this study did 

include trees from mid-range and higher basal area sites as well. 

 

  

Figure 2.  Stand basal area (BA) distribution by DBH and species of trees sampled in 2012.  BA was 

calculated using a 10ft/acre factor angle gauge, and included the sampled tree.       
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Field Data Collection 

Tree Selection 

Although the stands chosen were also those sampled by Affleck and Turnquist (2012), the 

individual trees sampled had incomplete overlap.  Some of the trees selected for RBS were also 

sampled by TLS for this study, but at each site additional trees were also scanned (i.e. not all 

scanned trees have corresponding biomass measures).  The trees that were sampled using both 

methods can be used in further work to link laser return data to biomass measures.  Laser scanning 

was completed both temporally coincident with biomass sampling and during recurring visits.  In 

order to sample a large number of trees across many species, trees were scanned from one 

perspective only.  Although this provides limited information about any one tree, together, many 

tree scans are able to capture species variability across size classes and geographic distributions.   

Selected trees were required to be: 

 1. live, with an intact top and no noticeable forks 

 2. larger than 4cm DBH 

 3. free from noticeable mistletoe brooms, conks or marked defoliation 

 4. free from signs of successful beetle attack or root rot disease 

 5. free from noticeable human alteration (e.g. sawn branches) 

6. in stands that had not been treated (harvested, burned, etc…) within five years of data 

collection     

 Field measurements taken in 2012 for each sample tree included DBH (to nearest 0.1 cm), 

basal area before clearing adjacent vegetation (using a 10 ft/acre factor angle gauge), tree height, 

height to live crown (HLC: height of the lowest branch with live foliage) and crown base height 

(CBH: the height at which two live branches are separated by at least 90 degrees and are 

continuous with the crown [USDA Forest Service 2009]).  All height measurements were taken 

using a TruPulse 360 hand-held laser range finder.  During field data collection in 2011, no 
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supplement field measurements were collected.  Photographs were taken using the digital camera 

integrated with the scanner.  Because photographic quality was variable (often poor), photographs 

were used only for reference, not analysis.     

 Trees were selected to represent varying diameter at breast height (DBH) classes within 

each species (Figure 3).  DBH ranged from 10.1 – 62.9 cm in Pseudotsuga menziesii, 14.0 – 80.2 cm 

in Pinus ponderosa, and 5.8 – 62.7 cm in Abies lasiocarpa.   

 

Figure 3.  DBH size class distribution.   

 

Crown visibility also played a role in tree selection.  A clear line of sight between the laser 

and at least half of the sample tree is required, and because of this, trees in semi-open conditions 

(gaps, stand edges, etc…) were disproportionately selected.  However, there was no strong 

association between basal area (as an indicator of stand density) and tree size (Figure 2).  

Furthermore, although not purposely selected for, the sample trees did span a range of crown base 

heights and crown lengths (Figures 4 and 5).  Of the trees sampled in 2012 that had supplemental 

field measurement taken, CBH ranged from 0.9 – 14.1 m in Pseudotsuga menziesii, 1.0 – 21.9 m in 

Pinus ponderosa, and 0.0-8.4m in Abies lasiocarpa.  The crown length (tree height – CBH) ranged 

from 5.6 – 20.9 m in Pseudotsuga menziesii, 2.4 – 19.9 m in Pinus ponderosa, and 3.8 – 35.5 m in 

Abies lasiocarpa. 
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Although visibility did influence tree selection, in almost every case, some removal of 

adjacent vegetation (herbaceous and/or woody, including neighboring trees) was required.  

Because this study utilized stands associated with an allometry study (Affleck and Turnquist 2012), 

full tree removal was permitted, although often with some limitations.  This allowed sampling in 

stands that required neighbor trees to be felled to create a line of sight between the sample tree and 

the laser.  Once a sample tree was identified, any vegetation that obstructed the view between the 

laser and the tree was removed using chainsaws, loppers and/or clippers (from grasses and shrubs 

at the base of the bole, to entire neighboring trees that impinged upon the sample tree’s crown).  

From the perspective of the laser, the base of bole to top of crown, and the entire width of the 

crown were required to be isolated from other vegetation.  Equal sampling of the range of all 

possible stand densities was both time prohibitive and hindered by limited landowner permission 

(e.g. restrictions on the number or species of trees that could be felled to create line of sight).  Most 

of the true closed growth samples in this study were trees co-acquired with Affleck and Turnquist’s 

(2012) study.  Because of the limits of the sampled basal area range, results of this work may not 

apply to closed growth trees. 

 

Figure 4.  CBH distribution. Note that information is only presented here for trees sampled in 2012 

(30 Pseudotsuga menziesii, 27 Pinus ponderosa, and 22 Abies lasiocarpa).  
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Figure 5. Crown length distribution. Note that information is only presented here for trees sampled 

in 2012 (30 Pseudotsuga menziesii, 27 Pinus ponderosa, and 22 Abies lasiocarpa).  

 

Scans 

Trees were scanned using an Optech ILRIS 36D HD discrete return, time-of-flight terrestrial 

laser scanner.  The laser was mounted on a pan-tilt unit (allowing for bi-directional rotation), atop a 

level tripod (Figure 6).  The laser emits a beam of energy at 1535 nm wavelength (near infrared) 

with a 0.008594o divergence, resulting in a beam diameter of 19mm at 100 meters (7.75mm at 

25m).  Sampling was done at 10,000Hz in a zigzag pattern from bottom to top.  The laser records 

position and intensity information (x, y, z, i) for each return.  The ILRIS 36D HD uses two gain 

settings for intensity, separating bright and dim returns.  Bright returns (low gain) are scaled 

between 0-255; dim returns (high gain) are scaled between 300-25,500 and binned by increments 

of 100.  Essentially, this results in two 8-bit datasets that are of limited usefulness for reflectance-

based classification decisions without substantial signal processing.       

Scan parameters were set such that the tree of interest was scanned with a spot-spacing of 

approximately 4 mm (3.6 to 5.6, median 3.9, Figure 7).  The scanner was located at distances 

ranging from 8.2m to 54.9m, with a median distance of 23.28m (Figure 8).  As a function of tree size 

and distance, individual scan times ranged from just a few minutes to over 30 minutes.  Many trees 

were fully captured in a single scan, but due to limitations of distance and tilt angle, some trees 
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required separate scans of the lower and upper portions of the tree.  In those cases, the scans were 

designed to include an area of overlap to allow subsequent merging of the scans.  Scan parameters 

for each tree are given in Appendix A. 

 

 

 

 

 

 

 

 

 

 

Figure 6.  The Optech ILRIS 36D HD terrestrial laser scanner.  The laser and scan head (yellow) are 

mounted on a pan-tilt unit that permits bi-directional rotation, and sit atop a level tripod.  The laser is 

powered by a battery pack and scanning is controlled remotely through a hand-held device.  Data is 

written to a USB that connects at the rear panel of the scan head.   
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Data Pre-Processing 

 Raw scan data (.i3d) were initially parsed using Optech software into .pf (pif; binary) and 

.xyz (text) files. When multiple scans had been required to capture the entire tree, the scans were 

aligned and merged into a single scan for further processing.  Overlapping bottom and top scans (as 

pif files) were aligned in Innovmetric’s Polyworks V11.0.1 IMAlign.  Using the automated best-fit 

alignment and comparison tools, matching point patterns between scans were identified and a 

global shift was applied to the upper image coordinate system to align the point patterns.  The 

maximum search distance iteratively decreased from 1.0 to 0.001 m; each iteration reached a 

convergence threshold of 0.000016 m.  After alignment, the rotation matrix describing the 

coordinate shift was output.  Using code executed in Excelis IDL 8.2.0 (Excelis Visual Information 

System 2007), the rotation matrix was applied to the upper .xyz file.  The (unaltered) lower and 

(coordinate-shifted) upper scans were merged in a process that eliminated overlap between the 

scans.  Single scans that captured the entire tree in one scan did not require alignment or merging 

(Figure 9).   

Figure 8. Range distribution for all scans.  Figure 7. Spot spacing distribution for all 

scans.  Instrument settings allowed 

specification to the 0.1mm.   
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Figure 9.  An original single (unmerged) tree scan as initially viewed in Polyworks.  Note that the 

sample tree in the foreground needs to be isolated by removing other vegetation in the scene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The tree of interest was isolated from each point cloud (derived from either the originally 

single or newly merged scans), using a semi-automated process.  IDL code written in-house 

identified a proposed tree location, which the user could accept or visually modify by moving 

within the scan (Figure 10).  
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Figure 10.  Identifying the tree location (base of bole).  On the left is a top-down view that shows in 

blue the view seen on the right On the right is a side view in which the user identified the center of 

the bole at ground level.  The process is repeated in the other horizontal plane, providing a final 

location in XYZ space for the bottom of the bole. 

 

When the base of the tree was correctly identified in XYZ space, the remainder of the bole 

was delineated using a similar process of modifying/correcting a series of ascending bole centroids 

(Figure 11).   Based on proximity to the corrected bole, a line of demarcation in XZ and YZ spaces 

(i.e. front view and side view) was created to separate points associated with the tree of interest 

from the surrounding point cloud.  Again, user correction to a suggested delineation was allowed 

(Figure 12).  In the YZ (side) view, laser returns behind the bole (away from the laser) were 

excluded from the remainder of the point cloud.  After isolation, the point cloud consisted of just the 

points from the half of the tree of interest that was closest to the scanner (Figure 13).     
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Figure 11.  When defining the bole, 

centroids are proposed (dark grey 

diamonds), but can be modified by the 

user to correct their locations (light 

grey squares).   

Figure 12.  The canopy is delineated, and 

the user is allowed to expand or contract 

(green squares) the suggested boundary 

(red line).  The process is repeated in 

both horizontal planes. 
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Crown Profile Generation 

Width Percentiles 

 Crown profiles were generated from 2D simplifications of the 3D point cloud.  The Z 

coordinate of each return in the preprocessed point cloud was retained.  However, the X and Y 

coordinates of each return were combined into one value that described the horizontal Euclidean 

distance between that return and the bole centroid.   This essentially “folded” the point cloud 

through a vertical rotation using the center of the bole as the axis, resulting in a 2D point 

distribution.  In the new XY space, the center of the bole was the origin: the x-axis measured 

horizontal distance from the bole and the y-axis measured height above ground.      

In 0.25m height increments, the distribution of returns in X space was used to calculate 

cumulative width distribution percentiles for each height bin.  Following the points delineating a 

given percentile (e.g. the 50th, 95th, etc…) vertically through each height increment yielded a profile 

Figure 13.  Illustrations showing the extent of the original point cloud (left) and hemisphere of 

the tree closest to the scanner, after isolation.   

to laser to laser 
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Figure 14 (left).  The 2D point configuration, with 

width percentiles overlaid as colored lines.  The 

solid red lines mark the 50th and 90th percentiles, 

the orange dashed lines mark 10th percentile 

increments between, and the solid blue line marks 

the 100th percentile.  Note that the displayed 

percentiles have been smoothed (e.g. the 100th 

percentile falls inside some material), but the actual 

data used henceforth was not.    

for that percentile (Figure 14).  Width percentiles were generated using code executed in IDL; all 

other crown profile analysis was completed in R (R Development Core Team 2008).     

 

 

 

 

 

 

 

 

 

 

 

 

 

Crown Delineation and Rescaling 

The LiDAR crown base height (LBH) was defined as the lowest height at which one-half the 

maximum width of the 95th width percentile was reached.  Thus, if the maximum width of the 95th 

width percentile was 4.2m, the height where the 95th width percentile was 2.1m was used as the 
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crown base.  The calculated metric was evaluated relative to the field measures of crown base 

height (CBH) and height to live crown (HLC) (USDA Forest Service 2009).   

The LBH was used to separate the percentile points into crown and below-crown, and the 

lower subset (the branchless bole) was discarded.  For every tree, the retained crown 95th width 

percentile points were vertically rescaled between zero and one to allow comparisons between 

trees of different crown lengths.  First, the minimum height attributed to “crown” points (minimum 

y) was subtracted from all values, and then those values were divided by the total crown length (the 

maximum y minus the minimum y).  Longer crowns had a greater number of points than shorter 

crowns due to different numbers of height bins within the original crown.  The width values were 

rescaled proportionate to original crown length for each tree by dividing each x coordinate 

(representing the crown width as the distance from bole) by the crown length as calculated above.  

Thus, the crown percentiles were both scalable (because width was tied to height) and comparable 

between trees of different original sizes. 

 

Crown Profile Modeling 

After rescaling, the 95th width percentile points for all trees were aggregated into one 

composite representation of the 95th width percentile.  Past studies have used a variety of 

mathematical models to predict crown width, including parabolic forms (Biging and Wensel 1990) 

and polynomials (Baldwin and Peterson 1997, Hann 1999), with little consensus and few ties to 

other canopy parameter models.  Conversely, beta and Weibull curves (Equations 1 and 2, 

respectively) have been used to model foliage distribution at the tree and branch level (Saito et al. 

2004, Mori and Hagihara 1991, Kershaw and Maguire 1996, and Maguire and Bennett 1996), a 

characteristic that can reasonably expected to be tied to the ultimate extent of the foliage (i.e. the 

profile).   
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In this study, beta and Weibull curves were fit to these aggregated points to produce an 

aggregate crown shape for each species.  Additionally, modeled beta and Weibull curves fit to each 

individual tree were averaged to produce a mean crown shape for each species.  These two 

methods were evaluated for consistency by comparing the aggregate curve to the mean-curve-plus-

one-standard-deviation envelope.   

Because using the 95th width percentile to define the crown envelope was arbitrary, 

aggregate crown profile curves were also fit to the 91st and 99th width percentile point sets and 

compared.  Lastly, typical simple shapes used by modelers (cones and cylinders) were also used to 

represent tree profiles.  Various approaches have been used to fit simple geometries to tree crowns.  

Canham et al. (1999) used cylinders whose radius was the average of the two longest perpendicular 

radii of the outermost crown projection to model nine species (both coniferous and deciduous).  

Mell et al. (2009) used cones whose diameter was based on the furthest extent of branch tips at the 

bottom of the crown (not necessarily the absolute lowest branches) to model tree-farm grown 

Pseudotsuga menziesii.  Mawson et al. (1976) used cones base on the radius at the bottom of the 

crown, but noted that along the vertical extent of the crown, the widths of the actual trees exceeded 

the extent of the model.  In this study, cones were shaped so that the radius of the cone at half the 

max height (0.5 after rescaling) was the median value of the aggregate 95th width percentile points 

between heights of 0.45 and 0.55.  The radius of the cylinders was set using the same criteria.  

Those values were: DF – 0.160, PIPO - 0.178, SAF - 0.782. 
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Crown Volumes 

The calculated average crown profile curves were used to generate volumes representing 

species-specific modeled tree crowns.  These volumes were compared to volumes derived from the 

simple geometries (cones and cylinders).  Volumes from the 91st and 99th percentile point sets were 

also generated, and compared to those from the 95th width percentile points to assess variability 

due to width percentile selection.  Lastly, crown volumes were calculated using the curves modeled 

on the 95th width percentile points, but plus or minus the error for that species’ curve.  This 

indicated the maximum potential volumetric variability due to curve fit issues. 

 

Goodness of Fit Analysis 

A leave-one-out cross validation was used within each species to assess curve fit using 

mean absolute error (MAE).  Each tree’s points were iteratively removed from the aggregated 95th 

width percentile point set, beta and Weibull curves fit to the remaining tree points, and the position 

of the reserved tree points were predicted from those fitted curves.   MAE was calculated by 

subtracting the predicted width value for each reserved 95th width percentile point from the actual 

width value, and taking the absolute value of the result.  The errors for all width percentile points 

were considered collectively for each species (not calculated on a per-tree basis) to determine the 

MAE.  Thus N was >1400 (depending on the species), not 27 (SAF), 29 (PIPO) or 30 (DF).    

The MAE was used for two reasons.  First, using the absolute error allows a simple 

interpretation of the error statistic, in the same dimension as the data.  The error metric is the 

potential crown width error; because crown width is rescaled relative to crown length (i.e. 

proportionate to crown length), the error is also proportionate to crown length.  Second, it is less 

sensitive to outliers than the root mean squared error (RMSE) that is also dimensioned relative to 

the original data.   
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In addition to the cross validation analysis, the fit of each species’ modeled curve (generated 

using all the data) against the aggregated 95th width percentile points for that species was also 

assessed.  Although the resultant error would be artificially low (due to being modeled from the 

data it is being assessed against), I was interested in exploring the result from using the actual, final 

equation for that species, not a series of very-similar-but-not-identical curves produced through 

cross-validation.  The 95th width percentile points for each species were also compared to the 

predictions from the aggregate curves from the other species (e.g. Douglas fir 95th width percentile 

points as predicted by the Pinus ponderosa aggregate curve) and from the simple geometries 

(cones and cylinders).  In all cases, the MAE statistic was used to assess goodness-of-fit.  Two-tailed 

Student’s T-tests were used to evaluate the differences in MAEs between combinations. 

 

Cluster Analysis 

 The first step in characterizing the internal heterogeneity of crowns was to determine if the 

distribution of material departed from spatial randomness (i.e. is there clustering or dispersion).  

Then, more detailed properties of the clusters could be described.  For cluster analysis, the 3D point 

cloud (after pre-processing) of each tree was used – i.e. the points from the half of the tree that that 

was closest to the scanner.  Clustering within a volume necessarily considers the native 3D point 

cloud (retaining the X, Y, Z, and I values), not the 2D folded data used previously for deriving crown 

profiles.  Cluster analysis was conducted in IDL (Excelis Visual Information Solutions 2007).   

 

Crown Delineation and Rescaling 

 All laser returns above each tree’s LBH were considered crown returns, and those lower 

than the crown base metric were discarded.  Within the “crown” returns, no differentiation was 

made between points that may have come from needles, branches or the bole.  The Z value of each 

crown return was rescaled between zero and one by first subtracting the smallest crown Z value 
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from all crown Z values and then dividing each result by the crown length (max Z minus min Z).  

The X and Y values rescaled relative to the original crown length by dividing each coordinate by the 

crown length as calculated above.  Similar to the rescaling employed for crown profile generation, 

this has two primary advantages.  First, only one value (crown length) is needed to recreate the 

original crown proportions, and second, after rescaling, the crowns are comparable across many 

original sizes. 

 

Global Clustering 

Ripley’s L (a variant of Ripley’s K) was implemented in three dimensions to assess the 

overall scale of clustering within each crown.  Ripley’s K is an index that describes departure from 

random patterning (Ripley 1977).  For a series of radii (representing areas in 2D or volumes in 3D) 

around each point in a dataset, the number of other points that fall within that area/volume is 

counted.  The average count per area/volume is compared to the average that would be expected 

under complete spatial randomness (CSR) (λ).  Ripley’s L is a version of Ripley’s K where the CSR 

value is used for normalization (Besag, discussion in Ripley 1977 and Graham 2012); CSR becomes 

zero and values above zero represent spatial clustering whereas values below zero represent 

spatial dispersion.  Due to computational limitation, every 15th data point was used for analysis.  

The impacts of varying subsampling methodologies is explored in the post facto section.  Ripley’s K 

and L were calculated for each tree individually.  Lambda (λ) was calculated by dividing the number 

of each tree’s selected sample points by the volume calculated from rotation of that tree’s Weibull 

curve through 180o. 

Calculation of Ripley’s Khat (the estimate of the Ripley’s K function) began with creation of a 

3D distance matrix between all remaining points (1/15th of the original dataset).  As Khat is the 

average count of events that are within some radius divided by the expected count for that area 

under CSR (Equation 1), the total count of distance matrix values less than the radius in question 
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was divided by the total number of events and then multiplied by λ-1.  Dixon (2002b) recommends 

utilizing search radii less than one-half the shortest dimension of the study area.  Here, Khat was 

calculated for radii between 0-0.1 in 0.0125 increments.  In 2D, the expected number of events is 

the area of the circle with some radius; in 3D, the expected number of events is the volume of the 

sphere with that radius.  As most applications of Ripley’s K and L have been in 2D, examples of 

implementation in 3D are uncommon, but available (e.g. da Silva et al. 2008, Jafari-Mamaghani 

2010, Beil et al. 2005).    

                                                               ( )   
 

  
 ∑ ∑  (      
 
     )                                        (Equation 1) 

 

where λ= expected average number of events per unit area/volume under CSR 

  N=number of events within distance r of any event 

 i,j=the ith and jth points (“events”) 

 di,j = distance between the ith and jth points 

 r=radius of interest 

 I(di,j < r)  {
           

             
 

 

The same series of radii (0-0.1, by 0.0125) were used to construct the theoretical Ripley’s K curve 

under an assumption of CSR, using a simplified form (Equation 2).     

                                                                                      ( )  
 

 
                                                             (Equation 2) 

where r=radius of interest  

 Ripley’s L is based on the same premise in 3D as 2D – normalizing the K value.  Similar to 

above, calculating this in 3D means employing a volume relationship instead of one based on area.  

The empirical Lhat was calculated for all values of Khat (using radii from 0-0.1in 0.0125 
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increments) using Equation 3.  Ripley’s L under CSR was calculated the same way but used the 

values of K from Equation 2, which normalized the function to zero. 

 

                                                                            ( )   √
     ( )

  
 

 
                                                  (Equation 3) 

where r=radius of interest  

 In most applications of spatial statistics, an edge effect correction term is needed, because 

the sampled events lie within some boundary arbitrarily delineating the study area from the larger 

event population (Dixon, P. 2002).  In these cases, events that are adjacent to, but outside of, the 

study area are not counted, even if they would have fallen within the search radius for a point 

inside the study bounds.  Without compensation, this leads to an underestimation of the clustering.  

Although multiple edge effect corrections are available for point pattern analysis in 2D, none is 

directly extendable and applicable to 3D, although some solutions have been proposed (Jafari-

Mamaghani et al. 2010).  However, an important question is the suitability of edge correction, 

regardless of dimension.  Lancaster and Downes (2004) state that application of edge corrections 

“depends on the underlying assumption that the region surrounding the study plot has a point 

density and distribution pattern similar to areas within the plot. … Many habitats have hard, ‘real’ 

edges, e.g., aquatic-terrestrial boundaries, and the point pattern cannot possibly extend beyond the 

plot boundary.”  In this work, the study area (a tree scan) is defined as the full extent of all points  

on the tree (laser returns); the space around the tree is empty, and no correction for edge effects 

was applied, although the potential consequences of these real edges are examined in the post facto 

section of this thesis. 

 

Clustering by Height Partition (Upper versus Lower Crown) 

The original approach to analyzing clustering within the crown was to consider the entire 

crown as one unit.  However, visual observations of tree crowns suggested that perhaps material 
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was arranged differently in different parts of the crown.  Bulk density (biomass per volume) has 

been shown to vary vertically within the canopy of an entire stand (Reinhardt et al. 2006, Keane et 

al. 2005), and I was interested to find out how the patterning of material varied vertically within a 

single crown.   This possibility of differences in the upper and lower portions of a tree crown was 

first tested on a subsample of six Pseudotsuga menziesii.  The rescaled crowns of those trees were 

vertically divided evenly into two sections (rescaled heights of 0 – 0.5 and >0.5 – 1.0), and Ripley’s 

K and L were calculated separately for the upper and lower halves.  The vertical partitioning 

produced consistently different clustering results across all sample trees, and was subsequently 

applied to all trees.  It is worth noting that dividing the crown in half did create an arbitrary study 

boundary that, because no edge correction was applied, could result in underestimation of the 

clustering.  The impacts of this upper-lower boundary (the edge effect) is explored in greater detail 

as a post facto analysis.     

Within each height-partitioned portion of the crown, the Ripley’s L values at each radius 

increment (i.e. distances representing the scale of clustering) were averaged across all trees to 

produce an average function per species.  Due to dataset errors incurred during the last stage of 

pre-processing (a failure to write the data completely to a file), not all trees had point clouds 

suitable for cluster analysis.  The width percentiles generated earlier in the data processing for 

those trees were correct, but the final 3D data exported incompletely.  The number of trees used for 

these analyses are Pseudotsuga menziesii = 23, Pinus ponderosa = 17, and Abies lasiocarpa = 26.  

 

Clustering by Material Size Stratification (Fine Fuels versus Branchwood) 

  Fine fuels (< 0.635 cm) are the most important fuel size class to understanding fire 

behavior, as their high surface area to volume ratio results in high flammability.  Unfortunately, the 

laser only records the location of material; it does not classify returns as possessing any particular 

attributes other than location and intensity (e.g. fuel size class or tree species).  However, the work 
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of Seielstad et al. (2011) showed the potential to used return intensity to discriminate fine from 

coarse fuels, as the return brightness is related to the target properties: large, solid targets produce 

brighter returns while small, diffuse targets produce dimmer returns.  The same subsample of six 

Pseudotsuga menziesii were used to investigate possible differences in clustering functions from 

intensity-stratified point clouds (representing fine fuels and branchwood).  Because intensity is 

known to decay with distance (Seielstad et al. 2011 and Beland et al. 2011) all points were first 

intensity normalized to 15m using an empirically derived decay function, Equation 4 from Seielstad 

et al. 2011, where x, y and z are the linear distances in each plane from the point to the scanner, dref 

is the reference distance (15m), iraw is the raw intensity, and irc is the range corrected intensity. 

 

                                                                          
 
     √          

 
         

                                                      (Equation 4) 

The normalized intensity was systematically thresholded to separate returns from solid and 

diffuse material (essentially branchwood and foliage/fine fuel) and the crown was displayed under 

that classification scheme.  Through visual inspection of the results, a breakpoint was chosen that 

appeared to best separate fine fuels from branchwood.  Apparent branching structure and 

coincident photographs were used to support the evaluation process, but no true ground truth data 

was available for a quantitative accuracy assessment.  For the subset trees, Ripley’s L functions 

calculated for both the entire set of crown points and just those points falling below the breakpoint 

(returns considered diffuse material/fine fuels) were compared.  Because the results of this 

stratification indicated little/no difference in clustering between point sets, this separation was not 

applied in the final analysis. 
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Post Facto Exploratory Analysis 

After the main analyses were completed, several issues were examined in detail to 

understand their impact on the original findings.  The reasoning behind each consideration and a 

descriptions of how it was addressed are outlined in this chapter, with the results and discussion of 

each in post facto sections of those respective chapters.  The considerations include: effects of 

rescaling the data relative to crown length; effects of the subsample method employed in 

calculation of Ripley’s K and L; and edge effect on the calculated Ripley’s K and L functions. 

 

Rescaling  

Because all crowns were rescaled relative to crown length, the observed scale of clustering 

can be interpreted as a proportion of crown length.  Thus, one premise of the methods employed 

here was that actual cluster size (in unscaled space) was tied to crown length (i.e. the size of 

clusters as measured in real space increases with crown length).  In order to investigate that 

assumption, a Ripley’s L function was calculated for the Pseudotsuga menziesii with the longest and 

shortest crowns as determined using the LBH (26.38 and 6.32 m, respectively), using the unscaled, 

native point locations.  The observed scales of maximum clustering were compared with the 

predicted scales from the average clustering function for the species to confirm agreement between 

the datasets.      

 Because the tree crowns were rescaled prior to analysis, the search increments used in 

calculating the Ripley’s K and L values are proportionate to the crown length.  Thus, as crowns 

increase in length, although the relative increment remains constant, the absolute search radius 

also increases.  The unrescaled point clouds of the same trees described above, representing the 

extremes of crown length in Pseudotsuga menziesii, were analyzed using 36 increments, invariant 

with crown length (0-0.1 by step 0.01; 0.12-0.4 by step 0.02; and 0.45-0.9 by step 0.05 – meters).  

Clustering differences between the large and small trees across all scales were compared both to 
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each other and to the original, coarser Ripley’s functions for each tree to examine the influence of 

the original cluster increments on clustering results.  

 

Subsample methodology 

 The cluster analysis done in this study used a subsample of every 15th laser return.  To 

explore the effects of different subsampling choices, repeated calculation of Ripley’s L was done for 

one Pseudotsuga menziesii (22.5m ht, 37.2cm dbh, 16.5m crown length) and one Abies lasiocarpa 

(4.5m ht, 5.8cm dbh, 4.5m crown length) using the following datasets: a random selection of 1/15th 

of all crown returns; every 6th laser return (representing a spot spacing of ~24mm where the 

footprint of any one return should not overlap with that of a neighboring return); sampling at every 

15th return, but at each sample point, counting neighbors using all crown returns; sampling a 

random selection of 1/15th of the crown returns, but at each sample point, counting neighbors using 

all crown returns.  An attempt was made to calculate Ripley’s L for the entire crown dataset (no 

subsampling), but was computationally prohibitive for the larger tree; this was completed for the 

smaller Abies lasiocarpa.  The resulting Ripley’s L functions were compared to the original method 

used in this study to determine the influence of subsample method.  When the minimum search 

radius is larger than the minimum spacing, the subsampling method should not greatly influence 

the resulting K and L values, because the predicted counts will be subject to the same manipulation 

of what constitutes the “total” sample size.  A crown would need to be shorter than 4.8m to have a 

relative search radius smaller than the spacing at 1/15th of the data points; only one tree in this 

study (the Abies lasiocarpa sampled here) met this criterion.  

 

Edge Effects 

 Calculation of Ripley’s K and L rely on a comparison between the actual number of points 

within a series of search radii and the predicted number found under complete spatial randomness 
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(CSR).  CSR assumes that the random distribution of points within the study area is part of a 

continuous field of a random distribution.  When a sample point is located near the study area edge, 

the predicted count of neighbors under CSR will reflect this assumption of a continuous field, while 

the actual count will only consider the points within the study area.  This leads to an 

underestimation of the Ripley’s K and L values for that radius, an underestimation that is expected 

to increase with the search radius as more of the search area/volume lies outside the study area.  In 

this study, two types of edges were present: the artificial edges created by removing the back half of 

the tree and separating the upper from lower crown, and the actual edge at the extent of the crown.   

Artificial edges: 

One Pseudotsuga menziesii (22.5m ht, 37.2cm dbh, 16.5m crown length) was used to 

investigate the effects of the artificial edges in three scenarios.  First, in order to isolate the effect of 

the upper-lower crown boundary, Ripley’s L was calculated using the original sample points from 

each vertical section (every 15th point from the front half of the tree), but including the entire front-

hemisphere as a “searchable” volume.  Thus, search volumes for points near the upper-lower 

boundary that extended beyond the boundary had neighboring points to count (as if, similar to CSR, 

the point distribution was inside the study area was part of a continuous field with that 

distribution).  Second, in order to isolate the effect of the front-back boundary, Ripley’s L was 

calculated using the original sample points from each upper or lower section and the entire front 

half, but with that section mirrored around the y-axis to create a “whole” tree.  Lastly, Ripley’s L for 

each of the upper, lower and entire front-hemisphere sections was calculated using  the original set 

of sample points for that section, but searching the entire mirrored crown to eliminate both the 

upper-lower  and front-back boundaries.   

Actual edges:  

Although the post facto investigation described above corrected for the artificially 

introduced edges, the clustering results may still be influenced by the effect of the actual edge of the 
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canopy extent.  Although this is actual boundary, the amount of canopy edge varies between upper 

and lower crown sections, as well as between trees of different crown shapes and sizes (related to 

the height:width ratio).  Thus, the consistent pattern of clustering in the lower crown occurring 

across larger scales and to a greater degree than that of the upper crown may have been an artifact 

of the amount of crown edge, and not a reflection of actual pattern differences within the crown.  To 

determine if the differences in the Ripley’s L functions between upper and lower crown sections 

was due to a greater edge effect or to actual morphological differences, a series of Ripley’s L 

calculations were done in which the surface area/volume ratio of the test segments was held 

constant.  In these trials, the actual effect of the edge is not known, but because the relative amount 

of edge is consistent, differences in the Ripley’s L function should be attritutable to actual 

differences in the point pattern.  The unrescaled crown of one Abies lasiocarpa (20.1m ht,  29.4cm 

dbh, 19.4m crown length) was first mirrored to eliminate the artificial front-back edge, and then 

partitioned into seven slices that maintained a consistent surface area to volume ratio.  The 

increments of these slices, as height in m above the LBH, were 2.211-3.0, 5.0-5.801, 8.0-8.883, 

10.005-11.0, 13.0-14.42, 14.0-15.81, and 15.0-19.0.  For each slice, the volume and surface area 

were calculated for the frustum formed by the radii predicted by the Weibull curve at those heights 

and the interval between the heights.   

Additionally, Ripley’s L was calculated for the slice of an unrescaled small Abies lasiocarpa 

(5.5m ht, 7.2cm dbh, 5.5m crown length) that met the same surface area to volume ratio as the 

segments described above.  The segment from the small tree was 0.5-5.25, as height in m above the 

LBH.  The resulting Ripley’s function was compared to those of the larger tree to assess the 

prediction that clustering in smaller trees is similar to that occurring in the upper portions of larger 

trees.  For all calculations (large and small trees), the search radii used were 0.0-0.1, by 0.01; 0.12-

0.4, by 0.02; and 0.45 and 0.5.  As the tree crowns used were not rescaled, these search radii are 

absolute measures, in meters.     
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Chapter 3.  Results 

Crown Base Delineation 

The crown base heights (both those measured in the field and calculated from the TLS data) 

showed different trends among species.  Both Pinus ponderosa and Pseudotsuga menziesii showed 

field-measured CBHs distributed quasi-uniformly between the minimum and maximum values for 

each species (0.9 – 14.1 and 1.0 – 21.9 m, respectively).  Abies lasiocarpa however, had a lower 

maximum field-measured CBH (8.4m), and over 80% of trees (18 of 22) had a CBH below 3.8m.        

The relationships between the LiDAR derived crown base metric (LiDAR base height - LBH) 

and the field measured CBH and HLC are shown in Figure 15.  In all species, LBH consistently 

underestimated CBH.  The field-measured HLC was underestimated in trees with low crown bases 

and overestimated in trees with high crown bases, although this trend is weak in Pinus ponderosa.  

Pseudotsuga menziesii and Abies lasiocarpa showed moderate correlation between calculated and 

field-measured crown base measures; the correlation in Pinus ponderosa was strong.  The disparity 

between field-measured and laser-derived crown base metric was largely due to the presence of 

dead branches below the live crown that were considered in the LBH, but not in the CBH or HLC.  

This was most common in Pseudotsuga menziesii, and was also seen in some trees of Abies 

lasiocarpa.   
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Figure 15.  Crown base comparisons for each species.  In each case, the light, solid line is the 

trendline for the crown base height, the dark, dashed line is the trendline for the height to live 

crown, and the black line is a 1:1 relationship.  Field measures of crown base metrics were only 

available for trees scanned in 2012: 30 Pseudotsuga menziesii, 27 Pinus ponderosa and 22 Abies 

lasiocarpa.  Note the difference in scales among graphs.     

 

 

Crown Profiles 

Aggregate Percentiles 

 After determining the LBH for each tree, the points comprising the 95th width percentile of 

each crown were combined into one aggregate outer crown per species.  The aggregated outer 

crowns for each species are shown in Figure 16. 
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Figure 16.  Aggregate 95th width percentile points for each species, after rescaling the crown length 

0-1 and the crown width relative to the crown length. 

 

Crown Profile Modeling 

Average beta and Weibull curves (Equations 5 and 6) were fit to the 91st, 95th and 99th 

percentile width points (at each height bin) for each species.  The Weibull equation required 

modification to compress the scale over which it decayed.  The general shape is reasonable but an 

additional scaling term (“c”) was required to fit the curve to the y-values of the points.  The beta 

curve was used unaltered.  The parameters for each case are given in Tables 2 and 3.  To display the 

variability in parameters within each species, Figure 17 shows the parameters for each individual 

tree’s curve as related to crown length; there was no strong trend of parameter variation with 

crown length. 
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Table 2.  Beta parameter values for varying percentiles of each species. 

Beta Parameters 

Species 91st  95th 99th  

Pseudotsuga menziesii 
a = 1.97446 
b = 2.54670 

a = 1.94204 
b = 2.53031 

a = 1.94615 
b = 2.45278 

Pinus ponderosa 
a = 1.85215 
b = 2.42685 

a = 1.85512 
b = 2.39775 

a = 1.82688 
b = 2.35153 

Abies lasiocarpa 
a = 2.04210 
b = 3.56608 

a = 2.01894 
b = 3.50605 

a = 1.99874 
b = 3.39807 

 

Table 3.  Weibull parameter values for varying percentiles of each species. 

Weibull (modified) Parameters 

Species 91st  95th 99th  

Pseudotsuga menziesii 
a = 0.65115 
b = 1.43478 
c = 0.14562 

a = 0.66098 
b = 1.40262 
c = 0.15398 

a = 0.665333 
b = 1.438891 
c = 0.160203 

Pinus ponderosa 
a = 0.708733 
b = 1.335055 
c =0.188839 

a = 0.72410 
b = 1.32662 
c = 0.194334 

a = 0.720075 
b = 1.336466 
c = 0.204142 

Abies lasiocarpa 
a = 0.573449 
b = 1.270374 
c = 0.078580 

a = 0.577955 
b = 1.267652 
c = 0.083247 

a = 0.573449 
b = 1.270374 
c = 0.078580 
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Figure 17.  Parameters for Weibull and beta curves of individual trees as related to crown length.  
Note the variation in y-axis among plots. 

 



44 
 

Figures 18 and 19 show the resultant beta and Weibull curves for each species under each 

potential “outer” profile.  Use of the 95th percentile width did not produce a noticeably different 

aggregate beta or Weibull curve shape than use of either the 91st or 99th percentiles.  The resultant 

volumes from rotation of each profile (as relative to the volume produced using the 95th width 

percentile) are presented in Figure 20 and 20a.  Consistent across species, there was a slightly 

greater difference in volume between the 95th and 99th percentile curves and the 91st and 95th.  In 

most cases, the volumetric effects due to percentile choice were minor compared to the volumetric 

differences between modeled curves and simple geometries.  The exception to this pattern was the 

volume of Abies lasiocarpa as modeled by a cylinder; volumetrically, it fell between the values from 

the 95th and 99th percentile curves.  As crowns are scaled up from a crown length of one unit, the 

relative crown volumes will remain consistent, although the absolute differences between modeled 

shapes will increase.      

 The beta curves (Figure 18) have a rounder “belly” and a more tapered base than do the 

Weibull curves.  Without comparing to the points, they appear (to my eye) closer to a stylized tree 

crown shape than the Weibull curves.  However, when the beta curves derived from the 95th width 

percentile points are overlaid on the points (Figure 21), those curve characteristics are not 

necessarily seen in the aggregate width percentile points.  The belly of the beta curve appears to fit 

Pseudotsuga menziesii well, somewhat overestimate the extent of Pinus ponderosa, and add a curve 

to Abies lasiocarpa that the points do not indicate.  The base of the beta curve also appears to fit 

Pseudotsuga menziesii the best (although with some underestimation), Pinus ponderosa with 

greater underestimation, and add a strong taper to Abies lasiocarpa that is not indicated by the 

aggregate points.  The upper portion of the curve underestimates all species to an apparently 

similar degree.     

 The Weibull curves (Figure 19) have a much gentler “belly”, and flatter base and a top that 

does not return to an x-axis value of zero (an inherent property of the Weibull).  When overlaid 
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onto the 95th width percentile points (Figure 22), the middles and bases of the curves fit all species 

well, although there is still a base curve attributed to Abies lasiocarpa not indicated by the points.  

In many cases, the Abies lasiocarpa crown base was at ground level (or very nearly so), resulting in 

a continual decrease in width from the lowest (which in those cases is also the widest) portion of 

the crown upward.  In all species, the upper portion of the Weibull curve overestimates the profile 

extent. 

Figure 18.  Beta curves modeled on the 91st, 95th or 99th width percentile points for each species. 
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Figure 19.  Weibull (modified) curves modeled on the 91st, 95th or 99th width percentile points for each 

species. 
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Figure 20.  For each species, the beta or Weibull curve modeled on the 95th width percentile was used to 

calculate a “base case” volume.  Then, volumes calculated from the 91st and 99th width percentile profile 

curves, and the modeled cone and cylinder for each species were compared to the base case. 
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Figure 20a (another depiction of the data in 

Figure 20, with additional numeric detail).  For 

each species, the beta or Weibull curve modeled 

on the 95th width percentile was used to calculate 

a “base case” volume.  Then, volumes calculated 

from the 91st and 99th width percentile profile 

curves, and the modeled cone and cylinder for 

each species were compared to the base case.   
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Figure 21.  Beta curves overlaid on aggregate 95th width percentile points for each species, after 

rescaling the crown length 0-1 and the crown width relative to the crown length. 
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Figure 22.  Weibull curves overlaid on aggregate 95th width percentile points for each species, after 

rescaling the crown length 0-1 and the crown width relative to the crown length. 

 

Goodness of Fit Analysis 

 The mean absolute error (MAE) and corresponding variance from differencing each species’ 

95th width percentile points from the modeled curve predictions are reported in Tables 4 and 5.  

The error reported for the tree’s own modeled curve is that from the cross-validation analysis.  The 

errors produced by cross-validation were (as expected) larger than those from predictions made 

using the curve derived from the entire dataset.  However, the differences between the two 

methods were not statistically significant for any species, although use of one error metric over the 

other did affect the statistical significance of error differences between a species and other 

prediction curves/shapes.     
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MAE values and variances are presented in Table 4 for beta curves and Table 5 for Weibull 

curves.  Personal observations from fieldwork noted distinctive crown shapes associated with each 

species, and the findings support those observations.  In every case, the individual points of a 

species were best predicted by the curve for that species.  For example, the curve calculated by 

Pseudotsuga menziesii was better at predicting the 95th width percentile points than any other 

shape, either curves modeled on other species or simple geometries.  Student’s T-tests were used to 

determine the significance of the difference between the amounts of error generated by predictions 

from the same species as the tree compared to predictions by the other species.  Results are noted 

Tables 4 and 5.   

The results generally argue for use of a fitted curve instead of a simple geometry.  In all 

cases, the beta or Weibull curve for each species produced a significantly better fit to those species’ 

95th width percentile points than the corresponding beta or Weibull curve for the other species.  In 

other words, there are statistically different shapes to the profile curves of different species.  

However, although all Weibull curve comparisons resulted in highly significant differences, the beta 

curves produced more mixed results.  Abies lasiocarpa was shown to be highly different from either 

Pseudotsuga menziesii or Pinus ponderosa, with the Abies lasiocarpa curve fitting those species 

poorly and those species fitting Abies lasiocarpa poorly.  The Pseudotsuga menziesii beta curve fit to 

the Pinus ponderosa points did produce significantly more error than the Pinus ponderosa curve fit 

to the same dataset.  The Pinus ponderosa beta curve fit to Pseudotsuga menziesii produced errors 

that were significantly different than those from the cross-validated Pseudotsuga menziesii beta 

curve at a=0.1.  See Table 4 for error values and significance levels.   

Use of the cone or cylinder produced less error in Pinus ponderosa and Pseudotsuga 

menziesii than the Abies lasiocarpa Beta or Weibull curve.   The cone and cylinder produced 

significantly more error for Abies lasiocarpa 95th width percentile points than did the Abies 

lasiocarpa Weibull curve; the cylinder produced statistically no different error than Abies 
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lasiocarpa’s own beta curve, and the cone actually had less error than the Abies lasiocarpa beta 

curve.  See Table 5 for error values and significance levels.  Again, this reinforces the better fit of the 

Weibull curve than the beta.   

 

Table 4.  Mean absolute error (variance in parentheses) for predictions made by the average curve 

of a species for the 95th width percentile points of each tree. Significance levels (indicated as 0.1*, 

0.01**, 0.001***) relate to differences in the MAEs in each row between the species of interest and 

the alternate models (curves or geometries).     

Beta MAE Modeled Curve Predictor Species/Shape 

Reference Species 
95th Width 

Percentile Points 
DF PIPO SAF Cone Cylinder 

DF 
0.043 

(0.0011) 
0.046* 

(0.0014) 
0.071*** 
(0.0015) 

0.066*** 
(0.0041) 

0.054*** 
(0.0014) 

PIPO 
0.053** 

(0.0014) 
0.048 

(0.0014) 
0.093*** 
(0.0019) 

0.075*** 
(0.0041) 

0.052** 
(0.0016) 

SAF 
0.059*** 
(0.040) 

0.078*** 
(0.049) 

0.030 
(0.023) 

0.027*** 
(0.001) 

0.031 
(0.001) 

 

Table 5.  Mean absolute error (variance in parentheses) for predictions made by the average curve 

of a species for the 95th width percentile points of each tree.  Significance levels (indicated as 0.1*, 

0.01**, 0.001***) relate to differences in the MAEs in each row between the species of interest and 

the alternate models (curves or geometries).     

Weibull MAE Modeled Curve Predictor Species/Shape 

Reference Species 
95th Width 

Percentile Points 
DF PIPO SAF Cone Cylinder 

DF 
0.036 

(0.0008) 
0.040*** 
(0.0010) 

0.062*** 
(0.0016) 

0.066*** 
(0.0041) 

0.054*** 
(0.0014) 

PIPO 
0.043*** 
(0.0010) 

0.037 
(0.0009) 

0.083*** 
(0.0019) 

0.075*** 
(0.0041) 

0.052*** 
(0.0016) 

SAF 
0.059*** 
(0.0008) 

0.082*** 
(0.0009) 

0.022 
(0.0004) 

0.027*** 
(0.001) 

0.031*** 
(0.001) 
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Cluster Analysis 

Global Clustering 

As previously described, the initial question of internal structure is its departure (or lack 

thereof) from spatial randomness toward clustering.  Then, additional information about the 

clusters (e.g. size/scale, location, etc…) can be used to model crown internal heterogeneity.  Past 

work at the stand level had suggested the potential for vertical variance within a single crown 

(Reinhardt et al. 2006, Keane et al. 2005) and work done on individual branches demonstrated that 

fine foliage can be separated from branchwood based on laser return intensity values (Seielstad et 

al. 2011), which are important distinctions for fire behavior modeling.  Results from a small 

subsample of trees used to explore the effects of height (by crown partition) and intensity are 

presented below, followed by the results from the entire dataset.  

The Ripley’s L function is shown in the figures below.  Because it is normalized to an 

expectation of complete spatial randomness (CSR), when the function is at zero, there is no pattern 

exhibited (the data set exhibits randomness).  Ripley’s L values greater than zero indicate clustering 

and values below zero indicate dispersion.  The x-axis is the series of search radii over which 

patterning is examined; the x-axis values correspondent with non-zero Ripley’s L values indicates 

the scale at which that patterning is observed.  The magnitude of the deviation from zero on the y-

axis indicates the strength of patterning. 

 

Height Stratified Sample Trees 

 Six sample Pseudotsuga menziesii were used to investigate changes to the clustering 

functions when the upper and lower crown portions were analyzed separately.  These results, 

shown in Figure 23, show a greater magnitude of clustering in the lower portion of the tree crowns 

than in the upper (larger y-axis values).  Additionally, the scale of patterning in the lower crowns 

tends to be larger (the function crosses the x-axis further from zero).   The differences exhibited 
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here were consistent enough among trees that I felt application of the vertical partitioning to the 

entire dataset was warranted (see Entire dataset and Figure 26 below). 

   

 

Figure 23.  Clustering of upper (dashed) and lower (dotted) halves of the crowns for six 

Pseudotsuga menziesii.  Clustering for the entire crown is shown as a solid line, and in all cases, falls 

between the stratified partitions.  In all cases, the y-axis is the Ripley’s Lhat value and the x-axis is 

the search radius on the scale of the original data (here, the unitless, rescaled 0-1 crown length).  In 

this case, the x-axis can be interpreted as the proportion of crown length (e.g. 0.05 is 5% of a 1 unit 

long crown).   

 

Intensity Stratified Sample Trees 

 Although height stratification produced noticeably different clustering functions, the effect 

on the clustering functions of the six sample Pseudotsuga menziesii from intensity stratification was 

weak.   The stratification here was somewhat different from that of the vertical partitioning.  I was 

interested in if there was a difference in patterning exhibited between all of the crown points (the 

unthresholded point cloud) and just the points identified as likely belonging to fine foliage 
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 The intensity partitioning was conducted manually, supported by visual inspection of the 

resultant branching structure in the classified point cloud and comparisons with photographs from 

the field.  One example of an intensity-classified crown is shown below in Figure 24.  Although the 

point classification appears reasonable, there was no suitable data for an accuracy assessment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24.  The entire classified crown point cloud (left) and classified branchwood points (right) of 

one Pseudotsuga menziesii crown showing the results of intensity stratification.  Although the 

branching structure appears reasonable, there was no true ground truth data to assess the 

classification. 

   

As shown in Figure 25, although there are clustering magnitude and scale differences 

among trees, there was little difference within each tree between point sets (all crown points or 
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only fine fuel returns).  The similarity within each tree, in conjunction with the lack of true ground 

truth data, supported the decision not to intensity threshold the entire dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25.  Clustering of all crown points (solid line) and just diffuse/fine fuel returns (dashed line) 

for six Pseudotsuga menziesii.  Each tree was individually intensity thresholded to separate 

diffuse/fine fuel returns from larger fuel returns.  In all cases, the y-axis is the Ripley’s Lhat value 

and the x-axis is the search radius on the scale of the original data (here, the unitless, rescaled 0-1 

crown length).  In this case, the x-axis can be interpreted as the proportion of crown length (e.g. 

0.05 is 5% of a 1 unit long crown).   

 

 

Entire dataset 

Height stratified cluster analysis was performed on all trees, and the results averaged by 

species.  Figure 26 shows the average clustering by the upper and lower crown portions of each 

species (Ripley’s L functions for individual trees are given in Appendix B).  All species showed 

clustering occurring across larger scales (x-axis) and of greater magnitude (y-axis) in the lower 

portion of the crowns than the upper, consistent with the trial sample set.  The strongest clustering 
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in Pseudotsuga menziesii and Pinus ponderosa was observed at search radii of 0.0125 and 0.025, and 

at a radius of 0.0125 for Abies lasiocarpa.  Recall that the search radii can be interpreted as the 

proportion of crown length.  Thus, extrapolating values of 0.0125and 0.025 to a theoretical 20m 

crown produces radii of 0.25 and 0.5m at which clustering is predicted.  Therefore, clusters in a 

20m crown would be expected to be most prevalently sized at 0.5 – 1.0m (twice the radii) in 

Pseudotsuga menziesii and Pinus ponderosa, and at 0.25m in Abies lasiocarpa, which suggests it is 

describing clustering at roughly branch scale.  Because 0.0125 was the smallest radii used, 

branching at the individual shoot level would not be detected, except perhaps in the smallest trees.   

Among species, Pinus ponderosa showed clustering occurring over the largest scales and 

Abies lasiocarpa over the smallest.  Pinus ponderosa and Pseudotsuga menziesii had similar 

magnitude of clustering, while the observed clustering in Abies lasiocarpa was weaker (smaller 

Ripley’s L values on the y-axis).  Within each species, observed clustering properties between upper 

and lower crowns diverged as the scale of clustering increased.  The average clustering in the lower 

crown was close to one standard deviation above the upper crown average; the average clustering 

in the upper crown was close to one standard deviation below the lower crown average.  Worth 

noting is the implicit link between crown length and cluster size, where larger clusters are 

predicted for longer crowns.  The x-axis of the Ripley's L plot represents the scale at which 

patterning occurs, and is in the same units as the data.  Here, the data are expressed as a unitless 

proportion of crown length, and value of one denotes the entire crown length.  If the data were 

rescaled to their original dimensions, peak clustering is predicted to occur at larger cluster sizes in 

longer crowns.    

Although the Ripley’s K and L functions describe the scale at which material is patterned, 

they do not provide explicit spatial information.  Thus, no information was obtained about where in 

3D space (e.g. horizontally relative to the bole or vertically in the crown) clusters were located. 
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Figure 26.  Average clustering by species.  Solid lines represent the means, and dashed lines are one 

standard deviation above and below the mean.  In each graph, the darker color represents the 

lower portion of the canopy and the lighter color represents the upper canopy.  Because the return 

coordinates were rescaled relative to crown length, the x-axis of search radius distance can be 

interpreted as the percentage of crown length.  In all cases, the y-axis is the Ripley’s Lhat value and 

the x-axis is the search radius on the scale of the original data (here, the unitless, rescaled 0-1 

crown length).  Because of the rescaling of the data, the x-axis can be interpreted as the proportion 

of crown length (e.g. 0.05 is 5% of a 1 unit long crown).      
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Post Facto Exploratory Analysis 

Rescaling 

 Two Pseudotsuga menziesii, those with the longest and shortest crowns, were used to 

investigate in more detail two of the predictions and limitations of the clustering analysis as 

described above: one, the assumption that actual cluster size (in unscaled measures) increases with 

crown length; and two, the implications for detectable cluster size due to the search increment 

increasing with crown length.  To address both inquiries, clustering analysis was performed on 

unrescaled crown points, using invariant search radii on an absolute scale of meters (the same as 

the original scan points).   

 

Actual cluster size relative to crown length: 

 As presented above in Figure 26, the average Ripley’s L function for each species was 

originally calculated using rescaled crown point locations (rescaled relative to crown length).  

Under this condition, the search radii can be interpreted as a proportion of crown length.  If the 

crown is of length one (any units), the search radii will also be the actual distances (in real, 

unscaled space) at which clustering is assessed.  In longer crowns, the search radii need to be scaled 

up by the crown length to determine the actual (not proportional) distances over which clustering 

is assessed.  The radii are easily scalable using crown length, but this relationship inherently 

predicts that the actual sizes at which the greatest clustering occurs will increase with crown 

length.  For example, if peak clustering occurs at a search radius of 1.25% of crown length, this 

would translate to a cluster radius of 12.5cm in a 10m crown, 25cm in a 20m crown, etc…  Figure 27 

shows the Ripley’s L functions for the upper and lower portions of the longest and shortest crowns 

of Pseudotsuga menziesii.  Note that the strongest clustering in the long crown peaks between 0.18 – 

0.4 m (with some offset between the upper and lower portions), whereas clustering in the short 
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crown peaks between 0.1 – 0.2 m, with a less pronounced offset.  This supports the results 

predicting that larger clusters will be found in longer crowns, but requires further exploration. 

 

Cluster detection limits: 

 Another effect of the search radii being scalable to the crown length was that as crowns 

increased in length, the absolute scale of detection became coarser (i.e. the “smallest” search radius 

became larger, as did the increments between radii).  The Ripley’s L functions shown in Figure 27 

were calculated using search radii particularly targeted at assessing clustering at a finer grain.  The 

points in black show where the original Ripley’s L values fall if they are inverted to reflect the actual 

crown length in metric units.  In the longer crown, the first search increment is at or near the peak 

clustering.  This is the minimum detection limit in the scale of clustering using proportional search 

radii.  This limited analysis suggests that small-scale clustering in long crowns does occur, and 

warrants further analysis.  The original data for the shorter crown demonstrate the finer resolution 

of the original analysis, as compared to that of the longer crown.  Although the original data do not 

allow conclusions to be drawn regarding what is happening in longer crowns at fine scales, it is 

reasonable to conclude that coarse-scale clumping does not occur in shorter crowns.  This result 

would benefit from assessment of additional trees across an array of crown lengths. 

 

Subsample methodology 

 

 Multiple subsampling methods were used to explore the sensitivity of the Ripley’s K and L 

functions to subsample choice.  For the larger tree (Pseudotsuga menziesii), the resulting Ripley’s L 

functions are too similar for a graph to be useful, as all the points lie (visually) directly atop one 

another.  The calculated Ripley’s L values for each sample radius under each scenario are presented 

in Table 6.  The results from the small tree (Abies lasiocarpa) are presented in Figure 28 and Table 

7.   
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Figure 27.  Ripley’s L functions for two unrescaled crowns of Pseudotsuga menziesii, the longest 

(26.38m) and shortest (6.32m) of the sampled trees.  The dark blue lines are the lower and upper 

portions of the long crown; the light blue lines are the lower and upper portions of the short crown.  

Calculation of Ripley’s L occurred at 36 search radii, specifically incremented to capture clustering 

at short distances.  Black points represent the original Ripley’s L values for those trees, scaled up to 

the actual crown lengths.   

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

Table 6.  Ripley’s L values for a Pseudotsuga menziesii with a 16.5m crown length, calculated under 

different subsampling scenarios.   

Search 

Radius 

Every 15th 
pt, as done 
for thesis 

Random 
1/15th  

Every 6th pt  
Every 15th 

pt, count all 

Random 
1/15th,  

count all 

0 0.00000 0.00000 0.00000 0.00000 0.00000 

0.0125 0.00907 0.00909 0.00907 0.00910 0.00911 

0.025 0.00834 0.00836 0.00835 0.00836 0.00837 

0.0375 0.00567 0.00566 0.00567 0.00568 0.00567 

0.05 0.00279 0.00274 0.00278 0.00279 0.00277 

0.0625 -0.00018 -0.00025 -0.00020 -0.00019 -0.00022 

0.075 -0.00360 -0.00367 -0.00361 -0.00360 -0.00364 

0.0875 -0.00758 -0.00766 -0.00759 -0.00758 -0.00762 

0.1 -0.01198 -0.01206 -0.01198 -0.01198 -0.01202 
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Figure 28.  Ripley’s L functions for an Abies lasiocarpa  with a 4.5m crown length, calculated under 

different subsampling scenarios (all points, every 15th laser return, a random 1/15th sample, every 

6th return, sampling at every 15th return but counting all, and sampling at a random 1/15th but 

counting all).    

 

Table 7.  Ripley’s L values for an Abies lasiocarpa with a 4.5m crown length, calculated under 

different subsampling scenarios.   

Search 

Radius 

Every 15th 
pt, as done 
for thesis 

Random 
1/15th  

Every 6th 
pt  

Every 15th 

pt, count 
all 

Random 
1/15th,  

count all 
All points 

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

0.0125 0.00784 0.00823 0.00864 0.00913 0.00917 0.00910 

0.025 0.00794 0.00807 0.00831 0.00850 0.00862 0.00852 

0.0375 0.00654 0.00656 0.00681 0.00689 0.00699 0.00692 

0.05 0.00470 0.00469 0.00489 0.00494 0.00502 0.00497 

0.0625 0.00240 0.00226 0.00251 0.00257 0.00259 0.00258 

0.075 -0.00031 -0.00061 -0.00027 -0.00020 -0.00027 -0.00020 

0.0875 -0.00367 -0.00403 -0.00364 -0.00358 -0.00370 -0.00358 

0.1 -0.00757 -0.00793 -0.00755 -0.00749 -0.00765 -0.00749 
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Edge Effects 

Artificial edges: 

 Ripley’s L functions were calculated for one Pseudotsuga menziesii under three scenarios 

that removed one or more of the artificial edges introduced in this study (the upper-lower 

boundary between vertical crown sections and the front-back boundary created from originally 

selecting only the front hemisphere of points).  Figure 29 displays the Ripley’s L functions for the 

entire front half (not separated into upper and lower sections) as originally done in this study, and 

using the mirrored point set to eliminate the front-back boundary.  Figure 30 displays the Ripley’s L 

functions for the upper portion of the crown under 4 scenarios: as originally done in this study; 

sampling only the front-hemisphere, upper points but including the lower crown points as 

searchable to eliminate the upper-lower boundary; sampling only the front-hemisphere, upper 

crown points, but including the mirrored upper points as searchable to eliminate the front-back 

boundary; sampling only the front-hemisphere, upper crown points but including the entire set of 

mirrored points as searchable to eliminate all artificial boundaries.  Figure 31 displays the Ripley’s 

L functions for the lower portion of the crown under the same, respective scenarios.  In Figure 28, 

there was no upper-lower edge, and thus eliminating the front-back edge was the same as 

eliminating all edges.  Figures 30 and 31 show that the front-back edge had a greater effect on the 

Ripley’s L function than did the upper-lower edge, and that eliminating all artificial edges produced 

the greatest change in the Ripley’s L values.  In all scenarios, as expected, the degree of change in 

the Ripley’s L value (the edge effect) increased with an increasing search radius, as the search 

volume for more points intercepted one or more edges.  After removing the effect of the artificial 

edges, the lower crown portion showed the greatest degree of clustering  (largest Ripley’s L values) 

and clustering across the largest range of sizes (positive Ripley’s L values for larger search radii) 

than either the whole crown or the upper portion.  The edge-compensated upper portion showed 



65 
 

clustering across smaller scales and to a lesser extent.  These results are consistent with the non-

artificial-edge-corrected findings.          

 

Figure 29.  Ripley’s L functions for the entire front-hemisphere sample points (every 15th laser 
return) as originally done in this study (with an artificial front-back edge) and with the front-
hemisphere points mirrored to eliminate the artificial front-back boundary. The x-axis is the search 
radii as a proportion of crown length, the y-axis is the Ripley’s L value. 
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Figure 30.  Ripley’s L 
functions for the front-
hemisphere, upper 
sample points (every 
15th laser return) as 
originally done in this 
study (with artificial 
edges) and under 
three scenarios that 
remove one or both of 
the upper-lower and 
front-back artificial 
edges. The x-axis is the 
search radii as a 
proportion of crown 
length, the y-axis is the 
Ripley’s L value. 
 

Figure 31.  Ripley’s 
L functions for the 
front-hemisphere, 
lower sample points 
(every 15th laser 
return) as originally 
done in this study 
(with artificial 
edges) and under 
three scenarios that 
remove one or both 
of the upper-lower 
and front-back 
artificial edges.  The 
x-axis is the search 
radii as a proportion 
of crown length, the 
y-axis is the Ripley’s 
L value. 
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Actual edges: 

 Unlike the effect from artificial edges that could be removed, the effect of the actual edge of 

the crown extent is difficult to quantify.  One approach was to use multiple crown slices that 

maintained a consistent surface area to volume ratio.  First, seven segments from different heights 

within the crown were analyzed using Ripley’s L (Figure 32).  The segments from the lower areas of 

the crown consistently demonstrate a greater degree of clustering (larger Ripley’s L values), peak 

clustering occurring at larger search radii (~20cm), and clustering occurring across a larger range 

of sizes (up to and greater than 50cm).  Segments from the upper areas of the crown show a lesser 

degree of clustering (smaller Ripley’s L values), peak clustering occurring at smaller search radii 

(~10cm), and clustering occurring across a smaller range of sizes (up to ~30-40cm).  The one 

Ripley’s L function that displays a different pattern is that for the top section of the crown (15-19m 

in a 19.4m crown, the red line in Figure 32).  Although the surface area to volume ratio for this 

segment is consistent with the others, this segment is much taller and thinner than the other 

segments, whose frustums are more cylindrical than conical.   
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Figure 32.  Ripley’s L functions for a series of height increments within one tree’s crown.  The 
segments were height adjusted so that the frustums formed using the predicted Weibull curve value 
at each height had consistent surface area to volume ratios.  The x-axis is the search radii in meters; 
the y-axis is the Ripley’s L value.  Heights are given from the base of the crown (i.e. the 2.2-3.0 
segment is below the 5.0-5.801 segment). 
  

 Next, a crown of a short tree was sectioned so that its surface area to volume ratio was 

consistent with the long tree crown sections.  That tree’s crown length was 5.5m; the section of the 

crown used here was from 0.5-5.25m – a conical shape more similar to that of the uppermost long 

crown section than the lower segments.  The Ripley’s L function for the small tree is shown in 

Figure 33 (thicker dashed line), overlaid onto the functions from the long crown segments.  The 

small tree function is more similar to the functions from the upper than lower portions of the long 

crown, and echoes the shape of the function from the uppermost segment of the long crown (shown 

as the thin red line).   
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Figure 33.  The Ripley’s L function for the small tree crown segment (thick, dashed, red line) 
overlaid onto the functions from the long crown segments.  The thin red line is the Ripley’s L 
function for the uppermost section of the long crown.  Although all the segments had consistent 
surface area to volume ratios, the short crown and uppermost segment of the long crown were 
more similar in shape to each other than to the long crown other segments. 
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Chapter 4.  Discussion 

This study examined two aspects of tree crown structure that are important to fire behavior 

modeling – the total crown volume as calculated from a defined outer profile, and the distribution 

of material within that volume.  When combined with crown biomass measures, this work takes an 

important step toward the culminating goal of developing parameters to populate a stand inventory 

list with realistic information about where crown fuel is located in three-dimensional space.   

For the three species sampled here (Pseudotsuga menziesii, Pinus ponderosa, and Abies 

lasiocarpa), crown profiles were found to be species-specific, and best modeled using a compressed 

Weibull curve.  However, it is important to note that compared to simple geometries, curvilinear 

shapes increase model complexity, which does not always produce better results (e.g.  Abies 

lasiocarpa was better modeled using a cone than a beta curve).  Importantly, the crown profile was 

modeled as a function of vertical position within the crown, and requires only crown length for 

implementation.         

Differences in within-crown clustering were also seen among species, and between the 

upper and lower portions of the crown.  Across all species, the observed clustering in the lower 

portion of the crown occurred across coarser scales and to a greater degree than that observed in 

the upper portion of the crown.  Pinus ponderosa and Pseudotsuga menziesii exhibited stronger 

clustering at coarser scales than did Abies lasiocarpa.  Under the rescaling approach used here, 

cluster size was predicted to increase with crown length.   Additional analysis suggested that this is 

a valid premise, although further investigation is needed.  Due to the relationship of the cluster 

search increment to crown length, the relatively coarse step applied to large crowns precluded 

analysis of fine scale clumping in actual (not rescaled) space (recall that the step size was 

proportional to crown length).  Nevertheless, rudimentary exploration suggests that clustering 

within large crowns also occurs at finer scales, similar to those found in smaller trees.   
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What follows is a more thorough look at details of each finding, how the results of this fit 

with extant work, and some of the limitations associated with each component of this thesis.     

 

Crown Profiles 

Traditionally, approaches to modeling tree crowns have used one of two methods – direct 

or indirect.  The indirect method relies on modeling the interior branching architecture and 

requires detailed data collection of branch sizes, branch angles, branch heights from ground, etc…  

The more commonly used direct method calculates crown width as a function of various tree 

attributes in some model form.  The ability of LiDAR to provide a detailed representation of the tree 

lends itself well to a direct calculation of crown profile.  Roeh and Maguire (1997) chose to use 

indirect methods because of the “numerous logistical difficulties” associated with “direct 

measurement of crown diameters at different heights.”  This challenge is well addressed by the use 

of TLS.  Previous studies employing direct measurements relied on limited samples of crown width, 

measured in the field on felled trees (Doruska and Mays 1998 [7 sampled widths], Hann 1999 [10 

sampled widths], Marshall et al. 2003 [10 sampled widths]).  I sampled profiles at 0.25m 

increments (18 – 146 measures per tree, dependent on crown length), from crowns measured in 

situ (i.e. as they are growing in place, not felled or simulated).  Measuring standing trees minimizes 

the crown distortion incurred during felling (e.g. breakage).  Photography also occurs in situ, but 

provides information only about the crown extent in the plane of the photo and can be limited by 

shadowing and distortion (e.g. Gill and Biging 2002, Remphrey et al. 1987).   Conversely, the half-

hemisphere LiDAR scans used here incorporate information from a full 180o of the crown, and are 

not subject to photographic distortion.   

 

 

 



73 
 

Limitations 

Field data collection 

Tree selection: 

Although trees were selected to represent multiple DBH classes, the middle sizes were more heavily 

represented than either extreme.  One should also consider that the majority of trees were sampled 

from open and moderately open stands and results from this study may not apply across all stand 

conditions, particularly in fully closed environments. However, the research does represent a cross-

section of trees from across the region. 

 

Scans:  

The unresolved conundrum of laser scanning is the attrition of laser reflections as they 

penetrate through dense material.  This issue was partially addressed by utilizing only the half of 

the tree closest to the laser, but the occlusion of inner canopy on the front (scan) side of trees was 

not quantified. In short, areas in a scan not populated with  laser returns may be empty because 

there was no material to return the energy, or may be empty because no pulses reached that area.  

Conventional wisdom suggests that biomass (particularly foliar biomass) is concentrated on the 

hull of the crown, and is supported by work such as Baldwin and Peterson (1997) and Kershaw and 

Maguire (1995), so the possibility of an occlusion effect is real. With this said, because material is 

concentrated on the outer crown, the laser may actually see most of the material important to fire 

behavior modelers.   

In sampling trees for crown profiles, both photography and TLS require a clear view of the 

crown.  For some trees, vegetation removal was quite prolonged (taking hours per tree in denser 

stands or those with heavy underbrush).  Once clear, laser scanning is a more time consuming 

process (up to 40 minutes for large trees) than photography.  The current trade-offs for detailed 
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crown capture in three dimensions are time expenditures (both data capture and processing) and 

monetary costs for instrumentation. 

Although laser scanning is faster than destructive sampling, the total time needed for set up, 

scanning and data processing is substantial, and TLS is not well suited to be employed as a 

timesaver on typical field data collection projects.  In some regards, TLS is like destructive 

sampling- time consuming enough that it may best be used to develop species-level or stand-level 

models for use in other studies rather than as a common field sampling tool. Studies like this one 

can be used to exploit the capabilities of laser scanning, inform models and simulations, and 

preclude the need to scan for every project.  Due to the time constraints of sampling and processing 

laser data, the sample sizes in this study still may have been smaller than ideal for making regional, 

species-level generalizations about tree characteristics.  Although the numbers of trees per species 

analyzed here were 27 – 30, that sample size was unlikely to capture the full variability of a species 

across an entire region.  Even utilizing a modified scanning technique to facilitate relatively efficient 

sampling, I was time-limited, largely due in the field to the necessary clearing of surrounding 

vegetation and in the office due to data processing requirements.  

  

Crown profile generation 

Width percentiles: 

  Due to the previously noted possibility of occlusion of inner canopy material, width 

percentiles may be artificially skewed toward the outside of the tree (i.e. width percentiles may 

show a void near the bole due to poor laser penetration into dense material, not absence of 

material).  Conversely, the exterior of the canopy, used for the crown profile generation, is reliably 

sampled.   
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Crown delineation: 

Although field measures of crown base were available for trees sampled in 2012, and could 

have been reasonably estimated for other trees using photos and 3D visualization software, I 

desired a crown base metric that was based purely on the LiDAR data, independent of field 

measures and objectively repeatable.  That the LiDAR-derived metric (LBH) is consistently lower 

than the CBH is not unexpected, as the branching pattern required to meet the CBH definition is 

strict.  The HLC for each tree was also either at or below the corresponding CBH, which is also 

reasonable considering that the HLC considers any live branch, regardless of a specific branching 

pattern.  The discrepancy between HLC and the LBH is most often due to dead branches attached to 

the bole.   Because the LCB is based solely on width relationships, dead branches will meet the 

width criteria as well as live.  The trees with the largest discrepancies between LCB and HLC (e.g. 

more than 3m difference - i001lgdf [9.0m], i003lgdf [4.2m], i004lgdf [3.2m], m001bysaf [4.2m]) all 

had many dead branches below their live crowns.  The trees with the largest overestimation of HLC 

(e.g. more than 3m difference – i011tmdf [3.1m], i004asdf [3.7m], i004shdf [3.7m], i002lrpipo 

[3.7m], i012nmpipo [3.3m]) had live branches that were too short to meet the LCB metric.   

Although it is possible to create a correction factor based on the field measurements, I 

proceeded using the LBH due to its objectivity and independence from field estimates.  Additionally, 

for applications such as fire behavior modeling, it may actually be desirable to include all vegetative 

material (live or dead), as it can all act as fuel.  Ignoring dead material at the base of a live crown 

artificially raises the distance between the surface and aerial fuels, potentially affecting predicted 

fire behavior.      

 

Crown profile modeling: 

To represent the outer crown profile, the 95th percentile was chosen instead of the 100th for 

several reasons.  First, use of the extreme values carries the potential to include erroneous returns 
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not truly representing the crown.  Additionally, because the laser point cloud was folded into 2D 

space, the 100th percentile captures the most extreme width for each height increment, which could 

reflect a single extra-long branch or erroneously included material from adjacent trees.  Use of the 

95th percentile reflects a “typical” crown extent from the 180o point cloud.  However, use of the 95th 

percentile as the outer crown was arbitrary, thus the effects of using the 91st or 99th width 

percentiles on crown shape and resultant volume were also explored.  Based on these comparisons, 

the 95th percentile was reasonable, but there is no compelling evidence to suggest it is better or 

worse than the 91st or 99th percentile.   

In a larger context, folding the crown from 3D to 2D as was done in this study space is a 

novel technique to integrate crown shape from 180 degrees of tree crown. Whether this approach 

provides the best approximation of crown envelope is uncertain. An alternative approach would be 

to sample the 3D point cloud with a series of vertical “slices” which could be averaged together to 

describe the mean crown extent at any given height.   

   

Crown volumes: 

The effect on crown volume from using differing width percentiles in Pseudotsuga menziesii 

and Pinus ponderosa was much smaller than the differences obtained using simple geometries 

instead of curves, although this difference was not seen in Abies lasiocarpa.  This result implies that 

a simple geometry might be more suitable for Abies lasiocarpa than the other species, but the 

geometry of the cones and cylinders used could be adjusted (by varying the dimensions) for the 

other species to match the curve-derived volumes more closely.  Here, although a rational process 

for determining the geometries was used, no optimization was employed.  Thus, one can conclude 

that the particular simple geometry used in this study greatly overestimated crown volume for two 

species as compared to their modeled curves, but not that all simplified geometries might do this.   
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Goodness-of-fit analysis: 

Ultimately, regardless of how shapes compare to each other, their accuracy relative to the 

width percentile points is the most important consideration.  Recall that all crowns were vertically 

rescaled between zero and one, and horizontally scaled relative to crown length.  Additionally, the 

error metric used was the mean absolute error (MAE), meaning that the calculated error values are 

meaningful both relatively among differing combinations and in absolute terms as a percentage of 

crown length.  For instance, The DF beta curve had a MAE of 0.043.  In a one-meter crown, this 

means an average horizontal error of 4.3cm; in a 10m crown the horizontal error scales up to 43cm, 

and to 86cm for a 20m crown.  For all three species, the Weibull curve produced the least total 

error, and was a significantly better fit than the beta curve.  However, an additional term was 

introduced into the Weibull function to increase its flexibility; I anticipate that introduction of an 

equivalent term to the beta would also increase flexibility, potentially lowering its resultant error.  

Under those conditions, the beta curve might outperform the Weibull. 

Lower error values were obtained from when comparing crown curves of Pseudotsuga 

menziesii and Pinus ponderosa with each other than when either species was compared with Abies 

lasiocarpa.  Intuitively, this agrees with field observations that Pseudotsuga menziesii and Pinus 

ponderosa crowns are shaped more similarly to each other than to Abies lasiocarpa.  Perhaps 

because the Weibull curves were more accurate for each species, they were better able to discern 

the more subtle differences between not-starkly-different crown shapes such as Pseudotsuga 

menziesii and Pinus ponderosa.  The gross differences between either of those and Abies lasiocarpa 

were apparent regardless of which modeled curve was used.  

These findings and relationships can be used to guide crown shape modeling for these 

species, as well as for others not covered in this study.  If a new species is to be modeled and the 

crown is known to be similar to that of one of the species in this study, it may prove better to use 

the curve from the known similar species than to use a simple geometry (e.g. using Pseudotsuga 
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menziesii for Pinus ponderosa, or Abies lasiocarpa for Abies grandis).  However, if the new species 

does not have a similar crown to a known species, use of a simple geometry may produce less error 

than the curve from a markedly different species and simplify the analysis (e.g. using a cylinder for 

Pinus ponderosa instead of the Abies lasiocarpa curve).     

These results also highlight that a more complex solution (i.e. a modeled curve) is not 

always better than a simple approach (i.e. standard geometric shapes).  The beta curve for Abies 

lasiocarpa actually produced higher errors than the modeled cone, and statistically equivalent 

errors to those from the cylinder.  In fact, although there are significantly different errors between 

most of the combinations, the acceptability of absolute error values for any modeled shape depends 

on the needs of the modeler.   

  

Within-crown Heterogeneity 

Very little work, as related to fire behavior modeling, has examined the structural 

heterogeneity of single crowns, although this variability has been acknowledged as important and 

incorporated into stand-level models of canopy structure (Mitsopoulos and Dimitrakopoulos 2007, 

Reinhardt et al. 2006).  However, as ecological models become more sophisticated, there is a 

greater need for data at the individual tree level (Mell 2006, Mell 2009, Parsons et al. 2011).  This 

work is a first step toward characterizing the internal distribution of biomass on an individual 

crown scale.  

Studies in the radiative transfer modeling field examined 3-dimensional variation in 

vegetative structure most closely.  That work has focused on a very fine scale, looking at the 

influence of changing within-shoot leaf or needle arrangement on light interception, and is based on 

statistical distributions of photosynthetically active material (Kim et al. 2011, Therezien et al. 2007, 

and others).  Some studies have attempted to estimate the larger 3D structure within the crown by 

revising allocation of material until modeled light parameters approximate those obtained through 
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field measures (Kubo et al. 2008 and Parveaud et al. 2008), but with limited success.  Giuliani et al. 

(2005), simulated point-intercept sampling on one walnut tree using a dataset created by digitizing 

1558 leaves – a task with limited applicability to large sample sizes.  They state that “unfortunately, 

direct techniques to acquire tree canopy geometrical features cannot be exploited … because of the 

massive number of elements to be monitored and/or impracticable foliage access.”   

TLS is well suited to sample large numbers of elements, and does not require direct contact 

with a canopy.  Unlike previous work, this thesis focused on capturing and measuring the 

arrangement of vegetation in situ (i.e. not from destructively sampled or simulated trees), not 

relying on reconstructed models that conform to some limited number of parameters.  Although 

Ripley’s K does not explicitly locate material within a crown, it does provide information about the 

actual spatial patterning of detected crown elements, not simulated positions.  This thesis 

demonstrates that the approach of utilizing TLS to characterize the vegetative patterning at an 

individual crown level using directly measured locations is promising.              

 

Field data collection 

Scans: 

 Analysis was performed on the laser returns, which are assumed to capture the crown 

material.  However, it is possible, particularly in a very dense canopy such as Abies lasiocarpa, that 

the inner vegetation remains unsampled.  Thus, although the observed clustering is still valid for 

the dataset, the dataset may underrepresent the true canopy.  Undersampling is usually addressed 

by scanning from multiple angles, but this would confound cluster analysis based on the number of 

events in any given area or volume by “double-counting” material that is scanned from multiple 

directions.  In this study, when a tree required two scans to capture its entire extent, the doubling 

effect of the overlap area was removed by first aligning using the entire overlap, but merging scans 
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above and below a horizontal plane that excluded returns extending past that plane into the other 

scan.       

 

   Global clustering 

 Time in the field, looking at trees, suggests that material is not uniformly distributed 

throughout a tree crown, and this observation is conceptually supported by theories of light 

utilization (Kim et al. 2011, King and Maindonald 1999, Cohen et al. 1995, Oker-blom and Kellomaki 

1983, Whitehead et al. 1990).  One goal of this study was to explore characterization of material 

arrangement within an identified crown envelope (generated from a profile).  An initial, global 

characterization of clustering within the crown was calculated using Ripley’s K (and its normalized 

variant, Ripley’s L) in 3D, comparing the observed proximity of points to what is expected under a 

spatially random distribution.  Although the strength of Ripley’s K is that, unlike other nearest-

neighbor spatial analysis methods that rely on highly local information, it considers departure from 

CSR over a range of scales.  The main drawback to implementing Ripley’s K in this setting is the lack 

of spatially explicit results.  In short, Ripley’s K can be used to identify departure from spatial 

randomness (clustering), but not where the clusters are located.  

Pinus ponderosa exhibited the greatest clustering of the three species, which is consistent 

with the characteristic Pinus ponderosa shape of heavy, gnarled limbs reaching out from the trunk 

in isolation from one another, each possessing broom-like clusters of foliage.  Although this is an 

extreme expression of the form, as a whole, Pinus ponderosa did show a greater departure from 

random at all scales and clustering occurring through larger scales than the other two species.   

Conversely, Abies lasiocarpa showed the least clustering overall (both smallest magnitude 

and smallest scale) which may reflect the density of vegetation within the crown (e.g. branches that 

are contiguous both vertically and horizontally).  As anyone who has had to measure DBH on an 
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Abies lasiocarpa will tell you, there is very little open space in the crown.  Because so much space is 

filled, discrete clusters from branching patterns may not be apparent.   

 

Clustering by height partition: 

 I also hypothesized that there would be a difference in clustering from the top to the bottom 

of the tree.  Personal observations argue that within the crown envelope, material is distributed 

differently as a function of height.  At the top of the tree, there are needles and fine branches 

occupying much of the entire crown volume, while at the base of the tree there is often a void near 

the bole, with needles and fine branches only being present toward the outer portion of the crown 

envelope.  Testing a division of the sample set of Pseudotsuga menziesii trees into upper and lower 

crown did show a difference with the lower portion of the crown showing clustering across a larger 

range of scales and to a greater degree than the upper portion of the crown.  These differences led 

to analyzing the entire dataset by upper vs. lower crown.   

 In this study, I vertically divided the crowns at the halfway mark, an arbitrary delineation.  

Thus, clustering differences between the “upper” and “lower” portions may differ depending on 

where that partitioning occurs.    

 

Clustering by intensity: 

Fire behavior modelers are most concerned with fine fuels, but the laser records any 

material it encounters, without discrimination.  An attempt was made to separate laser points 

based on range-corrected intensity, but without true reference data, quantifying the accuracy of 

such separation was not possible.  However, it was the sense of this author that although subjective, 

a visually determined intensity threshold did produce a reasonable differentiation between coarse 

and fine fuels – a rough estimate, but perhaps better than nothing.  If one accepts that a somewhat 

reasonable separation was achieved, then the clustering results from comparing all the points to 



82 
 

just the “fine fuel” points suggests little difference from separating out diffuse returns.  It is possible 

that, as the sample trees do mostly show a very slight increased degree of clustering from just the 

diffuse returns that there is a difference, but one that is too small to capture with a coarse visual 

separation.  That the Ripley’s L results show little difference between foliage-only and full crown 

point clouds perhaps reflects a similar arrangement of branchwood and fine fuels within the crown 

(i.e. fine fuel locations are closely tied to branching pattern).     

Although laser return intensity was distance normalized, the threshold values varied 

between trees (which were all Pseudotsuga menziesii) and all were quite different from the 

thresholds determined by Seielstad et al. (2011) for individual Pseudotsuga menziesii branches.  

There is some work (Dr. Carl Seielstad, personal communication, 15 March 2013) suggesting that 

intensity increases as material depth increases.  This is consistent with the values seen when 

comparing whole trees to the Pseudotsuga menziesii branches from the study above.  However, this 

is quite preliminary and requires more investigation.     

 

Post facto exploratory analysis: 

Several exploratory analyses were undertaken post facto to address some of the 

assumptions and limitations associated with this work.  What follows is a discussion of the findings 

of each analysis, and how they may affect the interpretation of the original study results.   

Rescaling 

Because peak clustering for a species was observed at a consistent search radius on the 

rescaled crowns, it followed that the actual size of the unnormalized clustering within the unscaled 

crown would increase with crown length.  A small test set did confirm this, but a larger sample is 

needed to be confident it was characteristic of differences between large and small trees.  Another 

way to approach departure from CSR would be to apply Ripley’s K to unscaled tree crowns and 

identify the scales over which clustering occurs and peaks.  Then, to aggregate information from 
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multiple trees, the size of peak clustering could be related to some other factor.  Tree size metrics 

would be likely variables, but other factors such as stand density or canopy position might also be 

worth investigation.   

The second issued tied to scaling of search radii by crown length was that cluster detection 

limits were inherently coarser in large crowns.  Fine-grain clustering was not captured for large 

trees because the minimum search increment (proportionate to crown length) was already larger 

than the cluster.  The test set demonstrates that greater resolution is needed, particularly for large 

trees.  Thus, although this work offers evidence that the maximum scale of clustering in small trees 

is smaller than that of large trees, it cannot be used to make conclusions about minimum scales of 

clustering between large and small trees. 

 

Subsample methodology 

 In the longer crown (Pseudotsuga menziesii, 16.5m crown length), there was no discernible 

effect on detected clustering from how the crown returns were subsampled.  At the scale of search 

radii used here, for this tree the smallest search radius (0.0125 as a proportion of crown length) 

scales up to 20cm.  With a spot spacing of 4mm, every 15th point results in a minimum spacing of 

6cm; it is probably that the Ripley’s L values were not affected because the search radii were 

sufficiently larger than the spacing between points.   

For the shortest crown (Abies lasiocarpa, 4.5m crown length), the smallest search radius 

(0.0125 as a proportion of crown length) scales to 5.6cm, smaller than the predicted spacing of 6cm 

after taking 1/15th of the original data.  The differences in Ripley’s L values at that scale are likely 

due to that disparity.  Although the effects of different subsampling methods are apparent at the 

smallest scales, these differences did not change the overall trend of the Ripley’s L function.    
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Edge effects 

 Two separate analyses were conducted to investigate the impact of artificial and actual 

edges on the clustering results.  The artificial upper-lower and front-back edges were removed 

through mirroring the front hemisphere of laser returns, and allowing points in the sample area 

(e.g., the upper or lower crown) to consider the points from the entire mirrored crown for 

calculation of the Ripley’s K and L values.  Cluster analyses after removing each artificial edge 

(upper-lower or front-back) separately and then together (no artificial edges) showed that the 

front-back boundary had the greatest impact on the Ripley’s L value.  This is probably because that 

edge was larger than the upper-lower boundary, thus affecting a greater number of points.  

Although the Ripley’s L values increased when the artificial edges were removed, the relationships 

between clustering in the upper and lower crowns remained consistent with earlier findings – 

clustering in the lower crown occurs to a greater magnitude and across greater scales than in the 

upper crown.   

 Although the artificial edges could be compensated for, the tree crowns in this study also 

had actual edges – the extent of the crown.  This edge was expected to influence the Ripley’s L 

values in a similar to the artificial edges, by producing smaller values than would exist if the 

patterning within the tree crown were analyzed as if it were part of  a continuous field of the same 

pattern.  These smaller Ripley’s K values would then indicate less clustering than may be actually 

occurring, as well as clustering occurring over smaller scales (because the Ripley’s K values that are 

negative or close to zero may in fact be positive without the edge effect).  In the case of the artificial 

edges, both those effects are artifacts of the artificial study area bounds.  However, because the 

crown extent is an actual edge, the impacts are more nuanced.  In smaller trees, or the upper 

regions of larger trees, there are a greater proportion of points that are close to the boundary, and 

thus subject to edge effect.  Although the suppression of the magnitude of clustering is a valid 

concern (and is addressed below), the impact on cluster size is real.  If a crown is small, there is a 
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physical limit to the cluster size that can be detected – a 3m sphere does not fit within a 2m wide 

crown.  Thus, the edge effect on cluster size is legitimate, and should not be corrected for.   

 However, the calculated degree to which material is clustered within the crown is also 

affected by the crown extent edge.  Trees of different sizes and shapes, as well as different regions 

within a crown (e.g., the upper and lower crown partitions used here) have varying amounts of 

crown extent edge, and the resulting clustering will reflect those differences, potentially 

overshadowing the actual within-crown patterning.  Unlike addressing the front-back boundary, 

mirroring the crown’s outer extent was not done here because it would artificially inflate the 

cluster size, which, as described above, is truly limited by the crown extent edge.  Instead, multiple 

sections of a tree crown were delineated so that their surface area to volume ratio was constant.  

However, it should be noted that there was still some potential for variation among segments due 

to the non-uniform nature of the outer crown extent, which was not controlled for.  The results 

showed that clustering in the lower segments of the crown occurred at a greater magnitude than in 

the upper crown segments (larger Ripley’s L values), that peak clustering occurred at larger sizes in 

the lower crown segments, and that clustering was found across a greater range of sizes in the 

lower crown segments than in the upper segments.  These results are consistent with what was 

found in the original study.  In this series of comparisons, although the surface area/volume ratio 

was consistent, the absolute volumes did vary among segments, as did the shape of segments.  

There is still a possibility that the observed differences in patterning are an artifact of sample area 

characteristics.  Understanding the effect of the actual crown extent edge on detected clustering 

warrants further investigation, but was not within the scope of this work. 
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Conclusions and Future Work 

Conclusions 

Overall, TLS demonstrates potential to be more than a novel way to make the “same old” 

fuels measurements and instead provides a new suite of techniques that can provide new types of 

information, including in situ measures of external crown architecture and detailed 3D measures of 

internal crown structure.   

When combined with biomass allometry, crown profile and internal structural information 

could be used to populate a tree list with reasonable parameters about how much biomass to 

expect, and where to locate that biomass.  The results of this work have provided species-specific 

equations to delineate crown profiles (and thus volumes), but are not yet sufficient to distribute 

biomass within that crown.  This work indicates that non-homogeneous distributions are needed, 

but does not provide spatially explicit clustering information. 

Specifically, this work finds that: 

 An objective, repeatable canopy base metric is derivable solely from TLS data.  This metric 

is consistently lower than field-measures of canopy base height as measured by USFS 

guidelines (USDA Forest Service 2009), likely due to its consideration of all branches, live or 

dead.   

 The 95th width percentile was found to be an adequate descriptor of the “outer” limits of the 

crown, and little variation in profile shape was seen using alternate width percentiles.  The 

volumetric changes associated with using different width percentiles were smaller than 

those from using simple shapes (i.e. cones or cylinders), with one exception. 

 For all species, a modified Weibull curve gave the most accurate fit to the aggregated 95th 

width percentile points, as measured using the MAE and cross-validation where 

appropriate.  The Weibull curve produced statistically significant smaller errors than did 

the beta curve, cone or cylinders.   
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 Curves are species-specific, and interchanging curves among different species produced 

poorer fits (statistically significant increased error).   

 Ripley’s K analysis of crown laser returns indicates departure from spatial randomness, 

with peak clustering occurring at a scale of 1.25 – 2.5% of crown length.   

 Clustering in the lower canopy was detected across larger scales and to a greater extent 

than that in the upper canopy (as divided at the midpoint), although this may be an artifact 

of sample area characteristics (size and shape).   

 Observed canopy clustering does not seem to be affected by inclusion or exclusion of 

branchwood from the crown point cloud, although the differentiation of fine fuels from 

branchwood employed in this study was subjective. 

 There is preliminary evidence that argues for cluster analysis performed at finer scales than 

implemented in this study.  

 

Future work 

The first type of work that builds on this thesis can be considered improvements to the 

approaches presented here, utilizing the lessons learned in this study.  The intensity stratification 

implemented here relied primarily on subjective interpretation of the visual display.  Additional 

experimental data to guide fuel size class separation based on laser return intensity values could 

make the process more objective.  However, collecting field data to act as the ground truth in an 

accuracy assessment would be logistically difficult.  A second improvement could be implementing 

cluster analysis in fine increments on unscaled crowns, and producing confidence envelopes for the 

distribution under CSR.  Implementing either of these would be quite time intensive, but possible.  

Further analysis of edge effect (particularly addressing the actual edge of the crown extent) is 

needed to understand the observed differences due to vertical partitioning of the tree crown.  The 

question of obscuration could be partly addressed by scanning trees from multiple angles, and 
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merging the scans using vertical planar boundaries to eliminate the over-sampling of areas covered 

by multiple scans.  However, this still does not address the larger issue of occlusion within the 

interior of the canopy.  Ultimately, it may be necessary to quantify the horizontal distribution of 

biomass in tree crowns by field sampling. 

The more interesting type of work that builds on this thesis is thinking about how to 

actually apply these findings within a fire behavior modeling framework.  Currently, the bar for 

arranging biomass in tree crowns is quite low. Modelers simply adjust biomass amount and move it 

around in the crown until they obtain model output similar to laboratory observation of fires in 

small trees.  Although my work does not explicitly locate material in space, there are a few 

possibilities of how to overcome this limitation.  First, for a hypothetical tree, one could predict the 

expected biomass and crown volume (from the crown profile).  Then, because the outer profile is 

fixed but some literature (e.g., Baldwin and Peterson 1997, Kershaw and Maguire 1995) (and 

personal experience) suggests that the interior of a crown is often mostly void (, the volume could 

be constrained (“hollowed out”) until a realistic bulk density is reached.  Although this approach 

would not provide detailed information about biomass location (i.e. is it vertically uniform within 

the shell?), it may be an improvement over no existing methods to estimate how biomass is 

distributed.  An approach to locating clusters within the defined crown volume would be to 

calculate the number of clusters of some size to total biomass (from allometry) at a given bulk 

density.  Then, that number of clusters could be distributed within the crown volume defined by the 

profile.  A second option would be to partition the crown volume into voxels dimensioned to match 

the scale at which the greatest clustering occurs, and fill voxels until, given a realistic bulk density, 

the predicted biomass is reached.  
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Appendix A.  Scan Details 

Date Site Scan Name Species 
basal 
area 

DBH 
(cm) Ht (m) 

CBH 
(m) 

HLC 
(m) 

Range 
(m) 

Spot 
Spacing 
(mm) 

6/13/2012 Ambrose Saddle i001asdf DF 60 49.4 22.7 4.8 4.4 23.5 3.80 

6/11/2012 Lubrecht Garnet i001lgdf DF 60 39.2 22.1 14.1 12.7 30.5 3.70 

6/25/2012 Morrell Creek i001mcdf DF 70 21.9 15.2 7.0 3.6 23.4 3.70 

6/8/2012 Plant Creek i001pcdf2 DF 30 37.2 22.5 7.7 6.6 40.6 4.10 

6/11/2012 Lubrecht Garnet i002lgdf DF 40 33.8 20.0 10.0 5.1 24.7 4.00 

6/25/2012 Morrell Creek i002mcdf DF 60 33.7 20.3 5.7 2.6 33.9 4.10 

6/12/2012 Nine Mile i002nmdf DF 50 17.7 12.9 1.4 0.9 19.7 3.90 

6/8/2012 Plant Creek i002pcdf2 DF 30 44.6 20.7 3.0 3.0 31.7 3.80 

6/11/2012 Lubrecht Garnet i003lgdf DF 40 50.9 23.3 10.4 7.7 41.3 4.10 

6/25/2012 Morrell Creek i003mcdf DF 40 38.4 22.0 2.2 2.2 28.3 4.00 

6/12/2012 Nine Mile i003nmdf DF 60 10.1 6.5 0.9 0.6 14.5 3.80 

6/8/2012 Plant Creek i003pcdf DF 30 48.5 21.5 2.7 1.8 36.8 3.70 

6/18/2012 Ambrose Saddle i004asdf DF 40 52.8 27.0 9.7 7.3 44.4 3.60 

6/14/2012 Bandy i004bydf DF 150 41.4 19.7 2.7 1.2 30.9 3.70 

8/22/2012 Kootenai i004kndf2 DF 30 16.4 9.9 1.4 1.4 11.7 4.00 

6/11/2012 Lubrecht Garnet i004lgdf DF 70 29.4 18.6 6.2 5.2 28.0 3.90 

6/12/2012 Nine Mile i004nmdf DF 100 28.0 13.5 2.4 2.3 20.2 3.60 

6/29/2012 Swan-hemlock i004shdf DF 100 45.1 22.6 10.5 7.8 31.8 3.80 

6/18/2012 Ambrose Saddle i005asdf DF 70 60.0 26.9 8.4 3.3 52.2 4.20 

6/12/2012 Nine Mile i005nmdf DF 40 16.2 10.7 3.2 3.2 21.1 3.80 

8/22/2012 Kootenai i006kndf DF 70 30.2 12.1 2.7 0.8 12.3 3.90 

6/25/2012 Morrell Creek i006mcdf DF 20 30.3 14.6 7.3 6.1 21.0 3.80 

6/12/2012 Nine Mile i006nmdf DF 120 13.1 7.8 1.4 1.4 18.7 3.70 

8/22/2012 Kootenai i007kndf DF 80 18.1 11.4 1.1 1.1 13.4 4.00 

6/20/2012 
Wellpinint - 

Tomine i007tmdf DF 40 40.0 21.2 8.7 7.7 42.4 4.20 

6/20/2012 
Wellpinint - 

Tomine i008tmdf DF 40 30.7 20.6 7.5 5.4 46.3 3.70 

6/20/2012 
Wellpinint - 

Tomine i009tmdf DF 30 62.9 31.9 11.0 7.9 42.5 4.30 

6/20/2012 
Wellpinint - 

Tomine i011tmdf DF 70 53.4 23.8 6.5 3.9 40.1 4.00 

8/23/2012 Kootenai i012kndf DF 50 28.3 14.5 1.8 1.5 20.7 4.10 

7/4/2012 Nine Mile i013nmdf DF 40 47.9 19.5 9.5 6.3 24.0 3.80 

5/31/2012 Deer Creek i001dcpipo PIPO 30 47.7 25.9 15.3 13.7 38.0 3.80 

8/22/2012 Kootenai i001knpipo PIPO 70 17.4 12.4 4.1 3.1 15.7 3.80 

8/14/2012 
Lubrecht Garnet 

Road i001lrpipo PIPO 40 59.5 21.1 7.0 4.7 26.1 3.70 

6/12/2012 Nine Mile i001nmpipo PIPO 90 14.0 8.4 2.8 2.3 14.2 3.70 
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8/2/2011 Priest River i001pr PIPO 
 

69.9 
   

29.3 4.10 

5/31/2012 Deer Creek i002dcpipo PIPO 60 39.0 23.4 12.7 10.0 28.0 3.90 

8/14/2012 
Lubrecht Garnet 

Road i002lrpipo PIPO 60 63.2 26.5 13.5 9.3 37.5 3.80 

8/2/2011 Priest River i002pr PIPO 
 

57.2 
   

23.0 4.10 

6/14/2012 Bandy i003bypipo PIPO 40 27.3 14.4 3.0 3.0 22.2 4.00 

8/22/2012 Kootenai i003knpipo PIPO 70 24.7 14.4 3.7 0.2 17.3 3.80 

6/25/2012 Morrell Creek i004mcpipo PIPO 20 42.7 15.6 3.8 3.2 19.3 3.90 

6/7/2012 Deer Creek i005dcpipo PIPO 110 80.2 33.2 15.5 12.3 37.2 4.5 

6/25/2012 Morrell Creek i005mcpipo PIPO 20 44.0 18.2 3.3 3.3 25.3 4.00 

6/7/2012 Deer Creek i006dcpipo PIPO 90 65.4 35.7 18.3 15.1 51.5 4.1 

6/25/2012 Morrell Creek i007mcpipo2 PIPO 60 30.2 12.7 3.2 3.2 39.2 3.90 

7/2/2012 Ambrose Saddle i008aspipo PIPO 10 63.6 22.3 2.7 2.7 54.9 4.40 

8/23/2012 Kootenai i008knpipo2 PIPO 160 62.9 35.5 21.9 20.7 29.6 4.10 

6/25/2012 Morrell Creek i008mcpipo PIPO 40 34.4 19.7 7.0 5.6 34.0 4.10 

6/25/2012 Morrell Creek i009mcpipo PIPO 10 16.8 6.4 1.0 0.5 19.8 4.00 

10/1/2012 Deer Creek i010dcpipo PIPO 50 62.0 27.7 7.8 6.3 37.8 3.80 

7/4/2012 Nine Mile i010nmpipo PIPO 40 40.0 25.4 15.3 13.7 34.2 4.10 

8/23/2012 Kootenai i011knpipo PIPO 40 21.2 11.5 2.0 1.6 19.0 3.80 

7/4/2012 Nine Mile i011nmpipo PIPO 60 46.0 28.1 9.2 9.2 31.3 3.80 

10/1/2012 Deer Creek i012dcpipo PIPO 30 34.0 21.1 12.3 12.3 23.9 3.80 

7/4/2012 Nine Mile i012nmpipo PIPO 70 44.0 26.9 15.0 8.2 25.0 4.00 

10/1/2012 Deer Creek i013dcpipo PIPO 40 17.5 9.3 1.9 1.9 15.5 4.00 

10/1/2012 Deer Creek i014dcpipo PIPO 30 28.5 12.5 4.0 3.3 17.0 3.70 

7/4/2012 Nine Mile i014nmpipo PIPO 60 64.8 27.5 12.2 7.0 32.0 3.80 

7/11/2012 Bonner's Ferry i020bfpipo PIPO 20 19.2 9.4 1.7 0.8 21.1 3.80 

7/11/2012 Bonner's Ferry m013bfsaf SAF 180 5.8 4.5 0.7 0.7 8.2 3.90 

7/26/2011 Granite Pass i004gp SAF 
 

7.0 
   

24.0 3.8 

7/11/2012 Bonner's Ferry i011bfsaf SAF 120 7.2 5.5 0.2 0.2 8.4 4.00 

7/11/2012 Bonner's Ferry i012bfsaf SAF 120 7.8 5.5 0.2 0.2 9.9 4.00 

6/27/2012 Bonner's Ferry i004bfsaf SAF 50 10.8 7.1 1.7 1.0 17.1 3.80 

10/2/2012 Ambrose Saddle i014assaf SAF 200 11.5 6.6 2.6 2.6 13.9 3.90 

6/27/2012 Bonner's Ferry i005bfsaf SAF 50 11.8 8.4 2.4 1.4 21.7 3.90 

7/26/2011 Granite Pass i005gp SAF 
 

13 
   

23.2 5.60 

8/21/2012 Lubrecht Section 1 m003lssaf SAF 40 14.2 9.8 0.1 0.1 14.0 3.90 

10/2/2012 Ambrose Saddle i013assaf SAF 210 14.3 10.0 0.7 0.7 15.0 3.90 

6/27/2012 Bonner's Ferry m006bfsaf2 SAF 140 14.6 10.7 0.5 0.1 15.6 3.70 

7/26/2011 Granite Pass i003gp SAF 
 

15.0 
   

16.0 3.80 

6/27/2012 Bonner's Ferry i002bfsaf SAF 80 15.3 12.1 2.9 2.2 21.4 3.90 

6/14/2012 Bandy i002bysaf SAF 80 18.3 10.8 0.0 0.0 20.1 4.00 

10/2/2012 Ambrose Saddle i010assaf SAF 250 21.2 14.7 0.5 0.5 14.8 3.80 

6/27/2012 Bonner's Ferry i003bfsaf SAF 130 21.8 15.5 3.8 1.4 27.9 3.90 
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6/14/2012 Bandy m001bysaf SAF 
 

22.0 17.2 5.9 4.2 12.1 3.90 

6/27/2012 Bonner's Ferry m007bfsaf SAF 140 22.2 12.5 0.3 0.0 22.2 4.00 

7/26/2011 Granite Pass m229gp SAF 
 

25 
   

21.9 3.90 

6/27/2012 Bonner's Ferry m008bfsaf2 SAF 170 25.1 19.1 2.0 0.8 16.8 4.00 

6/27/2012 Bonner's Ferry i001bfsaf SAF 80 27.7 16.4 1.0 0.4 24.5 3.90 

10/2/2012 Ambrose Saddle i012assaf SAF 300 28.0 19.3 6.8 6.8 16.8 4.00 

6/14/2012 Bandy m002bysaf3 SAF 150 29.4 20.1 6.6 2.3 21.7 3.90 

10/2/2012 Ambrose Saddle i011assaf SAF 290 31.1 18.6 8.4 1.6 18.1 4.00 

6/21/2011 
Lubrecht 

Stinkwater i003lsaf SAF 
 

37 
   

25.0 4.00 

6/27/2012 Bonner's Ferry i009bfsaf SAF 80 42.2 18.7 0.9 0.9 14.9 3.90 

7/2/2012 Ambrose Saddle i007assaf SAF 150 62.7 36.7 1.2 0.0 51.5 4.10 
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Appendix B.  Individual Tree Ripley’s L Functions 

 

Blue is Pseudotsuga menziesii – the upper crown is the dashed line and the lower crown is the 

dotted line.  In all cases, the y-axis ist he Ripley’s Lhat value and the x-axis is the search radius on 

the scale of the data (the unitless, rescaled 0-1 crown length).   
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Green is Pinus ponderosa – the upper crown is the dashed line and the lower crown is the dotted 

line.  In all cases, the y-axis ist he Ripley’s Lhat value and the x-axis is the search radius on the scale 

of the data (the unitless, rescaled 0-1 crown length).   
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Red is Abies lasiocarpa – the upper crown is the dashed line and the lower crown is the dotted line.  

In all cases, the y-axis ist he Ripley’s Lhat value and the x-axis is the search radius on the scale of the 

data (the unitless, rescaled 0-1 crown length).   
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Appendix C.  Supplemental Edge Effect Analysis 
 

 To explore the post facto edge effect analyses (described in the body of this thesis), I 

calculated Ripley’s L for the seven consistent surface area to volume ratio segments, but 

dispersed the points randomly within each volume.  For simplicity, each volume was 

defined as a cylinder with a radius equal to the mean of the top and bottom radii from the 

original frustum.  The measurements for each volume segment are presented in Table 8.  

Although all the segments had constant surface area to volume ratios, the areas and 

volumes did vary.  Figure 34 shows the Ripley’s L functions for each segment.  The 

functions are ordered on the plot by increasing volume and surface area, indicating that a 

consistent ratio is not enough to produce uniform edge effects.  The departure of the 

functions from zero (where CSR should fall) may quantify the edge effect, although 

interpretation is uncertain.  The shape of the Ripley’s function is likely a reflection of the 

geometry of the study area, although this too is uncertain. 

 

Table 8.  Geometric parameters for consistent surface area to volume ratio segments with 

random point distributions. 

height 
above 
crown 

base (m) 

cylinder 
height 

(m) 

cylinder 
radius 

(m) 

total 
surface 

area 
(m2) 

volume 
(m3) 

surface 
area/ 

volume 

number 
of points 

15.0-19.0 4.0 0.655 19.167 5.396 3.552 10591 

14.0-
15.81 

1.81 0.832 13.807 3.934 3.509 9193 

13.0-
14.42 

1.42 0.955 14.245 4.066 3.503 10311 

10.005-
11.0 

0.995 1.339 19.642 5.607 3.503 10858 

8.0-8.883 0.883 1.610 25.227 7.193 3.507 11568 

5.0-5.801 0.801 1.967 34.196 9.732 3.514 14163 

2.211-3.0 0.789 2.040 36.257 10.314 3.515 13033 
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Figure 34.  Ripley’s L functions for random point distributions within search areas that 

have consistent surface area to volume ratios.  Each function represents points from a 

segment of the sample tree at a given height interval above the crown base (e.g., 2.2-3.0 are 

the points and sample area geometry from 2.2-3.0m above the crown base).  The order of 

the functions is consistent with increasing area and volume, not vertical position. 
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