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A B S T R A C T

Landscape fire succession models (LFSMs) predict spatially–explicit interactions between vegetation
succession and disturbance, but these models have yet to fully integrate ungulate herbivory as a driver of
their processes. We modified a complex LFSM, FireBGCv2, to include a multi-species herbivory module,
GrazeBGC. The system is novel in that it explicitly accommodates multiple herbivore populations, inter-
and intra-specific spatial forcing of their forage demands, and site-specific dietary selectivity to
interactively modify biomass, fuels and fire behavior across a landscape and over time. A factorial
experiment with five grazing regimes, three climates and two fire-management scenarios generated
interactive influences on undergrowth biomass (shrub, herb, total), surface-fire (fire-line intensity; flame
length; scorch height; soil heat; CO, CO2, CH4, and PM2.5 emissions), and the landscape’s fire-return
interval. Herbivory’s effects increased with biophysical site potential and herbivore forage demand, but
its effects were also contingent on climate and fire-suppression. Multi-species grazing modified biomass
and fire within stands and biophysical sites, but regimes involving only wildlife or livestock were less
effectual. Multi-species herbivory affected the landscape’s fire-return interval, but otherwise it did not
“scale up” to significantly modify total landscape respiration, primary production, carbon, or the total
area burned by individual fires. As modeled here, climate change and the effectiveness of future fire
suppression exerted stronger effects on landscape metabolism and carbon than did herbivory.
ã 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Vegetation pattern reflects interaction among biophysical site
potential, plant succession, and disturbance (Keane et al., 2002).
Herbivory is among the disturbance agents involved in those
interactions (Hobbs, 2006), and in some settings it may be the
major driver of an ecosystem’s shape and function (Danell et al.,
2006). Herbivores “disturb” ecosystems by consuming biomass
and by modifying the cycling of nutrients that are in the foods they
* Corresponding author. Tel.: +1 541 963 6707.
E-mail address: drydog@oregonwireless.net (R.A. Riggs).
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consume. Those processes potentially involve herbivore popula-
tions in the control of biomass and plant succession (Bork et al.,
1997; Kelly et al., 2005; Starfield and Chapin, 1996) and thus
potentially in the regulation of landscape fire (Zimmerman and
Neuenschwander, 1983, 1984). Herbivory is typically selective,
density-dependent, and variable across time and space. Those
facets of herbivory regimes can be important to understanding
their relationships to other processes, but they also are obstacles to
prediction (Riggs et al., 2004). Furthermore, models that have been
designed principally to provide interaction between episodic
disturbance and vegetation (e.g., Keane et al., 2004) apparently
remain largely apart from those that have been designed to provide
interaction between herbivory and vegetation (e.g., Weisberg et al.,
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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2006). More comprehensive understanding of interactions and
their significance probably depends on further integration of
modeling concepts and approaches.

Landscape fire succession models (LFSMs) have emerged as
important tools for exploring relationships between fire and
succession (Keane et al., 2004). Advantages of LFSMs include
predictions that can be both spatially and temporally explicit, and
in some cases management-responsive as well. But developers of
LFSMs usually have not attempted to integrate large herbivores with
other disturbance agents in their models. Such integration logically
requires linking herbivory to plant growth, fuels and disturbance
propagation on a common modeling platform. In this paper we
describe GrazeBGC, an integrative herbivory module that we have
synthesized to run on a prominent LFSM platform, FireBGCv2. The
module accommodates multiple herbivore populations, inter- and
intra-specificspatial forcingof theirherbivory, and itarticulatestheir
spatially–explicit removal of biomass to fire behavior, succession,
and landscape metabolism. We begin by describing the platform and
the grazing module. We then perform a simulation experiment with
the integrated system to contrast influences of several grazing
regimes on the platform’s outputs for biomass and fire dynamics
given different expectations for the future climate and fire
suppression. We conclude with discussion of herbivory’s apparent
significance, system benefits and current limitations.

2. Methods

2.1. The simulation platform

GrazeBGC is a module that runs on the FireBGCv2 platform.
FireBGCv2 (Keane et al., 2011) is a benchmark revision of Fire-BGC
(Keane et al.,1996,1997,1999), which previously merged a process-
based, gap-replacement model (FIRESUM; Keane et al., 1989) with
a mechanistic biogeochemical model (FOREST-BGC; Running and
Coughlan, 1988; Running and Gower, 1991). In what follows we
describe its parts that are directly relevant to integrating herbivory.

The platform’s landscape structure is hierarchical and similar to
that of an “ecosystem diversity” matrix (Haufler, 1994; Haufler and
Irwin, 1993; Haufler et al., 1996; Roloff et al., 1999), consisting of
“zones”, biophysical “sites”, “stands” of vegetation, and simulation
“plots”. Zones are coarse-scale units that help users organize
inputs and outputs. Sites define biological potential from historical
climate, topography, and soils. Stands represent time- and
spatially–explicit plant communities for which composition and
structure are calculated in a simulation plot. Sites and zones are
static, but stands change as their biomasses grow, change
compositionally, and are disturbed over time. Stand spatial
resolution is typically 102–105m2. Simulation efficiency is
optimized in landscapes 50,000–250,000 ha with 30–100 m pixel
resolution.

Plant succession is an emergent property on this platform that
is inferred from changes in each stand’s biomass composition over
time. Each stand’s plot simulates a stratum of non-tree under-
growth and may also simulate a stratum of trees if the stand’s
underlying site potential will support them. The tree stratum is
comprised of individual trees and the undergrowth is composed of
functional plant guilds (or species). The platform simulates using
either a biogeochemical (BGC) or a mechanistic GAP (GAP)
approach, and in this paper we use the latter.

Weather combines with site, stand, species and guild attributes
to regulate plant growth and contribute to fire behavior. Weather
inputs are supplied in streams of daily maximum and minimum
temperatures, vapor pressure deficits, precipitation, and solar
radiation. Those streams are projected forward in time, and
account for local topography (Numerical Terradynamic Simulation
Group, 2000; Running et al., 1987).
In mechanistic GAP simulations the platform calculates tree
growth in terms of bole diameters and heights, branchwood
biomass, and leaf areas, which together are converted into biomass
and carbon volumetrically. Tree diameters are simulated at breast
height (DBH) in annual diameter increments (DINC) as reductions
from published maxima using four reduction factors (Keane et al.,
2011:59–60): shading (rSHADE), water (rWATER), temperature
(rTEMP), and crowding (rCROWD):

DINC ¼ ðDINCmaxÞðrSHADEÞðrWATERÞðrTEMPÞðrCROWDÞ (1)

Reduction for shading is based on light interception by trees
above. Water-based reduction is calculated from the ratio
between actual and potential evapotranspiration (AET/PET).
Temperature-based reduction is calculated from the annual
number of degree days in relation to the optimum number for
growth by each tree species. The crowding factor is calculated
from the minimum of two indices (leaf area, stand density) that
indirectly assess the effect of crowding on bole diameter growth.
Tree height (HT) is calculated annually from the following
equation wherein a and b are calculated coefficients (see Botkin
et al., 1972 for details),

HT ¼ 137 þ aDBH � �bDBH2 (2)

Leaf area and branchwood are then calculated from crown
biomass equations (Brown, 1978) that use HT and DBH to calculate
light interception from top to bottom canopy layers.

Undergrowth guilds (or species) are grown using site-specific
plant models. Each biophysical site is assigned its own plant model,
which serves as the repository for state variables that drive and
limit biomass growth (UGROWTH, kg/ha) by each plant guild in any
stand of vegetation growing on the particular biophysical site.
Among those variables are the guild’s maximum biomass potential
on the site (UBIOMASSmax) and the maximum rate (h) at which its
biomass can accumulate. UBIOMASSmax and h are the ultimate
controls on stand biomass and composition, but those variables
combine with residual standing biomass from the previous year
(UBIOMASSt � 1), and with shade and water stress (rSHADE and
rWATER) to regulate each guild’s growth in the manner of a logistic
(modified from Keane et al., 2011:44):

UGROWTH ¼ ðrSHADEÞðrWATERÞðhÞðUBIOMASSt�1Þ 1 � UBIOMASSt�1
UBIOMASSmax

� �
(3)

Here rWATER is calculated from growing-season weather as the
ratio of precipitation to PET. Daily (i) growth of biomass in each
stand (l) is the growth increment (g) of each guild (m) summed
over M guilds in each stand:

UGROWTHil ¼
Xgend

i¼gstart

XM
m¼1

gilm (4)

The platform accumulates organic material on the ground in
each stand through turnover of stems, leaves, and roots in the
simulated trees and undergrowth (Keane et al., 2011:45–47). This
material is represented in eight carbon pools (kgC/m2): four
representing fine organic matter (leaffall, litter, duff, and soil C) and
four others representing woody ground fuels (1-, 10-, 100-, and
1000-hr time-lag woody fuels; Albini, 1976; Fosberg, 1970).
Decomposition dynamics are based on a BGC approach wherein
forest floor respiration is influenced by climate, particle size, and
species- or guild-specific vegetation inputs that include cellulose,
lignin, and C:N ratios for the various components. There is no
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detailed nitrogen cycling for the platform’s mechanistic GAP
simulations that we will use, but its BGC simulations do contain
cycling functions that are adaptable to herbivores, which we will
address in our discussion.

Fire is simulated at multiple scales (Keane et al., 2011:25–28).
Ignition frequencies and point locations are generated from inputs
that include historical fire-return intervals (fri), which are defined
as the number of years between fire for all land area within each
biophysical site. Those historical return intervals are used to
compute instantaneous fire-occurrence probabilities that are
scaled to individual stands across the landscape (Keane et al.,
1989). Any given stand ignites only when its flash fuels exceed a
minimum threshold (default is 0.05 kgB/m2 for litter, twigs, small
branches, current-year leaf-fall, or sum of undergrowth). Subse-
quent fire behavior and spread are simulated from attributes of the
individual stands of vegetation (herbaceous and woody fuel loads
and moistures) and the attendant biophysical sites on which stands
reside (topography, weather). Fire spread can be calculated using
vectors, cell automata, or percolation methods; we will use the
percolation method, which employs directional vectors for wind
and slope to spread fire (Keane et al., 2002, 2006). Fire behavior
(e.g., intensity, flame length) and effects (e.g., fuel consumption,
smoke) are simulated at stand scale, which can then be aggregated
from output to analyze mean responses at site, zone, and landscape
scales. New fire return intervals can be tracked from output as well,
and among those we will focus on the landscape’s fire-return
Fig. 1. GrazeBGC calculations are illustrated in the overall context of the FireBGCv2 platfo
(modified from Keane et al., 2011).
interval average (fria), which is a cumulative site-area-weighted
average fri.

The platform produces stochastic behavior in several ways, but
the most important sources are randomization of ignition points
from which fires originate and the spatial extent of those fires.
Fires interact with weather and fuels to determine the spatial
extent of disturbance and to initiate successions. Subsequent
growth, decay, and volatilization determine biomass and fuel
dynamics over time.

2.2. Formalizing GrazeBGC on the platform

GrazeBGC sensitizes the FireBGCv2 platform to herbivory by
adding herbivore functions to the platform’s program flow
(Figs. 1 and 2). Those functions principally include: (1) non-spatial
initialization of herbivore biomass demands; (2) spatial allocation
of those demands among stands of vegetation; and (3) partitioning
biomass removal among plant guilds in each stand. Together those
functions result in spatially–explicit off-take of biomass and
adjustment of biomass accrual, which may then influence each
stand’s future plant growth, succession, fuel profile, fire character-
istics, and herbivory. By changing the inputs that drive those
functions, investigators can simulate different herbivory regimes
and contrast their effects on a landscape’s vegetation and
disturbance dynamics. In what follows we formalize those
functions (variables are indexed in Appendix A).
rm’s flow. Shaded boxes indicate major additions that are attributable to GrazeBGC



Fig. 2. GrazeBGC modifies FireBGCv2 by adding herbivory processes to the
platform’s daily calculations. The simulator assesses each population’s non-spatial
biomass demand from input. Then it spatially allocates that demand, partitions
consumption among plant guilds in each stand, and adjusts biomass accrual
accordingly (modified from Keane et al., 1996).
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2.2.1. Assessment of herbivore biomass demands
GrazeBGC assesses each herbivore population’s biomass

demand on a Julian-day schedule from an input file. For each
day (incremented by i) and each herbivore population (incre-
mented by j), a biomass demand (Fij, kg) is input at the scale of the
landscape without regard to its spatial distribution.

2.2.2. Spatial allocation of herbivory
Spatial allocation partitions each population’s initialized

biomass demand (Fij) among stands of vegetation. GrazeBGC does
this by implementing three sub-processes sequentially each day
(Fig. 2): coarse-scale definition,coarse-scale displacement, and fine-
scale allocation.

Coarse-scale definition enables the modeling system to repre-
sent spatial limitations to grazing that are imposed by barriers.
Livestock systems, for example, are often organized into pastures
that contain many stands of vegetation. The boundaries of those
pastures are barriers that spatially constrain the time-specific,
spatially–explicit distribution of livestock grazing functions.
GrazeBGC implements such constraints at the relatively coarse
scale of the platform’s zones. If an herbivore population j (e.g., a
livestock herd) is subject to zonal constraint, its input biomass
demand on day i within zone k, (Fijk) is defined among the
landscape’s K zones in proportions p:

Fijk ¼ Fijpijk (5)

The usual bounding restrictions apply:

Fij ¼
XK
k¼1

Fijk (6)

And:

XK
k¼1

pijk ¼ 1 (7)

Coarse-scale displacement enables the system to represent
displacement of one herbivore population’s foraging by another
herbivore population. It implements this displacement at zonal
scale as an adaptation of Coe et al. (2001), which described
displacement of Rocky Mountain elk (Cervus elaphus) as a response
to a fixed cattle-stocking rate.

Stocking rates for livestock are commonly denominated in terms
of animal-unit-months (AUMs). In the terminology of range
managers, an AUM represents the stocking of one animal unit
(AU) in pasture for one month (30 days), where the AU is usually
defined as one mother cow and her calf. Thus some number of AUMs
represents some number of cow–calf pairs stocked per month. By
definition, however, a stocking rate denominated in AUM units is
density-independent, and therefore it must be converted to a
density-dependentequivalent in orderto be made spatiallyrelevant
(i.e., AUM per unit area, A). We represent this density-dependent
equivalent for a population j in a landscape zone k, with zjk:

zjk ¼
AUMjk

Ak
; j ¼ 1; k ¼ 1; . . . ; K (8)

In Coe et al. (2001), the quantity of AUMjk was 750 = [(500 AU)
(45 days)/(30 days)] and zjk was 0.316 AUM/ha = (750 AUM/2,373
ha). Under those conditions elk were apparently displaced from
cattle-occupied pastures at rates of 2.1% per day (early season) and
0.6% per day (late-season) or 1.35% per day on average. We develop
two formulations for inter-specific displacement from those
results.

The first formulation displaces a subordinate population’s zonal
biomass demand (Fjk) at a fixed rate (r, kg/day). Each day the
dominant and subordinate populations occupy a common zone,
the subordinate’s demand is discounted at fixed rate. The general
formula for fixed-rate displacement is:

Fðiþ1Þjk  Fijk � Fijkr (9)

Wherein we constrain r within bounds observed by Coe et al.
(2001): 0.006 � r � 0.021.

If the dominant population’s density-dependent equivalent is not
fixed over time, then r becomes a function of that population’s
variable density equivalent. Three assumptions apply: (1) the
subordinate population’s displacement rate, r, is a Type I functional
response (Holling,1959a,b,b) to the dominant population’s density-
dependent equivalent and thus r increases linearly with z; (2) r is
density-dependent on the dominant population and not on the
subordinate; and (3) r originates at zero when the dominant’s
density equivalent is zero. Using the average displacement rate
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from Coe et al. (2001), and indexing j = 1 for the dominant
population and j = 2 for the subordinate, the variable-rate calibra-
tion for r is:

ri2k ¼ 0:04272ðzi1kÞ (10)

Wherein ri2k is the daily rate by which the subordinate
population’s biomass demand is displaced from the zone k by the
dominant’s stocking rate in that same zone (zi1k). The formula for
variable-rate displacement is thus:

Fðiþ1Þ2k  Fi2k � Fi2k 0:04272
AUMi1k

Ak

� �� �
(11)

In Eq. (11) the dominant population’s density-dependent
demand on day i (AUMi1k) modifies the subordinate’s demand
in the same zone on the following day (F(i + 1)2k). The dominant’s
demand can be calculated from animal units (AU1k), its number of
days in-zone (

Xdout
i¼din

i,

where din is the entry date and dout is the exit date) and its daily
zonal demand (Fi1k) summed over those days on a 30 days (i.e., 1
month) base:

AUMlk ¼
S

dout
i¼dinFi1k

30 � ½Sdout
i¼dinFi1k=AUi1k�=SN

i¼1i
h i

¼ N � S
dout
i¼dinFi1k

30 � S
dout
i¼dinFi1k=AUi1k

h i (12)

Wherein N is the total number of days spent in the common zone
by the dominant population. Thus, the full model for variable-rate
displacement is:

Fðiþ1Þ2k  Fi2k � 0:04271ðFi2kÞ
NS

dout
i¼dinFi1k

Akð30Þ½Sdout
i¼dinFi1k=AUi1k�

2
4

3
5 (13)

Regardless of method, displacement of a subordinate popula-
tion’s forage demand begins when the dominant population enters
the common zone (on day = din) and continues until either its
demand is zeroed (on day = dout) or until the subordinate’s demand
has been completely displaced. Each day the subordinate’s demand
(Fi2kr) is subtracted from its a priori demand (Fi2k):

Fðiþ1Þ2k  Fi2k � ðFi2kri2kÞ (14)

Then the displaced quantity is re-allocated among adjacent
landscape zones that are not occupied by the dominant popula-
tion:

Fðiþ1Þ2kr ¼ Fi2kr þ ðFi2kri2kÞ; kr 2 fzonesjkr 6¼ kg (15)

As described above, coarse-scale definition and coarse-scale
displacement assign and then adjust the biomass demands zonally.
Fine-scale allocation re-distributes those adjusted zonal demands
among the individual stands of vegetation within each zone. This
sub-process may be implemented through either purely nutri-
tional predictor variables or through combinations of nutritional
and non-nutritional predictors.

For a purely nutritional approach we adapt matching law from
Senft (1987), wherein the spatial distribution of foraging is driven
by an herbivore population’s relative community preference (RCP):
RCPl ¼
Gl

Al
¼ Bl

S
L
l¼1AlBl

(16)

In Senft et al., 1987 notation Ĝl represents the proportion of
grazing time allocated to a stand l. Al represents the area (m2) of
stand l, and Bl the biomass (kg) of preferred plants in stand l. The
denominator on the right sums areas and preferred biomasses
(Al and Bl) over all stands in the landscape. The currency that
denominates effort is represented by Ĝl and relative community
preference by the ratio Ĝl to Al. That quantity is “matched” by the
ratio between Bl and the area-weighted sum of all preferred
biomass in the landscape.

Given that “community” and “stand” are equivalent terms for
our purpose, and assuming that grazing time or effort allocated to a
stand and the biomass demanded of it have equivalent relationship
to preferred biomass in the stand, we substitute the equivalent
biomass demand, fi (kg), for grazing effort Ĝl and adapt the
equation spatially to a specific stand that is nested within a specific
FireBGCv2 landscape zone:

RCPikl ¼
Ĝikl

Akl

  !
¼ f ikl

Akl

� �
¼ Bikl

S
Lk
l¼1AklBikl

  !
(17)

We now allocate demand among all stands in each zone
according to each herbivore population’s matching relationship:

f ijkl
Akl

� �
¼ Bijkl

S
Nk

j¼1S
Lk
l¼1AklBijkl

0
@

1
A; j ¼ 1; . . . ; Nk (18)

Wherein Nk represents the number of herbivore populations in the
zone.

We now isolate proportional demands for the various stands in
a zone by multiplying each side of the previous equation by Akl:

f ijkl ¼
AklBijkl

S
Nk

j¼1S
Lk
l¼1AklBijkl

0
@

1
A (19)

Then we solve for absolute demand allocations by products of
those proportions and corresponding zonal demands:

Fijkl ¼ f ijklFijk ¼
AklBijkl

S
Nk

j¼1S
Lk
l¼1AklBijkl

0
@

1
AFijk (20)

As a check, each herbivore population’s total daily demand in-
zone (Fijk) must equal the sum of its spatially–explicit demands
therein:

Fijk ¼
XLk
l¼1

Fijkl ¼
XLk
l¼1

AklBijkl

S
Nk

j¼1S
Lk
l¼1AklBijkl

0
@

1
A (21)

Eqs. (19) and (20) provide a potentially useful mechanism for
allocating the biomass demands of several herbivore populations
among stands of vegetation. Nonetheless, the relative preferences
that underlie B for each herbivore population must be relative
across all stands in the zone and thus may be quite difficult to
obtain (Clark et al., 2013; Cruz and Ganskopp, 1998; Darambazar
et al., 2014; Johnson, 1980; Walburger et al., 2007). To circumvent
that obstacle, plant nutritional metrics may also be used to
spatially allocate those biomass demands. As a practical matter,
nutritional metrics are more easily estimated than preferences,
and furthermore, the underlying basis for B is relative preference
(RP), which may be conceptualized as an exponential function of
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relative nutritive quality (RNQ, from Senft, 1987):

RP ¼ ekðRNQ�1Þ (22)

We now assume that an adaptive herbivore can prefer only
biomass that on average meets or exceeds some threshold for
nutritional quality (NQT). Given that assumption, the quantity of
preferred biomass, B, is substitutable by a corresponding quantity,
B, which satisfies that threshold:

Fijkl ¼ Fijk
Akl B ijkl

S
Nk

j¼1S
Lk
l¼1Akl B ijkl

0
@

1
A (23)

Either Eq. (20) or Eq. (23) might be used to allocate herbivore
demands among stands. If Eq. (20) is used, the allocation must be
driven by inter-stand variation in the aggregate biomass of those
plant guilds which are preferred by the herbivore population. If
Eq. (23) is used, then the allocation is driven by inter-stand
variation in the aggregate which meets a nutritional threshold.
Neither Eq. (20) nor Eq. (23) limits spatial allocation based on
foraging efficiency per se (but see Wickstrom et al., 1984; Spalinger
and Hobbs, 1992). Each stand’s guild biomasses are developed
during simulation from platform Eqs. (3) and (4) above, which can
render each stand to contain a unique quantity of relevant biomass.
Preference or nutrition coefficients, as the case may be, are
accounted for by the modeler in an input file.

Because the platform partitions each stand’s undergrowth
biomass among plant guilds, the value of B in Eq. (20) and that of B
in Eq. (23) each represent an aggregate biomass that satisfies each
term’s condition: “preferred” in Eq. (20), or “nutritionally
adequate” in Eq. (23). The amount of biomass the modeling
system considers satisfactory is controlled by the analyst. For
example, if Eq. (20) is used the value of B may be conditioned using
a dietary selection index (e.g., Ivlev, 1961) so that B is constrained
to include only the aggregate biomass of those guilds that are
preferred by herbivores (i.e., those for which Ivlev’s a > 0). To
illustrate this constraint, we assume that a stand of vegetation
includes some number of functional plant guilds, M, each having
biomass bm. On any given day the amount of the stand’s biomass
that is relevant to allocating the herbivore population’s grazing is a
function of each guild’s selection coefficient, ajm. Since a non-
positive a for a given b logically implies that b must be zero, we
have the following conditions for biomass relevancy in the stand:

Bijkl ¼
XM
m¼1

bijklm¼ 0; ajm � 0
bijklm; ajm > 0

� �
(24)

If Eq. (23) is used, then the value of B can be constrained on a
nutritional metric such as digestible energy (DE, kcal/g) so that the
allocation among stands responds to the aggregate biomass of only
those guilds that yield DE sufficient to meet some critical
physiological requirement, such as minimum body maintenance,
minj:

Bijkl ¼
XM
m¼1

bijklm¼
0; DEjm < DEmin j

bijklm; DEjm � DEmin j

� �
(25)

Alternatively, B may be further constrained to include only
biomass that is both consumable and digestible. If herbivores will
consume only the portion of any plant guild’s biomass that is current
year's growth (CYG,g), then the quantity of any guild’s biomass that
is relevant to spatial allocation is the product of its CYG quantity and
its coefficient for dry-matter digestibility (DMD, g/g):
B ijkl ¼
XM
m¼1

bijklm¼
CYGiklm

biklm

� �
ðDMDjmÞ ) B ijkl ¼

XM
m¼1
ðCYGijklmÞðDMDjmÞ

Other assayable criteria might also be applied to further
condition the relevance of plant biomass for allocating grazing
among stands (e.g., metabolizable energy or protein, concen-
trations of secondary metabolites, etc.).

Purely nutritional approaches like those illustrated above may
not always be sufficiently realistic. Non-nutritional factors can
also modify the spatial distribution of foraging, thus requiring
terms to account for those factors as well (Senft et al., 1985).
Resource selection probability functions (RSPFs) provide one
means of implementing multiple drivers on this platform. To
explain, we modify from Manley et al. (2010) the general form for
an RSPF:

w�ðXiÞ ¼ expðb0 þ b1xi1 þ . . . þ bpxip Þ (27)

In Manley et al. (2002) notation, w*(Xi) is the absolute
probability that the ith resource unit (e.g., a stand of vegetation)
will be selected for use (i.e., foraged) given a constant, b0, and
b1xi1 þ . . . þ bpxip Þ, the estimated value produced by the random
variant Xi ¼ ðxi1; . . . ; xipÞ. The xi predictor variables may each be
either nutritional or non-nutritional in character. Eq. (27) provides
the template for an expanded version using FireBGCv2/GrazeBGC
notation for days (i), herbivore populations (j), landscape zones (k),
and individual stands of vegetation (l):

w�ðXijklÞ ¼ expðb0 þ b1xijkl1 þ . . . þ bnxijklp Þ (28)

With the solution from that equation, each herbivore pop-
ulation’s daily biomass demand can be allocated among stands in
each landscape zone:

Fijkl ¼ Fijðw�ðXijklÞÞ (29)

2.2.3. Consumption of plant guilds
FireBGCv2/GrazeBGC grows and crops biomass from each

stand’s plant guilds in daily increments. In what follows we
review how the FireBGCv2 platform calculates biomass growth in
each stand, and then we explain how the GrazeBGC module
selectively crops that growth on behalf of each herbivore
population.

Eqs. (3) and (4) above showed how the platform accumulates
each stand’s undergrowth biomass guild-specifically. Those
equations also show that the platform’s accrual of UGROWTH is
not sensitive to herbivory because there is no term for consump-
tion or removal. When running GrazeBGC, however, each guild's
accrual of UGROWTH is discounted through daily consumption by
herbivores.

To calculate the consumption of each guild, each stand’s
allocated forage demand (Fijkl) is partitioned among M guilds in
each stand according to biophysical-site-specific dietary prefer-
ences. To acknowledge the distinction between “biomass
demanded” and “biomass consumed”, GrazeBGC tracks both
metrics denoting the latter as UCROPPED, which is cropped in
guild-specific daily increments (c) for each herbivore population:

UCROPPEDl ¼
Xcend

i¼cstart

XN
j¼1

XM
m¼1

cijlm (30)

When computing actual values, N and M are refined to account
for the dependency of N on each herbivore population’s biomass
demand in a particular zone each day, and for the dependency of M
on those guilds that are available for cropping in each stand.



R.A. Riggs et al. / Ecological Modelling 296 (2014) 57–78 63
On any day, a plant guild’s net accrual of biomass in any given
stand (NETGROWTHilm) is the difference between the platform’s
growth output and the module’s consumption output:

NETGROWTHilm ¼ UGROWTHilm � UCROPPEDilm (31)

We use preference logic (Chesson, 1978; Riggs et al., 2000;
Smith, 1965) to partition each herbivore population’s consumption
of NETGROWTHilm among plant guilds in each stand of vegetation.
Each population’s site-specific guild preferences (a) can be defined
in a vector (Að0Þj ):

Að0Þj ¼

aj;1
aj;2
aj;3
. . .
aj;M

2
66664

3
77775
XM
m¼1

aj;m

  !�1
(32)

Once again, j indexes herbivore populations and m indexes
plant guilds. Each preference vector is normalized over guilds. In
practice, several seasonal vectors are usually input for each
herbivore population to account for changes in its site-specific
dietary preferences over the course of the year.

The algorithm crops each population’s biomass demand from
the plant guilds in each stand in proportion to normalized
preference. If a population’s demand for a particular guild’s growth
biomass exceeds the amount available in a stand, then the unmet
quantity is re-allocated among remaining guilds in a re-normalized
vector Að0Þj . For example, if mf1 is the index of the guild for which
the herbivore demand exceeds supply, then the re-normalization
for herbivore population j is:

Að1Þj ¼

aj;1
aj;2
. . .

aj;f1
¼ 0

. . .
aj;M

2
66666664

3
77777775

XM
m 6¼mf1

aj;m

0
@

1
A�1; XM

m6¼mf1

aj;m ¼ 1 (33)

and so on, given further depletions.
The modeling system cycles through all stands in each zone

daily, first accruing growth then selectively cropping each
population’s partitioned biomass demand in descending hierar-
chical order (i.e., for the dominant population first in each stand).
As used in this paper, the module crops those demands from
available plant growth of the current year (CYG) and is constrained
from cropping biomass grown in previous years. If all CYG is
cropped from all guilds in any given stand, then the unsatisfied
demand is reported in output as unmet, and no further adjust-
ments are made until the following day after plant growth has been
accrued again across the landscape.

2.2.4. Modification of succession and disturbance
Any disturbance agent’s behavior can be regulated by factors

that are extrinsic to the agent itself. Fire behavior, for example, is
regulated by several factors that prominently include fuel loading,
which in-turn is regulated by plant growth and herbivory that
occurs prior to the fire. Previous growth within the same year and
growth in prior years are both relevant. GrazeBGC can link fire
behavior to prior plant growth and herbivory in two ways.

The first of those is by tracking guild-specific growth,
consumption, and net growth in each stand of vegetation over
the course of each year. Without the grazing module, the platform’s
accrual of undergrowth biomass is insensitive to herbivory and all
of UGROWTH is available to support fire until leaf-fall each year.
With the grazing module, however, only NETGROWTH remains
available and thus fire in any given stand is affected by prior
grazing up to the date of ignition.

Fire can also be linked to prior herbivory by modifying biomass
accumulation across years, which may be accomplished in two
ways. The first is inherent to the platform and does not involve any
modification of plant vigor by herbivores. As explained in Eq. (3),
the platform accrues undergrowth biomass by adding each guild’s
annual growth biomass (UGROWTHy) to the guild’s biomass
residual from the previous year (UBIOMASSy � 1). The accrued
quantity is a function of the guild’s intrinsic growth rate h in
relation to the guild’s biomass potential, as modified by stress
factors (shading, water stress). This formulation is important for
simulating succession because it suppresses biomass accumula-
tion by those guilds that are consumed by herbivores, since in
Eq. (3), the base from which future UGROWTH is calculated will be
suppressed by herbivory. Moreover, those guilds having relatively
low intrinsic growth rates will be suppressed to greater extent than
those which have high intrinsic rates, all other factors being equal.
Thus the platform enables a direct effect of herbivory on the
realized rate of each guild’s biomass accrual. This effect does not
depend on lowering the guild’s intrinsic growth rate, and it does
not necessarily reduce annual growth.

Nevertheless, heavy grazing may reduce root biomass or
carbohydrate reserves, thereby reducing plant vigor and a plant
population’s intrinsic ability to produce biomass. Moderate grazing
may apparently enhance vigor as well under some circumstances
(Peek et al., 1978). These effects are over and above the function of
Eq. (3), requiring some explicit mechanism for modifying intrinsic
rates during simulation. This may be achieved by allowing any
guild’s intrinsic rate to be modified as a function of the guild’s prior
utilization by herbivores. The value of h in a future year may be
modulated given its initialized maximum value (h0), the speed of
the intrinsic rate’s modification (l), and the utilization level at
which its modification begins (u0):

htþ1ðutÞ ¼ h0
1 þ elðut � u0Þ
� � (34)

Recasting that equation with the module’s indexing for specific
guilds, m, and with expansion of the utilization term, u, into spatial
components gives the following:

hðt þ 1Þlm ¼
h0m

1 þ e
l 1 � ðUGROWTHtlm � UCROPPEDtlmÞ

UGROWTHtlm

� �
� u0

� �0
B@

1
CA

(35)

2.3. An experiment

2.3.1. Biophysical setting
We conducted our experiment in a landscape context defined

by Middle Meadow Creek (MMC; see “Context” in Fig. 3), a sub-
watershed segment that is mostly contained within the Starkey
Experimental Forest and Range (SEFR) in the Blue Mountains
ecological province (Franklin and Dyrness, 1973). Elevation ranges
between 1067 and 1524 m. Climate is severe mid-latitude with
maritime and continental influences. Maritime weather delivers
roughly two-thirds of annual precipitation from mid-September
through March, and most of the remainder in April, May and early
June. Summers are droughty. Annual precipitation (1966–2009)
ranges from 40 to 105 cm, annual maximum temperature 31–39 �C
and minimum from �29� to �13 �C.

Parent geology is Miocene basalt, which has been overlain by
Pliocene and Pleistocene ash, and by wind-blown loess. Depths of
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ash and loess vary spatially and interact with precipitation and the
summer drought to define the landscape’s biophysical sites. We
identified five biophysical sites from soil surveys, literature and
online databases (Powell et al., 2007; United States Geological
Survey, 2009): (1) hot dry upland shrubland, (2) hot dry upland
herbland, (3) hot dry upland woodland, (4) upland mixed-conifer
forest, and (5) riparian forest.

Shrubland and herbland each occur on thin Argixerolls (priairie
soils � 28 cm in depth) that developed mostly from loess over
partially degraded basalt. Natural vegetation of the shrubland is an
association of stiff sagebrush (Artemisia rigida) and Sandberg's
bluegrass (Poa sandbergii), and that of the herbland is Palouse
Fig. 3. Middle Meadow Creek (MMC) is a 6th order hydrologic unit (sub-watershed se
processes were simulated across the entire landscape, but herbivory and its analysis w
prairie dominated by Idaho fescue (Festuca idahoensis) and
bluebunch wheatgrass (Pseudoregnaria spicata). The shrubland is
least productive of the five sites, and it has a historic fire-return
interval (fri) of at least 44 years (Agee, 1994; Johnson and Simon,
1987). The herbland is more productive and its historic fri is about
3 years.

The woodland site occurs on deeper Argixerolls (�48 cm) that
may also contain substantial ash. Its natural vegetation is
savanna-like, fire-adapted ponderosa pine (Pinus ponderosa) with
an undergrowth of mostly dry herbland species, but it does not
necessarily require fire for maintenance. Its pre-1900 fire-return
interval averaged about 5 years, but within a broad range of
gment) in the Grande Ronde River basin, in northeastern Oregon, USA. Ecological
as limited to the MMC context area.
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1–70 years (Arno, 1980; Brown and Smith, 2000; Heyerdahl et al.,
2001; McIver and Weatherspoon, 2001) wherein the upper
extreme approximates current conditions under aggressive fire
suppression.

Upland mixed-conifer occurs on Vitrandepts (ashy silt-loams,
64–107 cm deep) developed principally from ash on protected
terrain. Its vegetation includes a limited variety of associations in
grand fir (Abies grandis) and Douglas fir (Pseudotsuga menziesii)
forest series (Powell et al., 2007). Variable- and mixed-severity fire
regimes intergraded historically here, with return intervals up to
200 years regionally (Powell, 2011) but probably about 37 years on
average in the MMC (range 20–67; see Heyerdahl et al., 2001).

Soils of those four upland sites do not have permanent water-
saturation zones and commonly desiccate to root-restrictive layer
during the summer drought. Plant growth is thus truncated
temporally across the uplands according to the timing of site-
specific moisture stress each year (shrubland, herbland, woodland,
upland mixed-conifer, in that order). Riparian forests, however,
occur on aquic alluvium that may remain saturated at depth. There
dominant trees are cottonwood (Populus balsamifera trichocarpa),
Douglas fir, and grand fir. This site occurs on narrow stream
margins and its fri is only modestly longer than that of adjacent
upland forest (roughly 44 years; see Olson, 2000).

We built five plant models to drive undergrowth (one model for
each biophysical site). Each model defined 16 functional guilds by
first dichotomizing plant taxa according to growth form (shrub,
herb); then dichotomizing shrubs according to shade tolerance
(intolerant, tolerant), foliagepersistence(evergreen,deciduous), and
potential height at 20 years of age (tall >1 m, short �1 m); and then
dichotomizing herbs according to shade tolerance, life cycle (annual,
perennial), and class (graminoid, forb). We synthesized each guild's
UBIOMASSmax from species-specific data (Ottmar et al., 2007; Young
et al.,1967; Johnson and Simon,1987; Riggs et al., 2000; Case,1995;
Sheehy et al., 1999; R. Cook and J. Cook unpublished data). From
those sources we limited each site’s total undergrowth biomass
(kg/ha, summed across all 16 guilds) as follows: 930 (shrubland);
3640 (herbland); 3310 (woodland),12,490 (upland mixed-conifer);
and 13,090 (riparian forest). We also limited the current annual
growth by all guilds in aggregate to recorded maxima for current
year production (CYPmax, kg/ha): 454 (shrubland), 1545 (herbland),
1917 (woodland), 2654 (upland mixed-conifer), and 2806 (riparian
forest). Intrinsic growth rates (h) for herbs were defaulted from
earlier FireBGCv2 applications (5.48 for perennials, 10.86 for
annuals; Keane et al., 1997, 1999; Sampson, 1944), and for shrubs
we synthesized h = 1.14 from literature (Riggs et al., 2000; Young
et al., 1967). All other state variables for undergrowth were
defaulted from earlier FireBGCv2 applications.

Woodland and forest inputs included conifer site indices, basal-
area and seedling-density limits, and lag times for seedling
establishment. We calibrated site index on forest associations from
Table 1
The simulation design included four fixed factors: herbivory (H = 5), climate (C = 3), fire su
were crossed to formulate 30 factor combinations, which were each replicated in 10,4

Factor levels Experimental factors

Herbivory Climate 

1 No-herbivorea Historica
2 Wildlife-onlyb A2 (warm
3 Livestock-onlyc B2 (warm
4 Historical (Wildlife + livestock)d

5 Historical 2x (wildlife + 2x livestock)e

a Herbivore-free mimics FireBGCv2 without the GrazeBGC module.
b From level no. 4, simulates only Rocky Mountain elk and mule deer.
c From level no. 4, simulates only livestock.
d Average multi-species regime, 1989–2010, estimated from archives. Livestock comp
e From level no. 4, doubles livestock to approximate mid-20th century herbivory.
Powell (1999, 2009),) as follows: dry woodland on average
ponderosa pine/bunchgrass (Pinus ponderosa/Pseudoregnaria
spicata, P. ponderosa/Festuca idahoensis); upland mixed-conifer
on average grand fir (Abies grandis/Linnaea borealis, A. grandis/
Vaccinium membranaceum); and riparian forest on maximally-
productive grand fir (A. grandis/V. membranaceum). Each site’s
maximum basal-area stocking was calibrated to “full stocking”
(Powell, 1999) compounded by a factor of 1.25. Seedling density
was limited to published maxima at stand quadratic-mean
diameter (QMD) of 2.54 cm using upper–management-zone and
uneven-age density assumptions (Powell, 1999). Tree morphology
and shade tolerance were calibrated from databases (Gymno-
sperm, 2011; United States Department of Agriculture, 2011) and
tree growth parameters from published literature (Barrett, 1979;
Cochran, 1979a,b; Cochran and Seidel, 1999; Powell, 1999; Seidel
and Cochran, 1981). All other tree inputs were defaulted from the
earlier FireBGCv2 applications.

We simulated processes across the MMC context area (9013 ha)
and a buffer extending 1 km beyond it on cardinal directions (an
additional 12,187 ha). The entire simulation landscape initially
contained 2044 stands (11 shrublands, 85 herblands, 61 dry wood-
lands,1883 upland mixed-conifer forests, and 4 riparian forests). The
MMC context alone contained 944 stands: 9 shrublands (7.76% of
area); 71 herblands (23.79%); 17 dry woodlands (1.00%); 846 upland
mixed-conifer stands (67.42%); and 1 riparian-forest stand (0.03%).
Woodland and forest plots were populated with trees using the U.S.
Forest Service’s Integrated Forest Management System (INFORMS)
by imputing inventoried tree lists from nearest-neighbor analogue
stands (Nlist = 1936; Crookston et al., 2002; Justice, 2011) that were
identified from satellite imagery (National Agriculture Imagery
Program, 2006) and grown to a common base year (2010) in a forest
vegetation simulator (FVS, Dixon, 2002). We arbitrarily initialized
biomass of undergrowth guilds in shrublands, herblands, and
woodlands at 33% of each guild’s site-specific maximum. The
suppressive effect of imputed tree canopy on undergrowth in
forests was accounted for by interpolating each guild’s initial
biomass between maximum potential at 0% overstory canopy and
minimum at 100% overstory canopy.

2.3.2. Simulation design and analysis
We conducted a factorial experiment with four fixed factors

(Table 1), each having from two to five treatment levels: herbivory
(H = 5), climate (C = 3), fire-suppression (F = 2), and biophysical site
(S = 5). Three of those factors (H, C, and F) were crossed to produce
30 factor combinations (5 � 3 � 2 = 30), and each combination was
replicated with 10, 400-year simulations (Nsim = 300).

The five herbivory regimes were variants of the landscape’s
recent historical regime, 1989–2010, as estimated from archives of
the Oregon Department of Fish and Wildlife and the U.S. Forest
Service (Fig. 4), accounting for recorded population sizes and sex/age
ppression (F = 2), and biophysical site (S = 5). Herbivory, climate, and fire suppression
00-year simulations.

Fire suppression Biophysical site

l None Shrubland
, dry) 90% Herbland
, moist) Woodland

Upland mixed conifer forest
Riparian forest

osition approximates 70% black Angus and 30% Angus x Hereford breeds.



Fig. 4. Historical, daily biomass demands simulated for livestock, elk, and deer are
displayed for the MMC context area. Difference between even-year and odd-year
livestock demands are attributable to alternate-year rotation between MMC
pastures that are within the SEFR and those that are outside the SEFR rotation.
Documented biomass demand by livestock in even years (771,110 kg) has been
roughly 93% of that in odd years (825,675 kg). Livestock breed composition has
averaged roughly 70% black Angus and 30% black Angus x Herford. We simulated
four other herbivory regimes by variously deviating from the historical regime
shown (see Table 1).

Table 2
Climate warming was implemented with regionally down-sized GCM family
projections based on IPCC assumptions for greenhouse gas emissions (scenarios A2
and B2). Temperature increases were implemented as offsets (�C) and precipitation
as multiples of historical average.

Regime parameter Climate scenarios

Historical A2 (warm, dry)a B2 (warm, moist)a

Atmospheric CO2
a

Start 287 369 369
End 287 856 621
–

Tmax and Tmin offsets
Winter 0 2.5 1.8
Spring 0 3 1
Summer 0 6.7 2.1
Autumn 0 4.6 1.6
–

Precipitation multiple
Winter 1 1.11 0.99
Spring 1 1.02 1.17
Summer 1 0.66 1.24
Autumn 1 0.93 1.05

a http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission/.
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composition (average number of animals), intra-year fluxes
attributable to seasonal migration (elk, deer), anthropogenic forcing
(livestock rotation), births and deaths, and interpolated body size
dynamics. We implemented those regimes with inter-specific
displacement of elk by cattle (Eq. (9)), nutritionally-driven
fine-scale allocation (Eqs. (23) and (26)) and preference-driven
guild consumption (Eqs. (32) and (33)). Nutrition coefficients (DMD,
for calculating B) and preference coefficients (a, for calculating
consumption within stands) were input seasonally: spring (03/16–
06/15: julian day (JD) 75–166); early summer (06/16–07/15: JD
167–196); middle summer (07/16–08/15: JD 197–227); late
summer (08/16–09/15; JD 228–258); early autumn (09/16–10/15:
JD 259–288); and late autumn (10/16–12/31: JD 289–365).
Nutritional biomass (B) for livestock and elk was tracked in each
stand by summing guild-specific products of NETGROWTH (leaf +
stem) and its DMD. For mule deer we defined B on leaf accumulation
and its DMD, assuming 50:50 leaf:stem ratios. Those vectors were
calibrated for elk and livestock from site- and season-specific fiber
fractionations (J. Cook, unpublished data; DelCurto et al., 2014a,b,b).
For mule deer, those vectors were calibrated from literature
(Blank, 1984; Short, 1981; Welch, 2005) assuming that herbs and
deciduous shrubs were phenologically immature: (1) on shrubland,
Table 3
Twenty-three outputs were analyzed to encapsulate biomass, surface fire (thermal b
responses.

Stand Surface fire Lands

Biomassa Thermalb Emissionsc Respir

shrubB flame CO2 mr 

herbB int CO hr 

underB scorch CH4 gr 

hbc soilH PM2.5

a Above-ground biomass of shrubs (shrubB, kg/m2), herbs (herbB, kg/m2), and total und
ground to base of live tree canopy (hbc, m) was analyzed only on woodland and forest

b Flame height (flame, m), fire-line intensity (int, kW/m), scorch height (scorch, m), a
c Surface-fire emissions of carbon dioxide (CO2), carbon monoxide (CO), methane (C
d Maintenance (mr), heterotrophic (hr), and growth respiration (gr), respectively (kg
e Gross primary (gpp), net primary (npp), and net ecosystem production (nep = nppn 

f Total (totC), above-ground (abC), and below-ground carbon (bgC), respectively (kgC
g Fire-return-interval average (fria, years) and total area burned by individual fires (a
herbland, woodland sites until June 16 (approx. summer solstice)
and August 16 (earliest winter-hardening), respectively; and (2)
until July 16 and September 16, respectively, on upland and riparian
forest sites. We discounted evergreen shrub DMD 90% in all seasons
to nominallyacknowledge the depressiveeffectof foliagesecondary
chemistry on digestive function and intake (e.g., Bergström, 2007;
Cates and Orions, 1975; Li, 1974; Nagy et al., 1964; Nagy and
Tengerdy, 1967; Roscoe and Hall, 1960).

The three climate scenarios contrasted the historical climate
record against warm–dry (A2) and warm–moist (B2) scenarios. The
historical climate was a site-adjusted, forward-projected, 44-year
sequence developed from the daily weather record at La Grande,
Oregon. The other two scenarios were developed from regionally
down-sized General Circulation Model (GCM) averages based on
Intergovernmental Panel for Climate Change (IPCC) scenarios for
greenhouse emissions. Those scenarios modified historical
temperature and precipitation seasonally (Table 2) and were
ramped in over the course of the first 100 years. Landscape
nitrogen deposition and fixation were held constant in all scenarios
((0.842 kgN/m2)/year).

The two fire regimes dichotomized fire-suppression
effectiveness (Keane et al., 2011). The first regime (N) implemented
no suppression. The second regime (S) randomly suppressed 90% of
ignitions each year, but without suppressing the spread of those
fires that were allowed to burn.
ehavior and emissions), and landscape (respiration, production, carbon, and fire)

cape

ationd Productivitye Carbonf Fireg

gpp totC fria
npp abC area
nep bgC

erstory (underB = shrubB + herbB; kg/m2) were analyzed across all sites. Height from
 sites.
nd soil heat (soilH, oC).
H4), and particulate matter (PM2.5), respectively (g/m2).
C/m2).
� hr), respectively (kgC/m2).
/m2).
rea, ha).

http://www.grida.no/publications/other/ipcc_sr/%3Fsrc=/climate/ipcc/emission/


Fig. 5. Unadjusted raw means for total undergrowth biomass (kg/m2) are paneled by biophysical site: (A) dry shrubland, (B) dry herbland, (C) dry woodland, (D) upland
mixed-conifer, and (E) riparian forest. Outputs are graphed in each panel by climate scenario in descending order: A2, B2, and H. Mean responses are plotted in each graph on a
25-year sample interval. Graph legends code factor combinations according to climate (A = A2, B = B2, H = historical), grazing regime (1, 2, 3, 4, or 5), fire suppression
(S = suppression, N = none), and biophysical site (1, 2, 3, 4, or 5). For example, “H5N4” codes the biomass dynamic estimated under the historical climate (H), with sustained
heavy multi-species grazing (grazing regime 5), without fire suppression (N), in stands of upland mixed-conifer site potential (site 4). Results were calculated from 10
replicate, 400-year simulations of each multi-factor regime. Initial loadings are represented by horizontal bars (95% family) on the Y-axis. Note that Y-axis scaling increases
across biophysical sites a through d.
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We analyzed 23 output variables (Table 3), which we sampled
from each 400-year output stream at 15-year interval so that the
analyzed output from each of our 300 replicates contained
26 records. Each output was analyzed with a semi-parametric
mixed-effects model (Wand, 2003). We addressed observed
heteroscedasticity with optimized power transformation (Box and
Cox,1964). Temporal dependence of observations was dealt with by
coding year (Y) as a single random effect, which we modeled as a
penalized B-spline with random coefficients (Eilers and Marx,
1996). Statistics were calculated using SAS PROC TRANSREG and SAS
PROC GLIMMIX (SAS Institute, Inc, 2011). Undergrowth and
surface-fire outputs were analyzed up to the level of 4-way
interactions among the 5 main effects (H, C, F, S, and Y). Landscape
responses were analyzed to the level of 4-way interactions without
respect to biophysical site (S). To enhance clarity, graphics in this
paper are plotted on a 25-year interval using distance-weighted
least squares procedures (StatSoft, Inc, 2009).

3. Results

3.1. Undergrowth biomass

Simulated undergrowth (e.g., underB, Fig. 5) was within
maximum limits imposed from our literature synthesis. The
simulated maximum for shrubland was about 98% of the
maximum estimated possible from literature, for herbland 60%,
woodland 90%, upland mixed-conifer 81%, and riparian forest 91%.
Those simulated maxima increased with soil depth and site
potential (i.e., shrubland < herbland < woodland < upland forest
< riparian forest).



Table 4
Sensitivity of undergrowth biomass and tree-canopy base height to simulated
experimental effects: table entries are probabilities of greater F statistic for the
indicated effect.

Experimental effectsa Response variables

shrubB herbB underB hbc

H <0.01 <0.01 <0.01 0.91
C � H 0.41 0.66 0.39 0.99
H � F <0.01 <0.01 <0.01 0.97
C � H � F <0.01 <0.01 <0.01 0.99
Y � H 0.02 0.84 <0.01 0.95
Y � C � H 0.41 0.55 0.45 0.99
Y � H � F <0.03 0.23 <0.07 0.99
Y � C � H � F <0.01 <0.01 <0.01 0.99
H � S <0.02 0.01 <0.01 1
C � H � S 1 1 1 1
H � F � S 0.02 0.99 <0.07 1
C � H � F � S <0.01 <0.01 <0.01 <0.01
Y � H � S 0.64 0.99 0.99 1
Y � C � H � S 1 1 1 1
Y � H � F � S 0.84 1 0.92 1

a C: climate; F: fire; H: herbivory; S: site; Y: year.
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Simulated undergrowth biomass was affected by several factors
over time (Table 4, Fig. 5). Each biomass variable was sensitive to
herbivory at several levels in the design (P � 0.07), but four-way
interactions predominated. Each variable was affected interactive-
ly over time by climate, herbivory, and fire suppression without
respect to site (PY � C � H � F< 0.01). Climate, herbivory, fire
suppression, and biophysical site interactively affected each
biomass response without respect to year (PC � H � F � S< 0.01).

The effect of climate warming on total undergrowth biomass
was not particularly remarkable except under the A2 (warm, dry)
scenario. Under that climate the differentiation of undergrowth
biomass between the two fire-suppression regimes was somewhat
greater than under the other two climates, at least on forest sites
(PY � C � H � F< 0.01; Table 4, Fig. 5).

Undergrowth dynamics among herbivory regimes were
qualitatively similar across biophysical sites, but differences
among herbivory regimes increased quantitatively as the biophys-
ical site potential increased (Fig. 5). Those differences increased
over time to such an extent that maximal differences between
herbivory regimes in riparian forest (the most productive site)
were roughly an order of magnitude greater than in dry shrubland
(least productive).

Multi-factor regimes involving fire suppression tended to
project greater undergrowth over time than did those lacking fire
suppression. Furthermore, within each fire-suppression regime,
mean undergrowth loads tended to array inversely with respect to
herbivory (Fig. 5). Low-demand herbivory (no herbivores,
wildlife-only, cattle-only) produced relatively stable long-term
undergrowth biomass, on average, regardless of the biophysical
site considered. Regimes involving all three herbivore populations
(wildlife + livestock, wildlife + 2x livestock) tended to suppress
undergrowth albeit affected by fire suppression. The mid-20th
century regime, which involved relatively heavy cattle grazing,
projected pronounced declines in undergrowth biomass either
with or without fire suppression, and it did so under all three
climates. The more moderate, late-20th century regime did so
consistently only in the absence of fire suppression.

Total undergrowth response more closely resembled that of its
constituent shrub biomass than herb biomass. All three outputs
were similarly responsive to the experimental factors at most
levels in the design. However shrub and total biomasses were
strongly influenced over time by herbivory (PY � H� 0.02) and by
herbivory interacting with fire suppression (PY � H � F� 0.07),
whereas herb biomass was not responsive at those same levels
in the design (PY � H� 0.84; PY � H � F� 0.23).

In woodlands and forests the tree canopy’s base height (hbc)
can interact with surface fire behavior to affect the likelihood that a
fire will migrate upward from the undergrowth stratum to become
a canopy or “crown” fire (Van Wagner, 1977). While undergrowth
biomass responses were each sensitive to herbivory at several
levels in our design, the hbc response was sensitive to herbivory in
interaction with other fixed factors (PC � H � F � S< 0.01) but not in a
manner that was year-sensitive.

3.2. Surface fire behavior

Surface-fire responses translate herbivory’s effects on the
undergrowth stratum into surface-fire behavior, which in-turn
may articulate a stand’s grazing history to a given fire’s impact on
vegetation above or below the fire. Flame length, fire-line intensity,
and scorch height were similarly sensitive to herbivory (Table 5).
Each of those metrics responded to year, climate, herbivory, and
fire suppression interactively (PY � C � H � F< 0.01) without respect
to biophysical site, and in a manner congruent with total
undergrowth biomass. However, surface fires responded thermally
to the experimental factors in some ways that were different from
the undergrowth’s. Whereas total undergrowth biomass
responded to interaction among climate, herbivory, fire and site
without respect to time, (see above PC � H � F � S< 0.01), fire thermal
variables were not responsive to those same fixed effects together
(PC � H � F � S� 0.39). Furthermore, surface-fire was sensitive to
3-way interactions involving those same fixed factors (PC � H � S

� 0.01, PH � F � S� 0.07), but each of those apparent interactions was
subordinate to a higher-order interaction in which the year effect
was also implicated (PY � C � H � S< 0.01 and PY � H � F � S< 0.01,
respectively), and to which the undergrowth biomass variables
were not sensitive (see above PY � C � H � S = 1.00, PY � H � F � S� 1.00,
respectively). Thus, time-in-simulation apparently was more
important to surface-fire behavior than it was to undergrowth
biomass.

To illustrate, Fig. 6 compares surface-fire flame lengths for the
first 100 years of simulation on dry herbland and upland mixed-
conifer sites. Results are congruent with those for biomass in
several respects: (1) multi-factor disturbance regimes involving
fire-suppression predict greater flame lengths over time; (2) flame
lengths tend to array inversely with respect to herbivore demand
under both fire-suppression regimes, with low-demand herbivory
(no herbivores, wildlife-only, cattle-only) tending to predict longer
flame lengths than high-demand herbivory (wildlife + cattle,
wildlife + 2x cattle); and (3) differences in flame length among
herbivory regimes increase with site potential. Differences in mean
predicted flame lengths were generally �30 cm across scenarios.

Soil heating and smoke emissions from surface fires accorded
generally with thermal behavior, but with some exceptions.
Fire-line intensity, flame length, and scorch height were each
sensitive to herbivory in all three interactions involving year
(for each response: PY � C � H � F< 0.01, PY � C � H � S< 0.01, PY � H � F �
S < 0.01), but soil heat was sensitive to only the first two of those

(PY � C � H � F = 0.05, PY � C � H � S< 0.01, PY � H � F � S = 0.26). Sensitivity
of the four emission responses accorded with that of soil heat (for
each response: PY � C � H � F< 0.03, PY � C � H � S� 0.03, PY � H � F � S

� 0.66).

3.3. Responses at landscape scale

These outputs represent extents to which stand undergrowth
and surface fire “scaled-up” to influence the entire landscape’s
respiration, production, carbon, and fire over time. At this scale
each response was calculated across all stands, biophysical sites,



Table 5
Thermal and emission responses of surface fire to simulated experimental effects are analyzed for upland sites only; surface-fires on riparian site were excluded due to
insufficient sample size. Table entries are probabilities of greater F statistic for the indicated effect.

Experimental effectsa Surface-fire responses

Thermal Smoke emissions

int flame scorch soilH CO2 CO CH4 PM2.5

H <0.01 <0.01 <0.01 0.92 <0.01 <0.01 <0.01 <0.01
C � H <0.01 <0.01 <0.01 0.58 <0.01 <0.01 <0.02 <0.01
H � F <0.01 <0.01 <0.01 <0.03 0.1 0.13 0.04 0.16
C � H � F <0.01 <0.01 <0.01 0.34 <0.01 <0.01 <0.01 <0.01
Y � H <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.21 <0.01
Y � C � H <0.01 <0.01 <0.01 0.04 <0.01 <0.01 0.18 <0.01
Y � H � F <0.01 <0.01 <0.01 0.16 <0.01 0.05 <0.02 0.07
Y � C � H � F <0.01 <0.01 <0.01 0.05 <0.01 <0.03 <0.01 0.01
H � S <0.01 <0.01 <0.05 <0.01 0.02 0.04 <0.02 <0.01
C � H � S <0.01 <0.01 0.01 <0.01 0.2 0.08 0.11 0.03
H � F � S <0.01 <0.01 <0.07 0.17 0.05 0.13 0.12 0.11
C � H � F � S 0.44 0.39 0.4 0.4 0.45 0.24 0.19 0.45
Y � H � S <0.01 <0.01 <0.01 <0.01 0.1 <0.24 0.09 0.08
Y � C � H � S <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.03 <0.01
Y � H � F � S <0.01 <0.01 <0.01 0.26 0.21 0.36 0.19 0.66

a C = Climate; F = Fire; H = Herbivory; S = Site; Y=Year.

Fig. 6. Least-squares predictions for surface-fire flame length (m) are paneled for: (a) dry herbland, and (b) upland mixed-conifer forest. Outputs are graphed in each panel by
climate scenario in descending order: A2, B2, and H. Predictions are plotted on a 25-year sample interval for the 1st 100 years of simulation only. Graph legends code
predictions according to climate (An= A2, B = B2, H: historical), grazing regime (1, 2, 3, 4, or 5), fire suppression (S: suppression, N: none), and biophysical site (1, 2, 3, 4, or 5).
For example, “H5N4” codes the mean flame length predicted under the historical climate (H), with relatively heavy multi-species grazing (grazing regime 5), without fire
suppression (N), in upland mixed-conifer stands (site 4). Vertical bars separate predicted means that were statistically different (P = 0.05). Flame lengths were higher in forests
and woodlands, higher with fire suppression than without it, and arrayed inverse to herbivory regime. Herbivory had no effect in the hot dry shrubland. Its effect was
intermediate in woodland, and not testable in riparian forest because the number of simulated fires was insufficient for analysis there.
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Table 6
Landscape-scale responses to experimental effects: Table entries are probabilities of a greater F statistic.

Experimental effectsa Landscape-scale responses

mr hr gr gpp npp nep totC abC bgC fria area

H 0.59 0.74 0.85 0.87 0.71 0.8 0.93 0.94 0.83 0.09 0.45
C � H 0.98 0.99 0.99 0.89 0.79 0.89 0.99 0.99 0.96 0.71 0.87
H � F 0.54 0.88 0.58 0.71 0.68 0.91 0.57 0.62 0.49 0.02 0.14
C � H � F 0.86 0.83 0.99 0.9 0.89 0.77 0.85 0.88 0.85 0.82 0.88
Y � H 0.64 0.68 0.83 0.88 0.75 0.74 0.89 0.89 0.79 0.14 0.8
Y � C � H 0.99 0.99 0.99 0.99 0.8 0.83 0.99 0.98 0.99 0.89 0.58
Y � H � F 0.73 0.95 0.57 0.94 0.78 0.9 0.69 0.73 0.71 0.67 0.07
Y � C � H � F 0.84 0.84 0.99 0.96 0.9 0.73 0.82 0.86 0.84 0.93 0.55

a C: climate; F: fire; H: herbivory; S: site; Y: year.

Fig. 7. The MMC’s fire-return interval average (fria) is predicted from replicated
simulation of different scenarios. Each graph represents a different climate scenario
(A = A2, B = B2, H: historical), within which grazing regimes (1, 2, 3, 4, or 5) and fire-
suppression scenarios (S = 90% suppression, N: none) are crossed. For example,
“H5N” codes the mean return interval under the historical climate (H), with
relatively heavy multi-species grazing (grazing regime 5) and without fire
suppression (N). The influence of herbivory was insignificant compared to that
of fire suppression, except in the warm and dry climate.
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and fires, thus integrating tree dynamics and crown fires as well as
undergrowth dynamics and surface fires.

Increasing the grazing regime generally lengthened the land-
scape’s fire return interval average (fria), but herbivory's influence
was modest compared to that of the climate and fire suppression.
The fria was sensitive to herbivory only at three levels in our design
(Table 6). The main effect of herbivory: (1) was marginally
significant (PH = 0.09); (2) marginally increased over time (PY � H =
0.14); and (3) increased the return interval more in the absence of
fire suppression than with it (PHxF = 0.02). Neither 3-way nor 4-way
interactions were statistically significant (PY � H � F = 0.67; PY � C � H

� F = 0.93). Fire-suppression and the climate each influenced the

return interval more strongly than did herbivory (PF< 0.0001,
PC< 0.02, PC � F= 0.12), but fire suppression lengthened the return
interval, while the A2 climate shortened it (Fig. 7).

Other responses to herbivory at landscape scale were not
compelling. Herbivory regimes and fire suppression regimes
interactively influenced the size of individual fires over time
(PY � H � F = 0.07) but without a clear pattern (Fig. 8). Over time,
climate and fire-suppression each had a stronger influence on fire
area than did herbivory (PY � C< 0.01; PY � F< 0.01; PY � H = 0.80).
Respiration (maintenance, heterotrophic, growth), primary
production (gross, net, net ecosystem) and carbon (total,
above-ground, below-ground) were each insensitive to differences
among the simulated herbivory regimes (Table 6), as illustrated for
net primary production (Fig. 9).

4. Discussion

Perhaps the most important challenge facing applied ecologists
is to develop the capability to predict how various ecosystems will
respond to combinations of multiple disturbance agents. This will
require integration of sometimes disparate modeling approaches.
As discussed by Weisberg et al. (2006), herbivory models have
typically taken one of two approaches: focus on herbivore
dynamics or focus on vegetation dynamics, with the latter
approach emphasizing either herbivory’s effects on plant produc-
tion (biomass-based models) or it effects on tree regeneration
(forest GAP models). FireBGCv2/GrazeBGC combines biomass and
GAP emphases in one model. Those authors also made compelling
arguments for integrating the herbivore- and vegetation-focused
approaches, particularly when the making of long-term predic-
tions requires understanding how feedbacks will operate between
plant and animal populations over time. The most notable
advancement toward that particular level of integration remains
SAVANNA, which has been widely applied in western North
America, and particularly in Rocky Mountain ecosystems that are
similar in many respects to ours (Coughenour and Singer, 1996;
Coughenour, 2002; Weisberg et al., 2002; Weisberg and
Coughenour, 2003). FireBGCv2/GrazeBGC provides similar
integration to a point; it does enable feedbacks that contribute
to spatially–explicit regulation of vegetation biomass, fire
behavior, and thus herbivory over time, but as yet the system
does not contain a mechanism for feedback regulation of herbivore
populations.

Ecologists concerned with predicting relationships between
climate, vegetation, and fire have been faced with challenges
similar to those faced by herbivore ecologists. In fire science those
challenges have motivated the advancement of LFSMs, in which
vegetation-focused models concerned with production, regenera-
tion, and succession are variously integrated with models for fire
ignition, behavior, and effect. FireBGCv2 is one of those, which uses
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both mechanistic biogeochemical and process-based GAP concepts
to predict spatially–explicit biomass, fuels, and fire, and which has
been widely applied to a variety of fire- and climate-related
problems (for examples see http://www.firelab.org/project/
firebgcv2-simulation-platform-and-projects).

Herbivory models and LFSMs are not mutually-exclusive, and
from each discipline has come some notable attempts to integrate
one with the other (e.g., Coughenour and Singer,1996; Jeltsch et al.,
1997; Bachelet et al., 2000; Butler et al., 2007; Joly et al., 2012;
Pachzelt et al., 2013; Rupp et al., 2006). However reviews in each
discipline illustrate that comprehensive integration has not been a
prominent focus in either one (Keane et al., 2004; Weisberg et al.,
2006). Weisberg et al. (2006) identified five challenges to
integrating herbivore- and vegetation-focused models: (1) inter-
action between multiple plant and animal species; (2) cultural
features and land use change, (3) interaction among herbivores
and other disturbances; (4) non-herbivore effects at landscape
scale such as plant propagule dispersal; and (5) multi-scale
processes and interactions. FireBGCv2/GrazeBGC attempts to
address those challenges by integrating spatially–explicit
herbivory as a modifier of time- and spatially–explicit plant
growth and biomass accrual, which then can interact with climate
and weather, fire and with the other disturbance agents that drive
vegetation dynamics in individual stands of vegetation and thus
across landscape mosaics. The system’s chief quality is its
inter-disciplinary construction, which forces herbivory into
common temporal and spatial contexts with plant growth and
other disturbance agents. Some of the system’s other benefits
include: (1) seamless modification of plant biomasses from stand
to landscape scales; (2) spatially–explicit interaction between
herbivore populations; (3) articulation of episodic disturbance to
prior plant growth and herbivory; (4) spatially–explicit feedbacks
to future herbivory from episodic disturbance and succession; and
(5) a capability to infer succession and potential stable-state
transitions from changes in stand-scale biomass composition over
time. Its diversity-matrix architecture is flexible and enables its
Fig. 8. Simulation results for the average area burned by individual fires are plotted
on a 25-year sample interval. Each data point is the mean of individual fire areas
during the indicated year, including all stands on all biophysical sites represented
within each fire’s perimeter. Grazing regimes (1,2,3,4, or 5) and fire-suppression
regimes (S: suppression, N: none) are crossed with one another over time. For
example, “1N” codes the mean fire size given no ungulate herbivory (grazing regime
1) and given no fire suppression (N). Means were calculated from 10 replicate, 400-
yearr simulations of each multi-factor regime. The hypothesized herbivory effect
was only marginally significant in an interaction with fire suppression over time
(PYxHxF = 0.07). Climate and fire-suppression (not shown) each had a stronger
unilateral influence on fire size over time than did herbivory (PYxC< 0.01;
PYxF< 0.01; PYxH = 0.80), and there were no other significant interactions involving
herbivory (PYxCxH = 0.58; PYxCxHxF = 0.55).
vegetation outputs to be used as inputs to post-process habitat
analyses for animal species. Nevertheless, its integration of
herbivory remains imperfect because it still lacks mechanisms
for negative feedbacks to herbivore population dynamics.

Our principal interest was in understanding extents to which
FireBGCv2’s predictions would change by adding spatially–explicit
herbivory. We addressed the problem with an experiment in
grass-tree mosaic that is typical of much of the interior
northwestern United States. Here stand-level modification by
herbivores of forest undergrowth and succession (Alldredge et al.,
2001; Kelly et al., 2005; Monfore 1983; Riggs et al., 2000), fire
behavior in forests (Zimmermann and Neuenschwander, 1983,
1984), tree growth (Weigand et al., 1993), and nutrient processes
(Riggs et al., 2000; Stewart et al., 2006) have empirical basis
generally consistent with research in boreal forests (e.g., Pastor
et al., 1993; Pastor and Cohen, 1997). Those observations have
bolstered logical arguments that large herbivores and domestic
livestock in particular were prominent drivers of succession and
fire across western landscapes in the 20th century (Belsky and
Blumenthal,1997; Hyerdahl et al., 2001; Langston,1995). Less clear
Fig. 9. Results for landscape net primary production (npp) are plotted on a 25-year
interval. Each graph represents a different climate (A = A2, B = B2, H: historical),
within which grazing regimes (1, 2, 3, 4, or 5) and fire-suppression (S or N) are
crossed with one another. For example, “H5N” codes the mean npp under the
historical climate (H), with sustained heavy multi-species grazing (grazing regime
5) and without fire suppression (N). Means were calculated from 10 replicate, 400-
year simulations of each multi-factor regime. To illustrate the range of response
variability, upper and lower confidence limits (95% families) are shown with small
and large horizontal bars, respectively. Climate and fire-suppression effectiveness
were the dominant influences on landscape npp. Modeled herbivory did not
significantly affect the platform’s respiration, productivity, or carbon outputs at this
spatial scale (see Table 6).

http://www.firelab.org/project/firebgcv2-simulation-platform-and-projects
http://www.firelab.org/project/firebgcv2-simulation-platform-and-projects
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is the future importance of shifting herbivore composition
(wild versus domestic herbivores) or that of aggregate herbivory
to landscape dynamics, as compared to that of other agents – most
notably fire suppression and climate change – which cannot be
known with certainty. In our experiment herbivory affected
vegetation in ways that were: (1) qualitatively similar across
biophysical sites but quantitatively site-specific in magnitude; (2)
contingent on the effectiveness of future fire suppression and on
expected future climate; (3) pronounced when herbivory involved
all three herbivore populations near historical average; and (4)
diminished as the spatial scale of analysis increased.

Our analysis of undergrowth biomass focused on guild
aggregates (shrubB, herbB, underB) to capture the dynamics of
undergrowth fuels. Biomass in those aggregates was suppressed by
increasing herbivory, and differences in biomass accrual among
herbivory regimes translated into suppressed surface fire behavior.
Herbivory’s effects on undergrowth biomass and on fire behavior
increased with site potential.

The apparent site specificity of herbivory’s effects may be
viewed as a proximate result of the module’s spatially–explicit
allocation of herbivore demand, which responds to inter-stand
variation in nutritional biomass. In this landscape, plant growth is
ultimately controlled by the combination of moisture input from
winter-spring precipitation and the spatially-variable ability of
soils to capture and retain that moisture into the summer drought.
Precipitation per se is not necessarily limiting, but moisture
retention is so that relatively high plant production persists longer
on forest soils than on the shallower soils of non-forest sites. The
module’s spatial and diet algorithms respond by shifting each
herbivore population’s biomass consumption toward its preferred
guilds on the more-productive sites in the summer drought,
thereby producing site-specific effects.

The magnitude of herbivory’s suppressive effect on
undergrowth biomass was influenced by the landscape’s fire-
suppression regime and by site potential. Multifactor regimes
involving fire suppression accumulated more undergrowth
biomass than those without fire suppression. Furthermore, on a
given biophysical site and under a given fire-suppression regime,
increasing herbivory resulted in less biomass accumulation.

Herbivory’s effects on surface-fire behavior were greater under
those regimes that involved both wild herbivores and domestic
livestock. Our experiment was not formulated to determine the
relative importance of herbivore density compared to herbivore
richness as fire-suppression factors; the two factors were linked in
our design. However additional herbivore populations certainly
increased biomass consumption and thus also the suppression of
undergrowth fuels without regard to guild specificity. In this
landscape the preferences of deer and elk compliment those of
domestic cattle (Cook et al., 2004,b; DelCurto et al., 2014a,b);
wildlife tend to prefer shrubs and forbs more than do cattle,
whereas cattle tend to strongly prefer grasses. Consequently,
addition of cattle to the wildlife-only regime broadened
consumption of biomass across plant guilds in addition to
increasing the quantity of biomass consumed.

It has been argued that large herbivores are the major drivers of
ecosystem shape and function (Danell et al., 2006). Our results may
temper expectations somewhat, depending on a given landscape’s
structure, its fire management and herbivore populations. If a
landscape is principally grassland or savanna, then herbivory
probably can be managed with fire to effectively maintain a current
condition by reducing undergrowth fuels and thus facilitate
relatively moderate ground-fire behavior over time. However,
herbivory’s effectiveness is probably reduced in those landscapes
where prolonged fire suppression has facilitated transition from
savanna-like woodlands into closed-canopy forests (where fuels
are predominately woody, not herbaceous, and where herbivore
carrying capacity is low). Even in savanna woodlands relatively
high levels of multi-species grazing are probably required to
influence fire behavior across an entire landscape. Our results do
support the notion that 19th and early 20th century livestock
grazing contributed to modifying fire regimes. However our results
also suggest that herbivory’s influence on future fire will
more-likely be a function of multi-species grazing interacting
with fuel and fire management, rather than a mere function of
livestock grazing alone. This conclusion may be particularly salient
to managers where the balance between wild herbivores and
livestock is shifting (e.g., Irwin et al., 1994).

Repeated use of particular landscape settings is a predictable
result of herbivores converging on selected resources (Stubble-
field et al., 2006). In our simulations, nutritionally-driven
herbivory had its greatest effects on biomass and fire in stands
where high nutritional biomass was facilitated by high site
potential, which was itself driven by soil depth and moisture. That
result accords generally with the idea that herbivore functions are
mediated through grazing intensity and animal density (e.g.,
Singer and Schoenecker, 2003), which is somewhat different from
the idea that those functions are inversely proportional to site
productivity (e.g., Augustine and deCalesta, 2003). Our result may
seem counter-intuitive if one assumes that less-productive
vegetations (e.g., hot dry herblands or shrublands) must be
intrinsically the less-resilient to grazing. Nevertheless, herbi-
vory’s spatially–explicit impact on vegetation must vary as a
function of those factors that drive spatial heterogeneity in
grazing intensity (e.g., Hunt, 2001; Palmer et al., 2003). The
principal factor driving that heterogeneity in the MMC is the
interaction between seasonal precipitation and site-specific soil
depth, which drives the site productivity to which our grazing
algorithms responded. Foraging dynamics in this model are
congruent with expectations based on site-level differences in
plant phenology (Korfhage et al., 1980; Skovlin, 1967), site-
dependent nutrient mineralization and plant production (Singer
and Schoenecker, 2003; Stewart et al., 2006; DelCurto et al., 2005;
Persson et al., 2009), and with expectations that herbivory should
be temporally and spatially transient in episodically-disturbed
landscapes (Canon et al., 1987; Collins and Urness, 1983;
Darambazar et al., 2013; Hobbs, 1996; Riggs et al., 1996; Skovlin
et al., 1989; Van Dyke and Darragh, 2007).

Another result of our experiment was that shrub and total
undergrowth biomasses were more sensitive than herb biomass
to herbivory and fire over time. This particular result is largely
explained by the different rates of intrinsic biomass growth
among plant guilds (h) and their biomass maxima (UBIOMASSmax),
which are supplied by the platform (Eq. (3)). On average, shrubs
have higher biomass maxima than herbs in this landscape,
while the intrinsic rate of biomass growth for shrubs is relatively
low. In our simulations, h was much lower for shrubs than for
either perennial or annual herbs (1.14, 5.48 and 10.86, respective-
ly), and thus shrubs were predisposed to relatively slow
biomass accrual following fire and browsing in any stand. Also,
much of the difference in total undergrowth biomass in forests in
particular (see Section 2.3.1 above) is attributable to the woody
biomass of shrubs that accumulates in stands over time albeit at
slow rates. Relatively slow rates of biomass growth interact with
high biomass maxima to cause shrub biomass (and total biomass
by extension) to be more responsive than herb biomass to factors
that either slow biomass growth and accumulation (herbivores) or
re-start succession (fires). Therefore, good understanding of
how those rates and maxima vary among guilds is crucial.
Our results agree with shifts in forest successions, from shrub-
to herb-dominated undergrowth states, which have been
observed following episodic disturbance and herbivory
(Riggs et al., 2000).
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Herbivory involving wild and domestic herbivores tended to
reduce undergrowth biomasses over the long-term – ultimately
to near zero after 150 or more years of simulation (depending on
the scenario; Fig. 5). This particular result is largely attributable to
the module’s current lack of nutritionally-mediated negative
feedbacks to the herbivore populations. We did vary herbivore
demands within each year to reflect anthropogenic forcing
(livestock rotation), seasonal migrations (of elk and deer), births
and deaths (elk and deer), and body-mass dynamics (all three
species); but we held each population’s intra-annual dynamic
constant from one year to the next. Consequently, secondary
successions following fires were grazed from outset at levels
contrained only by the initialized herbivore demands. Our strategy
was reasonable for exploring the translation of herbivory into fire
behavior, but it nevertheless ignored any likelihood that numeri-
cally dynamic herbivore populations would buffer vegetation
response. Modeling nutritional feedbacks to herbivore mortality,
emigration, and/or spatial management of populations following
hard winters or large fires will be important in lengthy simulations
(Illius, 2006).

We also explored the extent to which the platform translated
site- and stand-level effects of herbivory into effects on landscape
metabolism and fire. Most research concerning effects of
herbivores on plant production has been conducted at relatively
fine scales (plant, stand), but it is impossible to project effects
observed at those scales to a landscape as a whole without
simulation modeling. In theory, stand-level effects could translate
into significant effects at the landscape scale if herbivory’s
modifications of vegetation are of sufficient magnitude and
sufficiently widespread. Notwithstanding that logic, only the
fire-return interval was sensitive to herbivory regimes in our
experiment. Mean fire size was not clearly influenced by
herbivores, while landscape respiration, primary production,
and carbon were insensitive (Table 6).

The apparent insensitivity of landscape metabolism to
herbivores may be largely attributable to the stochastic variability
produced by fire and weather on this platform. However it
may also be attributable in some part to the lack of any
detailed nitrogen cycling in its mechanistic GAP simulations.
Without an articulate cycling routine it is not possible to simulate
accelerated nitrogen returns through herbivore digestive tracts. In
our analysis of stand attributes, the hbc response was not sensitive
to herbivory but in theory it could have been so, assuming that tree
growth is principally nitrogen-limited and assuming sufficiently
accelerated nitrogen return from forage plants to trees through
herbivores. Even so, those returns would have to be reconciled
with returns to undergrowth plants and with nitrogen fluxes due
to fire and other factors (Keane et al., 2011:47; Tanentzap and
Coomes, 2012).

We used the platform’s mechanistic GAP option, which does not
have a detailed nutrient cycling routine. The BGC option (which we
did not use) does simulate returns from decomposition of organic
matter, and it does so in a manner that can be adapted to address
facilitation by herbivores (e.g., as reviewed by Hobbs, 1996, 2006).
Nevertheless, implementing herbivore-mediated returns to a
landscape in any meaningful way requires knowledge of where
those returns will be distributed spatially (Schoenecker et al.,
2004) – among stands and among guilds or species within stands.
We did not have that detailed knowledge for our landscape, and so
we used mechanistic GAP rather than the platform’s BGC
simulations.

Our results are nonetheless intriguing in light of some
previous field research in our own study area. Stewart et al.
(2006) found that modification of net above-ground primary
production (NAPP) by elk and deer was insignificant in field plots
that they had placed on shallow soils typical of our dry herbland
and woodland sites. While on deeper soils typical of our upland
forest site, they found that elk and deer herbivory apparently
explained up to 27% of the variation in NAPP for undergrowth
plants in aggregate. Our module’s logic produces temporal-spatial
transience in herbivory in the same landscape, from dry sites to
forest sites as spring and summer progress. This transience could
help explain the findings of Stewart et al. (2006) on shallow soils.
Furthermore, highly variable results on forest soils might be
explained by spatial variation in conifer canopy density, species
compositions, and resulting fine-scale variation in grazing
intensity that are accounted for in the modeling system as well.
In any event, the estimates of “NAPP” by Stewart et al. (2006)
represented only undergrowth (shrubs, graminoids, forbs)
whereas our simulated “npp” included 16 undergrowth
guilds and trees as well. Thus the two studies are not strictly
comparable.

Our simulations allocated herbivory among stands with a
purely nutritional approach. Adapted from Senft (1987), our
approach allocates biomass consumption according to the
landscape’s mosaic of nutritionally-relevant plant growth, and it
does so without limiting the minimum amount of that growth to
which herbivores can respond. Other options certainly exist, some
perhaps allowing greater flexibility to nutritional constraint
(see Hobbs and Swift, 1985), greater sensitivity to the density of
acceptable biomass and foraging efficiency (Hobbs et al., 2003;
Spalinger and Hobbs, 1992; Wickstrom et al., 1984), less sensitivity
to total nutritional biomass (e.g., Wilmshurst et al., 1994), greater
attention to nutrient balance among plant guilds (e.g., Hanley et al.,
2012), or greater specificity to plant secondary chemistry
(e.g., McArthur et al., 1993). Here we simply note that a variety
of approaches can be implemented in the FireBGCv2/GrazeBGC
system by modifying its plant models and/or the conditioning
of nutritional biomass.

Non-nutritional factors can also influence where herbivores
forage (e.g., topography, snow cover, barriers including fences,
distance to water, disturbance by humans, sheltering cover from
weather, etc.). We used resource selection functions to show how
GrazeBGC can be used to implement multiple drivers, but other
types of models might also be used. SAVANNA, for example, has
used a habitat suitability approach, and there is no serious obstacle
to using that approach on this platform. The salient point is that
models containing both nutritional and non-nutritional drivers
may provide useful insights beyond those attainable from a purely
nutritional approach. Stubblefield et al. (2006), for example, found
that elk responded spatially to forage biomass in meadows and to
meadow shape. Our nutritional algorithm could capture the
importance of nutritional biomass in meadows, but it could not
capture that of meadow shape.

Regardless of the particular algorithm one uses to drive
herbivory spatially in an LFSM, the foraging distribution it predicts
should not be confounded by other activities, and explicit attention
should be given to underlying assumptions (Keating, 2004).
RSPF predictions across landscapes, for example, generally assume
that resource availabilities (those which underlie the RSPF’s
coefficients) remain relevant across a heterogeneous landscape
(Boyce and McDonald, 1999; Ciarniello et al., 2007). But that
assumption will be weak if the herbivore’s selection strategy is
sensitive to spatial variation in resource availability (Osko et al.,
2004). Such considerations may be particularly important in
LFSMs because the spatially-explicit disturbance and vegetation
dynamics produced by these models can substantially vary
resource availabilities over time as well as over space, and to very
different extents among the disturbance regimes that are being
modeled.

We allocated herbivory spatially as an aggregate behavior of
each herbivore population. Aggregate behavior models project
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the average behavior of animals in a population, but they do so
without explicit respect to the cognitive processes of individuals
that underlie their aggregate behavior. For comparison,
individual-based models do try to account for individual
cognition (e.g., Beecham et al., 2002; Oom et al., 2002, 2004,
2008; Avgar et al., 2013). But the parameterization of individual
models can be rather abstract, including for example an
animal’s “determinism” to eat certain things, or its “foraging
extent bias” to constrain foraging spatially based on individual
knowledge (e.g., Oom et al., 2008). Our algorithm produced
deterministic foraging and it assumed perfect knowledge of each
zonal mosaic by each population’s individuals in aggregate. The
“perfect knowledge” assumption may not be realistic for
individual animals or even for entire populations. When
herbivore densities are very low, for example, our algorithm
could produce unrealistically low grazing intensities spread
variously across the entire landscape, and this could require
defining a minimum population size for simulation or perhaps
the addition of an individual-based clustering algorithm to
limit foraging extent. At high herbivore densities our algorithm
forces all grazing to remain within the landscape, when perhaps
some displacement out of it might be a more reasonable
expectation.

Herbivore responses to spatial changes in their foraging
substrates are likely to be slowed or retarded as spatial extent
increases relative to herbivore numbers. Furthermore, the learning
time required to become familiar with resources should be
somewhat greater in disturbance-affected landscapes than in
static ones. Learning time may lag herbivory’s spatially–explicit
influences on vegetation (see McNulty et al., 1997; Porter et al.,
1991 in Augustine and deCalesta, 2002) and thereby produce
temporary spatial refuges where some plants are grazed to lesser
extents. We did not impose such lags, but they probably are
important drivers of plant establishment particularly when
herbivore densities are low relative to spatially-shifting plant
production.

Finally, our simulations omitted several factors that could have
modified results. Most of the MMC is forest (Fig. 3). Forest-
management sequences can have strong implications for
overstory-undergrowth dynamics, soil disturbance and seed beds,
and for the composition and density of undergrowth biomass in
secondary succession (Riggs et al., 2000, 2004; Young et al., 1967).
Insect infestations and plant diseases also affect plant composition,
fuels, and fire behavior (Hicke et al., 2012). FireBGCv2’s other
modules implement spatially–explicit timber harvest scenarios
and some tree pathogens (Keane et al., 2011), but we did not
implement those. Predator avoidance by herbivores has been
proffered as a significant driver of spatially–explicit vegetation
dynamics (Ripple and Beschta, 2004, 2007), but we lacked
equations to implement it as such. Herbivores also influence
plants in ways that extend beyond simple biomass consumption
(Hester et al., 2006) including depression of seed production (e.g.,
Kay and Chadde, 1992; Kay, 1995; Chadde and Kay, 1991) and
modification of seedling demography (Liang and Seagle, 2002). We
did not model those effects. Fire modifies seed beds, seed banks
and vegetative propagates through first-order effects (Stephan
et al., 2010), and we did not model those explicitly. Any of those
concepts could have produced somewhat different results from
ours. Those differences would certainly be of interest heuristically,
perhaps important to the veracity of conclusions, and thus are
important avenues for simulation-based research.

5. Conclusions and management implications

Climate change increases our need to understand how
vegetation mosaics will respond to other disturbance agents over
time. The challenge is inter-disciplinary. It is important not only for
understanding vegetation dynamics for their own sake, but also for
understanding limits to herbivore production (Cook et al., 2004,
2013) and the sustainability of landscape-management systems
(DelCurto, 2005; Vavra et al., 2005; Weisberg et al., 2002).
Managers and policy analysts will increasingly require integrated
models that sensitize their understanding of landscape
disturbance and succession to large herbivores as well as to
episodic agents.

Furthermore, resource management’s credibility increasingly
depends on integrating multiple disciplines in ways that can be
understood by policy makers and the public as well as by
practitioners and scientists (Hanley, 1994; Weisberg et al., 2006).
Spatially–explicit interactions between multi-species grazing,
episodic disturbance, and climate certainly must matter to
those who must think strategically. LFSMs offer integrative
capability that can provide strategic insights to how landscapes
work, which cannot be gleaned using non-integrative approaches
alone.

We conclude, as others have, that herbivory should be
considered a potentially crucial component of any modeling
that is aimed at predicting succession or fire. This is particularly
true if there is uncertainty regarding future herbivore-
management policies or uncertainty regarding their possible
interactions with other disturbance agents. The system we have
presented offers useful integration provided there is sufficient
data and expertise to run it. It continues to develop, and its
use is certainly not beyond the capabilities of public
resource-management agencies, large private-sector companies,
or independent research groups, particularly if they all
collaborate.

Regional literature from the western U.S. has historically
focused on livestock as the dominant large-herbivore
disturbance agent, and it has done so without a great deal of
regard to wildlife populations outside of parks and other
reserves. Our results nevertheless illustrate the functional
significance of multi-species regimes in which herbivory by
wildlife is as important as that by livestock to our expectations for
landscape vegetation dynamics. That result alone should help
justify improved strategic integration of wild herbivores
with livestock in land management, and hopefully in ways that
will reconcile their aggregate herbivory with other disturbance
agents. If vegetation mosaics are to be managed successfully for
resilience in the face of a variable climate, then managers must be
able to foresee how optional herbivore strategies will
interactively affect landscapes a priori, not merely react to
prevailing regimes post hoc. Such efforts will benefit from
further development of integrated landscape fire succession
models.
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Appendix A.

Index to FireBGCv2/GrazeBGC variables.
Variable Equation Definition

A (32) A seasonal vector of herbivore preferences for plant
guilds

a (24) A plant guild’s individual coefficient in a preference
vector

A (8) A spatial area
AU (12) A female herbivore and her calf
AUM (8) One AU stocked on pasture for 30 days
B (16) A stand’s biomass of preferred undergrowth
B (23) A stand’s biomass of nutritionally relevant

undergrowth
b (24) A plant guild’s biomass that is relevant to herbivory
b (27) Probability coefficient for a prediction factor (RSPF)
CYG (26) A plant guild’s biomass grown in the current year
c (30) daily increment for cropping a guild’s biomass
DE (25) Digestible energy in a plant guild’s biomass
DMD (26) Dry-matter digestibility of a plant guild’s CYG
din (12) Julian day a dominant herbivore population enters a

zone
dout (12) Julian day a dominant herbivore population leaves a

zone
F (5) An herbivore population’s forage biomass demand

(kg)
f (17) Forage biomass demand that is allocated to a stand

Ĝ (16) Proportion of grazing time or effort allocated spatially

g (4) A plant guild’s daily growth increment
l (34) Speed of a plant guild’s growth response to utilization
Ni (12) Number of days for an herbivore population in-zone
Nk (18) Number of herbivore populations in a zone
NETGROWTH (31) The amount of CYG remaining after consumption
h (3) A multiplier for a plant-guild’s annual biomass

accrual
p (5) Proportion of a biomass demand allocated to a zone
RCP (16) Relative community preference
r (9) Rate of herbivore zonal displacement
rSHADE (3) Factor that adjusts a plant guild’s growth for light

deficit
rWATER (3) Factor that adjusts a plant guild’s growth for water

stress
RNQ (22) Relative nutritional quality of plant species or guilds
RP (22) Relative preference for a plant species or guild
UBIOMASS (3) A plant guild’s annual peak standing biomass
UCROPPED (30) A guild’s biomass that is consumed by herbivores
UGROWTH (3) A guild’s biomass production, annually equivalent to

CYG
u (34) Utilization of a plant guild’s growth biomass
w* (27) Probability that a stand will be foraged (RSPF)
X (27) A stand of vegetation that is available for foraging

(RSPF)
x (27) A predictor variable (RSPF)
z (8) A density-dependent AUM equivalent
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