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» We present a new semi-empirical Lagrangian particle dispersion model.

» The model is used to apportion PM; 5 carbon at rural locations to major source types.
» The results are evaluated against measured data and compared to CMAQ model results.
» The model is best used in the analysis of measured carbonaceous aerosols.
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Total fine particulate carbon (TC) is an important contributor to fine particulate matter and is measured
in routine national monitoring programs. TC contributes to adverse health effects, regional haze, and
climate effects. To resolve these adverse effects, there is a need for tools capable of routine and clima-
tological assessments and exploration of the sources contributing to the measured TC. To address this
need, a receptor-oriented, Lagrangian particle dispersion model was developed to simulate TC in rural
areas, using readily available meteorological and emission inputs. This model was based on the CAPITA
(Center for Air Pollution Impact and Trend Analysis) Monte Carlo model (CMC) and simulated the
contributions from eight source categories, including biomass burning and secondary organic carbon
(SOC) from vegetation. TC removal and formation mechanisms are simulated using a simplified
parameterization of atmospheric processes based on pseudo-first-order rate equations. The rate coeffi-
cients are empirical functions of meteorological parameters derived from measured, modeled, and
literature data. These functions were optimized such that the simulated TC concentrations reproduce the
average spatial and seasonal patterns in measured 2008 U.S. TC concentrations, as well as measured SOC
fractions at two eastern U.S. sites. The optimized model was used to simulate 2006—2008 rural TC that
was evaluated against measured TC. In addition, the model output was compared to TC from a 2006
Eulerian Community Multiscale Air Quality (CMAQ) simulation. It is shown that the CMC model has
similar performance metrics as the CMAQ model.

Published by Elsevier Ltd.

1. Introduction

mixture of compounds that significantly contribute to fine partic-
ulate matter (PM) < 2.5 pm (PMy5) (Hand et al., 2012). High PM; 5

Carbonaceous aerosols arise from a wide variety of sources,
including combustion of fossil fuels, meat cooking, deep frying, and
biomass burning (Bond et al., 2004). Secondary organic carbon
(SOC) produced from biogenic and combustion volatile organic
compounds (VOCs) also contribute to organic aerosols. The diverse
carbon sources and atmospheric processing result in a complex
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carbon concentrations can lead to adverse health effects, their
efficient scattering and absorption of visible and infrared radiation
make them a key factor in the balance of solar radiation, and they
contribute to haze in protected national parks and wilderness areas,
i.e,, class I areas.

The Interagency Monitoring of Protected Visual Environments
(IMPROVE) and Chemical Speciation Network (CSN) routine
monitoring networks collect 24-h, integrated PM, 5 samples that
are analyzed for chemical composition, including organic (OC) and
elemental (EC) carbon. The IMPROVE monitoring program is used


mailto:Schichtel@cira.colostate.edu
www.sciencedirect.com/science/journal/13522310
http://www.elsevier.com/locate/atmosenv
http://dx.doi.org/10.1016/j.atmosenv.2012.07.017
http://dx.doi.org/10.1016/j.atmosenv.2012.07.017
http://dx.doi.org/10.1016/j.atmosenv.2012.07.017

362 B.A. Schichtel et al. / Atmospheric Environment 61 (2012) 361-370

to track long-term trends in visibility and haze in protected visual
environments, consistent with the needs of the Regional Haze Rule.
Data are also used to identify chemical species and emission
sources responsible for the haze. The objectives of the CSN are to
track progress of emission control programs, develop emission
control strategies, and characterize spatial and temporal trends in
speciated PM 5.

To achieve the goals of these monitoring programs, there is
a need for tools capable of routine and climatological assessments
and exploration of the causes of the measured carbonaceous and
other aerosol concentrations. Available tools range from simple
back trajectory models to sophisticated Eulerian chemical transport
models (CTM). Back trajectory/dispersion models are efficient
models capable of simulating multiple years of airmass transport to
one or more receptors, using readily available meteorological data.
Trajectory analysis methods generally do not incorporate emissions
or simulate atmospheric removal/formation processes and use
some variation of the residence time analysis method (Ashbaugh,
1983). They qualitatively identify transport pathways and broad
regions where sources are likely to contribute to the measured
receptor concentrations. Due to their simplicity and value, trajec-
tory analysis methods have seen widespread use in a variety of
analyses (e.g., Stohl, 1998).

Eulerian CTMs are capable of quantitative assessments of the
contributions of source regions and types contributing to the
receptor concentrations. However, CTMs are generally resource
intensive, requiring a variety of data inputs and computer and
personnel resources. Consequently, source apportionment is typi-
cally performed in short-term studies by dedicated modeling
groups, limiting the applicability of these important tools.

In this work we strove to develop a quantitative data assessment
tool more akin to trajectory analyses than Eulerian CTMs that is
capable of apportioning carbonaceous aerosol measured at remote-
area monitoring sites to contributing source types, including
biomass burning, mobile, and vegetation. A primary goal was that
the model be readily applicable to short- and long-term data
analysis studies, requiring the same meteorological inputs as used
in trajectory models, with the only additional data input being
emission fields.

To accomplish this, the receptor-oriented (backward time)
Lagrangian particle dispersion model (LPDM) (Uliasz and Pielke,
1992) approach was used. Receptor-oriented LPDMs model the
receptor concentration as an ensemble of particles that are
dispersed back in time. These models readily lend themselves to
efficient source apportionment analyses, since they directly simu-
late the source—receptor relationship by maintaining a separation
between sources. In addition, only sources upwind of the moni-
toring sites are simulated, making this approach advantageous for
investigating monitoring data where there are a limited number of
receptor sites (Seibert and Frank, 2004). To simulate atmospheric
physical and chemical removal and formation processes, a simpli-
fied parameterization based on pseudo-first-order rate equations
was developed. The rate coefficients are functions of meteorolog-
ical parameters and are optimized through a tuning process to fit
measured data. Others have used and proposed LPDMs for quan-
titative simulation and assessments of receptor concentrations
(e.g., Seibert and Frank, 2004); however, all receptor LPDMs of
which we are aware have employed linear loss and gain mecha-
nisms and have not simulated the formation of secondary
pollutants.

The model was developed and optimized using the IMPROVE
total fine particulate carbon (TC), i.e., the sum of the measured OC
and EC, at rural monitoring sites during 2008, as well as measured
SOC fractions at two eastern U.S. sites. It was then used to simulate
the 2006—2007 IMPROVE TC concentrations. Following is

a description of the model formulation, the optimization process,
and the evaluation of simulated concentrations from 2006 — 2008
IMPROVE data. In addition, in the Supplementary material the 2006
model simulation is compared to the results from the Community
Multiscale Air Quality Modeling System (CMAQ) Eulerian CTM. A
following paper will examine the source contribution results from
the 3-year model simulation.

2. Receptor-oriented particulate carbon chemical transport
modeling

Conceptually, the receptor-oriented chemical LPDM works by
assuming that the concentration or mixing ratio of a trace species
can be represented by the average from an ensemble of particles or
air parcels at the receptor location and time. These particles are first
dispersed for a fixed period back in time, with each particle
following a unique back trajectory due to random atmospheric
turbulence. At the end of the particles’ trajectories, they are given
an initial concentration and then transported forward in time,
following their trajectory pathways back to the receptor. During
this forward transport, mass balance is maintained at the particle
level by modifying its initial concentration by emissions accumu-
lated along the trajectory pathway and physical/chemical
processes, including deposition and chemical transformations.

For the simulation of fine particulate carbon, this method
requires four components: first, a backward LPDM and meteoro-
logical input data to simulate the history of the receptor airmass;
second, an emission inventory accounting for emissions from
various source types of particulate carbon and VOCs; third, a model
formulation relating the emissions from sources traversed by the
trajectories to the receptor concentration and the changes in these
emissions due to atmospheric physical and chemical processes
during transport. In this application, the last component entails
parameterization of physical and chemical processes and their
optimization to fit measured data.

2.1. CAPITA Monte Carlo LPDM

The calculation of the receptor airmass histories for the simu-
lation of particulate carbon at IMPROVE monitoring sites was
conducted using the CAPITA (Center for Air Pollution Impact and
Trend Analysis) Monte Carlo (CMC) LPDM. The formulation of the
CMC LPDM model and its use for forward and backward dispersion
simulations has been described elsewhere (Schichtel and Husar,
1997; Schichtel et al., 2005a).

The CMC model is capable of simulating forward and backward
dispersion, using different meteorological fields and from one to
thousands of particle trajectories. In this work, the National Centers
for Environmental Prediction (NCEP) Eta Data Assimilation System
(EDAS) (Black, 1994) meteorological data were used. The EDAS
meteorological fields are archived at the National Oceanic and
Atmospheric Administration (NOAA) Air Resource Laboratory (ARL)
using a 40-km grid and 26 pressure surfaces every 3 h.

Many of the IMPROVE monitors are located in complex terrain.
The Lagrangian model and coarse meteorological data are not
suited for simulating potentially important mesoscale features,
including channeling by terrain and convective precipitation.
However, they are suitable for simulating regional-scale features,
and it is assumed that it is regional-scale emissions and meteo-
rology that are causing most of the variance in the measured
concentrations. As will be shown, the model performance
decreases in urban areas and when local fires are present. This
decreased performance may partly be due to the difficulty of
simulating the transport at the smaller scales.
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2.2. Particulate and VOC emission fields

A detailed 2002 emission inventory for input into Eulerian
chemical transport models using the CBM-IV chemical mechanism
was developed for the Western Regional Air Partnership (WRAP)
and used to simulate the impact of PM and haze on national parks
and wilderness areas in support of Regional Haze Rule State
Implementation Plans (Brewer and Moore, 2009). This emission
inventory had hourly emission rates from 22 area, point, mobile,
and biogenic source categories for 21 different species, including
OC and EC and eight groups of reactive VOC compounds. The area
sources were on a 36-km modeling domain covering most of North
America and a nested 12-km grid covering most of the western
United States.

The 36-km WRAP emissions were used for input into the CMC
model. The emissions from the point sources were summed with
the area source in the grid cell into which each point source fell. In
addition, the hourly emission rates were averaged up to 24-h
values, and the 22 source categories were grouped into six cate-
gories as defined in Table 1. The eight VOC emission categories were
aggregated into three categories consisting of a high carbon
number and SOA yield group (Zhang et al., 2007), a low carbon
number and SOA yield group, and isoprene (Table 2). Isoprene was
separated from the other compounds because it has low SOA yields,
but its high emissions result in significant contributions to SOA
(Kleindienst et al., 2007; Carlton et al., 2009). The units of the VOC
emission rates were converted to kg C m~2 day~! using the carbon
numbers in Table 2. These aggregated 2002 emissions were used for
simulating particulate carbon in all modeled years.

Biomass burning is a significant source of TC, and the emission
locations, release times, and rates have large variations from one
year to another. The WRAP biomass burning emissions were
replaced by the National Center for Atmospheric Research (NCAR)
regional fire emissions model version 2.0 (Wiedinmyer et al., 2006).
This is a North American inventory that estimates the daily fire
emissions of OC, EC, total VOC, and other species from individual
fires. The location and timing of the fires were determined by
observations from the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) instruments aboard the Terra and Aqua satellites,
and each fire encompassed an area burned up to 1 km?.

The individual fires in the emission inventory were gridded to
the same 36-km grid used for the WRAP inventory by aggregating
all fires that fell into the same grid cell. There is evidence that fire
emission inventories overestimate the primary carbon emissions
and underestimate the semivolatile OC and subsequent formation
of SOC (Hennigan et al., 2011). This was also seen in initial model
simulations in which receptors near fires typically overestimated

Table 1
Emission categories used in the CMC model.

Source category Emission Description
inventory

Area WRAP Stationary area sources, e.g.,
residential heating and
architectural coatings

Point WRAP Point sources, e.g., electrical
generating units and oil refineries

Mobile WRAP On- and off-road mobile sources

Biogenic WRAP Vegetation gaseous emissions

Oil and gas WRAP Oil and gas in the western
United States

Other WRAP Off shore sources, e.g., shipping,
and road, fugitive, and
windblown dust

Agricultural fires NCAR Agricultural fires

Other fires NCAR Wild and prescribed fires

Table 2
VOC categories from the CBM-IV chemical mechanism and their corresponding
carbon numbers, combined into high and low reactive VOC categories.

VOC category Carbon #
High reactive VOC Toluene and other monoalkyl aromatics 7

Xylene and other polyalkyl aromatics 8

Terpenes 1

0
Low reactive VOC Formaldehyde 1
Higher aldehyde 2
Ethene 2
Paraffin carbon bond (C—C) 1
Olefin carbon bond (C=C) 2

5

Isoprene Isoprene

the TC. To account for this, the primary emissions were evenly
distributed over 8 h from the release of the fire’s emissions. The
tracking of the primary TC and formation of this pseudo-SOC was
done along each particle’s trajectory. Based upon land-use data in
the NCAR fire emission inventory, the fires were classified as either
agricultural or other fires.

2.3. Chemical transport LPDM formulation

There are various formulations of the receptor-oriented LPDM.
In this work we follow that set forth by Seibert and Frank (2004),
which was based on mixing ratios and incorporated first-order rate
processes. In the Lagrangian framework, they showed that the
mixing ratio y at time t and location r* for a species affected by first-
order processes that can vary in space and time for a single parti-
cle’s trajectory is

L - /! !
IGRIN )

X(r'st) = %p(0) + o[r(), O]

t—1

where

7 is the length of the particle back trajectory in time, units [s]
Xo is the particle’s initial mixing ratio at time t — 7.

{ is the source emission rate, units [g m—> s ]

p is air density, units [g m3]

p(t') is the transmission function, i.e., the loss or gain in mass due
to first-order rate processes during transport from the source to
the receptor along the trajectory during time period t — t'.

Space and time can be discretized such that space is gridded
with index i; time at the receptor has index j; and time along each
trajectory has N equal time steps with index n. It can then be shown
that Eq. (1) becomes

0+ 3 (Bt (2)

i n=j-N

where

At} is the residence time of the particle in grid i during the time
step n

Din is the loss or gain in mass from time of the emissions n in grid
cell i to impacting the receptor at time j.

The average mixing ratio at the receptor over a time period J and
the ensemble of particles M at each time step j is then

1 i+ M
]*M Z Z Xjm (3)
j=j m=

The average source contribution can be calculated by
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Gi = ot 3 3 (Tt (4)

In Eq. (4), i represents a source region; however, in application it
could also be an individual source or source type.

2.3.1. Particulate carbon physical/chemistry model

The backward LPDM formulated in Eqgs. (2) and (3) can accom-
modate any first-order process P(t) that describes the change in
concentrations due to physical/chemical processes over a given
time period. In this work we are interested in simulating TC. TC is
a mixture of primary OC and EC and SOC compounds formed by the
oxidation and condensation of VOCs. The particulate and gaseous
species can be removed from the atmosphere by dry and wet
deposition. These processes can be modeled using the coupled sets
of rate equations:

d(VOG;) d

= = —(kf +kd +kg)voci (5)
d(TC) d

= ( Xi:k,‘(VOCi)) - (kp +/<;V)Tc (6)
where

TC is the particulate carbon mixing ratio

VOCG; is an individual or class of VOC mixing ratio

KE, kg.-' and kg are VOC gas to particulate carbon transformation,
dry deposition, and wet deposition rate coefficients,
respectively

kg and ki are particulate carbon dry and wet deposition rate
coefficients, respectively.

Although the rate equations are linear, the species-specific
transformation rate coefficients and dry and wet deposition rates
can be nonlinear functions dependent upon the chemical, meteo-
rological, and geological environment of the species. Physical
formulations can be developed to model these processes. However,
these formulations typically require extensive information and data
that are often unavailable or difficult to obtain, requiring a number
of assumptions that can lead to large uncertainties. An alternative
approach is to develop empirical relationships between the coef-
ficients and readily available meteorological, chemical, and
geophysical variables where the relationships are optimized so that
the simulated concentrations are a best fit to measured values
(Schichtel and Husar, 1997). The empirical approach was used, since
the intent of this work was to develop a model that captures
important spatial and temporal variability but has modest data
requirements and can be routinely operated.

2.4. Empirical rate coefficient equations

Dry deposition is a flux of material to the surface and is often
modeled as the product of a deposition velocity vq and the species
concentration. The dry deposition coefficient, k9, for a given species
is then

kd =2 (7)

where
H is the layer near the surface where dry deposition occurs.
The dry deposition velocity of particulates (vg) and gases (vﬁ) are
determined by atmospheric mixing, which delivers material to the
surface, and by the absorptive properties of the surface. Both of

these processes vary spatially, diurnally, and seasonally, influenced
by the solar insulation. Consequently, relationships between v4 and
solar insulation were sought.

To explore this relationship, vg from the Clean Air Status and
Trends Network (CASTNET) dry deposition monitoring program
and VOC v(gj from a Comprehensive Air quality Model with exten-
sions (CAMXx) simulation over most of North America were
compared to the surface downward shortwave radiation flux (SR)
[kW m~?] from the EDAS meteorological fields. In the CASTNET
monitoring program, hourly vg are calculated for each monitoring
site, using the Multilayer Deposition Velocity Model (MLM)
(Meyers et al., 1998). The CAMx data were from a 2009 simulation
similar to Rodriguez et al. (2011).

Fig. 1 compares the average diurnal cycle of the vg against SR for
the months of January, April, July, and October. The CASTNET ug
diurnal cycle was calculated by averaging vg over all CASTNET sites
from 2000 through 2005 for each hour of the day. As shown, these
average vg and SR values are highly correlated, with 2 = 0.98, and
all months have a similar linear relationship.

Fig. 2 compares the average diurnal cycle of a VOC-
concentration-weighted average vﬁ to SR. The hourly composite
VOC vﬁ were calculated from the CAMx model results at each
IMPROVE site. The average vg for most VOCs varied between 0.03
and 0.4 cm s, though some short-lived-reaction products had
average u§ > 2 cm s~ L As shown in Fig. 2, the aggregated vg diurnal
cycle is highly correlated with SR and has a quadratic relationship
that varies by season, with higher vg during July than January. The
vg values during April and October are similar and are between July
and January.

There are physical explanations for the vq relationships with SR.
In the MLM, vg is highly dependent upon the aerodynamic layer
resistances, and this resistance is dependent on atmospheric
turbulence (Vong et al., 2010). It appears that SR is a good surrogate
for this turbulence and on average vg is approximately linearly
dependent on SR. Dry deposition of gases is also dependent on the
canopy resistance, and as modeled in CAMX, the canopy resistance
is inversely dependent on SR? (ENVIRON, 2010).

Based on these results, vg and vﬁ were parameterized as linear
and quadratic functions of SR, respectively. These functions account
for the average diurnal and seasonal variation in v4 but do not
account for the day to day variation in other important

0.5

Particle Deposition Velocity (cm/s)

y = 0.36x + 0.03
R?=0.97

y = 0.40x + 0.03
R%?=0.99

y =0.35x + 0.02
R%=0.99

y = 0.43x + 0.03
R%=0.95

15

Surface Solar Radiation Flux (kW/m?)

Fig. 1. Scatter plots showing the relationship between the average diurnal cycle in the
particle dry deposition velocity from the CASTNET program and solar radiation for
January, April, July, and October.
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Fig. 2. Scatter plots showing the relationship between the average diurnal cycle in the
effective VOC dry deposition velocity derived from CAMx and solar radiation for
January, April, July, and October.

meteorological parameters and changing land surface types. These
influences are significant, and the coefficients of variation for
a given season and hour of the day for both +f and § were on the
order of one.

Wet deposition can be parameterized by introducing a dimen-
sionless washout ratio W, which is the ratio of the concentration of
the species in the precipitation to its concentration in the air. The wet
removal rate or scavenging coefficient for a given species is then

w
W
kY = _HWP’ (8)

where

H,y is a washout depth (m) and P is the precipitation rate (ms~!)
(Barrie, 1981; Andronache, 2004).

TC washout ratios vary depending on precipitation types and
particulate properties, including size and hygroscopicity, and can
vary by several orders of magnitude, though typical values range
from 10° to 10° (Bidleman, 1988). It is commonly assumed that
a slightly soluble trace species in the atmosphere is in equilibrium
with a falling raindrop. Under this condition of equilibrium gas
scavenging, as discussed by Hart et al. (1993), the washout ratio can
be estimated as

1 (9)
where
R (m? atm (K mol)~!) is the universal gas constant

T (K) is the temperature
ky (M atm™1) is the species effective Henry Law constant.

ky for different VOC species varies over several orders of
magnitude. Using the VOC concentrations from the 2009 CAMx
model simulation at each IMPROVE site and the ky for each VOC
species at 298 K (ENVIRON, 2010), a concentration-weighted
composite VOC ky for the January, April, July, and October
months was calculated that varied from 10% to 2 x 10> M atm™.
These ky correspond to Wy from 2.3 x 10% to 5.2 x 104

These TC and VOC washout ratios are large and under moderate
to heavy precipitation will efficiently remove most carbonaceous
species from the atmosphere. Therefore, only constant average
washout ratios were used in the model.

SOA formation in the atmosphere is dependent on a number of
factors, and not all relevant processes are well understood, leading
to broad ranges and high uncertainties in modeled formation rates
and making this an active area of research (Carlton et al., 2009;
Hallquist et al., 2009; Hennigan et al., 2011). Most SOC formation is
driven by photochemical processes and is dependent on SR. Non-
photochemically driven reactions may also be important; for
example, Ng et al. (2008) showed that the SOC formation could
occur from nighttime reactions of isoprene with nitrate radicals.
Evidence also exists for significant aqueous-phase SOA formation
(Hallquist et al., 2009).

Given these complications and unknowns, the transformation
rate for the high-yield VOCs was made a linear function of SR. The
transformation rate for the low-yield VOCs and isoprene was set to
a constant fraction of the high-yield VOCs. In order to account for
aqueous-phase SOA, these transformation rates were increased by
50% during precipitation periods.

2.5. Implementation and optimization of the CMC model for TC
simulation

The CMC model was used to simulate the receptor airmass
dispersion at 162 IMPROVE monitoring sites, of which 148 were
located in remote settings and 14 in suburban/urban settings. At
each site, 25 particles were released every 2 h and tracked back in
time for 6 days. Every 2 h, the particles’ three-dimensional location,
the mixing layer height, the precipitation rate, and the SR were
stored.

These airmass histories were then used to solve Eq. (2) for the TC
concentrations and Eq. (4) for the source contributions from the
different source types. The particles’ initial concentrations were set
to 0, since modeling simulations showed that on average less than
2% of the initial concentrations for 6-day trajectories arrived at the
receptor. The residence time At;, was set to the trajectory segment
time length of 2 h. If the particle was below the mixing layer, the
emission rate g;, was set equal to the 24-h area source normalized
by the mixing layer height to convert to volume source, else g;;, was
set to 0.

The emissions added to the particle’s mixing ratio were from
a weighted average of the emission grid cell in which the particle
resided and the neighboring cells. The weights were from a two-
dimensional Gaussian kernel where the bandwidths were based
on the horizontal spread due to turbulent diffusion. This is similar
in concept to Gaussian averaging kernels used in forward LPDMs
(de Haan, 1999) and allows for fewer particles to be used in the
simulation, with the same precision in particle counting statistics.
As discussed in the Supplementary information, the counting
statistical error in the TC accounted for less than 2% of the total
modeling error.

The transmission function p;;, was calculated by integrating the
rate Egs. (5) and (6) along each particle’s trajectory with the rate
coefficient parameterized as discussed in Section 2.4.

Specifically, wet deposition was applied to all particles that
encountered precipitation, regardless of height, and the washout
depth Hy, was set to 1000 m. The TC washout ratio was fixed at 10°
(Eq. (10)), based on the review from Bidleman (1988), and the VOC
washout ratio was fixed at 3.5 x 10% (Eq. (11)), the average value
estimated from the CAMx model results.

Dry deposition occurred if the particle was below the mixing
layer height. The VOC vﬁ was based on the results in Fig. 2 where vﬁ
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was a linear interpolation between the January and July equations
(Eq. (12)).

kY = Wp/Hw x P= 100 x P (10)
k¥ = Wg/Hw x P= 35 x P (11)

v — (- 0.68 SR? + 0.82 SR + 0.08) x A
(12)
+(~134SR? +1.93SR+0.1) x (1-4)

where
A = |(7 — month of year)|/6.

The vg and VOC transformation rates were made linear functions
of SR with free parameters estimated in the optimization process. In
this process, the parameters were varied to obtain a best fit to the
spatial and seasonal variations in measured TC concentrations and
SOC to OC and isoprene SOC to total SOC fractions. The TC
concentrations constrained the sum of the primary and secondary
TC and the SOC fractions constrained the split between primary and
secondary TC and isoprene SOC from other SOCs.

The TC concentrations were from the 148 rural IMPROVE sites
measured in 2008. The SOC fractions came from two field studies,
one at a suburban site in Research Triangle Park (RTP), North Car-
olina (Kleindienst et al., 2007), and the second at a rural site in
Bondville, Illinois (Lewandowski et al, 2008). At each site,
measured SOC marker species were used in a chemical mass
balance model to estimate the contributions from biogenic and
anthropogenic sources to OC and the SOC fractions for 2- or 3-
month periods.

The values used in the optimization process are presented in
Table 3. These values have large, poorly quantified uncertainties
(Kleindienst et al., 2007) and were not collected in 2008, and the
suburban locations may not be representative of the rural IMPROVE
sites. Therefore, these values were used as guides as opposed to
strict target values in the tuning process.

A manual optimization process was used in which the VOC
transformation rates were varied to reproduce the SOC fractions in
Table 3, and vg was varied to produce a best fit between simulated
and measured TC concentrations. A number of spatial and seasonal
metrics were examined, but the primary metrics were the mini-
mization of the bias and maximization of the correlation coefficient
in the average seasonal cycle and spatial patterns in the rural 2008
IMPROVE data as shown in Figs. 3 and 4, respectively.

The best-fit v§, Eq. (13), was lower than the average v from the
CASTNET data (Fig. 1) but within the network’s site to site variation.
Equation (14) presents the best-fit transformation rate coefficient
for the highly reactive VOC species (ki,,). The transformation rates
for isoprene (kisop) and low-yield VOCs (kf,) were set to 1/4 and 1/
7 of the highly reactive VOCs, respectively.

Table 3

Relative contributions of total SOC and isoprene-derived SOC (Isop-SOC) to OC and
SOC from vegetation (Veg-SOC) at Research Triangle Park, NC (RTP) (Kleindienst
et al, 2007), and Bondville, IL (Lewandowski et al., 2008), for a summer and
winter period.

SOC/OC Veg-SOC/OC Isop-SOC/Veg-SOC

RTP, NC  Summer: Jul-Aug 2003 0.7 0.6 0.45
Winter: Jan—Feb 2003 0.2 0.15 0.03
Bondville, Summer: Jun—Aug 2004 0.7 0.6 0.6
IL Winter: Dec, 2004—Feb 0.3 0.2 0.07
2005

Wb = 0.022 +0.17 SR (13)

ki, = 0.00032 4 0.0032 SR (14)

To test the sensitivity of the simulation to the final set of rate
coefficients, each coefficient was independently doubled and the
remaining coefficients varied to fit the optimization data. It was
found that doubling one rate equation could be compensated for by
changes in other rate equations, reproducing the fit to the
measured data and the average source apportionment results. For
example, doubling vﬁ and increasing ki,,, by 50% resulted in average
source attribution results within one percentage point of the final
model and similar model performance statistics. This illustrates the
ill-conditioned nature of this problem and the fact that additional
monitoring data constraints are needed to obtain unique coeffi-
cients. It also illustrates that the average source apportionment
results are relatively insensitive to the final set of coefficients.

3. Results
3.1. Model optimization period

The results of the model optimization are presented in
Figs. 3—5. As shown in Fig. 3, the model reproduces the average
seasonal variation of the measured TC concentrations across the
United States, with a correlation coefficient of 0.91 and a regres-
sion slope of 0.91 between the two aggregated time series. The
contributions from the modeled eight source types are also pre-
sented in Fig. 3. It is evident that different sources contributed to
different seasons. During the summer months, the average TC is
predominantly due to biomass burning and SOC from vegetation.
Smaller contributions from area and mobile sources also occur.
During the winter, vegetation and fire have smaller contributions
and area sources are the largest contributor, accounting for about
half of the TC. The different fire seasons are also evident, with
large contributions during the summer months due to the large
wildfires that occur and smaller contributions during the spring
and fall when smaller prescribed and agricultural fires tend to
occur (Knapp et al., 2009).

As shown in Fig. 4, the simulation reproduces the major features
of the annual average TC spatial patterns, with the high TC
concentrations along the West Coast and eastern United States and
the lower concentrations in the intermountainous West and Great
Plains. The average TC concentrations along the West Coast and in
the eastern United States had variations of a factor of 2 or more
from one site to another. In general, the simulated TC reproduced
this variability. Exceptions to the good correspondence occurred in
southern California and Mount Baldy, Arizona. At Mount Baldy, the
simulation underestimated the measured concentrations by
a factor of 3. This bias was primarily due to TC concentrations on
September 18 and October 3, when the measured concentrations
were 106 pg m~3 and 65 pg m~3, respectively, compared to simu-
lated concentrations of 0.8 ug m~> and 0.7 pg m~3, respectively. TC
concentration of this magnitude in rural Arizona only occurs due to
direct impacts from fire plumes. Elevated TC was not measured at
neighboring sites, so the high Mount Baldy TC was most likely due
to a smaller fire, such as a prescribed fire, near the monitoring site.
Either these fires were missing from the emission inventory or the
fire’s plume was not properly transported to the receptor site.

In southern California, the measured TC concentrations were
overestimated by a factor of 3. The cause of this large over-
estimation is not known, but this is a particularly challenging
region to model, with complex terrain and meteorology and
a diverse set of sources. Examination of the source contributions
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Fig. 3. Comparison of the simulated and measured TC at the IMPROVE monitoring sites during 2008. For each sampling day, the TC concentrations were averaged across all sites.

showed the mobile and area sources together were almost twice
the measured TC. Therefore, contributions from these two source
sectors were significantly overestimated. The 24-h average emis-
sions used in the model simulations could contribute to this over-
estimation. However, such an overestimation was not evident in
other regions including the east coast, where contributions of area
and mobile sources were also relatively high.

The transformation rate coefficients were optimized to
approximately reproduce the winter and summer SOC/POC, veg-
SOC/POC, and ISOP-SOC/Veg-SOC tracer-derived ratios shown in
Table 3. Fig. 5 compares the simulated results to these literature
values in scatter plots with the regression line fitted through zero.
In this figure, the simulated OC concentrations were estimated by
scaling the simulated TC by the average measured OC/TC of 0.8. As
shown, there is good correspondence between the measured and
simulated SOC fractions, with r?> > 0.6 and slope of the regression
line near 1, indicating that on average the simulation reproduced
the SOC fractions throughout the year. These results, in conjunction
with the good correspondence when simulating the total TC
concentrations, indicate that at least in the eastern United States,
the model is reproducing the seasonal dynamics in the primary and

secondary particulate carbon. Due to the lack of measured SOC
tracer concentrations in the western United States, the primary and
secondary carbon split cannot be assessed.

3.2. 2006—2008 IMPROVE TC simulation

The optimized CMC model was used to simulate the TC
concentrations at the IMPROVE monitoring sites for 2006 and 2007.
For each year standard model performance statistics were calcu-
lated for each monitoring site. These results are summarized in
Table 4, which presents the median and 16th and 84th percentiles
of these statistics across the sites by year. Three measurements of
error are presented: the relative root mean square error (RMSE),
median of the absolute relative error (MdAE) (Hyndman and
Koehler, 2006), and fractional error (FE) (Seigneur et al., 2000).
The RMSE is the most sensitive to outliers, while the MdAE is least
sensitive.

The 2008 simulation had the best overall performance statistics,
while 2006 had the lowest, and the performance during 2007 was
similar to 2008. All three years had low biases, with typical frac-
tional biases (FB) <0.10 and median correlation between measured
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Fig. 4. Comparison of the simulated and measured annual average 2008 TC concentrations at each IMPROVE site. In the line chart, the monitoring sites are sorted from west to east.
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Fig. 5. Simulated fractions of SOC from the CMC model compared to the measured tracer concentrations at RTP, NC (left), and Bondville, IL (right). The November and December

tracer-derived SOC data at RTP exclude one outlying sample.

and simulated TC at each monitoring site about 0.57 during 2007
and 2008 and 0.48 in 2006. These correlation coefficients were
influenced by outlier data, illustrated by the fact that the typical
MdAE was <50% during 2006—2008, but the RMSE was >90% in
2006 and 2007. As demonstrated by the 2008 Mount Baldy simu-
lation (Fig. 3), fires could significantly impact the concentrations.
Errors in either the fire emission inventory or meteorology inad-
vertently transporting smoke to or away from the receptor caused
many outlying data points. This could also be intensified by the
relatively coarse grid used in the simulation, which artificially
spreads out the smoke in the grid cell in which the fire occurs and
impacts any receptors within this grid cell.

To help identify spatial variations in the model performance,
contour maps of the correlation coefficients, FE, and FB were
generated for each simulated year. Fig. 6 presents the results for
2007—2008, and the 2006 results are presented in Fig. S1. The best
model performance occurred in the eastern United States, where
the correlations for most sites were near 0.7 and above and FE
generally <0.5. In the West, the correlations decreased to between
0.5 and 0.7, except in the Northwest and Southwest, where the
correlations were often below 0.5. The FE in the West also increased
to 0.5 and above, with the highest errors (FE > 0.8) occurring at
a number of sites in the coastal states. The high error in southern
California was evident in all three years of simulations.

There is systematic spatial variation in the FB where the
measured TC in the eastern United States is generally under-
estimated, but it is overestimated in the western United States. The
East also has a north-south gradient, with biases generally
between —0.15 and —0.30 in the north and —0.15 to 0.15 in the south.
The high errors at the sites in the West Coast states are caused by
large FB, often >0.6. Many of the overestimated values had large
contributions from nearby fires greater than the measured TC,
indicating their contribution to the TC was overestimated.

CMAQ model simulation of 2006 IMPROVE TC data was made
available for this study (Pierce, 2010). As discussed in the
supplementary information, the CMC model results compared
favorably with the CMAQ model performance statistics as well as to
past modeling studies. This is evident in Table 4, which shows that the
CMAQ simulation generally had better precision but higher bias than
the CMC model, resulting in similar total errors.

4. Discussion

The approach for simulating the TC was based on an optimiza-
tion process such that the simulated TC reproduced the average
measured spatial and temporal concentration patterns. A benefit of
this process is that the model results could provide sophisticated
interpolation and extrapolation of the concentration data in space
and time. The model optimization also allowed for the examination
of important processes in simulating TC. As expected, it was found
that having the correct location and the timing of emissions
significantly improved the model’s precision. Consequently, a year-
specific biomass burning emission inventory was needed as
opposed to using a climatological inventory. In addition, the
incorporation of precipitation removal significantly improved
model precision. On the other hand, variation of the dry deposition
and SOC formation rates, whether constant or solar-radiation-
dependent, had little influence on the model precision but
controlled the relative fractions of primary and secondary TC and
the overall model bias.

An important drawback in the optimization process is that the
final model compensates for systematic biases in the modeling
system used in the optimization, and the model may not be suitable
for use at locations and years not used in the optimization process.
Another drawback of the approach is that it was based on first-
order rate processes to simulate nonlinear chemistry. These

Table 4
Model performance statistics for TC concentration simulations at 148 rural IMPROVE monitoring sites using the CMC model for 2006—2008 and the CMAQ model for 2006.
2008 2007 2006 CMAQ-2006
Average measured TC, pg m > 1.04 (0.70, 1.73) 1.10(0.77, 2.01) 1.14 (0.74, 1.93) 1.14 (0.74, 1.93)
Average simulated TC, yg m 3 1.01 (0.63, 1.71) 1.17 (0.70, 2.04) 1.32(0.75, 1.95) 1.07 (0.50, 1.74)

Correlation coefficient 0.59 (0.46, 0.71)

0.57 (0.38, 0.72) 0.48 (0.34, 0.64) 0.58 (0.41, 0.73)

Bias of annual means (%)

Fraction bias

Fractional error

Relative root mean square error (%)
Median of the absolute relative error (%)

~2(-29,31)
~0.05 (~0.33, 0.30)
0.55 (0.42, 0.73)

82 (54, 1.38)

45 (33, 60)

—4(-25,33)
~0.08 (~0.32, 0.24)
0.53 (0.4, 0.69)

92 (61, 191)

45 (34, 57)

6 (—21, 46)

0.02 (—0.30, 0.35)
0.58 (0.44, 0.76)
93 (64, 193)

48 (36, 70)

—24(-42,19)
~0.36 (~0.59, 0.03)
0.61 (0.48, 0.78)

80 (59, 216)

46 (39, 57)

For each model performance statistic, the median value across all monitoring sites is presented. The parenthetical values are the 16th and 84th percentiles across the

monitoring sites.
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Fig. 6. The 2007 and 2008 CMC model performance statistics from the comparison of simulated to measured TC at rural IMPROVE monitoring sites. The maps were created by first
calculating the model performance at each rural IMPROVE site (black dots) then spatially interpolating these data using a Kriging algorithm.

errors may not be significant for simulating the ambient TC
concentrations but could adversely affect the relative contributions
of the source regions and source types, a sought-after result of the
model.

The CMC model generally had good correspondence, with the
measured data being able to reproduce the seasonal and spatial
variability in the TC concentrations, and its performance is in line
with past modeling studies using Eulerian grid models. However,
some issues were found. First, the simulated TC at southern Cal-
ifornia monitoring sites was a factor of 3 larger than measured
concentrations, indicating that the model has limited applicability
in this region. The IMPROVE network had nine urban sites oper-
ating in 2008 and their TC was simulated using the CMC model.
Measured TC at these sites was generally underestimated, partic-
ularly during the winter months. These sites are more highly
influenced by local emissions than the rural sites. The simple
dispersion mechanism and coarse meteorological fields used are
likely not sufficient to capture the transport dynamics needed for
these urban areas. Last, there were similar spatial patterns in the
biases and errors in all three simulated years. This indicates that the
errors are not the result of anomalous meteorological conditions
but instead likely due to errors in the formulation of the model or
emission inventory.

Future developments of the model will seek to reduce these
errors reflected in the spatial patterns. This will include examining
the incorporation of varying land surface types in the dry deposi-
tion coefficients. In addition, we will explore the effects of incor-
porating diurnal cycles in the emission inventory as opposed to
using 24-h averages. Last, a formal, statistically robust optimization
method will be sought.

These issues in the current model illustrate limitations in such
a simple formulation for predictive assessments. The best use of
this model is as a low resource and efficient diagnostic tool to
provide insights into the sources contributing to TC at remote
receptor sites. This would be valuable in weight of evidence source
apportionment assessments, such as those conducted to under-
stand the causes of haze at Big Bend, Texas (Schichtel et al., 2005b).
This model could also be exercised to guide more resource-
intensive analyses, including the operation of Eulerian CTMs. Last,
the model was able to reproduce the spatial and temporal

measured TC patterns; secondary and primary TC split in the
eastern United States; and the CMAQ simulated biomass burning TC
(see Supplementary information). It was also found that the
average source attribution was relatively insensitive to the set of
optimized rate coefficients. Provided outlying concentrations and
monitoring sites can be accounted for, the results can be used for
climatological analyses of source contributions to the measured TC
at receptor sites.

An additional intent in developing this model is to exercise it
routinely and to provide its output for IMPROVE monitoring site
locations and sample days, available from the IMPROVE website
(http://vista.cira.colostate.edu/IMPROVE/). This is done as a service
to IMPROVE data users and to aid in the development of Regional
Haze State Implementation Plans (Regional Haze Regulations, 1999).
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