
Conversion of the BlueSky
Framework into collaborative
web service architecture and
creation of a smoke modeling
application

FINAL REPORT TO THE JOINT FIRE SCIENCE PROGRAM
September 30, 2009

Project #: 08-S-07
Website: http://blueskyframework.org/ws

PI: Dr. Narasimhan K. Larkin
U.S. Forest Service AirFire Team
Pacific Northwest Research Station
400 N. 34th St Suite 201
Seattle, Washington USA 98103
206.732.7849 (W) 206-732.7801 (F) larkin@fs.fed.us (E)

Co-PI(s): Sean Raffuse, Sonoma Technology, Inc.

Co-authors: Daniel Pryden, Alan Healy, Kevin Unger of Sonoma
Technology, Inc.; Dr. Tara Strand, Dr. Robert Solomon of the
U.S. Forest Service AirFire Team.

This project is was funded through grant 08-S-07 from the Joint Fire Sciences Program (http://firescience.gov).

Abstract

This project addresses the need for a collaborative architecture for scientific modeling that
allows various scientific models to easily interact. The need for such a system has been
documented by recent studies such as the JFSP Smoke Roundtables and the JFSP review of tools
done by the Software Engineering Institute. This project addresses these needs by modifying the
BlueSky Modeling Framework so that it can better serve as a collaborative architecture, and then
utilizing this architecture to create an advanced application that could not otherwise be created.

The BlueSky framework was modified for this purpose, and all changes integrated into all
versions of BlueSky from 3.1.0 forward. BlueSky now contains a command line option that will
automatically start it as a web-service provider, allowing it to be used by remote clients. When
the web-service option is used, all models contained within BlueSky are automatically converted
into web-service accessible modules, without need for a specialized web-service enabled version.
Simple examples and documentation scripts designed to show a website or user interface creator
how to access these models via web-service function calls were created. In addition, a more
advanced website interface was created to show some of the advantages of web-service based
scientific modeling. This tool, called BlueSky Playground, provides a single user interface into
10 models of fuels, consumption, emissions, plume rise, and smoke dispersion. A user can walk
step-by-step through all of the model steps in the framework from fire information to smoke
impact maps. At each step the user can choose the model they want to use and alter the modeled
information before continuing on, allowing for a game-playing exploratory mode of interaction.
Both the ability to access so many models through a single interface as well as the capability to
obtain on-the-fly smoke dispersion calculations are novel to this tool. This application will be
highlighted in 2010 through RX-410 classes as a way for users to learn about the various
component models. It will also serve as a training tool for managers needing to run multiple
scenarios and understand the implications of various choices.

The web-service oriented architecture utilized in the project offers many potential advantages to
scientific research done with the goal of decision support. Separation of the scientific computing
portion of such work from the user interface allows scientists to focus on creating the best
models and web designers to focus on creating the best interfaces. Remote functioning of the
models through the web means that local installation of the model is no longer required solving
distribution issues, and allows an Internet user to run a model that requires resources not
available to them locally (such as large datasets or fast processors). Modularity allows for
“mash-ups” where models are combined in ways not originally foreseen to meet emerging needs,
and provides choices to be made on exact modeling pathways at the user or institutional level.

Background

Several major efforts to organize fire and smoke research have been undertaken recently by the
Joint Fire Science Program. The Smoke Roundtables (JFSP, 2007) have pointed out the large
number of user interfaces developed in conjunction with various scientific models, and the

 1

problems associated with the lack of compatibility between the application systems that has
resulted. The Carnegie-Mellon based Software Engineering Institute’s (SEI) review of JFSP
tools has pointed out the need for a collaborative scientific modeling architecture to make
currently diverse models inter-operable (Palmquist, 2008). Specific advantages of such a
collaborative architecture are:

1. To separate the development of scientific models from user interfaces (UIs);
2. To allow for integrated UIs capable of driving multiple models;
3. To allow for faster development of models and UIs;
4. To allow for direct comparison between models; and
5. To allow for faster transition between developed models and operational applications.

This project has produced an example collaborative scientific modeling architecture, and
highlighted the advantages of such a system through the creation of a unique game-playing
application through modifications to the BlueSky Modeling Framework (Larkin et al, 2009).

Recently completely rewritten under a grant from NASA, BlueSky version 3.0 is a modular
modeling framework that connects fire information, fuel loading, fire consumption, fire
emissions, plume rise, trajectory, and dispersion models, making the process of combining these
models to produce a desired output (e.g. PM2.5 emissions or smoke trajectories from a fire)
easier. BlueSky has done this by creating a sequence of modeling steps defined by a set of
standard input/output interfaces (see Figure 1). Individual models are then enabled to use the

Figure 1: Example of model steps and interfaces. Defining standard model steps also
defines standard interfaces. Not all models need stop or produce output at each interface step
(e.g. M4 and M5). Because of the standard interfaces, combinations of models (e.g. M1 + M2
+ M3, M4+M3, M1+M5) are easy. Also any application that uses one combination (e.g.
M1+M2) can be easily switched to use a different equivalent path (e.g. M4).

 2

standard input/output interfaces by wrapping existing models (e.g. CONSUME 3) with
lightweight software code. These wrapped models are referred to as modules and are run in the
context of the BlueSky framework, which links the modules together and provides a set of
standard utility routines (e.g. unit conversions) for use by all modules. The framework also
provides for dispersed execution across a set of machines and other software enhancements
designed to let it run faster and more efficiently.

At each modeling step, several different models have been implemented as BlueSky modules.
Figure 2 shows the steps and models used in this project. The user of BlueSky can chose one of
the implemented modules at each step, which allows for a number of different model
combinations to reach a desired output level.

Figure 2: Modeling steps in the BlueSky Framework as implemented in web-services
functionality. All models function as web-services.

Fire
Info

Fuels

Total
Consumption

Time
Rate

Emissions

Plume
Rise

Dispersion /
Trajectories

SMARTFIRE
User Input

FCCS
NFDRS
Hardy
User Input

CONSUME 3
FEPS
EPM
User Input

Rx / WF
FEPS
EPM
WRAP
User Input FEPS

EPM
User Input

Briggs
WRAP
User Input

CALPUFF
HYSPLIT

Fire
Info
Fire
Info

FuelsFuels

Total
Consumption

Total
Consumption

Time
Rate
Time
Rate

EmissionsEmissions

Plume
Rise
Plume
Rise

Dispersion /
Trajectories
Dispersion /
Trajectories

SMARTFIRE
User Input

FCCS
NFDRS
Hardy
User Input

CONSUME 3
FEPS
EPM
User Input

Rx / WF
FEPS
EPM
WRAP
User Input FEPS

EPM
User Input

Briggs
WRAP
User Input

CALPUFF
HYSPLIT

Description

Location of work: Seattle, WA and Petaluma, CA
Geographic area of study: National

Goals
This project’s goals can be grouped into two categories: those focused on the development of a
collaborative architecture, and those focused on the utility of the applications created.

 3

With respect to the collaborative architecture:

1. Modify the BlueSky Framework to lightweight it to serve as a collaborative
architecture;

2. Create individual stand-alone modules for each of the models in BlueSky;
3. Wrap these stand-alone modules so that they can function through standard web-

service architecture Internet protocols;
4. Demonstrate the power of such an architecture; and
5. Document how to utilize such an architecture to create decision support applications.

With respect to the applications created for this proposal:

1. Create simple applications that can serve as examples;
2. Create an application that shows how both local and remote models can be combined;
3. Create a game-playing smoke modeling application useful in teaching RX-410; and
4. Demonstrate the full capabilities of this type of architecture.

Methods and work summary

This project functionally required 3 pieces of work:

1. Revise the BlueSky Framework to serve as a lightweight collaborative architecture
that uses web-services;

2. Create sample applications and documentation; and
3. Create an advanced game-playing smoke modeling application.

Revision of the BlueSky Framework

The BlueSky Framework was significantly modified for this project, resulting in a new version,
named BlueSky 3.1. Note that this work was done in line with other modifications to BlueSky,
making the modifications done for this project part of the core framework and embedded in any
future BlueSky development.

BlueSky 3.1 differs from past versions in that it:

 Is streamlined and restructured, eliminating some suboptimal legacy code unnecessary in
the web-service architecture;

 Enables BlueSky to run as a standalone web-services server; and
 Allows the web-services functionality of BlueSky to utilize the web standard XML

format in addition to the CSV formats previously favored by BlueSky.

BlueSky now has a command line switch (“bluesky –ws”) which, when invoked, results in
BlueSky running as a web-services daemon that allows users to connect to it through a standard
web-service call. The revisions to the BlueSky Framework allow the development of decision
support applications built in any number of ways, including as thin clients (see Figure 3).

 4

Figure 3: Illustration of thin client application functionality. Thin client architecture relies on
models installed on web farms to do computations. Model runs are requested and results are
returned via web-services. The thin client application interprets the results and creates
displays for user. A thin client can be either a web page or a local application. The thin client
can also be redirected to point at a local machine when a web server farm is unreachable.
Because of the use of standard interfaces in BlueSky, any available model can be used for
each step (e.g. model 1b instead of 1a or 2b instead of 2a).

Creation of simple applications and documentation
Alone, the web-service framework is not user friendly but requires a front-end to handle the data
visualization. Both simple example front ends and a more advanced game-playing application
were developed.

By placing the computational and database requirements on a remote server, applications can be
developed that are extremely lightweight and focus only on the user interface (either as a web
page or as a simple desktop program). We will create a sequence of extremely simple
applications that show how this can be done, and show how an application can switch between
utilizing a remote web-service model and a locally installed model (for use when not connected
to the Internet). A simple web-based application example is shown in Figure 4 and available on
the web through the project page: http://blueskyframework.org/ws. An FAQ and more technical
documentation for anyone interested in building their own specialized application can also be
found there.

 5

http://blueskyframework.org/ws

Figure 4: Simple example showing how to access and use the web-services capabilities. The
upper left box allows the user to input basic fire location information. The lower left box
shows the request as sent to the web-services model. The formatted result is shown in the
upper right and the actual result returned to the web-page in the lower right. The actual page
can be accessed through http://playground.blueskyframework.org/example/. The full code for
this page (including formatting) is listed in Appendix A.

Creation of advanced game-playing smoke modeling application

In order to show the full capabilities of this type of collaborative modeling architecture, we
created a unique, advanced game-playing application for smoke modeling that is initially
targeted at RX-410 classes but is also useful for decision makers. A screenshot of the application
front end, called BlueSky Playground, is shown in Figure 5. A detailed walkthrough showing
how to use the application is given in Appendix B.

 6

Figure 5: Example screen shot from the BlueSky Playground web application. Here the
results of three fuel loading models are shown.

BlueSky provides several unique functions: it allows access to many models through a single
interface, it allows for comparison of different model’s output directly, and, since all the models
are run in a few seconds while you wait, it also provides the first ever on-the-fly smoke
dispersion calculation capabilities for the smoke management community.

BlueSky Playground allows users to enter a fire size and location and then leads the user through
all of the steps in the BlueSky smoke modeling pathway up to and including the creation of
smoke impact maps for the fire. At each step the user is shown the outputs from the available
models (e.g. fuel loadings from FCCS, NFDRS, and Hardy) and is able to select one before
continuing to the next step. Outputs include fuel loadings, total fire consumption, fire emissions,
plume rise, and smoke impact maps, though users can stop at any point. By seeing the outputs
from all of the model choices at each step, users can see the inter-model variability; by altering
the model choices or information at any point, users are able to see the effects on the remaining
modeling steps.

Key Findings

BlueSky Framework now web-service enabled
BlueSky now has a command line switch to run BlueSky as a web-services daemon that
allows users to connect to it through as a standard web-service function. This functionality
enables all models and modules in BlueSky to be run as web-services without need for
altering the model or module code. When first envisioned and proposed, web-service

 7

capability for every module was not promised as it was unclear whether it could be delivered
without custom code development for every module. We are pleased to have been able to
make BlueSky function through a standard web-service function because it means that:

 All existing modules in BlueSky can be used as web-services;
 All future modules in BlueSky will automatically function as web-services; and
 New or additional modeling steps developed in the future (e.g., radiative fire power

emissions calculations) will be automatically enabled as web-services.

Models available on-line
The BlueSky Framework is now exposed to developers wishing to produce applications that
can make use of BlueSky services. Currently, users can access them through both example
webpage scripts as well as the BlueSky Playground tool. A list of servers is maintained on
the project page (http://blueskyframework.org/ws).

The multitude of models within BlueSky, coupled with its inherent flexibility, make multiple
uses by multiple user communities possible. Each of these communities can benefit from
focused applications that expose only the relevant functionality in BlueSky within custom
designed user interfaces. The new web-service functionality enables this ability to provide
multiple applications from a single framework. Additionally, as the framework is improved
and upgraded, applications benefit automatically without need for re-installation.

Example applications developed
To provide examples of the benefits of the new web-service architecture of the BlueSky
Framework, example applications have been developed. One is a very simple application for
looking up fuel loading by location that also serves as a code example for developers to
follow when developing their own applications. The other example is a full-fledged, modern
web-application that exposes most of the models in BlueSky and allows users to perform
smoke modeling runs and examine how model choices affect results. This tool provides a
way for any user to run BlueSky from a web browser, requiring no software installation or
expert knowledge.

Initial framework work more complicated, application development less
complicated than expected

The exposure of the full functionality of BlueSky as web-services required substantial code
development on the BlueSky core framework. The key benefit from this effort is that
development of applications that take advantage of BlueSky functionality are now much
easier and faster to develop. Developing the user interfaces for this project such as the
example webpage and the advanced BlueSky Playground application was much simpler than
it would have been without the new web-service functionality. This experience suggests that
even advanced interfaces aimed at specific user communities can be built with only modest
expenditures of time and money. In addition, as needs are discovered, new focused interfaces
can be produced quickly using the BlueSky web-services, which provide a set of ready made
building blocks.

 8

http://blueskyframework.org/ws

Management Implications

The ability for managers to use one interface and access many different
models

Much of the confusion over different models reflected in the JFSP Smoke Roundtables and
other user feedback is due to the fact that each new model also comes with a new interface
that the user must master. Use of web-services separates the scientific model calculations
from the interface used to gain access to them. By creating standard input/output formats and
modularizing different models to use them as has been done with BlueSky, it further enables
the same user interface to function with different models. The capability of this is shown
through the developed BlueSky Playground game-playing application. While this particular
interface is not optimized for any particular user group, it shows how a simple web-interface
design could be created and optimized to meet the needs of different user groups.

The ability for managers to easily access to the latest science including
high-performance computing capabilities

There are several related benefits that web-service enabled software provides in the
management context. Federal agency employees may have difficulty installing new desktop
software onto their agency computers. Any time a new revision is created, the developers
must work to get users to install the new version, and their may be additional hurdles to
doing so. With web-services, the software is centrally located and managed. New science can
be distributed quickly, as it need only be installed on the web server. Finally, web-services
can be accessed by modestly powered workstations, laptops, and smart phones with Internet
access. This is particularly important for the models in the BlueSky framework. For example,
the smoke trajectory and dispersion models are processor intensive and require many
gigabytes of meteorological model data to run. The web-service enabled framework allows
users easy access to these high performance models without locally stored data.

A sample game-playing application for learning and scenario game-playing
In addition to the many different user interfaces provided by the various scientific models
(discussed above), the models themselves produce very different scientific results. The
understanding of the differences between the models and the uncertainties associated with
modeling in general can be explored using the BlueSky Playground application. At most
steps, the user is given the option of running multiple models and the results are immediately
available for inter-comparison. These differences are instructive and can serve to educate
smoke management personnel, such as in the context of an RX-410 class.

Related Work

This project has highly leveraged on-going work from several different projects.

Primarily, this project has utilized the rewrite of the BlueSky code that was funded through a
NASA ROSES grant. Because of overlap in these two projects, the web-services functionality

 9

developed here was able to be directly placed into the finalization of the rewrite done for NASA.
Additional work that will affect the web-services enabled BlueSky will be continuing through a
new NASA ROSES grant, making the additional features developed for this new project also
web-service enabled.

Additionally this work has been done in communication and collaboration with the new
Interagency Fuels Treatment – Decision Support System (IFT-DSS) project underway through
funding from the Joint Fire Science Program. The IFT-DSS project aims to create a scientific
modeling architecture for fuels treatment management and modeling. Many of the lessons
learned from BlueSky and from this project have been discussed with the management team of
IFT-DSS. Additionally, when IFT-DSS becomes functional, the IFT-DSS system is planned to
communicate directly with the web-service BlueSky system allowing for both to function as a
meta-scientific software architecture.

The BlueSky Playground application developed here also is featured in a new prototype air
quality functionality developed for the Wildland Fire Decision Support System (WFDSS).
WFDSS is web-service function call enabled, making the web-service capability of BlueSky an
easy fit for getting smoke modeling capabilities into WFDSS. It is expected that in the future
more tailored user interfaces will help facilitate this integration. These interfaces will gain access
to the BlueSky modeling capabilities through the web-services functionality developed here.

Work on making the BlueSky Playground more operational for land managers, including some
interface improvements and connection to a large archive of meteorology which will allow it to
be used by anyone wanting to examine fire retrospectively is underway through a grant from the
America Recovery and Reinvestment Act (ARRA). This short-term project should make a
second version of the BlueSky Playground available on the web before the 2010 fire season.

With the ARRA improvements, the BlueSky Playground will also be incorporated into the
prototype Emergency Smoke Response System (ESRS) developed at the request of USFS
managers. The prototype ESRS, which was deployed in 2007 and 2008 on the California fires,
combines enhanced fire weather and smoke modeling with increased observational monitoring of
smoke. The BlueSky Playground can add to this capability by providing real-time feedback on
burnouts and other management possibilities being considered.

Future Work Needed

The primary need is to place the web-service BlueSky onto operational (24x7 monitored and
managed) servers. Currently the web-service BlueSky is running on research servers without an
operational mandate or funding. An option for placement on dedicated operational servers is
needed not only for BlueSky but for all future management oriented web-services based
scientific modeling.

Additional short-term work is needed to connect the BlueSky Playground application with an
archive of meteorology so that different days can be chosen. This work is underway through a
grant from ARRA.

 10

In the medium term, development of new interfaces that take advantage of the BlueSky web-
service functions but are tailored to specific uses and user groups is needed. These can be stand-
alone applications or websites, or integrated into existing applications and websites (e.g. adding
“click here to view smoke impacts” button). Additionally the integration of BlueSky and the new
IFT-DSS system should be expedited.

Longer-term, work is needed to adopt collaborative architectures that enable different models to
communicate. Doing so would allow the development of scientific models and user interfaces to
be separated and parceled out to different groups that excel in such matters. Scientists would be
able to focus on making the best models, and website designers on making the best-unified
interfaces. Utilizing web-service and other advanced Internet functionalities will allow delivery
of the benefits of these scientific models to users without the need for many different interfaces
and software installations. Placement of applications on dedicated operational servers will allow
for guaranteed availability to the latest version of each model from any system with an Internet
connection. Development of website applications that automatically switch to a local backup
copy would enable the use of critical models even in remote areas without Internet connections.

Deliverables Crosswalk Table

Table 1. Deliverables Crosswalk Table

Deliverable
Type

Description Promised Delivery
Dates

Status (9/30/09)

Website Web-service versions of models in
BlueSky Framework

Initial: 10/08
Final: 2/09

COMPLETE

Non-Refereed
Publication

Documentation for utilizing web-
services to create applications

Initial: 11/08
Final: 5/09

COMPLETE
see below

Website Website showing simple example
applications and documentation

Initial: 11/08
Final: 5/09

COMPLETE
see below

Website Game-playing smoke modeling
application

Initial:1/09
Final: 5/09

COMPLETE
see below

Peer-reviewed
publication

Journal article or peer-reviewed GTR
detailing the system and application

5/09 (extended) UPCOMING*
(see below)

Non-Refereed
Publication

Final Report 5/09 (extended) COMPLETE

Presentation At National Air Quality Conferences Spring ‘09 COMPLETE
Presentation At BlueSky Stakeholders Meeting Spring ‘09 N/A**
Presentation(s) At national fire conferences Spring through Fall

‘09
UPCOMING***
(10/09, 11/09)

Invited
Presentation

At National Weather Service Air
Quality Workshop

Fall ‘09 UPCOMING***
(10/09)

Training
Sessions

Incorporated into RX410 classes
where BlueSky is taught

Winter ‘09/Spring
‘10

UPCOMING***
Winter/Spring

 11

Notes:
*A technical document on how to utilize the web-services and additional information on the
BlueSky Framework, the BlueSky Playground and more are available online through the project
website (http://blueskyframework.org/ws). A General Technical Report is in draft form and will
be forthcoming.

**BlueSky Stakeholders Meeting was not held this year (2009). This work will be presented at
the next meeting (2010).

***Several project deliverables listed in the original proposal were outside the timeline of the
project due to conference and RX410 schedules. Abstracts on this work have been submitted to
the Fire and Forest Meteorology, 4th Fire Conference, and American Geophysical Union
meetings being held in Fall/Winter 2009.

Websites, Applications, and Documentation

Additional information including access to the simple example application, the more advanced
BlueSky Playground, and in-depth technical documentation can be found at
http://blueskyframework.org/ws.

Presentations

Chinkin L.R., Strand T.M., Brown T., Goodrick S., Larkin N.K., Raffuse S. M., Solomon R.,
Sullivan D.C., Lahm P. 2009. Development and applications of systems for modeling
emissions and smoke from fires: the BlueSky smoke modeling framework, SMARTFIRE,
and associated systems. National Air Quality Conferences, Dallas, Texas, March 2-5.

Craig K.J., Wheeler J.M.W., Raffuse S.M., Sullivan D.C., Reid S.B., Solomon R., Strand T.,
Larkin S. 2008. BlueSky Gateway: providing access to products from the BlueSky smoke
modeling program. 7th Annual Community Modeling and Analysis System (CMAS)
Conference, Chapel Hill, NC, October 6-8.

Larkin N.K., Strand T.M., Solomon R., Raffuse S., Sullivan D., Chinkin L., Lahm P., Acheson
A., Brown T., Friedl L. 2008. BlueSky, SMARTFIRE, SEMIP and associated efforts.
NASA Biomass Burning Coordination Meeting, University of Maryland, College Park, MD.

Larkin N.K., Strand T.M., Solomon R., Rorig M., Krull C., Sullivan D., Raffuse S., Pryden D.,
Ovard C., Chinkin L., O'Neill S., Friedl L., Knighton R. 2008. Prototyping the Emergency
Smoke Response System (ESRS). WESTAR Fall Business Meeting. Seattle, Washington,
October 1-3.

Larkin N.K., Strand T., Solomon R., Raffuse S., Sullivan D.C., Chinkin L., Brown T., O'Neill S.,
Friedl L., and Knighton R. 2008 The state of smoke tools: What we know now. International
Association of Wildland Fire, The '88 Fires: Yellowstone & Beyond, Jackson Hole, WY,
September 22-27.

 12

http://blueskyframework.org/ws

 13

Larkin N.K., Strand T.M., Solomon R., Raffuse S., Sullivan D.C., Chinkin L., Brown T., O'Neill
S., Friedl L., Knighton R. 2008. The state of smoke tools: What we know now. NIFC, Boise,
Idaho, May 21.

Strand T.M, Larkin N.K., Solomon R., Raffuse S., Sullivan D., Craig K., Pryden D., Wheeler N.,
Chinkin L., Brown T., Procter T. 2008. New tools for fire and smoke and their application
to the 2008 California wildfires. Pacific Coast Fire Conference: Changing Fire Regimes,
Goals and Ecosystems, San Diego, California, December 1-4.

Strand T.M., Potter B.P., Larkin N.K., Solomon R., Rorig M., Krull C. 2008. AirFire Smoke
Research. Hood River, Oregon, October 29-31.

Strand T.M., Sullivan D.C., Larkin N.K. 2008. BlueSky Status. 2008 BlueSky Modeling
Stakeholders Meeting, Boise, daho, May 20-22.

References

JFSP. (2007) Smoke and air quality roundtables, research needs and assessment. Joint Fire

Science Program. 16pp. Available on the Internet at <http://www.firescience.gov>

Larkin N.K., O'Neill S.M., Solomon R., Raffuse S., Strand T.M., Sullivan D.C., Krull C., Rorig

M., Peterson J., and Ferguson S.A. (2009) The BlueSky smoke modeling framework. Int. J.
Wildland Fire (in press).

Palmquist M.S. (2008) Working summary of the SEI’s engagement with the Joint Fire Science

Program. Report prepared for the U.S. Department of Defense by the Acquisition Support
Program, Software Engineering Institute, Carnegie Mellon University, April.

Appendix A: Webpage Source for Web-services Example

See Figure 3 of main document for example output created using this webpage.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>BlueSky Framework webservice test</title>
<script type="text/javascript" src="xmlrpc_lib.js"></script>
<script type="text/javascript">

 function getRequest(methodName, latitude, longitude) {
 return '<' + '?xml version="1.0"?>\n' +
 '<methodCall>\n' +
 '<methodName>' + methodName + '</methodName>\n' +
 '<params>\n' +
 '<param>\n' +
 '<struct>\n' +
 ' <member>\n' +
 ' <name>latitude</name>\n' +
 ' <value><double>' + latitude.toString() + '</double></value>\n' +
 ' </member>\n' +
 ' <member>\n' +
 ' <name>longitude</name>\n' +
 ' <value><double>' + longitude.toString() + '</double></value>\n' +
 ' </member>\n' +
 '</struct>\n' +
 '</param>\n' +
 '</params>\n' +
 '</methodCall>\n';
 }

 function escapeHTML(s) {
 return s
 .replace(/&/g, '&')
 .replace(/</g, '<')
 .replace(/>/g, '>');
 }

 function displayRequest(requestXML) {
 var div = document.getElementById("request");
 div.innerHTML = "<h3>Request</h3><pre>" + escapeHTML(requestXML) + "</pre>";
 div.style.visibility = "visible";
 }

 function displayResponse(responseXML) {
 var div = document.getElementById("response");
 div.innerHTML = "<h3>Response</h3><pre>" + escapeHTML(responseXML) + "</pre>";
 div.style.visibility = "visible";
 }

 function parseResponse(xml) {
 // OK, here we have the result of the XML-RPC method call, encoded as XML.
 // Rather than spending a lot of time messing around with XML parsing,
 // we're going to use the open-source xmlrpc_lib.js library to parse it
 // for us. (In fact, the library would have made the rest of the process
 // easier too, but we did it the hard way so we could see the actual XML
 // being sent back and forth.)

 // There's no reason why this particular library is needed; there are plenty
 // of XML-RPC libraries out there, some of which may be nicer than this one.
 // I'm using this particular library because I was able to find it in less
 // than 30 seconds using Google.

 var div = document.getElementById("result");

 // Parse the result with xmlrpc_lib.js
 var msg = new xmlrpcmsg();
 var data = msg.parseResponse(xml, true, 'jsvars');

 // xmlrpc_lib.js likes to use lots of ".me" members (!)

 14

 var fire_locations = data.val.me.fires.me.fire_locations.me;

 div.innerHTML =
 "<h3>Result</h3>" +
 "Number of fires returned: " + fire_locations.length + "

";

 // Loop through the returned fires (normally there will only be one,
 // since we only provided input data for one)
 for(var i = 0; i < fire_locations.length; i++) {
 var fireLoc = fire_locations[i].me;

 // Output some basic information on each fire
 div.innerHTML +=
 "Fire #" + (i + 1) + ": " + fireLoc.id.me + "
" +
 "Latitude: " + fireLoc["latitude"].me + "
" +
 "Longitude: " + fireLoc["longitude"].me + "
";

 var fuels = fireLoc.fuels.me;
 if(fuels) {
 // Output FuelsData information
 div.innerHTML +=
 "<blockquote>" +
 "Vegetation type: " + fuels["metadata"].me["VEG"].me + "
" +
 "1-hr fuels: " + fuels["fuel_1hr"].me + "
" +
 "10-hr fuels: " + fuels["fuel_10hr"].me + "
" +
 "100-hr fuels: " + fuels["fuel_100hr"].me + "
" +
 "1,000-hr fuels: " + fuels["fuel_1khr"].me + "
" +
 "10,000-hr fuels: " + fuels["fuel_10khr"].me + "
" +
 "> 10,000-hr fuels: " + fuels["fuel_gt10khr"].me + "
" +
 "Duff: " + fuels["duff"].me + "
" +
 "Grass: " + fuels["grass"].me + "
" +
 "Litter: " + fuels["litter"].me + "
" +
 "Rotten fuels: " + fuels["rot"].me + "
" +
 "Canopy: " + fuels["canopy"].me + "
" +
 "</blockquote>" +
 "
";
 } else {
 div.innerHTML +=
 "fuels member of FireLocation object is null";
 }
 }
 }

 function runModel() {
 // Get the values of the form fields
 var latitude = document.getElementById("latitude").value;
 var longitude = document.getElementById("longitude").value;
 var methodName = document.getElementById("model").value;

 // Construct the request XML and display it in the box using displayRequest()
 var requestXML = getRequest(methodName, latitude, longitude);
 displayRequest(requestXML);

 // Basic XMLHttpRequest stuff. Send the request via HTTP POST to the server.
 var url = "http://" + window.location.host + "/xml-rpc.py";
 var req = new XMLHttpRequest();
 req.open("POST", url, true);
 req.onreadystatechange = function(e) {
 if(req.readyState == 4) {
 if(req.status == 200) {
 // OK, if we get here, then we have a valid response from the
 // server. Display the raw text of the response with
 // displayResponse(), and hand the text off to parseResponse()
 // to come up with a prettier result.
 displayResponse(req.responseText);
 parseResponse(req.responseText);
 } else {
 alert("ERROR: HTTP error code " + req.status);
 }
 }
 };
 req.send(requestXML);
 }

 window.onload = function() {
 document.getElementById("mainForm").onsubmit = function() { return false; };
 document.getElementById("btnSubmit").onclick = runModel;
 };

</script>
<style type="text/css">

 15

body {
 color: black;
 background: white;
 font: 14px Arial, sans-serif;
 width: 780px;
}

h1 {
 font: bold 24px Verdana, sans-serif;
 border-bottom: 1px solid black;
 margin: 0 0 10px 0;
 padding: 0;
}

h3 {
 font: bold 16px Verdana, sans-serif;
 border-bottom: 1px solid #999;
 margin: 0 0 10px 0;
 padding: 0;
}

form, #result, #request, #response {
 border: 1px solid #999;
 width: 355px;
 float: left;
 padding: 10px;
 margin: 5px;
}

form, #result {
 background: #def;
}

#request, #response {
 background: #dfe;
 visibility: hidden;
}

form, #request {
 clear: left;
}

label {
 width: 100px;
 text-align: right;
 clear: left;
 float: left;
 padding-right: 10px;
 line-height: 24px;
}

input, select {
 width: 235px;
 float: left;
}

input.button {
 width: auto;
 float: right;
 margin: 10px 10px 0 0;
}

</style>
</head>
<body>
 <h1>BlueSky Framework webservice test</h1>
 <form id="mainForm">
 <h3>Run fuel loading model</h3>
 <label for="latitude">Latitude:</label>
 <input name="latitude" id="latitude" value="45.46"/>

 <label for="longitude">Longitude:</label>
 <input name="longitude" id="longitude" value="-114.961"/>

 <label for="model">Model:</label>
 <select id="model" name="model">
 <option value="NoFuelLoading">NoFuelLoading</option>
 <option value="FCCS" selected="selected">FCCS</option>
 <option value="NFDRS">NFDRS</option>
 </select>

 16

 17

 <input type="submit" class="button" id="btnSubmit" value="Submit"/>
 </form>
 <div id="result">
 <h3>Result</h3>
 </div>
 <div id="request"></div>
 <div id="response"></div>
</body>
</html>

Appendix B: BlueSky Playground Walkthrough

The following pages contain an example walkthrough of the BlueSky Playground web application.

 18

The BlueSky Playground
walks users step-by-step
through the steps required to
model smoke emissions and
dispersion from fires. Tabs
along the top of the interface
allow navigation back and
forth and show what steps
have been completed.

Fire Information is the first
step. The basic information
BlueSky needs includes fire
size, location, and time of
ignition. Location can be
specified by clicking on the
interactive map.

Advanced options can also be
selected, allowing the user to
provide additional information
about the fire.

The BlueSky Playground can
be run either step-by-step or
all at once. To run step-by-
step, the user clicks on the
“Next” button or selects the
next step (Fuel Load) from the
tabs above. Alternately, if the
user is not interested in the
results of individual models,
they can preselect all of the
steps and go straight to results
using the Quick Run feature.

 19

The Fuel Load through Plume
Rise tabs are all structured
similarly. On the left are the
model choices, selectable by
tabs. Editable model outputs
are shown in text boxes.
Outputs from one step serve
as inputs to the next step.
The user can change these
values before the next model
is run.

On the right side is a graphical
representation of the output
for this step.

As soon as the Fuel Load tab
is clicked, a fuel loading model
in the BlueSky Framework is
run. Notice that the Fire
Information tab has a
checkmark, indicating that it is
complete.

This section indicates the
modeling pathway that the
user has followed to this point.
In this example, a 5000 acre
fire followed by FCCS fuel
loading.

 20

The user can run alternate
models for the current step by
either clicking on the model
tabs or clicking Run All.

Model results are dynamically
added to the output graph as
new models are run.
Changing the output values
manually will also update the
graphs.

The currently selected model,
which will be used as the input
to the next step, is highlighted
in the model tabs and also
shown in the pathway
indicator.

 21

The Fuel Consumption screen
is similar to the Fuel Load
screen. The output graph
shows consumption per acre
broken out by combustion
phase.

 22

In this example, the user has
selected an alternate Fuel
Consumption model (FEPS).

 23

The Emissions screen is
similar to the Fuel
Consumption and Fuel Load
screens. Two graphical
outputs are available. This
screen shows total emissions
broken out by pollutant.

 24

This screen shows a time
series of hourly emissions.
Only one pollutant from one
model can be shown at a time
on the time series graph.

 25

Plume Rise is how high the
smoke plume is lofted into the
atmosphere do to buoyancy
and vertical winds. BlueSky
models plume rise with a
plume top and plume bottom.
The graph shows the hourly
modeled plume top and
bottom. Individual hourly
values can be edited in the
spreadsheet on the left.

 26

Users can select the length of
time to model. Longer runs
take longer to return results.

The user can also adjust the
map by changing the central
latitude and longitude and by
specifying the map width.
Clicking the remap button will
tell BlueSky to make new
maps.

BlueSky dispersion output is
hourly. Each hour is shown as
an individual image. The hour
shown can be changed using
the controls at the top of the
image. Clicking the Animate
button will cylce through the
images automaticaly. It may
take a few minutes for all of
the images to be downloaded
to the user’s local cache so
they appear smoothly.

Smoke Dispersion is the final
step in the BlueSky modeling
framework. BlueSky
Playground provides a map
viewer for reviewing smoke
dispersion output. Ground
level PM2.5 concentrations are
shown.

 27

Once the user is satisfied with
their choices, they can review
them on the Results page,
which shows the modeling
pathway and the changes the
user made.

If the user wishes, they may
save the run parameters.

In future versions, the user will
be able to print a summary of
the run or load a previously
saved run.

At any time the user can go
back to a specific modeling
step and change the
parameters. All modeling
steps that follow the changed
step will be cleared as their
results will no longer be valid.
When the user goes forward
again, all intermediate steps
that need to be run are
executed.

 28

	Conversion of the BlueSky Framework into collaborative web service architecture and creation of a smoke modeling application
	FINAL REPORT TO THE JOINT FIRE SCIENCE PROGRAMSeptember 30, 2009Project #: 08-S-07Website: http://blueskyframework.org/ws
	PI: Dr. Narasimhan K. LarkinU.S. Forest Service AirFire TeamPacific Northwest Research Station400 N. 34th St Suite 201Seattle, Washington USA 98103206.732.7849 (W) 206-732.7801 (F) larkin@fs.fed.us (E)
	Co-PI(s): Sean Raffuse, Sonoma Technology, Inc.
	Co-authors: Daniel Pryden, Alan Healy, Kevin Unger of Sonoma Technology, Inc.; Dr. Tara Strand, Dr. Robert Solomon of the U.S. Forest Service AirFire Team.
	 This project is was funded through grant 08-S-07 from the Joint Fire Sciences Program (http://firescience.gov).
	Abstract
	Background
	Description
	Goals
	Methods and work summary
	Revision of the BlueSky Framework
	Creation of advanced game-playing smoke modeling application

	Key Findings
	BlueSky Framework now web-service enabled
	Models available on-line
	Example applications developed
	Initial framework work more complicated, application development less complicated than expected

	Management Implications
	The ability for managers to use one interface and access many different models
	The ability for managers to easily access to the latest science including high-performance computing capabilities
	A sample game-playing application for learning and scenario game-playing

	Related Work
	Future Work Needed
	Deliverables Crosswalk Table
	Websites, Applications, and Documentation
	Presentations

	References
	Appendix A: Webpage Source for Web-services Example
	Appendix B: BlueSky Playground Walkthrough

