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 2 

Abstract.  Smoke plume height is an important factor for smoke transport and air quality impact 45 

modeling. This study provides a practical tool for simulating plume height of prescribed fires. A 46 

regression model was developed based on the measured smoke plume height for 20 prescribed 47 

fires in the southeastern United States. The independent variables include surface wind, fuel 48 

temperature, fuel moisture, and atmospheric planetary boundary layer (PBL) height. The first 49 

three variables were obtained from the Remote Automatic Weather Stations (RWAS), most of 50 

which are installed in locations where they can monitor local fire danger and are easily accessed 51 

by fire managers. The PBL height was estimated based on WRF simulations. The regression 52 

model appears in two forms to simulate hourly or average smoke plume height during a burn, 53 

respectively. A suite of alternative regression models were also provided that could be used in 54 

case that one of the independent variables is not available. The regression model as well as the 55 

alternatives is found to be statistically significant at the 99% confidence level. The model is more 56 

capable of explaining the variance of the average than hourly series of the observed smoke 57 

plume height. Model skill is improved remarkably by adding PBL height to the RAWS variables. 58 

The regression model also shows improved skill over two extensively used empirical models for 59 

the prescribed burn cases, suggesting that it may have the potential in improving air quality 60 

modeling.  61 

 62 

 63 
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1. Introduction 73 
 74 

Prescribed fire (Rx fire) is a forest management tool to reduce the buildup of hazardous fuels and 75 

the risk of destructive wildfire. Any fire is ignited by management actions under a pre-76 

determined "window" of very specific conditions including winds, temperatures, humidity, and 77 

other factors specified in a written and approved burn plan. Rx fire has been widely used. In the 78 

southern United States, for example, about 2~3 million ha (6~8 million acres) of forest and 79 

agricultural lands are burned by Rx fire each year (Wade et al., 2000). Emissions from Rx fire, 80 

however, can impact air quality. Biomass burning is a primary source of ambient PM2.5 in less 81 

populated areas in the southeastern U.S. (Lee et al., 2007). For example, smoke plumes from two 82 

Rx fires in central Georgia led to ground PM2.5 concentrations much higher than the daily U.S. 83 

National Ambient Air Quality Standard (Hu et al., 2008; Liu et al., 2009). 84 

 85 

Smoke plume height, also called smoke plume rise, is the elevation above the ground of the top 86 

of a smoke plume. A typical plume height is about 1 kilometer for Rx fire and several kilometers 87 

for wildfire. Smoke plume height is an important factor for local and regional air quality 88 

modeling. Particles emitted from Rx fire with a higher plume height are more likely to be 89 

transported out of the rural burn site and may affect air quality in downwind remote populated 90 

areas.  Plume height is required by many regional air quality models. The Community Multiscale 91 

Air Quality (CMAQ) model (Byun and Ching, 1999; Byun and Schere, 2006), for example, uses 92 

the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) ( Houyoux et al., 93 

2002) to provide plume height as part of initial and boundary conditions for elevated emission 94 

sources, including fire emission.  95 

 96 

http://www.epa.gov/asmdnerl/CMAQ/cmaq_manuscript_0204.pdf
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Various smoke plume height models have been developed using dynamical (e.g., Latham, 1994; 97 

Freitas, 2007; Freitas et al., 2009), empirical (e.g., Briggs, 1975; Harrison and Hardy, 2002; 98 

Pouliot et al., 2005), and hybrid (Achtemeier et al., 2011) approaches. One of the differences 99 

among various approaches is the degree of complexity. Dynamical models consist of differential 100 

equations governing fluxes of mass, momentum and energy that often require time and space 101 

integration. Details of fire behavior and ambient conditions at high tempo-spatial resolutions 102 

(e.g. seconds and meters) are needed. Empirical models, on the other hand, are based on field 103 

and laboratory measurements using statistical or similarity theory. They usually appear as 104 

algebraic expressions that require burn and ambient conditions at a lower time frequency (e.g., 105 

one hour) without spatial resolution. The simplicity with empirical models makes them a more 106 

practical tool for forest managers. Empirical models have been included in many fire and air 107 

quality management systems such as the Fire Emission Production Simulator (Anderson et al., 108 

2004), the Western Regional Air Partnership’s Fire Emission Inventory (WRAP, 2005), and the 109 

BlueSky smoke modeling system (Larkin et. al 2009). 110 

 111 

Empirical models often use parameters related to fire behavior and atmospheric conditions. The 112 

modified Briggs model used in FEPS (Anderson et al., 2004), for example, calculates smoke 113 

plume height using heat release from fire, transport wind (averaged wind within the atmospheric 114 

planetary boundary layer or PBL), and atmospheric stability. Heat release is determined by fuel 115 

and fire properties include total consumption rate, combustion efficiency, buoyant efficiency, 116 

and entrainment efficiency. The uncertainty in the related burn properties such as burned area, 117 

burn phase (flaming or smoldering) partition, and empirical parameters is one of the error 118 

sources.  119 
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 120 

Based on the statistics of plume height measurements of Rx fires in the southeastern United 121 

States, Liu et al. (2012) developed a guideline for forest managers to estimate smoke plume 122 

height without using any burn and meteorological information. The averaged smoke plume 123 

height over 20 Rx fires, approximately 1 km, was suggested to be a first-order approximation. A 124 

second-order approximation was suggested by making seasonal adjustments, that is, using the 125 

average value for spring and fall, decreasing by 0.2 km from the average for winter, and 126 

increasing by 0.2 km for summer. The guideline may avoid the uncertainty related to the burn 127 

property specification with the empirical models such as the one used in FEPS, but is unable to 128 

describe the variability in smoke plume height related to fire behavior and meteorological 129 

conditions. 130 

 131 

This study was to develop empirical regression models for smoke plume height of Rx fire, which 132 

have a complexity level in between the FEPS approach (Anderson et al., 2004) and the guideline 133 

(Liu et al., 2012). Similar to Liu et al. (2012), this study was based on plume height 134 

measurements of Rx fires in the southeastern United States. However, only meteorological 135 

conditions, which include both forest understory fuel conditions (temperature and moisture) and 136 

weather conditions (wind and PBL height) in this study, were taken into account; however, a 137 

buoyancy factor determined by heat release from burn, which is used in many existing empirical 138 

models such as FEPS (Anderson et al., 2004), was not used. The major source for the 139 

meteorological conditions was the Remote Automated Weather Stations (RAWS) 140 

(http://raws.fam.nwcg.gov/).  RAWS is run by the U.S. Forest Service and the U.S. Bureau of 141 

Land Management and monitored by the National Interagency Fire Center. There are more than 142 
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2000 stations across the U.S., most of which are placed in locations where they can monitor fire 143 

danger. Thus, the empirical models have the potential to be a practical tool for fire managers and 144 

researchers to obtain smoke plume height information needed for assessing the air quality 145 

impacts of smoke from Rx fire.  146 

 147 

The rest of this paper is arranged as follows. The methods are described in Section 2. The 148 

meteorological conditions and relationships with smoke plume height variations are described in 149 

Section 3. The models and evaluation are presented in Section 4. And discussion and conclusions 150 

are provided in the last two sections.   151 

 152 

2. Methods 153 

 154 
 155 

a. Smoke plume height measurement  156 

 157 

The smoke plume heights for 20 Rx fires in the southeastern U.S. were measured during 2009-158 

2011 using a Vaisala CL31 ceilometer (a Light Detection and Ranging or LIDAR device) with a 159 

frequency of 2 s and vertical resolution of 20 m.  The results were analyzed in Liu et al. (2012). 160 

A summary of the fires is provided in Table 1. Six burns (denoted as F1-F6) occurred at the Ft. 161 

Benning Army Base (32.33N, 84.79W, near Columbus in southwestern Georgia), five (O1-O5) 162 

at the Oconee National Forest (33.54N, 83.46W, in central Georgia), one (P1) at the Piedmont 163 

National Wildlife Refuge (33.15N, 83.42W, in central Georgia), and eight (E1-E8) at the Eglin 164 

Air Force Base (30.15N, 86.55W, near Niceville in northwestern Florida). The burns were 165 

typical Rx fires for the southeastern U.S., with the fuel types of mainly pine understory dead 166 

fuels and little live fuels. The burns had varied sizes (about half of the burns between 500~1000 167 

acres and half over 1000 acres), occurred in three seasons (five in winter, 13 in spring, and two 168 
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in summer), and applied aerial (11 burns) and ground (nine burns) ignition techniques. Burning 169 

lasted between 1 – 6 hours, mostly during afternoon hours. Cloudy conditions appeared for a few 170 

burn cases. 171 

 172 

b. Data 173 

 174 

The RAWS observation data at four stations were used. The Ft Benning station has the same 175 

location as the corresponding burn site. The Brender station is located near the southwestern side 176 

of the Piedmont and Oconee burn sites. Two other stations are Naval Live Oaks by the Florida 177 

coast and Open Pond at the Florida-Alabama border, about 60 km west and north to the burn site 178 

at Eglin, respectively. The averaged meteorological conditions over the two stations were used 179 

for Eglin. The automated measurements include solar radiation, wind speed and direction, wind 180 

gusts, air temperature, fuel temperature, fuel moisture, relative humidity, dew point, wet bulb, 181 

and precipitation. Only wind, air temperature, fuel temperature, fuel moisture (10-hour), and 182 

relative humidity were used in this study. 183 

 184 

In addition, the vertical meteorological profiles at the grid points near the RAWS stations 185 

simulated with the Weather Research and Forecast (WRF) model (Skamarock et al., 2008) were 186 

used to estimate PBL height, transport wind, and the stability factor. The WRF model domain 187 

covered the southeastern U.S. with a resolution of 4 km and 27 vertical layers. The Yonsei 188 

University scheme for PBL processes was selected, which uses non-local-K scheme with explicit 189 

entrainment layer and parabolic K profile in unstable mixed layer. The PBL height was defined 190 

as the geometric height of a model level where potential temperature starts to increase upwards.  191 
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The stability factor used in this study was defined as the difference in air temperature between 192 

the model levels near the ground and at the PBL height (multiplying gravity acceleration and 193 

divided by temperature).  194 

 195 

Fig. 1 shows hourly variations of smoke plume height and meteorological conditions for each of 196 

19 fires (The fire F2 is not shown because it was only one hour long). The hourly trends of 197 

smoke plume height are classified into increase, decrease and flat groups (Table 2). For the 198 

increase group, hourly smoke plume height either increases constantly or fluctuates with time but 199 

with an overall increasing trend over the burn period. 200 

 201 

Three out of the four variables show consistent trends for the increase group. Fuel moisture 202 

reduces with time for all 11 burns, PBL height increases or is flat for 10 burns, and surface wind 203 

increases or stays steady for 9 burns. Fuel temperature, however, has mixed trends for these 204 

burns. Drying fuel or active PBL is in favor to the development of smoke plume, while 205 

increasing wind suppresses the development of smoke plume to a larger degree. 206 

 207 

Inconsistence is found mainly for two other trend groups. For the 5 burns in the decrease group, 208 

there are no consistent trends in various variables except for fuel temperature, which decreases 209 

with time for 4 burns. For the 3 burns in the flat group, there are no dominant trends in all 210 

variables.  211 

 212 

c. Regression model  213 

 214 
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We here use index notation in the following way: i is used to represent an individual 215 

meteorological variable; j is used to represent an individual element in a smoke measurement 216 

series; and, k is used to represent individual resampled series for cross validation. A multiple 217 

linear regression equation for smoke plume height, H, can be written as: 218 

       H = b0 + 
i

M

i

i Xb
1

                                                              (1) 219 

where b0 is regression interception, bi is regression coefficients, Xi  is  meteorological variable, 220 

and  M is the number of all meteorological variables used. An F-distribution test (Blackwell, 221 

2008) was used to determine whether or not to reject a null hypothesis (that is, all the regression 222 

coefficients are zero). The critical value is dependent on the number of independent variables, 223 

the sample number of variable series, and the confidence level. A confidence level of 99% was 224 

used in this test (as well as the correlation analysis and the cross validation). This confidence 225 

level means that there is a probability of one out of 100 cases that the conclusion is incorrect.  226 

 227 

Denote the observed smoke plume height series as      (j) and the corresponding meteorological 228 

variable series as Xi (j) ( j=1, N), where N is the sample number of the series. We use a cross-229 

validation technique (Barnett and  Preisendorfer, 1987) to examine the sensitivity of the 230 

regression models to individual observations by:  231 

 232 

(1) Creating new series of smoke plume height and meteorological variables with a total 233 

series sample number of N for each,     
  (j, k) and   

  (j, k), by resampling the original 234 

series. Here  j =1, N-1 is an individual  series element and k =1, N is an individual  235 

series. The kth series did not include the element j = k in      (j) and Xi (j).    236 



 10 

(2) Building regression equations   (k) =   
      ')('

1

i

M

i

i Xkb


   , k=1, N. 237 

(3)  Simulating smoke plume height Hsimu (j) (j=1, N) using the equation for H’(k) and   
  (j), 238 

where j=1, N, and k=j. 239 

(4)  Estimating systematic error using mean error (ME), random error using root mean square 240 

error (RMSE), and their normalized errors by dividing the standard deviation of observed 241 

plume height, SDobs:  242 

          ME = 
N

1
)]()([

1

jHjH obs

N

j

simu 


                                        (2) 243 

          RMSE = {
N

1 2

1

)]()([ jHjH obs

N

j

simu 


 } 
0.5

                         (3) 244 

          MEnorm = ME / SDobs                                                                                         (4) 245 

                RMSEnorm = RMSE / SDobs                                                                            (5) 246 

     (j) (j=1, N) was categorized into the group of positive anomaly if ≥ 0.5 SDobs, negative 247 

anomaly if ≤ - 0.5 SDobs, or normal if otherwise. Same categorization was made for Hsimu (j). The 248 

series elements had a binomial distribution. There was a probability of p=1/3 for      (j) and 249 

Hsimu (j) to be in a same group and a probability of q=2/3 to be in different groups. The modeling 250 

skill of a regression model is S = 
  

 
 , where Nc is the number of same group occurrence (correct 251 

number) (Barnett and  Preisendorfer, 1987). Assuming that the binomial distribution could be 252 

approximated by normal distribution, a z-score (Blackwell, 2008) defined as  253 

                              √                                                                (6) 254 

was used to test the statistical significance of the regression model, together with p-score. The z-255 

score is a statistical significance indicator that determine whether or not to reject a null 256 

hypothesis, that is, the analyzed pattern (the simulated plume height falls into a same group of 257 
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positive anomaly, negative anomaly, or normal as the observed plume height) is likely randomly 258 

generated.  For a critical value, zcri, which is 2.56 at the 99% confidence level, the hypothesis is 259 

rejected if z-score > + zcri (z-score > 0) or z-score < - zcri (z-score < 0). In addition, a p-value 260 

smaller than the corresponding significance level (0.01) was used as another criteria. The p-value 261 

is the probability that the null hypothesis has been falsely rejected. 262 

 263 

3. Meteorological conditions  264 

 265 

a. Hourly series 266 

 267 

RAWS observation data were available hourly. WRF simulation outputs at each hour were used 268 

accordingly. Hourly smoke plume heights were obtained by averaging the measured values over 269 

each of the individual hours during a burn period. Smoke measurement during the first or final 270 

hour of a burn period was usually less than 60 minutes. The average for the hour was not 271 

included in the smoke plume height series if the measurement length was less than 25 minutes. 272 

One exception was the first hour for E5, which had a smoke measurement length of about 50 273 

minutes, but heavy clouds were on top of the smoke layer and therefore the detected heights by 274 

the ceilometer were likely those of the clouds rather smoke plume. The number of hours, I(j), 275 

ranged between 1 and 6, where j represents a burn (Table 1). An hourly smoke plume height 276 

series, Hhour(i, j), was formed, where i=1,I(j) and j=1,20 (burn) with change in i first followed by 277 

change in j. The hourly series of smoke plume height had 58 elements. The corresponding hourly 278 

series was formed for each of the meteorological variables.  279 

 280 
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Fig.2 shows the variations of hourly smoke plume height series vs. each of the four 281 

meteorological variable series. The series elements were normalized by departing from series 282 

average and divided by series standard deviation. The entire smoke plume height series are 283 

composed of five portions, including the negative 1st (F1 to F4), 3rd (late hours of E1 to early 284 

hours of E2), and 5th (late hours of E6 to early hours of E8) portions, and positive 2nd and 4th 285 

portions covering the elements in between two adjacent negative portions. There is an exception 286 

with the 2nd portion which has small negative values at a few hours for O1, O3, and O5.  287 

 288 

Wind and fuel moisture vary in an opposite direction to smoke plume height. Fuel temperature, 289 

on the other hand, follows smoke plume height closely, despite the difference occurring in the 290 

3nd portion where plume height is negative while temperature is positive, and from the 1st 291 

portion to the first half of the 2nd portion where both have an increasing trend, but temperature 292 

remains negative while plume height has turned to be positive. PBL height also generally follows 293 

plume height except for the first half of the 2nd portion.  294 

 295 

The statistics of the hourly series are provided in Table 3.  Besides the meteorological variables 296 

described above, four other variables (air temperature, air relative humidity, transport wind, and 297 

stability factor) are also analyzed for comparison. As indicated below, air relative humidity and 298 

transport wind have low correlations with smoke plume height, while surface air temperature and 299 

stability have similar relationships with smoke plume height to fuel temperature and PBL height, 300 

respectively. 301 

 302 
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Fuel temperature and surface air temperature have the averages of 30
o
C and 22.4

o
C and SDs of 303 

8.6
o
C and 7.4

o
C, respectively. The correlation coefficients with smoke plume height are +0.434 304 

and 0.464, which are statistically significant (at the 99% confidence level, same hereafter). The 305 

critical value is 0.33. Fuel and air temperature are related to sensible heat energy for smoke 306 

plume lifting. PBL height and stability factor have the averages of 1320 m and 0.3 m/s
2 

and SDs 307 

of 385 m and 0.1 m/s
2
, respectively. The correlation coefficients are around +0.40 and are 308 

significant. Similar to smoke plume, the development of PBL and status of atmospheric stability 309 

depend on sensible heat from the ground. The surface and transport winds have the averages of 310 

3.0 m/s and 5.7 m/s and SDs of 0.83 m/s and 2.5 m/s, respectively. The correlation coefficients 311 

of -0.22 for the surface wind and -0.15 for transport wind are insignificant. Winds make smoke 312 

plume moving horizontally and therefore reduce the buoyancy in the smoke area for vertical 313 

lifting of smoke plume. Fuel moisture and air relative humidity have the averages of 8.69% and 314 

43.2%, and SDs of 2.13% and 13.2%, respectively. Both are negatively correlated to smoke 315 

plume height with a magnitude of 0.53 for fuel moisture (significant), but only 0.02 for relative 316 

humidity (insignificant). Evaporation of water within fuels during burning consumes latent heat, 317 

which reduces the sensible heat energy used to lift smoke plume.  318 

 319 

b. Average series 320 

 321 

An average series of smoke plume height, Have(j) (j=1,20)，was formed, where the jth element 322 

was the average of Hhour(i, j) over i=1, I(j). The corresponding average series was formed for 323 

each of the meteorological variables. The average series shows the same feature as the hourly 324 

series, but the relationships between average meteorological variables and smoke plume height 325 
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are closer (Fig.3). The correlation coefficients have the same signs for each of the meteorological 326 

variables between the average and hourly series. The magnitude, however, is larger for the 327 

average series. The coefficients are  0.683 and 0.874 for air and fuel temperature and -0.583 and 328 

0.582 for fuel moisture and PBL height (all significant; the critical value is 0.56), 0.538 for the 329 

stability factor (close to the significant level), -0.422 for surface wind, and -0.234 and 0.201 for 330 

transport wind and air relative humidity (insignificant).  331 

 332 

4. Regression models 333 

 334 

a. Regression model  335 

 336 

The regression model, denoted as RxPH (prescribed fire plume height), was formed using four 337 

meteorological variables (surface wind speed, temperature, fuel moisture, and PBL height). It 338 

appears in two forms, depending on the series type (hourly or average).  The regression 339 

coefficients and some model properties are listed in Table 4. The model for hourly smoke plume 340 

height has an interception (b0) of 1112 m, which is 64 m more than the observed average of 341 

smoke plume heights of all 20 burns. The regression coefficients (b1-b4) are - 63.85, 3.849, - 342 

25.78, and 0.163. The standardized regression coefficients, which are the coefficients for a 343 

regression model built using normalized independent and dependent variables and measure the 344 

relative contributions of independent variables to the variance of the dependent variable, are - 345 

0.374, 0.167, - 0.279, and 0.335. They are comparable in magnitude, suggesting that all the four 346 

variables are important to smoke plume height modeling. The squared correlation coefficient, 347 

which measures the total contribution of all independent variables to the variance of the observed 348 
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dependent variable, is 44%, meaning the simulated smoke plume height series explains less than 349 

half of the observed smoke plume height variance.  350 

 351 

The model has a small systematic modeling error with an ME value of 4.6 m, which is only 352 

about 2.5% of the SD value (i.e., MEnorm = 2.5%). Fig.4 is the scatter plot of the simulated vs. 353 

observed smoke plume height values. The model overestimates, exactly estimates, or 354 

underestimates an observed plume height, respectively, if the corresponding point is located 355 

above, on, or below the line with a unit slope. There are comparable numbers of points located 356 

above and below the line. The overestimated values largely offset the underestimated ones, 357 

leading to the small modeling systematic error as seen above. The RMSE and RMSEnorm, 358 

however,  are large at 141 m and 76%.  359 

 360 

It can be seen from the simulated smoke plume series (Fig.5) that the model is able to produce 361 

the observed high plume heights (peak values) for F5, O1, O3, P1, E2, E5 and the low heights 362 

(valley values) for F1, F5, O1, O3, O4, and E3. However, it misses the high heights for O2, E1 363 

and the low heights for F3, F4, F6, and O2, and falsely produces high height for E5 and low 364 

heights for E1 and E6. The cross-validation results are provided in Table 5. The simulated series 365 

has 20, 18, and 20 elements in the positive anomaly, negative anomaly and normal groups, 366 

respectively. The corresponding numbers for the observed series are 16, 19, and 23. The correct 367 

number is 33 out of total 58 elements, leading to a modeling skill of 56%. The corresponding z-368 

score is 3.81, which is greater than the critical value at the 99% confidence level. The p-score is 369 

0.0001, which is smaller than the critical value of 0.01. Thus, the model is statistically 370 

significant.  371 
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 372 

The model for the average smoke plume series  is different from the one for the hourly series  in 373 

several ways. First, the average model contributes about 78% to the variance of the measured 374 

smoke plume height series, which is an absolute increase by 35% from the hourly model. Thus, 375 

the average model has a much improved modeling capacity. Second, the average model has the 376 

ME of 10.5 m and MEnorm of 6.7%, increasing by 5.9 m and 4.2% from the hourly model; the 377 

RMSE of 63 m and RMSEnorm of 40%, however, are reduced by 78 m and 36%. This indicates an 378 

increased systematic error but decreased random error. Third, the magnitude of the standardized 379 

regression coefficient for fuel moisture is much smaller than that for other variables, indicating a 380 

very small contribution from fuel moisture to the variance of the simulated average smoke plume 381 

height.   382 

 383 

The simulated average smoke plume height series follows the observed one very well (Fig.6). 384 

The average model is able to produce all the high and low plume heights except the low height 385 

for F3. It procures falsely the high heights for F6 and E1, but only by small margins. The 386 

simulated average series has 8, 6, and 6 elements in the positive anomaly, negative anomaly, and 387 

normal groups, in comparison with the numbers for the observed series of 7, 5, and 8. The 388 

correct number is 14 out of total 20 elements, leading to a modeling skill of 67%. The 389 

corresponding z-score is 3.48, which is greater than the critical value. The p-value is 0.0005, 390 

which is smaller than the critical value of 0.01.  391 

 392 

b. Alternatives 393 

  394 
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(1) Model without using PBL height 395 

 396 

Several alternative regression models (Table 6), which are statistically significant, were also 397 

formed in case that one of the variables used in the regression model described above (called 398 

reference model hereafter) is not available.  One of them, denoted as RxPH-RAWS, is an alternate 399 

to the regression model RxPH if PBL height is not available. For the hourly series, the alternative 400 

model has the following major changes from the reference model. First, the simulated variance 401 

explains only about 34% of variance of observed smoke plume height, an absolute reduction by 402 

10%. Second, the RMSE and RMSEnorm of 153 m and 82% become slightly larger, meaning a 403 

larger random error.  The model produces larger differences with the observed series for F6, O3, 404 

and E2, though smaller for O4 and E5.  Finally, the correct number is only 29 out of 58 elements, 405 

leading to a lower skill of 49% with a  z-score of 2.69. The p-score is 0.0069, smaller than the 406 

critical value of 0.01.  407 

 408 

Similar differences between the hourly and average series for the reference model are found for 409 

the alternative model. For the average series, the alternative model, however,  produces larger 410 

differences from the observed plume height than the general regression model for most burns 411 

(Fig.6). The skill is 62%, and the z-score is 3.00. The p-score is 0.0027, smaller than the critical 412 

value of 0.01.  413 

 414 

Besides the fact that a regression model will increase the contribution to total variance of the 415 

simulated series with an additional variable, PBL height is a good indicator for PBL 416 
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development; after smoke particles are released from fire, the rise of smoke plume largely 417 

depends on PBL conditions. 418 

 419 

(2) Other alternatives 420 

 421 

The alternative model using air temperature instead of fuel temperature, denoted as RxPH-Ta, is 422 

used if no fuel temperature and moisture are available (Fuel moisture can be obtained using 423 

weather conditions).  The performance of the alternative model is close to that of the reference 424 

regression model. The alternative model using stability factor instead of PBL height, denoted as 425 

RxPH-SF, simulated hourly and average series that explain smaller variances of the 426 

corresponding observed series (0.35 vs. 0.43 for hourly series and 0.68 vs. 0.78 for average 427 

series). The alternative model using transport wind instead of surface wind, denoted as RxPH-Vt, 428 

simulated an hourly series that explains slightly larger variance of the observed series (0.46 vs. 429 

0.43) but smaller variance for average series (0.7 vs. 0.78) than the reference model. 430 

 431 

5. Discussion 432 

 433 

a.  A regression model as well as its alternatives with statistical significance has been 434 

formulated to provide a practical tool for fire managers to estimate plume height of prescribed 435 

burns. To further understand the value of the regression model, the results from the model were 436 

compared with the preliminary results from Daysmoke and the FEPS plume height scheme (the 437 

modified Briggs scheme) in simulating the average plume height series of the 20 prescribed 438 

burns. The results from the two empirical models will be described in detail in Liu et al. (2013). 439 
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the ME and RMSE are -5.6 m and 94 m for the regression model, 19 m and 281 m for 440 

Daysmoke, and 184 m and 765 m  for the FEPS scheme. Thus, the regression model has much 441 

smaller errors for the specific burn cases. The FEPS scheme was found to overestimate plume 442 

height for most burn cases. The reasons are yet to be investigated. One possible reason is that the 443 

scheme does not distinct between wildfires and prescribed fires, but some model parameters may 444 

be more appropriate to wildfires than prescribed fires. For example, the heat release rate in the 445 

scheme is 8000 BTU/lb, which is about 20% higher than the average value suggested for 446 

prescribed burns in the South (SFES, 1976).  447 

 448 

b. The role of fire behavior, another primary factor often used in empirical smoke plume height 449 

models, could have been indirectly included in the regression models because the meteorological 450 

conditions used in this study can impact fire behavior.  It is expected that skills of the regression 451 

models would be improved by directly incorporating heat release, updraft core number (Liu et al. 452 

2010, Achtemeier et al. 2011), and other important information provided from fire behavior 453 

simulation and measurement. Topography is another factor for smoke plume height. For the 454 

prescribed fires conducted in the northwestern U.S. (Harrison and Hardy, 2002), for example, the 455 

burn sites were predominantly located on the lateral slopes of alpine river valleys. The up-valley 456 

thermal winds were locally amplified by heat release from the fires. The plumes did not rise 457 

solely from thermal buoyancy, but were significantly accelerated by up-valley convergence of 458 

horizontal winds. 459 

 460 

The approach of not directly using fire-related factors in the regression model does not mean that 461 

these factors are less important for smoke plume height prediction. They were not used because 462 
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the primary purpose of the regression model was to provide a practical tool for fire manages. 463 

This type of approach has been widely used in statistical weather forecast. For example, 464 

precipitation is determined by dynamic lifting mechanism (vertical velocity), thermal instability, 465 

and water vapor supply. Some statistical precipitation forecast models only use the last two 466 

factors. This does not mean that the first one is less important; it is not used often due to the 467 

difficulty in obtaining a quality value for the factor. This way makes the models only using the 468 

last two factors a more practical tool for meteorological managers and users. 469 

 470 

c. Empirical smoke plume height models are easy to use and computation effective. With 471 

measured or predicted fire and meteorological conditions, the models are able to provide speedy 472 

plume height information for air quality models (AQM). One of the issues with the models for 473 

prescribed burning is the possible low accuracy. For the FEPS scheme, which is one of the two 474 

plume height schemes used by the EPA community multiple-scale air quality (CMAQ) model, 475 

may sometimes lead to large errors for prescribed burns, as shown above.  476 

 477 

Other techniques for plume height also have both advantages and disadvantages. Dynamic plume 478 

height models are more complete description of physics and have been used in some AQMs such 479 

as WRF-Chem. The models, however, usually include many parameters that need to be 480 

empirically specified or parameterized. The models themselves need temporal integration and 481 

therefore present a speed disadvantage in comparison with empirical models. The complexity 482 

and time costing present an issue for fire managers.  483 

 484 
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Plume height measurements are needed for model development and evaluation. They, however, 485 

have a timing issue for AQM. They only provide information while the measurements are taking, 486 

but not at later times, which is also needed by AQM. Satellite measurements have limited 487 

frequency and specific time of passing over a specific location and therefore often miss a large 488 

number of prescribed burns which often have very short burning periods. Also, satellite is 489 

difficult to detect small prescribed burns, especially if they occur understory, while ground 490 

measurements are too expensive to be installed at every burn site across a region. 491 

 492 

Thus, any specific model or technique, including the model developed in this study, could 493 

provide more useful plume height information than other models or techniques for AQM only 494 

under certain specific circumstances. The regression model developed in this study is expected to 495 

be a practical tool for fire managers and also a useful tool for AQM with improved skill in plume 496 

height prediction for prescribed burning. 497 

 498 

6. Conclusions 499 

 500 

A regression model for smoke plume height as well as alternatives has been developed and 501 

evaluated using the measured smoke plume heights of 20 prescribed fires in the southeastern 502 

United States, together with the measured and simulated meteorological conditions near the burn 503 

sites. The model was found statistically significant. The model can be used to simulate plume 504 

heights for individual hours during a prescribed fire or averaged height over the burn period. The 505 

model showed more capable of explaining the observed variance of the average  than hourly 506 
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smoke plume height series. The model skill was found to be improved by adding PBL height 507 

information to RAWS varaibles. 508 

 509 

The RAWS measurements used in the model are easily obtained by forest managers. Thus, the 510 

regression model could be a practical tool for them. The regression model also showed improved 511 

skill over some existing empirical models for the measured prescribed burn cases. This suggests 512 

that it may have the potential in improving air quality modeling. Further evaluation for other 513 

regions, however, should be conducted to understand how robust the model’s performance is. 514 

 515 

 516 
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Tables  628 

            Table 1 Prescribed fire information. 629 

Site Fire Date Acre Period  Length 

(hr) 

Element # 

hour ave 

Ft. 

Benning 

F1 2009/1/14 364 13-14 2 1-2 1 

F2 2009/1/15 583 13 1 3 2 

F3 2009/4/8 236 13-14 2 4-5 3 

F4 2009/4/9 343 13-14 2 6-7 4 

F5 2010/4/28 1000 14-15 2 8-9 5 

F6 2010/4/29 447 11-13 3 10-12 6 

Oconee O1 2009/3/24 1580 13-15 3 13-15 7 

O2 2010/3/25 2500 11-14 4 16-19 8 

O3 2010/4/1 725 12-15 4 20-23 9 

O4 2010/4/2 1069 12-14 3 24-26 10 

O5 2010/4/7 996 1-15 6 27-32 11 

Piedmont P1 2009/4/27 1195 12-14 3 33-35 12 

Eglin E1 2009/5/6 500 14-15 2 36-37 13 

E2 2009/5/7 641 12-16 5 38-42 14 

E3 2009/5/8 1058 15-16 2 43-44 15 

E4 2009/6/6 1500 14-15 2 45-46 16 

E5 2009/6/7 1600 12-16 4 47-50 17 

E6 2011/2/6 1650 14-15 2 51-52 18 

E7 2011/2/8 2046 13-15 3 53-55 19 

E8 2011/2/12 500 12-14 3 56-58 20 
 630 

 631 

 632 

Table 2 Trends of hourly smoke plume height and meteorological variables. The signs represent 633 

increase (/), decrease (\), and flat with or without fluctuation (−).  634 

Plume   

trend 

Fire Meteorological variable trends 

Wind Fuel temp Fuel moist PBL height 

  Increase  F1,F3,O3,P1,E1,E8 /, /, \, /, /, − /, \, /, /, \, − \, \, \, \, \, \ /, /,−，/, \, / 

O2,O4,O5, E2,E5 \, −, −,  /, / \, /, /, −, \ \, \, \,  \, \ −, /, /,   /, / 

Decrease   F4,O1,E3, E4,E6 /, \, /, \, − \, \,  \, −, \ \, −, /, /, \ \, −, −, −, − 

Flat  F5, F6, E7 \, \, − −, /, \ \, \, − /, −, − 
 635 
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Table 3 Statistics of smoke plume height and meteorological variables. The notations of Ave, 636 

SD, and r represent average, standard deviation, and correlation coefficient between plume 637 

height and a meteorological variable. 638 

Plume height / 

meteorological variable 

Unit Hourly series Average series 

Ave SD r (%) Ave SD r (%) 

Hobs Plume height m 1048 187 (-) 1023 158 (-) 
Vsfc Surface wind m/s 2.9 0.8 -21.6 3.0 0.8 -42.2 
Ta Air temperature 

o
C 23.6 6.8 46.4 22.4 7.4 67.4 

Tf Fuel temperature 
o
C 31.5 8.1 43.4 30.2 8.5 68.3 

Mf Fuel moisture % 8.4 2.0 -52.6 8.7 2.1 -58.5 

Rh Air humidity % 43.2 13.2 2.4 42.0 12.8 20.1 

HPBL PBL height m 1320 385 44.8 1289 365 58.2 

Vt Transport wind m/s 5.7 2.5 -15.2 5.5 2.4 -23.4 

SF Stability factor m/s
2
 0.3 0.1 39.5 0.3 0.1 53.8 

 639 

 640 

Table 4 Regression model. b0 is interceptor. b1-b4 are regression coefficients for surface wind, 641 

fuel temperature, fuel moisture, and PBL height. ME and RMSE are mean error and root mean 642 

squared error. r2 is squared correlation coefficient. 643 

Model 

 

Regression coefficient Error r
2
 

b0 b1 b2 b3 b4  ME RMSE 

RxPH Hourly 1112 -63.85 3.849 -25.78 0.163 4.6 141 0.43 

Average 711 -83.58 11.26 3.60 0.150 10.5  63 0.78 

 644 

 645 

Table 5 The z-score and p-score of regression model. G1, G2, and G3 are the numbers of smoke 646 

plume height series elements occurring in positive anomaly, negative anomaly, and normal 647 

groups. Nc is the correct number and S is correct percent. 648 

 649 

 650 

 651 

 652 

 653 

 654 

Model Simulation Observation  Nc 

(S, %) 

z-

score 

p-score 

G1 G2  G3 G1 G2 G2 

RxPH 

 

Hourly 20 18 20 16 19 23 33 (56) 3.81 0.0001 

Average 8 6 6 7 5 8 14 (67) 3.48   0.0005 
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Table 6 Same as Table 4 except for alternative regression models. b1-b4 are regression 655 

coefficients for surface wind (Vsfc), fuel temperature (Tf), and fuel moisture (Mf) for RxPH-656 

RAWS (b4 is not used), Vsfc, air temperature, Mf, and PBL height (HPBL) for RxPH-Ta, Vsfc, Tf, 657 

Mf, and stability factor for RxPH-Sf, and transport wind, Tf, Mf, and HPBL for RxPH-Vt. 658 

Model 

 

Regression coefficient Error r
2
 

b0 b1 b2 b3 b4  ME RMSE 

RxPH-RAWS  Hourly 1350 -53.70 4.544 -34.66  4.1 153 0.33 

Average 971 -85.79 12.03 -5.980  6.9  79 0.69 

RxPH-Ta  Hourly 1111 -64.95 5.425 -24.64 0.153 4.6 141 0.43 

Average 885 -82.56 11.19 -4.06 0.133 9.6  69 0.75 

RxPH-SF Hourly 1031 -38.89 6.246 -27.75 688.4 3.9 151 0.35 

Average 575 -58.42 13.48 5.434 731.9 6.0  81 0.68 

RxPH-Vt  Hourly 1008 -15.73 5.330 -27.85 0.198 1.9 152 0.46 
Average 572 -20.74 12.05 1.500 0.204 14.7  85 0.70 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 
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Figure captions 676 

Figure 1 Variation trends of hourly plume height (blue) and meteorological variables. One panel 677 

is for one fire. The x-axis is hours during a fire.  The y-axis is smoke plume height. The value 678 

ranges for meteorological variables (not shown) are between 1-5 m/s for surface wind speed 679 

(red), 10-50
o
C for fuel temperature (brown), 5-15% for fuel moisture (green), and 600-2200 m 680 

for PBL height (pink). 681 

 682 

Figure 2 Variations of normalized hourly smoke plume height (blue) and meteorological 683 

variables (red). The panels from top to bottom are for wind, fuel temperature, fuel moisture, and 684 

PBL height. The minor ticks in the x-axis are different hours during a fire. The vertical lines 685 

separate various series portions. 686 

 687 

Figure 3 Same as Figure 2 except for average series. 688 

 689 

Figure 4 Scatter plots of the observed (x-axis) vs. simulated (y-axis) smoke plume height. RxPH 690 

is the reference regression model.  RxPH-RAWS is the alternative regression model without 691 

using PBL height. r
2
 is squared correlation coefficient. 692 

 693 

Figure 5 Normalized observed (blue), and simulated hourly smoke plume height with RxPH (the 694 

reference regression model) in red and RxPH-RAWS (the alternative regression model without 695 

using PBL height) in green.  The minor ticks in the x-axis are different hours during a fire. 696 

 697 

Figure 6 Same as Figure 5 except for average smoke plume height. 698 
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 699 
 700 

Figure 1 Variation trends of hourly plume height (blue) and meteorological variables. One 701 

panel is for one fire. The x-axis is hours during a fire.  The y-axis is smoke plume height. 702 

The value ranges for meteorological variables (not shown) are between 1-5 m/s for surface 703 

wind speed (red), 10-50
o
C for fuel temperature (brown), 5-15% for fuel moisture (green), 704 

and 600-2200 m for PBL height (pink). 705 

 706 

 707 
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 708 
 709 

Figure  2 Variations of normalized hourly smoke plume height (blue) and 710 

meteorological variables (red). The panels from top to bottom are for wind, fuel 711 

temperature, fuel moisture, and PBL height. The minor ticks in the x-axis are 712 

different hours during a fire. The vertical lines separate various series portions.  713 

 714 
 715 
 716 
 717 
 718 
 719 
 720 
 721 
 722 
 723 
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 724 
                         Figure 3 Same as Figure 2 except for average series. 725 
 726 
 727 
 728 

 729 
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 730 
Figure 4 Scatter plots of the observed (x-axis) vs. simulated (y-axis) smoke plume height. 731 

RxPH is the reference regression model.  RxPH-RAWS is the alternative regression 732 

model without using PBL height. r
2
 is squared correlation coefficient.  733 

 734 

 735 

 736 

 737 

 738 

 739 
 740 
 741 
 742 
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 743 
Figure 5 Normalized observed (blue), and simulated hourly smoke plume height with RxPH 744 

(the reference regression model) in red and RxPH-RAWS (the alternative regression 745 

model without using PBL height) in green.  The minor ticks in the x-axis are different 746 

hours during a fire. 747 

 748 
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 758 
 759 
                   Figure 6 Same as Figure 5 except for average smoke plume height. 760 
 761 
 762 


