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ABSTRACT

We examined the effects of three early season (spring) prescribed fires on burn severity patterns of sum-
mer wildfires that occurred 1-3 years post-treatment in a mixed conifer forest in central Idaho. Wildfire
and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR)
using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate
models predicting the wildfire burn severity of 1286-5500 30-m pixels within and around treated areas.
We found that wildfire severity was significantly lower in treated areas than in untreated areas and sig-
nificantly lower than the potential wildfire severity of the treated areas had treatments not been imple-
mented. At the pixel level, wildfire severity was best predicted by an interaction between prescribed fire
severity, topographic moisture, heat load, and pre-fire vegetation volume. Prescribed fire severity and
vegetation volume were the most influential predictors. Prescribed fire severity, and its influence on
wildfire severity, was highest in relatively warm and dry locations, which were able to burn under spring
conditions. In contrast, wildfire severity peaked in cooler, more mesic locations that dried later in the
summer and supported greater vegetation volume. We found considerable evidence that prescribed fires
have landscape-level influences within treatment boundaries; most notable was an interaction between
distance from the prescribed fire perimeter and distance from treated patch edges, which explained up to
66% of the variation in wildfire severity. Early season prescribed fires may not directly target the locations
most at risk of high severity wildfire, but proximity of these areas to treated patches and the discontinu-
ity of fuels following treatment may influence wildfire severity and explain how even low severity treat-

ments can be effective management tools in fire-prone landscapes.

Published by Elsevier B.V.

1. Introduction

Prescribed fires are often implemented to lower the probability
of severe wildfires that could damage ecosystems and property
(Agee and Skinner, 2005; Peterson et al., 2005; Reinhardt et al.,
2008). This is generally accomplished through reductions in sur-
face, ladder, and canopy fuels (Hunter et al., 2007). In ponderosa
pine and mixed conifer forests, these treatments are typically con-
ducted under cooler, moister conditions in the spring or fall (rela-
tive to the warmer, dryer conditions under which wildfires burn)
when fire spread and size can be controlled. Burning under these
conditions generally results in low severity, patchy fires that con-
sume low to moderate amounts of fuels. Despite the low severity
of prescribed fires, there is considerable empirical evidence that
prescribed fires successfully reduce severity and modify behavior
(e.g. spread) of subsequent wildfires (Pollet and Omi, 2002; Finney
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et al., 2005; Lezberg et al., 2008; Wimberly et al., 2009; Prichard
et al., 2010; Fulé et al., 2012).

There are many environmental variables that influence fire
severity, including weather, climate, topography, and the types,
amounts, and moisture content of vegetation (Pyne et al., 1996;
Dillon et al., 2011). Wildfires in the northern Rocky Mountains typ-
ically burn during summer when living and dead vegetation is par-
ticularly dry. Windy, low humidity conditions tend to increase fire
intensity, resulting in increased fire spread (usually via crown fire)
and burn severity (Graham et al., 2004). Steeper slopes often have
higher burn severities because flames can easily propagate into
canopies and fire moving uphill tends to pre-heat air and fuels
resulting in better combustion (Lentile et al., 2006). Forest struc-
tural characteristics, such as canopy base height and tree density,
are also important factors influencing burn severity patterns with-
in landscapes (Scott and Reinhardt, 2001; Pollet and Omi, 2002;
Peterson et al., 2005; Lentile et al., 2006; Jain and Graham, 2007).

Prescribed fires are generally intended to alter forest structure
in a manner that decreases surface fuels, ladder fuels, and small
tree densities (Graham et al., 2004; Agee and Skinner, 2005). Most
fires are small and target individual stands (usually <1000 ha), but
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landscape-level treatments are becoming more common (Hunter
et al., 2007). Prescribed fires are generally effective at reducing sur-
face and some ladder fuels, but generally do not alter canopy fuels
(Kilgore and Sando, 1975; Knapp and Keeley, 2006; Stephens and
Moghaddas, 2005; Stephens et al., 2009). Some studies suggest that
mechanical thinning implemented prior to prescribed burning is
more effective than prescribed burning alone at reducing canopy
bulk density and wildfire hazard (Pollet and Omi, 2002; Symons
et al., 2008; Stephens et al., 2009), whereas others indicate that
thinning alone has little effect on wildfire severity (Prichard
et al., 2010). Rapid understory regeneration and litter accumula-
tion following prescribed fire may require repeat treatments up
to once per decade (Fernandes and Botelho, 2003; Skinner, 2005;
Knapp et al., 2007; Battaglia et al., 2008).

The ecological patterns and processes that influence the effec-
tiveness of prescribed fires are still relatively unknown. This lack
of understanding is the result of simple comparisons of wildfire
severity within prescribed fire perimeters relative to surrounding
untreated areas. This approach, while informative, does not iden-
tify the conditions within the prescribed fire perimeter that con-
tributed to its effectiveness at reducing wildfire severity. These
may include prescribed fire severity and continuity (i.e. patchiness
of burned areas interspersed amongst areas where little organic
matter was consumed), as well as pre-fire vegetation conditions,
the patchiness of this vegetation, topography, and other character-
istics. Further, no studies have examined the conditions where
these treatments are the most and least effective at reducing wild-
fire severity, nor whether prescribed fires burn the same areas of
the landscape that are likely to burn at high severity in a wildfire.
Finally, to quantify treatment effectiveness, no studies have com-
pared the observed burn severity of an area to model estimates
of how the area would have burned in a wildfire had it not been
treated previously with prescribed fire.

The goal of this paper was to examine how prescribed fire char-
acteristics interact with vegetation and topographic conditions to
influence subsequent wildfires. We addressed four questions: (1)
do prescribed fires reduce subsequent wildfire severity relative to
potential wildfire severity had treatments not been implemented,
(2) how do vegetation, topography, and prescribed fire severity
influence prescribed fire effectiveness, (3) how does landscape
context (i.e. position within vegetation patches, treatment patches,
and treatment boundary) combine with local conditions to influ-
ence wildfire severity, and (4) do prescribed fires treat locations
most at risk of high severity wildfires?

2. Methods
2.1. Study area

This study was conducted in the South Fork Salmon River drain-
age on the Payette National Forest, ID, USA (Fig. 1). Our study sites
were in steep terrain with elevations ranging from 1106-2467 m.
Upland vegetation was dominated by Douglas fir (Pseudotsuga
menziessi) on north-facing slopes, and by mixed ponderosa pine
(Pinus ponderosa) and fir, shrubland, and grassland communities
on south-facing slopes. Climate was characterized by cold, snowy
winters, and hot, dry summers. From 1471 to 1948, the fire return
interval in these catchments averaged 10 years (Barrett, 2000), but
likely varied with forest type and climate trends (Agee, 1998;
Pierce et al., 2004). Since 1948 a fire suppression program limited
the size and severity of most wildfires. The area is mostly roadless
and has had no timber harvest or livestock grazing in the past 40-
50 years. Prescribed fire treatments were conducted under dry,
low-wind conditions in early May 2004 (Parks site) and early
May 2006 (Fitsum and Williams sites) using incendiary objects

dropped from a helicopter and hand-held drip torches near treat-
ment perimeters. Methods, guidelines, and treatment objectives
were the same for all three prescribed fires and are described in
Arkle and Pilliod (2010). The Parks treatment burned within a
1052 ha area (29% Unburned-Low, 57% Low, 13% Moderate, and
0.7% High severity). The Fitsum prescribed fire burned within an
area of 696 ha (58% Unburned-Low severity and 41% Low severity)
and the Williams treatment burned 1035 ha (77% Unburned-Low
severity and 22% Low severity). Less than 1% of the Fitsum and Wil-
liams sites burned at Moderate or High prescribed fire severity. In
2007, the Zena, Loon, Monumental, and Riordan Wildfires burned
much of the area, including the three treated sites, between late
July and September in a mosaic of burn severities and unburned
patches (Fig. 1).

2.2. Data sources and variable development

We used 30-m raster GIS data for each variable in our analyses.
The burn severity of prescribed fires (RXSEV) and the 2007 wild-
fires (WILDSEV) was quantified in each pixel using the differenced
normalized burn severity ratio (ANBR) from Landsat imagery ob-
tained before and after each fire (Supplemental Table 1). We used
dNBR data and burn severity class breakpoints (for descriptive pur-
poses) obtained from the Monitoring Trends in Burn Severity data-
base (MTBS; Eidenshink et al., 2007) when available. We found that
dNBR correlated well with ground-based assessments of burn
severity at these sites (Supplemental Fig. 1; Table 1) and it is an
accurate index of burn severity at the 30-m spatial scale (Holden
et al., 2010). We used unclassified, square root transformed dNBR
values of RXSEV and WILDSEV in all of our models (Table 1). We
employed the (ANBR+700)*° transformation used by Finney et al.
(2005) to facilitate comparisons between studies and to normalize,
re-scale, and aid in the interpretation of our burn severity data.

For each pixel, we used data from digital elevation models to
quantify the following topographic variables: ELEVATION, SLOPE,
ASPECT, heat load index (HEATLOAD), and topographic relative
moisture index (TRMI). HEATLOAD values are unitless and were
obtained by transforming ASPECT such that the coolest slopes
(northeast-facing) have a value of 0 and the warmest slopes
(southwest-facing) have a value of 1 (McCune and Grace, 2002).
TRMI data, also unitless, ranged from 1-27, with high values indi-
cating mesic areas (Manis et al., 2001). Table 2 contains descrip-
tions of all variables.

We used LANDFIRE data (Rollins and Frame, 2006) to quantify
the vegetation conditions of each pixel. Variables include vegeta-
tion type (VEGTYPE), percent canopy cover (VEGCOV), vegetation
height (VEGHT), and vegetation volume (VEGVOL; calculated as
in Table 2) as a proxy for biomass or vegetation bulk density.

Using GIS processes, we developed several variables represent-
ing the landscape context of each pixel (Table 2 and Supplemental
Fig. 2). For each pixel we determined the closest distance (meters)
to the prescribed fire treatment perimeter (RXPERIMDIST). We also
calculated the distance from each pixel to the nearest edge of a
contiguous patch where prescribed fire burn severity was >27
(RXPATCHDIST; i.e. RXSEV > low severity). Some pixels that were
outside of the prescribed fire treatment boundary exhibited spec-
tral changes analogous to those of low severity prescribed fire.
We included these pixels in our analyses of RXPATCHDIST because
they likely represent areas of some other disturbance (e.g. beetle
kill or blow-down) that could potentially explain variation in wild-
fire severity in the areas surrounding prescribed fire treatments.
We developed two variables that represent the vegetation patch
conditions surrounding each pixel. The first variable (HIVOLDIST)
is the distance from a given pixel to the edge of a patch of high veg-
etation volume (contiguous area where VEGVOL > 10 x 10° m®).
The 10 x 10> m* cutoff was selected because approximately 50%
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Fig. 1. Map of prescribed fire treatment perimeters (polygons) within the South Fork Salmon River drainage, Payette National Forest, Idaho. Landsat derived wildfire severity
is shown. Inset gives the location of the treatment sites and the 2007 wildfires that burned one to three years post-treatment.

Table 1

MTBS derived burn severity ranges for each burn severity class. Equivalent square
root transformed ranges are given for predictor and response variables (WILDSEV and
RXSEV) used in NPMR analyses. For validation purposes, the number of field plots
falling within each burn severity class is given along with the mean percentage of
canopy identified by field crews as black and brown within those plots.

Class ANBR WILDSEV n Field Ave.% Plot Ave.% Plot
or RXSEV Plots Canopy Black Canopy
Brown
Unburned-Low -254to 75 21.12-27.85 10 0.25 1.94
Low 76 to 225  27.86-30.42 38 1.5 8.19
Moderate 226 to 410 30.43-33.32 25 8.5 40.1
High 411 to 1081 33.33-42.21 23 69.1 28.7

of the forested pixels had vegetation volumes greater, and 50% had
vegetation volumes lower than this value. The second variable
(LOVOLDIST) is the distance from a given pixel to the edge of a
patch of low vegetation volume (contiguous area where VEG-
VOL<2 x 10°m?). The 2 x 10° m>® cutoff was selected because
most non-forested pixels had vegetation volumes below this value.
For each of these four landscape context variables, more negative
distance values indicate that the pixel was further outside of a
patch (or treatment perimeter), and more positive values indicate
that the pixel was further inside the patch (or treatment perime-
ter). Values close to 0 m indicate that the pixel was either near a
patch edge, or that the pixel was in the interior of a relatively small
patch. The three patch variables were created using a 3 by 3 mov-

ing window average to smooth the raster data into contiguous
patches prior to calculating the distance from each pixel to a patch
edge.

2.3. Data analysis

Using GIS processing, we buffered each prescribed fire treat-
ment boundary by 1 km to obtain pixels from the landscape sur-
rounding each treatment. From the population of pixels within a
treatment and within the treatment buffer (i.e. site), we subsam-
pled on a regular spacing interval of 60 m (sensu Wimberly et al.,
2009) to minimize coregistration error and to increase indepen-
dence among sample units. Data used to address questions 1 and
4 were subset into treated or untreated areas prior to analysis.
For each model used to address questions 2 and 3, we equalized
sample sizes of pixels inside and outside of the prescribed fire
boundary by randomly selecting pixels from the region with an ex-
cess. This step ensured that the effects of predictor variables on
wildfire severity are not biased by a low sample size, since data
from both treated and untreated areas were included in each of
these models. Only pixels that were burned by wildfire, or by
prescribed fire and wildfire, were used to develop predictive mod-
els. This provides more conservative estimates of prescribed fire
effectiveness. For example, portions of the Parks site that were
treated with prescribed fire, but unburned in the wildfire, were ex-
cluded from analyses despite observational evidence suggesting
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Descriptions of variables used, or potentially used, in NPMR analyses.
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Variable type Variable Obs. range Units Source Description
Response WILDSEV 20.2-42.2 - Landsat 5 Pre- to post-wildfire, Landsat derived change in normalized burn ratio,
transformed as: (700+dNBR)*>
Pixel-level predictor RXSEV 20.1-36.9 - Landsat 5 Pre- to post-prescribed fire, Landsat derived change in normalized
burn ratio, transformed as: (700+dNBR)*>
ELEV 1106-2467 meters DEM Mean elevation of the pixel
SLOPE 0-360 degrees DEM Mean slope of the pixel
ASPECT 0-73 degrees DEM Aspect of the pixel
HEATLOAD 0-1 - DEM Transformed ASPECT such that 0 = coolest and 1 = warmest slopes
TRMI 1-27 - Calculated  Expected relative moisture content based on topography, 1 = most
xeric, 27 = most mesic. Based on Manis et al. (2001).
VEGTYPE - Categorical LANDFIRE LANDFIRE SAF Existing Vegetation Type
VEGCOV 5-95 percent LANDFIRE  Calculated using mid-points of LANDFIRE Existing Vegetation Cover
classes
VEGHT 0.25-37.5 meters LANDFIRE Calculated using mid-points of LANDFIRE Existing Vegetation Height
classes
VEGVOL 10-32 x 10° m> LANDFIRE  Calculated as: pixel area (900 m?) x VEGCOV x VEGHT
Spatial predictor EASTING 596,580-620,010 meters GIS Easting coordinates measured in WGS_84_UTM_zone_11 N
NORTHING 49,77,360-49,86,930  meters GIS Northing coordinates measured in WGS_84_UTM_zone_11 N
Patch-level predictor =~ RXPERIMDIST  —1000-+1247 meters Calculated  Number of meters outside (negative), or inside (positive) the nearest
edge of a treatment perimeter
RXPATCHDIST  —1312 to +510 meters Calculated  Number of meters outside (negative), or inside (positive) nearest edge
of a contiguous treatment patch with RxSev > 27
HIVOLDIST —379 to +362 meters Calculated  Number of meters outside (negative), or inside (positive) nearest edge
of a contiguous patch where VEGVOL > 10 x 10> m?
LOVOLDIST —999 to +241 meters Calculated  Number of meters outside (negative), or inside (positive) nearest edge

of a contiguous patch where VEGVOL < 2 x 10> m?

that these areas would have likely burned had there been no pre-
wildfire treatment.

To address each research question, we used nonparametric
multiplicative regression (NPMR; HyperNiche 2.16; McCune and
Mefford, 2009), which allowed us to determine how treatment,
topographic, vegetation, and landscape context variables combine
in non-linear, multiplicative ways to influence wildfire severity
at a given site (McCune, 2006; McCune, 2009). In each NPMR anal-
ysis, we used the local linear model with Gaussian weighting func-
tions to conduct a free search of combinations of predictor
variables and tolerances (tolerance =SD of Gaussian weighting
function for each predictor) that maximized model fit (assessed
by cross-validated R?, or xR?) and minimized over-fitting (assessed
by a minimum average neighborhood size, a minimum data-to-
predictor ratio, and an improvement criterion). The best fitting
model for each analysis was the model with a given number of pre-
dictor variables that resulted in a >3% increase in xR? over the
competing model with one fewer predictor variables. We report
XR?, the average neighborhood size (N*; mean number of sample
units contributing to the estimate of the response variable at each
point on the modeled surface), and for quantitative predictor vari-
ables, tolerance and sensitivity values. High tolerance values (rela-
tive to the range of the predictor variable) indicate that data points
with a greater distance (in predictor space) from the point targeted
for estimation, contribute to the estimate of the response variable’s
value at the target point. Sensitivity, which ranges from 0 to 1,
indicates the relative importance of each predictor in the model.
Predictors with sensitivity values of 1 have the maximum influence
possible, whereas a value of zero indicates that the variable has no
influence on the response variable.

2.3.1. Prescribed fire effectiveness

We addressed question 1 using two different approaches. First,
we performed a matched pairs t-Test (SAS 9.2, SAS Institute Inc.,
Cary, NC, USA) on the observed mean wildfire severity of pixels
in treated (n = 3 treated areas) and untreated (n = 3 treatment buf-
fers) areas to determine if treated pixels had a significantly lower
wildfire severity than pixels in surrounding areas. Second, we
developed a model predicting wildfire severity only in the buffer

around each treatment using pre-fire vegetation, topographic,
and vegetation patch variables (“Wildfire Potential Model”). We
applied the model to all pixels (both to buffer pixels used to devel-
op the model and to treated pixels which were not used in model
development) to estimate wildfire severity. The results of this
model provide an estimate of potential burn severity within trea-
ted areas, had prescribed fires not been conducted. They can also
show that treated areas are not inherently less susceptible to wild-
fire than surrounding areas. We used these model outputs to calcu-
late the mean proportion of pixels in each of four burn severity
classes for each treated area (n=3) and for each untreated buffer
area (n = 3). We also performed a matched pairs t-Test on the ob-
served mean wildfire severity of pixels in treated areas (n=3)
and the potential (based on Wildfire Potential Model predictions)
mean wildfire severity of pixels in the same treated areas (n = 3).

2.3.2. Within-pixel predictors of wildfire severity

To evaluate question 2, we developed a NPMR model for each
site, using only potential predictor variables that described the
characteristics (prescribed fire severity, topography, and vegeta-
tion) within pixels (“Pixel-level Model”). This model indicates the
relative importance of these predictors at the same spatial scale
at which wildfire severity is being assessed.

2.3.3. Landscape-context predictors of wildfire severity

To evaluate question 3, we developed a NPMR model (“Patch-
level Model”) for each prescribed fire, using only patch-scale po-
tential predictor variables that describe the landscape context of
each pixel (e.g. RXPERIMDIST, RXPATCHDIST, HIVOLDIST, LOVOL-
DIST). This model assesses the importance of the landscape context
of pixels in the absence of any information about the treatment,
topographic, or vegetative conditions within the pixel itself. We
also developed a “Pixel+Patch Model” using potential predictor
variables that describe both within-pixel conditions and the land-
scape context of each pixel. This model indicates the relative
importance of variables at both spatial scales.

We developed a “Spatial Model” using only UTM coordinates,
which when modeled together multiplicatively, indicate the
amount of variability in wildfire severity that can be attributed
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to the geographic location of the pixel alone (i.e. a high xR? indi-
cates high spatial autocorrelation). The variables and tolerances fit-
ted in the Spatial Model were added to each of the best Pixel-level,
Patch-level, and Pixel+Patch Models to assess the change in model
fit when geographic information is added. These models do not re-
move the effects of spatial autocorrelation as is often the goal of
autoregression-type analyses, but instead include spatial effects,
allowing for comparisons of the relative contribution and overlap
of information represented by variables in the combined models.
Although spatial autocorrelation can bias hypothesis tests, it does
not necessarily bias model estimates (Hawkins et al., 2007). It is
these estimates of the predictive ability of independent variables,
and not formal hypothesis tests, that are the focus of our approach.

2.3.4. Differences between prescribed fire and wildfire
We addressed question 4 by separately modeling the relation-
ship between two topographic variables, HEATLOAD and TRMI,

(a) Observed wildfire severity
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and wildfire severity in untreated pixels. We then compared these
relationships to those between HEATLOAD, TRMI, and prescribed
fire severity in treated pixels, focusing on how wildfire and pre-
scribed fire differ with regards to burn severity magnitude and
the location of peak burn severity along gradients of the two topo-
graphic predictors.

3. Results
3.1. Prescribed fire effectiveness

Observed wildfire severity (WILDSEV) was heterogeneous and
patchy at all three sites (Fig. 2). Mean observed WILDSEV was sig-
nificantly lower in treated areas than in untreated buffers (n=3
paired treated and untreated areas, mean difference = 3.61 WILD-
SEV units, SE =0.44, t=8.11, p=0.015; Supplemental Fig. 3). The
highest mean WILDSEV was in the untreated buffer around the

Kilometers
0 4 0

Wildfire severity

mm Unburned to Low
—Low
—1Moderate

mm High

O Kilometers

4

e Kilometers
0 4

Fig. 2. For Williams, Fitsum, and Parks sites (left to right), (a) observed wildfire severity (based on dNBR calculated from Landsat 5 imagery), (b) modeled burn severity (based
on predictions from NPMR Pixel+Patch Models), and (c) potential wildfire severity had treatments not been conducted (based on predictions from NPMR Wildfire Potential
Models). Black lines indicate treatment perimeters. All data clipped to within 1 km of a treatment perimeter.
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Fig. 3. (a) Observed mean wildfire severity distribution for pixels in untreated (unshaded bars) and prescribed fire treated (shaded bars) areas. (b) For pixels located within
treatment perimeters only, the potential wildfire severity (unshaded bars; based on Wildfire Potential Models) had no treatments occurred and the observed (shaded bars)
wildfire severity. Values indicate the average (+1 SE) proportion of pixels in each burn severity class at n = 3 sites.

Williams prescribed fire, whereas the lowest mean WILDSEV was
within the Parks prescribed fire treatment, the oldest of the three
treatments. Mean severity within the Parks treatment area would
have been lower if calculations included areas that were unburned
by the wildfire. The largest difference between a treated area and
the corresponding untreated area was at the Williams site. The
proportion of pixels (i.e. area) in each burn severity class was con-
sistent across sites for both treated and untreated areas, with un-
treated buffers having substantially more area in the higher burn
classes (Fig. 3a).

The three Wildfire Potential Models explained 60-66% of the
variation in WILDSEV of untreated pixels (Table 3). When we ap-
plied and mapped these model estimates to treated areas (i.e. to
predict potential wildfire severity had these areas not been trea-
ted), we found that the proportion of pixels in low, moderate,
and high severity classes was substantially reduced by the three
prescribed fire treatments relative to potential WILDSEV values
for these areas (Fig. 2a versus 2c). Based on estimates from the
Wildfire Potential Models, the proportion of pixels in the un-
burned-low class was about 4-fold greater because of treatment
(Fig. 3b). Mean observed WILDSEV was significantly lower in trea-

ted areas than mean potential WILDSEV in treated areas (n=3
paired observed and potential values, mean difference =3.03
WILDSEV units, SE = 0.61, t=4.90, p = 0.039; Supplemental Fig. 4).

3.2. Within-pixel predictors of wildfire severity

Pixel-level Model fit was strong for each of the prescribed fires,
with xR? ranging from 0.46-0.58 (Table 3). Three within-pixel vari-
ables were consistently important predictors of wildfire severity:
HEATLOAD, RXSEV, and VEGVOL (Supplemental Table 2). For each
of the three sites, VEGVOL was the most influential variable,
followed by RXSEV, then HEATLOAD. TRMI and ELEVATION were
included in one model each. The inclusion of ELEVATION in the
Parks prescribed fire model was driven by an increase in WILDSEV
with ELEVATION in the untreated buffer, not within treated pixels.
TRMI was likely included in the Williams model because at this site
there was a greater range of xeric to mesic values that did not
correlate as strongly with HEATLOAD. SLOPE was not an important
predictor of wildfire severity for any of the three sites, nor were
VEGTYPE, VEGCOV, or VEGHT, likely because of correlations with
VEGVOL, the strongest predictor of WILDSEV.
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Table 3

NPMR results for four different models predicting wildfire severity at three different
sites in and around prescribed fire treatments. Different model types include different
combinations of potential predictor variables and different subsets of input data.

Site Model xR? %AXR? N*
Williams Wildfire Potential 0.62 3.8 110.9
Pixel-level 0.58 5.2 229.7
Patch-level 0.66 54 141.5
Pixel+Patch 0.69 3.2 75.0
Fitsum Wildfire Potential 0.60 7.9 76.0
Pixel-level 0.50 11.0 415.0
Patch-level 0.55 5.0 99.2
Pixel+Patch 0.63 3.0 53.9
Parks Wildfire Potential 0.66 39 39.9
Pixel-level 0.46 5.1 156.2
Patch-level 0.56 3.2 66.0
Pixel+Patch 0.59 34 82.1

XR? is the cross validated R? value calculated using a leave-one-out approach, which
provides an estimate of model fit where the error rate in the training data
approximates that of the prediction data.

%AXR? is the percent change in model fit (xR?) when the final variable is added to
develop the best model. This value must be >3 to justify including the final variable
in the model.

N* is the average number of data points contributing to estimates of each point on
the model surface. Higher values indicate that on average estimates of the response
variable are well supported throughout the predictor space.

WILDSEYV increased with VEGVOL, but across the VEGVOL gradi-
ent, WILDSEV was substantially lower in areas treated with higher
severity prescribed fire (see Supplemental Fig. 5a-c for relation-
ships described in this section). This mediating effect of RXSEV
on the relationship between VEGVOL and WILDSEV was greatest
when VEGVOL was between 5 and 10 x 10° m?, subsequently
RXSEV became gradually less important as VEGVOL approached
17 x 10°> m>. Similarly, the effect of RXSEV on the relationship be-
tween TRMI and WILDSEV was greatest at low (dry) values of
TRMI, and diminished in more mesic areas (TRMI = ca. 22). HEAT-
LOAD was negatively related to WILDSEV; however over the HEAT-
LOAD gradient, WILDSEV was reduced where prescribed fire
severity was higher. The effect of RXSEV on the HEATLOAD-WILD-
SEV relationship was greatest in hotter areas, whereas RXSEV had
little effect in cooler locations. The lack of an effect of RXSEV at the
respective ends of the gradients described above, is at least par-
tially due to a lack of treated pixels in those regions (i.e. few trea-
ted pixels in cool, mesic locations).

3.3. Landscape-context predictors of wildfire severity

Landscape context variables were stronger predictors of WILD-
SEV (xR? = 0.55-0.66) than were variables representing within-pixel
conditions, as Patch-level Model fit was better than Pixel-level Mod-
el fit for each of the three sites (Table 3). Continuity between models
was good, with all three Patch-level Models containing the same
four variables (Supplemental Table 2). RXPATCHDIST was the most
or second most influential variable in all three models. RXPERIM-
DIST was less influential than RXPATCHDIST in all three models,
but provided additional predictive ability. HIVOLDIST was more
important than LOVOLDIST in 2 of 3 models, and was the most influ-
ential predictor of WILDSEV in one of the Patch-level models.

WILDSEV was highest in pixels located farther inside patches of
high vegetation volume (or farther outside patches of low vegetation
volume) that were well outside of treated areas. Within treatment
perimeters (RXPERIMDIST > 0), WILDSEV dropped continuously to-
wards the interior of the prescribed fire boundary (Fig. 4, general
trend of all line series), with the largest decrease in WILDSEV ob-
served in pixels located further inside patches of high vegetation

Distance from prescribed

58 fire patch edge (m)
--197
36 --152
-107
34 -63
= -18
E -+26
§ 32 - +71
® =+116
£ 30
=
28
26
24
-1000 -500 0 500 1000

Distance from prescribed fire perimeter (m)

Fig. 4. NPMR modeled relationship between wildfire severity (WILDSEV) and
variables describing the spatial location of pixels relative to the treatment
perimeter (x-axis) and treatment patches (color coded line series). Negative values
indicate pixels outside and positive values indicate pixels inside of the treatment
perimeter (RXPERIMDIST) or a treatment patch edge (RXPATCHDIST). Warmer (red)
line colors indicate pixels further inside of prescribed fire treatment patches, and
cooler (blue) colors indicate pixels further outside of treatment patches. Pixels
outside of the treatment perimeter, yet inside of a “treatment patch” are pixels that
exhibited spectral changes analogous to those of prescribed fire treatment, but
likely represent some other disturbance type.

volume. However, prescribed fire severity was not uniform within
treatment perimeters, and pixels located in patches of higher sever-
ity prescribed fire (RXPATCHDIST >0) had substantially lower
WILDSEV than those located outside of prescribed fire patches
(RXPATCHDIST < 0) but still within the treatment perimeter (Fig. 4,
difference between line series). But even those pixels about 200 m
outside of prescribed fire patches, but still within the prescribed fire
perimeter, had reduced WILDSEV (relative to untreated pixels) if lo-
cated closer to the treatment center (Fig. 4, dark blue line). Outside of
the treatment perimeter (RXPERIMDIST < 0), pixels in patches that
were mapped (erroneously) as prescribed fire patches had the high-
est WILDSEV (Fig. 4, red line), which decreased with distance from
these patches of non-treatment vegetation change. These patches
were caused by a non-treatment disturbance, but exhibited spectral
changes analogous to those of the prescribed fire. In addition to the
edge effects observed inside of the treatment boundary (i.e. for pix-
els outside of prescribed fire patches, WILDSEV decreased with
decreasing distance to prescribed fire patches) there appeared to
be aslight edge effect near the prescribed fire boundary, as WILDSEV
decreased in pixels that were less than 200 m outside of the treat-
ment boundary.

3.4. Within-pixel and landscape-context predictors of wildfire severity

Combining variables representing within-pixel conditions with
those representing the landscape-context of pixels (Pixel+Patch
Models) resulted in the overall best fitting models predicting WILD-
SEV (xR? =0.59-0.69; Table 3). Continuity between models was
high, as all three Pixel+Patch Models shared four variables (Supple-
mental Table 2). Only one variable, ELEVATION, was not shared by
all three models. Within-pixel VEGVOL was the most influential
variable in all three Pixel+Patch Models. The landscape-context var-
iable RXPERIMDIST was the second best predictor of WILDSEV.
LOVOLDIST and HEATLOAD were both included in each model.
Models containing variables not listed above (i.e. TRMI, RXPATCH-
DIST, RXSEV, and HIVOLDIST) were quite competitive with the best
fitting Pixel+Patch Model, and the absence of these variables from
the final Pixel+Patch Model is likely due to their containing shared
information with selected variables, and not to a lack of importance
or predictive capability. Overall, the relationships between
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Fig. 5. NPMR modeled effects of (a) heat load and (b) topographic relative moisture index on wildfire severity (in untreated areas) and prescribed fire severity (in treated
areas). Solid lines are mean values of estimates generated from separate models developed at n = 3 sites. Dashed lines indicate +1 SE. Arrow locations along x-axis indicate
peaks in burn severity along the two environmental gradients. Arrow length indicates the magnitude of peak burn severity.

predictor variables and WILDSEV in the Pixel+Patch Models were
similar to those observed in the Pixel Models and in the Patch
Models.

Predicting and mapping WILDSEV from the best-fitting Pixel+
Patch Models to all pixels (i.e. those used to develop the models
and those not used in model development) at each site illustrated
the strong spatial agreement with the observed burn severity pat-
terns at all three sites (Fig. 2). This continuity between observed
and modeled WILDSEV indicates that models, derived from only
pre-fire GIS variables, can generate spatially realistic burn severity
predictions.

3.5. Spatial models

The Spatial Model explained 49-57% of the observed variation in
WILDSEV at a given site, an amount comparable to that explained by
each site’s best Pixel-level Model (Supplemental Table 3). Adding
the spatial terms to each site’s best Pixel-level Model (Pixel+Spatial
Model; Supplemental Table 2) resulted in model fits of 52-83%.
However, adding information about the geographic location of the
pixels in these models did little to help predict observed WILDSEV
when patch-level predictors were already included because adding
the spatial terms to each site’s best Patch-level Model, or to each

site’s best Pixel+Patch Model, tended to result in very small in-
creases, or in decreases in resulting model fits.

3.6. Differences between prescribed fire and wildfire

Not only did prescribed fires burn at lower severity than wild-
fires, but wildfires and prescribed fires tended to burn different
locations on the landscape (Fig. 5). WILDSEV peaked at HEATLOAD
values of 0 (i.e. the coolest aspects) and TRMI values of about 19,
relatively mesic locations. In contrast, prescribed fire severity
peaked at HEATLOAD values of about 0.6 and TRMI values about
9, in warm, dry locations. Although these trends were similar for
all three prescribed fires, the magnitude of RXSEV at these peaks
was higher in the Parks treatment (RXSEV = 29) than in the Wil-
liams and Fitsum treatments (RXSEV =27).

4. Discussion

4.1. Do prescribed fires reduce subsequent wildfire severity relative to
potential wildfire severity?

Prescribed fires are commonly used by forest managers to re-
duce the likelihood of severe wildfires by lowering fuel loads in
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fire-adapted forests, yet few empirical data are available to support
this application. Most of the available information has come from
plot-based studies that cover relatively small portions of treated
landscapes and use ocular indices or categorical measures of burn
severity. These studies have found that prescribed fires do success-
fully alter wildfire severity relative to untreated areas (Pollet and
Omi, 2002; Lezberg et al., 2008; Symons et al., 2008; Safford
et al., 2009; Prichard et al., 2010), but inference is often limited
by small sample sizes that may not capture the full range of envi-
ronmental conditions and gradients across treated landscapes. We
know of only two studies that have compared wildfire severity of
treated areas with similar untreated surroundings using a land-
scape scale remote sensing-based approach (Finney et al., 2005;
Wimberly et al., 2009). Only one of the prescribed fires examined
in those studies was conducted in the northern Rocky Mountains
and the site was mechanically thinned prior to prescribed fire
treatment. Despite differences in study regions and treatment
characteristics, our results are consistent with those of Finney
et al. (2005) and Wimberly et al. (2009), who also found sizable
reductions in wildfire severity within areas treated with prescribed
fire.

The congruence among landscape-scale and plot-based studies
supports the use of prescribed fires as an effective means of reduc-
ing future wildfire severity in dry coniferous forest types. Pre-
scribed fires in these studies were particularly effective when
implemented shortly before wildfires, when large in size, and
when repeated in the same locations (Finney et al., 2005), or when
they were combined with thinning treatments (Wimberly et al.,
2009). Others have found similar decreases in subsequent wildfire
severity when thinning and prescribed fire treatments were com-
bined (Pollet and Omi, 2002; Symons et al., 2008; Prichard et al.,
2010). No thinning occurred prior to the prescribed fires in our
study area and we did not examine the effects of prescribed fire
age because two of three fires were conducted one year prior to
the wildfires. Of the three prescribed fires examined, Parks was
the most effective. The majority of the Parks treatment area did
not burn in the wildfire, whereas the two other treatment areas
burned throughout and at somewhat higher severity. We suspect
this difference was caused by the higher severity and burn conti-
nuity of the prescribed fire at the Parks site. Our results suggest
that these factors could be more important than treatment age,
at least within the first few years following treatment, but further
investigation is needed.

Our study is the first to compare observed burn severity within
treated areas to potential burn severity (based on predictive mod-
eling) had those areas not been treated. We found that the treated
areas were susceptible to wildfire, which provides further evidence
that the prescribed fire treatments effectively lowered the wildfire
severity. Our findings suggest that this approach may provide a
more accurate means of assessing treatment effectiveness in the
future. It could also be used as a management tool to predict po-
tential wildfire severity across unburned landscapes and prioritize
fuel reduction activities.

4.2. How do vegetation, topography, and prescribed fire severity
influence prescribed fire effectiveness?

At the pixel-level, pre-treatment vegetation volume, heat load,
and prescribed fire burn severity were consistently strong predic-
tors of wildfire severity, while TRMI and elevation were important
at one site each. There were complex interactions between these
variables, which reveal that not only were specific combinations
of these factors important predictors at the local scale, but also that
certain locations on the landscape benefited more from prescribed
fire treatment than others. For example, pixels treated with higher
severity prescribed fire were much more effective at reducing

wildfire severity, but this effect was much greater in relatively
warm, dry locations than in cool, mesic locations. Paradoxically,
it is the cooler, more mesic locations that tended to have higher
vegetation volumes and tended to burn more severely during wild-
fire. We attribute the lower effectiveness of prescribed fire in these
locations to the moist early season conditions (relative to those of
typical summer wildfires) present during the prescribed fire treat-
ments. Prescribed fire burned at higher severity in warmer, drier
locations because these areas contained fuels dry enough to carry
an early season prescribed fire. Similar results were reported for
a fire in northwestern Montana, where fuel loads, heat load, and
canopy cover were found to be important predictors of wildfire
severity in a treated landscape (treatments included thinned,
thinned and prescribed burned, and untreated areas), while eleva-
tion and slope were relatively unimportant (Camp 32 Fire, ordinary
least-squares models in Wimberly et al. 2009).

Others have shown the importance of topographic variables in
predicting wildfire severity in untreated landscapes (e.g. Lentile
et al,, 2006; Dillon et al., 2011). Although these or related variables
(i.e. vegetation volume, heat load, TRMI, elevation) have been
found to be important predictors of wildfire severity in several
studies, the magnitude and even the directionality of their effects
on wildfire severity may be highly context dependent. Context
dependence of wildfire burn patterns may be due to differences
in regional climates during wildfire season, or to regional differ-
ences in forest stand profiles (i.e. tree species, sizes, densities,
and ladder fuels). For example, in northern California and adjacent
areas of Oregon, studies have shown that wildfire severity is lower
in cooler, north-facing, old growth forests, where biomass was
greatest, and that wildfire severity was greater on warmer, south
or west facing slopes with lower biomass (Weatherspoon and Skin-
ner, 1995; Alexander et al., 2006; Skinner et al., 2006). This is oppo-
site the pattern we observed in central Idaho. We suspect that this
difference may be driven by regional climate; that is, the northern
California and Oregon sites may receive enough summer precipita-
tion, or may retain enough spring fuel moisture, that the locations
with the highest biomass are too moist to have a high probability
of burning at high severity. The forest biomass and fuel moisture
on south-facing slopes at the California and Oregon sites may be
more analogous to the conditions of north-facing slopes at our Ida-
ho sites (i.e. moderately high biomass and relatively low summer
fuel moisture).

4.3. How does landscape context combine with local conditions to
influence wildfire severity?

The landscape context, or position of pixels within vegetation
patches, treatment patches, and treatment boundaries, had a
strong influence on wildfire severity in and around treated areas.
Wildfire severity was lower further inside contiguous prescribed
fire patches, and was lower still when those patches were located
further inside the prescribed fire boundary. Outside of the
treatment perimeter, areas where non-treatment disturbances
were detected had the highest wildfire severities, which dimin-
ished with increasing distance from these disturbances. These
areas may represent locations where tree disease, beetle infesta-
tion, or blow-down events caused highly flammable fuel condi-
tions (i.e. brown needles) and the associated spectral changes
observed in satellite imagery (Wulder et al., 2006; Vogelmann
et al., 2009). Both inside and outside of treatment perimeters, wild-
fire severity was highest further inside continuous patches of high
vegetation volume and lowest in areas that were far from these
patches (i.e. usually in contiguous patches of low vegetation
volume). We did not find evidence that the treatments influenced
wildfire severity more than 200 m outside of the treatment perim-
eter; previous studies had suggested that prescribed fires had al-
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tered fire spread on the leeward side of the fire (Finney et al., 2005;
Wimberly et al., 2009).

Wildfire severity was determined by factors operating at multi-
ple spatial scales. As expected, we found that wildfire severity in
and around treated areas was best explained by a combination of
local (within-pixel) and landscape-context variables. Fit for the
Pixel+Patch Models was quite high, as was the continuity between
models, with all three Pixel+Patch Models sharing four variables:
two pixel-level variables (vegetation volume and heat load) and
two landscape-context variables (distance to prescribed fire edge
and distance to the edge of a patch of low vegetation volume).
The pixel-level portion of our findings is consistent with Lentile
et al. (2006) who found that topography and pre-fire tree density
were important predictors of wildfire severity in a ponderosa pine
forest of South Dakota, U.S.A.

Our results also suggest that prescribed fire size, shape, and
burn continuity may be more important in reducing wildfire sever-
ity than achieving high prescribed fire severity. We provide the
first evidence that the severity and continuity of prescribed fires
influences subsequent wildfire severity, but similar to our study,
Finney et al. (2005) found that pixels located in larger treatments,
or further in the interior of treatments, had lower wildfire severi-
ties. After approximately four years elapsed between treatment
and a subsequent wildfire, they found that the importance of dis-
tance from the treatment edge diminished, whereas the beneficial
effects of large treatments persisted. Similarly, Ritchie et al. (2007)
suggested that high tree mortality is likely in small treated areas
(e.g. 0.5 ha) because of edge effects from intense fire in neighboring
untreated areas; hence, treatment size should be considered dur-
ing planning.

4.4. Do prescribed fires treat locations most at risk of high severity
wildfires?

We found that in addition to burning at much lower severities
than wildfires, early season prescribed fires tend to burn in loca-
tions that are warmer and more xeric than the relatively cool, me-
sic locations which are most at risk of high severity summer
wildfire. These findings conflict with those of a study conducted
in the southern Sierra Nevada Mountains of California which found
that at fine spatial scales, prescribed fires and managed wildfires
had similar burn severities, heterogeneity patterns, and effects on
survivorship of small trees (Nesmith et al. 2011). However, as pre-
viously stated, early season prescribed fires in the northern Rocky
Mountains are typically ignited shortly after snowmelt and thus
the locations most likely to burn are on south-facing aspects where
fuels have dried sufficiently. Wildfires in this region burn more se-
verely where vegetation biomass is greater, particularly during
drought conditions when these fuels are dry. These results agree
with our observation that the most effective of the three prescribed
fire treatments (Parks site) was successful because of an early
spring and drier fuels. Fire managers involved in these treatments
reported drier fuel conditions in May 2004 than May 2006, espe-
cially on the cooler, more mesic aspects. It is likely this difference
that caused the increased treatment severity, continuity, and ulti-
mately effectiveness of the Parks burn.

Although the three treatments examined here were quite effec-
tive at reducing subsequent wildfire severity, our results beg the
question of whether prescribed fires would be even more effective
if conducted when fuel characteristics are more similar to those of
wildfire, perhaps later in the fall when drier conditions facilitate
increased fuel consumption by prescribed fire (Knapp et al,
2005). There are obvious challenges in managing potentially higher
severity fall prescribed fires and it is unknown if these challenges
are worth the effort and risk, especially when evidence supports
the efficacy of current treatment practices.

4.5. Conclusions

Overall, these findings have important implications for pre-
scribed fire programs in dry coniferous forests. First, even patchy,
low severity prescribed fires can be effective at reducing wildfire
severity, at least within a few years post-treatment. Second, the
size, shape, and continuity of prescribed fires may be more impor-
tant than prescribed fire severity at reducing the severity of subse-
quent wildfires (e.g. larger prescribed fires that maximize interior
area and have higher burn continuity may be more effective).
Third, prescribed fires and wildfires may burn in fundamentally
different ways, likely because of differences in seasonal fuel condi-
tions, but this does not appear to reduce the effectiveness of pre-
scribed fire. Fourth, accurate prediction of wildfire severity in
areas considered for prescribed fire treatments may be possible
and could reveal where on the landscape prescribed fires would
be most or least effective.
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