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Abstract. We examined the scale-dependent relationship between spatial fire likelihood or burn probability (BP) and
some key environmental controls in the southern Sierra Nevada, California, USA. Continuous BP estimates were
generated using a fire simulation model. The correspondence between BP (dependent variable) and elevation, ignition

density, fuels and aspect was evaluated at incrementally increasing spatial scales to assess the importance of these
explanatory variables in explaining BP. Results indicate the statistical relationship between BP and explanatory variables
fluctuates across spatial scales, as does the influence of explanatory variables. However, because of high covariance

among these variables, it was necessary to control for their shared contribution in order to extract their ‘unique’
contribution to BP. At the finest scale, fuels and elevation exerted the most influence on BP, whereas at broader scales,
fuels and aspect were most influential. Results also showed that the influence of some variables tended to mask the true

effect of seemingly less important variables. For example, the relationship between ignition density and BP was negative
until we controlled for elevation, which led to a more meaningful relationship where BP increased with ignition density.
This study demonstrates the value of a multi-scale approach for identifying and characterising mechanistic controls on BP

that can often be blurred by strong but correlative relationships.
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Introduction

Mapping the likelihood of fire is becoming an important aspect
of strategic land management planning in fire-prone landscapes

(Finney 2005). However, the reliability of fire likelihood esti-
mates depends on our understanding of and ability to model the
influence of environmental conditions on fire ignition and
spread. Controls on fire regimes have often been described as

top-down – the weather- or climate-related factors that exert an
influence across a large area – and bottom-up – those whose
influence is site-specific, such as topography (Heyerdahl et al.

2001; Kellogg et al. 2008). Although this framework is con-
ceptually useful, strong interactions among top-down and
bottom-up controls can blur the distinction between them

(Peters et al. 2004; Parisien et al. 2010). For example, topo-
graphy affects patterns of ignitions, weather and flammable
vegetation (i.e. fuels), thereby obscuring the relationship

between fire likelihood and the environment. Anthropogenic
factors, which influence the number, timing and locations of
ignitions, as well as fuel structure and composition, can further
blur these relationships (Fry and Stephens 2006;Martell and Sun

2008). As a result of this complexity, nonlinear fire–environment
relationships appear to be the norm rather than the exception
(Kasischke et al. 2002), further impeding our ability to isolate

the specific role of a given environmental factor (Carmel et al.
2009).

The strength and polarity of fire–environment linkages
may vary as a function of the spatial scale of study (Falk et al.

2007). That is, a fire–environment relationship observed at one
spatial scale may not hold at another (Parisien andMoritz 2009).
This phenomenon, termed ‘scale effect’, is quite common in

ecology (e.g. Weiher and Howe 2003; Wu 2004), highlighting
the need to analyse ecological systems at multiple scales. For
example, Randin et al. (2009) found that models using fine-

resolution data predicted significantly greater habitat persis-
tence than models using coarse-resolution data. Convincing
examples of the scale effect also have been recently reported

in studies of fire regimes. For instance, Cyr et al. (2007) showed
that fire frequency in the eastern boreal forest of North America
was related to slope aspect at some spatial scales, but not at
others. Studies in the western USA (McKenzie et al. 2006) and
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in boreal Canada (Podur et al. 2002) illustrate scale domains at
which fire patterns are aggregated and others at which they are
regular or relatively random. Similarly, relationships to fuels

and weather inferred from cumulative fire size distributions
(Moritz et al. 2005; Boer et al. 2008) suggest different
controlling mechanisms for small and large fires (Ricotta

et al. 2001). Although these studies have firmly established that
controls on fire are scale-dependent, pinpointing the true envi-
ronmental drivers of fire regimes has proved a difficult task.

Furthermore, these drivers are highly site specific and can be
expected to vary by region (Littell et al. 2009).

A common challenge in studying the spatial relationship
between fire and its environment is obtaining a sufficient

number of reliable fire observations, which rarely span more
than a century (e.g. Kasischke et al. 2002; Rollins et al. 2002).
However, recent advances in landscape fire simulation model-

ling offer new possibilities to study fire–environment relation-
ships and, thus, maximise the value of field observations and fire
history atlases (Miller et al. 2008; Ager et al. 2010). High-

resolution burn probability (BP) maps can be generated by
explicitly simulating the ignition and spread of a very large
number of fires, whose parameters are derived from historical

fire observations. These outputs not only help circumvent the
problems related to relative sparseness of the historical data but
also allow a spatially continuous comparison of BP with
environmental factors of interest.

Our central purpose was to evaluate the relationship between
BP and some of its key environmental controls in a mountainous
landscape of the southern Sierra Nevada, California, USA, at

multiple spatial scales. Four environmental variables known to
affect patterns in BP were selected for the multi-scale analysis:
elevation, vegetation (i.e. fuels), ignitions and aspect. Although

by no means exhaustive, these factors were selected because
they are commonly related to spatial fire patterns in mountain-
ous areas in the published literature. For example, fire regimes

are often associated with different elevation-based vegetation
types (Tande 1979; Mermoz et al. 2005). Lightning density,
which generally experiences spatial variation in mountainous

areas, has also been related to fire activity (Wierzchowski et al.
2002; Lutz et al. 2009). Fire activity in rugged terrain varies
significantly as a function of aspect (Heyerdahl et al. 2001;

Rollins et al. 2002), because it affects patterns in fuels (vegeta-
tion composition and structure) and fuel moisture.

We examinedmultiple spatial scales using a data aggregation

technique called ‘moving window analysis’ (e.g. Bebi et al.
2003; Manley et al. 2009), in which all pixels within a circular
moving window are averaged and assigned to the centre pixel.
We define ‘spatial scale’ as a given moving window size;

changes in the size of themovingwindow correspond to changes
in spatial scale. We expect the strength of the relationship
between fire and a given environmental factor (i.e. explanatory

variable) to fluctuate according to the spatial scale of observa-
tion and that there is a scale at which each relationship is
maximised. To examine our expectations, we used a suite of

analyses with increasing complexity in terms of explanatory
variable inclusion to isolate variable influences at each scale.
However, because of strong covariance among environmental

factors, determining relationships between BP and a given
environmental factor is difficult. Therefore, another objective
of this study involved analysing and controlling for covariance
among the explanatory variables to gain a better idea of themore

direct (i.e. mechanistic) influences of environmental controls on
fire likelihood and the scales at which they operate (cf. Pausas
and Austin 2001).

Materials and methods

Study area

The 572 170-ha study area in the southern Sierra Nevada,

California, USA is primarily managed by the USDA Forest

Study area boundary

Photo credit: Meg Krawchuk

Photo credit: Carol Miller
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(b )

Forest Service
Sequoia-Kings Canyon NP
Bureau of Land Management
Private/other
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Fig. 1. Map of the study area in the Southern Sierra Nevada and its land management types (left). The study area is characterised by

sharp topographic and vegetation gradients of variable patchiness. The upper picture (a) shows a vegetated upper-elevation landscape

of coniferous forest, shrubland, grassland and exposed rock, whereas the lower picture (b) shows a conifer-dominated valley.
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Service and the National Park Service (Fig. 1). Elevation ranges
from 212 to 4297m and generally increases from west to east;
the easternmost boundary is particularly rugged. The main

mountain range is north–south oriented and is dissected by large,
steep canyons, numerous smaller canyons and glacially carved
valleys at upper elevations. The area experiences a Mediterra-

nean climate, where there is virtually no rain during the summer,
except for occasional thunderstorms. The temperature is highly
variable among high-elevation (cooler) and low-elevation

(warmer) areas. Across the study area, the average maximum
and minimum monthly temperatures range from 1.0 to 25.58C
and �8.0 to 11.58C respectively. Average annual precipitation
ranges from 37 to 155 cm (Daly et al. 2002); total precipitation

and the proportion of this that falls as snow generally increase
with elevation.

The natural vegetation at the lowest elevations, typified by

hot, dry summers, is a mosaic of grassland, oak woodland and
chaparral shrubland. As elevation increases, the vegetation
transitions into pure ponderosa pine (Pinus ponderosa Dougl.)

stands, then to mixed conifer forest (ponderosa pine, sugar pine
(P. lambertiana Dougl.), white fir (Abies concolor (Gord. And
Glend.) Lindl. ex Hildebr.), incense cedar (Calocedrus decur-

rensTorr.)), then to a higher-elevation zone dominated by red fir
(Abies magnifica A. Murr.) and lodgepole pine (Pinus contorta
(Grev. & Balf.) Engelm.). At upper elevations, where the
growing season is much shorter, the vegetation consists of open

subalpine forests and alpine environments dominated by sparse
low vegetation (i.e. alpine grassland and shrubland, stunted
trees). Discontinuities in vegetation (i.e. natural fuel breaks)

generally increase with elevation.
Fire type and frequency generally vary with vegetation

throughout the study area. Typically, grasslands and woodlands

experience surface fires, chaparral experiences crown fires, and
the conifer belt experiences amix of non-lethal surface fires and,
under suitable weather and fuel conditions, lethal surface fires
and stand-replacing crown fires (Collins and Stephens 2010).

Prior to Euro-American settlement, the fire interval throughout
most of the SierraNevadawas thought to be less than 20 years on
average for the area extending from the foothills through the

mixed conifer belt and approximately 26 years for the higher
elevation red fir zone (McKelvey et al. 1996). The chaparral at
the lower elevations may have had longer fire intervals of

50–60 years (Keeley et al. 2005). Fire frequency has decreased
significantly since Euro-American settlement, largely due to
successful fire suppression practices and possibly the cessation

of Native American burning (van Wagtendonk and Fites-
Kaufman 2006). The lengthening of fire-free intervals has
altered forest structure, composition and fuel continuity and,
consequently, modified fire behaviour (Kilgore and Taylor

1979; Stephens et al. 2009).
The fire season of the study area typically runs from mid-

May to mid-October. However, fire season length generally

decreases as elevation increases. Lightning density increases
with elevation, but high elevation areas typically do not experi-
ence many fire ignitions because fuels are sparse (van

Wagtendonk and Cayan 2008). Virtually all human-caused
ignitions are aggressively suppressed; the majority of these
occur in the lower elevations. In contrast, relative to Forest
Service and private lands, a high proportion (,52% from 1980

to 2004) of lightning ignitions is not suppressed within the
national park (NPS 2004).

The BP model

We used a customised version of the FlamMap model (Finney
2006), called Randig, to generate a BP grid for the study area.

Randig simulates the ignition and spread of a very large number
of fires and counts how many times each pixel burns, thereby
providing an estimate of the relative likelihood of burning.

Randig uses the minimum travel time algorithm (Finney 2002)
to simulate fire growth. The model does not account for changes
in fuels due to vegetation succession and, thus, estimates BP for
a static landscape. Randig differs fromFlamMap by allowing for

non-random (i.e. spatially patterned) ignitions and variablewind
directions and wind speeds. Hence, Randig combines proba-
bilistic components of fire regimes, such as spatial ignitions and

changing winds, with deterministic fire growth. Its inputs, as
detailed below, can be categorised as either spatial or aspatial.

Only large fires ($50 ha) of lightning origin were used to

parameterise the model. Although they represent a fraction of
the total fires, fires $50 ha are responsible for most of area
burned (94.2%) in our study area. As such, considering only

large fires for parameterisation represented a sensible ‘shortcut’
with minimal effect on the resulting BP patterns (Finney 2005).
In addition, we considered only lightning-ignited fires because
our focus was on natural fire–environment relationships. All

spatial inputs extended 13 km beyond the study area boundary to
minimise edge effects. The original fuels and topographic inputs
had a 30-m resolution butwere resampled to a 100-mpixel size to

increase computation speed. In this study, 50 000 ignitions were
simulated to produce a BP grid. We determined that this number
of ignitions restricts the pixel-wise relative BP difference among

runs to less than 2%.

Spatial BP inputs: fuels, topography and ignitions

The fuels data are comprised of five raster grids describing the

type and structure of flammable vegetation: the fire behaviour
fuel model (Scott and Burgan 2005), percentage canopy cover,
crown base height, crown bulk density and stand height. The fire

behaviour fuel model (hereafter referred to as the ‘fuel model’)
is a classification that describes predicted fire behaviour
(e.g. rate of spread, flame length) (Rothermel 1972); canopy

cover is necessary for calculating the reduction factors for the
wind’s effect on fire spread rates and direction; and crown base
height, crown bulk density and stand height are used in crown

fire behaviour calculations (Finney 2006). The fuel model grid,
created from aerial photographs, satellite images and distur-
bance history, was obtained from the Wildland Fire Decision
Support System (see http://wfdss.usgs.gov/, accessed 3 August

2011). The WFDSS data source was recommended by experts
familiar with the study area (Bernie Bahro, USDA Forest
Service (retired) and Anne Birkholz, National Park Service,

pers. comm.). Topographic inputs (elevation, slope and aspect)
were created from a digital elevation model obtained from the
US Geological Survey using standard GIS methodology.

An ignition probability density grid was created from the
locations of large ($50-ha) lightning-caused fires observed
during the fire season (June–October) from 1970 to 2007. We
used these observations (n¼ 76) as the dependent variable in a
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classification and regression tree (CART). CART requires
‘absence’ data in addition to ‘presence’ observations, so we
used 76 randomly placed points that did not share the same pixel

as our 76 fire observations to serve as pseudo-absences. Model
predictions were used to generate a generalised and spatially
continuous grid of the relative probability of ignitions that

adequately described recent history of ignition patterns of the
study area (cf. vanWagtendonk and Cayan 2008). The indepen-
dent variables in the CART model were vegetation type

(i.e. a generalised LANDFIRE vegetation map) (Rollins 2009)
and elevation. Other variables, such as solar radiation, might
also affect ignition probabilities, but exploratory analysis
between ignitions and solar radiation showed no relationship.

Aspatial BP inputs: fire duration, fuel moisture and wind

The duration of each simulated fire was drawn from a frequency
distribution of the number days that fires have burned in our

study area. Fires in this region can burn for months, but they
achieve significant growth only during a few ‘spread-event
days’ (cf. Parisien et al. 2005) that generally correspond to dry,
hot and windy weather conditions. We created this frequency

distribution using MODIS satellite fire detection data (USDA
Forest Service 2008), a subdaily record of fire activity at a 1-km2

spatial resolution. Using MODIS fire detection data for fires

greater than 50 ha that occurred between 2001 and 2007 within
75 km of the study area (n¼ 71 fires), we generated daily fire
progression maps. The fine temporal resolution of these data

compensate for their somewhat coarse spatial resolution,
providing an objective and reliable means of detecting signifi-
cant growth in large fires. We defined a spread-event day as

follows:

ffiffiffiffi
ai

p
,

Xn

i¼1

ffiffiffiffi
ai

p � 100% � 5% ð1Þ

where ai represents the daily area burned for a given fire
(a surrogate for the daily spread rate), n is the last day of burning
and the summation term is the sum of all ai. The square root

transformation of area burned accounts for the nonlinear (power
function) expansion of fire size with time. The 5% thresholdwas
selected through trial-and-error and captures themajor spread of

fires we’ve analysed. The resulting distribution of spread-event
days had a decaying form ranging from 1 to 11 days, which we
smoothed according to a logistic function. Therefore, this

analysis identified specific dates that experienced substantial
fire growth, which were then used to select fuel moisture values
and wind data for our simulations (below).

Moisture values of live fuels (herbaceous and woody) and of

1-, 10- and 100-h time lag dead fuels (Cohen andDeeming 1985)
were estimated using historical weather data from days identi-
fied as spread-event days. Randig does not allow for the

adjustment or conditioning of fuel moisture values based on
aspect, elevation and previous-day weather, so fuel moisture
values were held constant across the landscape. To derive fuel

moisture values, weather observations (temperature, relative
humidity and precipitation) from three remote automated
weather stations (RAWS) and the FireFamily Plus program

(Bradshaw and McCormick 2000) were used to compute daily
fuel moisture values for each station. Daily fuel moisture values

were extracted for each spread-event day and averaged across
the three stations; the median of the daily averages was used for
the fire simulations.

We created a frequency distribution of wind speed and wind
direction from which Randig randomly drew values for each
spread-event day of each simulated fire. Therefore, wind speed

and wind direction changed daily for multi-day fires (each day
represents 8 h of simulated fire growth). Wind speed and wind
direction are coupled in the frequency distribution, therefore

avoiding non-existent combinations of speed and direction. We
used a single RAWS (Park Ridge) to generate the frequency
distribution, as this station is most representative of wind
conditions in the study area (Dave Bartlett, National Park

Service, pers. comm.).

Validation of simulated BP

To assess the ability of Randig to depict the spatial patterns in

BP, we quantified the correspondence between the simulated BP
and historical (1900–2007) fire frequencies (CDF 2007). To this
end, we produced a Spearman rank-correlation between simu-

lated BP and number of times burned for,10 000 randompixels
(excluding nonfuels). To account for the higher fire suppression
on private lands, we conducted two comparisons: one including

and one excluding private land. Although this type of validation
is informative, there are several reasonswe expected differences
between simulated BP and historical fire frequencies. First,

simulated BP is a point-in-time estimate reflecting the year in
which the fuel information is valid, whereas historical fire
frequency manifests over time during which vegetation changes
due to disturbance and succession. Furthermore, the simulated

BP in our study is intended to reflect natural fire–environment
processes and does not account for fire suppression and human-
caused ignitions that have influenced the historical fire record.

Data analysis: explanatory variables

Our analysis considered four explanatory variables to assess the

environmental controls on BP: elevation (ELEV), potential
spread rate (PSR), ignition density (IGN) and ‘southwestness’
(SW) (cf. Franklin 2002) (Fig. 2). All four variables were spatial

so we could evaluate their spatial correspondence to BP.
Initially, we explored the relationship between BP and several
other variables: slope, solar radiation, heat load index, nonfuel

percentage, nonfuel patch density, nonfuel patch aggregation
and the coefficient of variation of elevation. However, many of
these variables were redundant in that they measured very

similar characteristics and were similar in their relationship to
BP. For example, southwestness, heat load index and solar
radiation all measure insolation and were highly correlated with
each other and similarly correlated with BP. Variables that were

difficult to interpret across multiple spatial scales (e.g. nonfuel
patch density), or displayed little to no relationship with BP
(e.g. slope), were subsequently dropped.

The ELEV and IGN exploratory variables were identical to
the Randig inputs (Fig. 2), whereas the PSR and SW variables
are interpretations of fuels and aspect respectively. The PSR

variable is a continuous characterisation of the categorical fuel
model grid. PSR was created by calculating the maximum
heading rate of spread, which describes the speed at which fire

moves through a pixel, for each fuel model under a given set of
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wind conditions, fuel moisture conditions and flat topography.

Inputs were the fuel moisture values calculated using RAWS
data for the spread-event days identified through the MODIS
analysis (described above) and a wind speed of 8.1 km h�1 (the
median wind speed for all spread-event days). The SW variable

is a proxy for insolation (Franklin 2002); it is a continuous index
for which south-west aspects have highest values (200) and
north-east aspects have lowest values (0).

For each of the four explanatory variables, moving window
surfaces were created for 42 window sizes, ranging from 100 to
100 000 ha (window radii from 564 to 17 841m) and increment-

ing 100 ha at smaller sizes and 5000 ha at larger sizes. Specifi-
cally, for each 1-ha pixel of the study area, the mean value of
each explanatory variable was computed within a circular
window (i.e. neighbourhood) corresponding to each of the

42 window sizes (Fig. 3). These window sizes were chosen
through exploratory analyses and comparison to other studies
(Cyr et al. 2007, Falk et al. 2007). Raw pixel level data (1 ha)

were also considered one of the scales in these analyses,
resulting in 43 spatial scales. To relate BP to the explanatory

variables at each scale, we randomly sampled,10 000 burnable

pixels (i.e. excluding non-fuels) and, at each of these pixels, we
extracted the BP value and those values of the four explanatory
variables at each spatial scale. Note that we analysed the
relationship between the explanatory variables at each scale to

the pixel-level BP; the BP grid did not undergo the moving
window analysis.

Analysis of scale-dependent environmental
controls on BP

The details of the scaling analyses are presented in Table 1.

The functional relationship between BP and each explanatory
variable was described at three spatial scales: 100, 5000 and
50 000 ha (radii of 564, 3990 and 12 600m respectively). To
allow a flexible depiction of the relationship, a self-fitting

generalised additive model (GAM) was fit to the data with the
mgcv package (Wood 2008) in the R statistical program
(R Development Core Team 2007), which provides functions

for generalised additive modelling and generalised additive
mixed modelling. We defined the data distribution as the

Elevation (m)

Simulated
ignition
density
(unitless)

Southwestness
(unitless)

200

0

0.85

0.60

0.46

0.30

0

Potential
spread
rate
(m min�1)

4350
57

0.6

Non-fuel
120

(a)

(c) (d )

(b)

Fig. 2. The four exploratory variables used to explain burn probability: (a) elevation; (b) potential spread rate;

(c) simulated ignition density; and (d) southwestness.
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‘binomial’ family. To limit the wiggliness in the relationship,
the fit of the GAM was constrained (gamma¼ 1.5 in mgcv).
These parameters were applied to every self-fitting GAMwithin

this study.
The spatial structure (i.e. autocorrelation) of each explana-

tory variable was described using autocorrelograms. The corre-

lation values were squared to provide a measure of variance
explained (R2) that is analogous to the deviance explained (DE)
produced in the remaining analyses described below. Unlike the
approach taken in other analyses, the autocorrelograms did not

include all the pixels within the entire circular neighbourhood
for each spatial scale, but instead, included only pixels found
in concentric rings so that the spatial dependence could be

evaluated independently at each scale.
GAMs of BP (dependent variable) were built to measure DE

by each explanatory variable at each scale. The results of this

and the subsequent analysis were described using scalograms.
We then increased the complexity of the models by building a
GAM of BP using each pair of explanatory variables. However,
because ecological variables often covary, it was useful to

PSR:
raw data
(1-ha pixel)

Moving
window:
10 000 ha

Moving
window:
100 ha

Moving
window:
1000 ha

Potential
spread rate:

Slow

Fast
Non-fuel

Moving
window:
100 000 ha

Fig. 3. Illustration of themovingwindowconcept: the raw (1-ha pixel) potential spread rate (PSR) grid and the

resulting moving window grids at the 100-, 1000-, 10 000- and 100 000-ha scales. The circles to the left of each

moving window grid illustrate the size of the moving window, where all pixels within the window are averaged

and assigned to the centre pixel.

Burn
probability (%)

Historic
fire frequency
(1900–2007)

1.55 7

1

(a) (b)

�0
BP � 0

Fig. 4. The burn probability for the study area estimated using (a) theRandigmodel, and (b) the historical record

of fire frequency from 1900 to 2007.
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partition the DE into the fraction that is shared between the two
explanatory variables and the fraction that is unique to
each variable. The deviance unique to an explanatory variable
(e.g. x1) was obtained by using the other explanatory variable

(e.g. x2) as an offset term in the GAM, which effectively
controlled for the effect of variable x2. To use x2 as an offset
term, we forced the GAM to first model BP as a function of x2,

and then modelled the residuals of this relationship as a function
of x1. The deviance shared among the pair of predictors was
obtained by subtracting the sum of the two predictors’ unique

contributions from the total DE. Evaluations of pairs including
the IGN variable were not performed at the smallest (i.e. pixel)
scale because the ignition CART model resulted in only four

discrete ignition density values (Fig. 2), which are too few for
GAM fitting; this was no longer a limitation as the scale
increased because the moving window approach essentially
created continuous IGN values.

To measure the relative contribution of each explanatory
variable when all four variables were used to predict BP, GAMs
of BP including all variables were built at all scales except the

single pixel. The relative contribution of variables was defined
as the percentage of the sum of Chi-square values attributed to
each variable. Because ELEV has such an overarching effect on

the landscape characteristics of the study area, we controlled for
its influence by including it as an offset term in a parallel set of
models. For simplicity, no interaction terms among variables
were included in these models. Given the large number of

possible combinations, it was not feasible to extract the shared
and unique fractions of DE in this analysis.

Results

Burn probability

Simulated BP in our study area ranged from 0 to 1.55% (Fig. 4a).
BP values should be interpreted as a relative probability
whereby a pixelwith 1%BPburned twice as often as a pixel with
a value of 0.5%. A broad south-west to north-east decreasing

trend in BP corresponded to an increase in elevation, a pattern
also reflected in the map of historical fire occurrence from
1900–2007 (CDF 2007) (Fig. 4b). The Spearman rank-

correlation of simulatedBP to historical fire frequencywas 0.50;
this correspondence increased somewhat (R¼ 0.56) when
private lands, which experience the greatest degree of human

influence, were excluded.

Analysis of scale-dependent environmental
controls on BP

The relationships between BP and each explanatory variable,
except SW, were relatively similar among the three scales
we examined (Fig. 5). Although these relationships were

strongly non-linear, they were fairly monotonic where the bulk
of the observations lie (i.e. excluding the values smaller
and larger than the 10th and 90th percentiles respectively).

The relationship between BP and ELEVwas generally negative:
as ELEV increased, BP decreased. The relationship between BP
and PSR was positive, as expected. Further, as the density of
ignitions increased (IGN), BP decreased. This is counterintui-

tive and suggests that the true relationship may be masked by
one or more covariates. The BP–SW relationship was unstable
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among the three scales, becoming more unimodal as the spatial
scale increased.

The autocorrelograms show varying degrees of spatial
structure in the four explanatory variables (Fig. 6). ELEV and
IGN were the most strongly autocorrelated, but the autocorre-

lation in IGN dropped off more rapidly than that of ELEV as a
function of increasing spatial scale. PSR and SW were weakly
autocorrelated; indeed, SW had virtually no spatial autocorre-
lation beyond the 500-ha scale.

In simple GAM models of BP using one explanatory vari-
able, the DE by ELEV, PSR and IGNwas fairly high (DE. 0.6)
at most spatial scales. The DE by SW never exceeded 0.3 at any

scale (Fig. 6). The maximum DE by ELEV (5000 ha), PSR
(5000 ha) and IGN (2500 ha) occurred at somewhat moderate
spatial scales, whereas the maximum DE by SW was presum-

ably at a scale larger than our largest window size of 100 000 ha.
The maximum DE of ELEV and PSR appear to occur at
approximately the same scale as the inflection points of their
respective autocorrelograms (Fig. 6).

Adding a second explanatory variable to a simple GAM of
BP increased the DE, but not always substantially, suggesting
that there is considerable covariance among some explanatory

variables (Fig. 7). The shared DE by the ELEV-PSR,
ELEV-IGN and IGN-PSR pairs of explanatory variables was
moderate to high (DE. 0.4) at most scales. Indeed, the shared

DE by variable pairs involving ELEV, IGN and PSR, almost
always exceeded that of the simple sum of unique contributions.
Despite this strong covariance, each variable did uniquely

explain some deviance in the models. The highest unique
contributions for ELEV, IGN and PSR occurred in the 1- to
20 000-ha range of scales; however, these values fluctuated as a
function of the explanatory variable pairs. There was little

shared DE by variable pairs involving SW.
Except at the broadest scales (.,50 000 ha), the GAMs

incorporating all four explanatory variables performed only

marginally better with respect to DE than those models using
pairs of explanatory variables (Fig. 8). These larger models
explained 80.2–91.4%of the deviance, with the best-performing

model at the 3500-ha scale (however, models at the 2000- to
12 500-ha scales all had DE$ 91.0%). As in the previous
analysis, the relative contribution of each variable fluctuated
among scales. TheDEbyELEVwas greatest at the 100-ha scale.

The DE by PSR was greater than any other variable at all scales,
increasing from the 100- to 4500-ha scale and then decreasing at

broader scales. The DE by IGN was low to negligible compared
to ELEV and PSR at all scales. The DE by SW was relatively
low at all but the broadest scales ($50 000 ha).

In models using ELEV as an offset term, the remaining three
explanatory variables provided an additional 28.1–42.3% of DE
compared to that of a simple BP–ELEV model, peaking at the
2000-ha scale (Fig. 8). PSR was still dominant at each scale in

the ELEV-offset models. The IGN variable, which contributed
marginally to DE in the no-offset models, was relatively
important once we controlled for ELEV. Controlling for the

effect of ELEV thus appeared to uncover the IGN variable’s
positive relationship to BP (Fig. 9), which is a more logical
relationship. There was a small decrease in the relative impor-

tance of SW at scales broader than ,50 000 ha once we
controlled for ELEV.

Discussion

Our results support the claims that environmental controls on
fire likelihood are scale dependent (Cyr et al. 2007; Falk et al.

2007; Beverly et al. 2009). Some environmental factors, such as
elevation and fuels, exerted their strongest influence at fine to
moderate spatial scales (1–10 000 ha), whereas the influence of

aspect was generally more pronounced at broader scales
(.50 000 ha). The scale at which the influence of ignitions was
greatest was highly dependent on the complexity of the analysis.

In the models using one or two environmental factors, the
influence of ignitions was highest at relatively fine scales
(#2500 ha), but in the analyses using all factors, its influence
was strongest at much broader scales ($40 000 ha). We noted

that throughout the suite of analyses performed here, in very few
instances did the scale defined by the raw data (e.g. 1-ha pixel-
based analysis) correspond to the scale that yielded the highest

importance.
The model of BP using the four explanatory variables

suggests that, at the finest scales, fuels and elevation are the

most important controls onBP and that aspect and ignitions have
a negligible effect. In contrast, at broader scales, it is fuels and
aspect that could be interpreted as having the strongest influ-
ence. Therefore, it is conceivable that different grid resolutions
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could lead to slightly different conclusions about the association
between fire activity and environmental covariates. That is, the
simple act of using the data in its raw form, with a particular

grain size (resolution) and extent (study area size), is an implicit
use of a single spatial scale. In arbitrarily selecting a single
spatial scale of study from a continuum of meaningful scales,
‘the observer imposes a perceptual bias, a filter through which

the system is viewed’ (Levin 1992). In light of these concerns,
recent studies of fire–environment relationships have examined
the potential effect of spatial scale selection before initiating the

main analysis of their study (e.g. Archibald et al. 2009; Balshi
et al. 2009).

The mechanisms generating the scale dependence in BP–

environment relationships are due predominantly to the fact that
fire spread is a contagious process that forcibly induces spatial
dependency with its environment. Our results support claims
that fire patterns are better predicted at broader scales (i.e. a

larger than the pixel size) by virtue of incorporating ‘neighbour-
hood’ information (Chou et al. 1993). The probability that an
individual pixel will burn is highly contingent upon whether or

not the neighbouring pixel burns, and this spatial dependence
can bemore important than the fine scale information that might
get lost when increasing the scale (grain) of observation (Turner

et al. 1989). If we consider the models using all explanatory
variables to be the most realistic, the spatial scale with the
greatest explanatory power occurred at the 2000–3500-ha range.

This range of scales is comparable to the mean fire size from our
simulations (,3700 ha), suggesting a potential link between fire
size distribution and the scale at which this system is best
studied, the so-called ‘characteristic scale’ (Urban et al. 1987).

The covariance among environmental factors (i.e. shared
information) is an important consideration when analysing and

interpreting ecological systems. In our study, elevation, fuels
(PSR) and ignitions were moderately to highly correlated
(0.4–0.9) at most scales. This covariance introduced counterin-

tuitive relationships (e.g. BP v. ignition density) and complicat-
ed interpretation of the relative importance of each explanatory
variable. For example, in the model of BP as a function of

elevation and fuels (PSR), the shared contribution of these two
variables far outweighed their unique contributions. These
issues are further complicated because the covariance between

environmental factors is scale dependent (i.e. the covariance
changes with scale). Althoughwewere able to identify and tease
apart some of these complex relationships, more complex
statistical treatment may be useful for future analyses (Borcard

et al. 1992).
Our results further suggest that variables that correlate well

with fire likelihood, but exert a largely indirect influence, can

inhibit our understanding of the factors directly responsible for
fire ignition and spread of wildfire (i.e. mechanistic controls)
(cf. Austin 1980). For example, topography, which appears to

have a pervasive effect on fire regimes in many mountain
landscapes (Kellogg et al. 2008; Stambaugh and Guyette
2008; Viedma 2008), mainly affects fire regimes via its effects

on fuel moisture, fire season length, ignition patterns, fuel type
and fuel configuration. For example, Rollins et al. (2002)
showed that in the moisture-limited south-western USA, wild-
fires were more frequent on north-east slopes, where fuels are

more continuous, whereas in the northern Rocky Mountains,
USA, where fuels are not limiting, wildfires were more frequent
on the drier western and south-western slopes. This illustrates

that, although the relationship between fire activity and aspect
was strong, it is not aspect per se that promotes or limits fire, but
rather the coincidence of spatially continuous biomass and fire-

conducive fuel moisture conditions. Similarly, in our study area,
the effect of fuels and ignition patterns could only be uncovered
by statistically controlling for elevation. This is particularly
obvious with ignitions, as the relationship between BP and

ignition density suggests the nonsensical conclusion that fire
likelihood decreases as ignition density increases. However,
once we controlled for elevation and the effect of other environ-

mental factors was considered, the relationship between igni-
tions and fire likelihood became ecologically meaningful.

Despite our effort to provide realistic inputs for fire like-

lihood estimations, some simplifying assumptions were neces-
sary due to software limitations or information gaps. For
example, we would expect wind to spatially vary across the

study area, because rugged topography can cause local shifts in
wind direction and speed, notably in deep canyons. Further-
more, wewould expect fuelmoisture values to spatially vary as a
function of aspect and elevation. Although spatial variability in

both wind and fuel moisture plays a major role in fire activity in
the Sierra Nevada, we assumed their general effect was homo-
geneous due to Randig’s limitations. The omission of this

variability may affect the resulting BP patterns, the relative
importance of the explanatory variables, and the scaling rela-
tionships. Specifically, BP patterns would have likely exhibited

more fine-scale variation, particularly in areas of rugged terrain,
had we been able to include spatial variability in winds and fuel
moisture. Furthermore, fuels may have exerted less of an
influence and aspect may have had more of an influence,
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particularly at finer scales (i.e. the scales exhibiting the most
topographic variability). Further caution may be warranted due
to discrepancies in modelled v. observed fire behaviour (Cruz

and Alexander 2010).
Despite the modelling assumptions and limitations, our BP

estimates appear representative of current landscape conditions.

We attribute this apparent success of the model to thoughtful
parameterization and the sophistication of the FlamMap fire
spread algorithm. Indeed, in comparison to previous studies of

fire likelihood (e.g. Ager et al. 2007, 2010; Parisien et al. 2007;
Beverly et al. 2009), the inputs and settings used in this study are
the most detailed and complex to date. For example, using
MODIS fire detection data to provide estimates of fire duration

variability and using variable weather conditions (wind speed
and direction) from actual spread-event days allowed us to
simulate a more realistic envelope of the fire environment. We

also incorporated a non-random ignition pattern, knowing that
ignitions vary with fuel type (Krawchuk et al. 2006) and
elevation (van Wagtendonk and Cayan 2008). The implications

of incorporating as much natural variability as possible are not
trivial, as formal assessments in artificial landscapes have
shown that including variable inputs in fire simulation models

produce more realistic fire patterns (Lertzman et al. 1998).

Conclusion

The need to better understand scaling effects on biota and
ecological processes has been recognised for decades (Wiens

1989; Levin 1992), but requires more thorough investigation in
disturbance ecology (Beever et al. 2006; McKenzie et al. 2006).
The present study reinforces the observation that topology, or

neighbourhood, may hold information that is more relevant to
controls on fire regimes than that of the scale defined by the raw
data (e.g. pixel-based analyses) (Cyr et al. 2007). Indeed, the
simple act of using the data in its raw form, with a particular

grain size and extent, is an implicit use of a single scale. In this
study area, our results suggest that scales of,2000–3500 ha are
most relevant for analysing fire likelihood.

Our results further indicate that covariance among environ-
mental controls may overwhelm some fire–environment
responses. As a result, identification of the characteristic scale

(Urban et al. 1987) (or range of scales) of study, and the
causative effect of these controls on fire regimes, may be
blurred. Controlling for these interactions can clarify the spatial

scales and environmental variables that more directly influence
fire regimes, which is particularly relevant because of current
efforts for mitigating fire risk through fuel and ignitions man-
agement (Brown et al. 2004; Schoennagel et al. 2009). These

results provide a necessary step towards a more mechanistic
understanding of fire probability at a landscape level. We
encourage similar examinations of other study areas with

different landscape characteristics to shed further light on the
problem of scaling and controls of fire regimes.
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