1. Background and Rationale

Record-setting tundra burning in 2007 (Fig. 1.1) and paleo evidence of frequent tundra fires in the past (1) suggest tundra ecosystems can burn more frequently than is evident in the observational record. Land managers and global change scientists lack critical information on the controls of tundra fire regimes and their potential response to ongoing and predicted climate warming (2).

Using macroscopic charcoal from lake-sediment cores we are characterizing the 6000-yr fire history in shrub-dominated and herb-dominated (graminoid) tundra in three regions across Alaska.

Here we present the first long-term, high-resolution records of tundra fire history from three lakes in the Noatak National Preserve, a region encompassing some of the most flammable tundra in Alaska.

2. Study Sites

Macroscopic charcoal (> 180μm) was quantified at continuous ±10-25 yr intervals, and radiocarbon dates from plant macrofossils provide chronologies and estimates of charcoal accumulation rates (CHAR).

Low-frequency trends in CHAR were removed from each record, and a uniform threshold criteria was applied to separate fire-related variations in CHAR from modelled noise (3). Peaks exceeding this threshold are interpreted as past fires within ± 1 km of each lake and are used to calculate fire return intervals (FRIs, yr between fires). FRI-distributions are summarized with Weibull models and statistically compared to detect differences between sites and within different periods in the past (3).

3. Methods

5. How often can tundra burn?

All sites indicate that tundra can sustain short (< 100 yr) return intervals. Shrub sites burned less than graminoid sites over the past 2000 years. Differences in fuel quantity and quality likely explain this pattern. The impact of climate change on fire regimes is discussed below.

6. Temporal patterns, vegetation, and climate

- Prior to ca 2000 yr BP, fire frequencies (the slope of line) are similar between sites.
- After ca 2000 yr BP, fire frequencies decrease at shrub tundra sites and become significantly different (lower) than the graminoid tundra site.
- Similar fire frequencies prior to 2000 yr BP coincide with (1) low effective moisture (i.e. “dry”) in the central Brooks Range (2) greater shrubs abundance at Uchugrak and Little Isac lakes and.
- The combination of climate, vegetation, and fire history suggests that shrubs were more flammable in the past, under drier climatic conditions.

CONCLUSIONS

1. Sediment charcoal records can faithfully resolve known tundra fires.

2. Tundra ecosystems can sustain short fire return intervals (< 100 yr) and have burned more frequently in the past than during the observational record.

3. Fire frequencies differ between fuel types (graminoid vs shrub-tundra).

4. Tundra fire regimes have varied over time, with the impact of fuels likely dependent on climate.

Acknowledgments

Funding provided by the Joint Fire Science Program with in-kind contributions from the National Park Service.

Jennifer Allen: Jennifer_Allen@nps.gov
Benjamin Clegg: bclegg@life.uiuc.edu
Feng Sheng Hu: fshu@life.uiuc.edu
Scott Rupp: ffsr@uaf.edu
Michael Urban: urban1@uiuc.edu
T. Scott Rupp: ffsr@uaf.edu

Author Contact Info

Melissa Chipman: mchipman@life.uiuc.edu
Phil Higuera: phil.higuera@montana.edu
Jennifer Allen: Jennifer_Allen@nps.gov
Scott Rupp: ffsr@uaf.edu
Feng Sheng Hu: fshu@life.uiuc.edu
Michael Urban: urban1@uiuc.edu
Benjamin Clegg: bclegg@life.uiuc.edu

References


