Tundra fire regimes in the Noatak National Preserve, northwestern Alaska, since 6000 yr BP
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CONCLUSIONS 6. Temporal patterns,

1. Sediment charcoal records can faithfully resolve known tundra fires. vegetation, and climate
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The role of vegetation likely depends on climatic conditions

Macroscopic charcoal All cores were sliced at 0.25 cm resolution, and age models were
developed using radiocarbon dates from terrestrial macrofossils.
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