Fire intensity, fire severity and burn severity: A brief review and suggested usage

Jon E. Keeley A,B

A USGS Western Ecological Research Center, Sequoia - Kings Canyon Field Station, 47050 Generals Highway, Three Rivers, CA 93271, USA

B Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA

E-mail: jon_keeley@usgs.gov

TOC: Contrary to some recent suggestions, fire intensity, fire severity, and burn severity are terms that should be retained, but defined operationally; severity metrics may create confusion when used to represent both fire/burn severity and ecosystem responses.
Abstract. Several recent papers have suggested replacing the terminology of fire intensity and fire severity. Part of the problem with fire intensity is that it is sometimes used incorrectly to describe fire effects, when in fact it is justifiably restricted to measures of energy output. Increasingly the term has created confusion because some authors have restricted its usage to a single measure of energy output referred to as fireline intensity. This metric is most useful in understanding fire behavior in forests, but is too narrow to fully capture the multitude of ways fire energy affects ecosystems. Fire intensity represents the energy released during various phases of a fire and different metrics such as reaction intensity, fireline intensity, temperature, heating duration, and radiant energy are useful for different purposes. Fire severity, and the related term burn severity, has created considerable confusion because of recent changes in their usage. Some authors have justified this by contending that fire severity is defined broadly as ecosystem impacts from fire and thus is open to individual interpretation. I argue that based on a long history of empirical studies, fire severity is operationally defined as the loss of or change in organic matter aboveground and belowground, although the precise metric varies with management needs. Confusion arises because fire or burn severity is sometimes defined to also include ecosystem responses. Ecosystem responses include soil erosion, vegetation regeneration, restoration of community structure, faunal recolonisation, and a plethora of related response variables. Although some ecosystem responses are correlated with measures of fire or burn severity, many important ecosystem processes have either not been demonstrated to be predicted by severity indices or have been shown in some vegetation types to be unrelated to severity. This is a critical issue because fire or burn severity are readily measurable parameters, yet ecosystem responses are ultimately what are of most interest to resource managers.

Additional keywords: BAER, dNBR Landsat Thematic Mapper, Soil burn severity
Introduction

In recent papers dealing with postfire studies there has been a disturbing number that have acknowledged problems in terminology associated with fire intensity and fire severity (e.g., Simard 1991; Parsons 2003; Jain et al. 2004; Lentile et al. 2006). These problems are perceived to be sufficiently problematical that alternative terminology has been proposed. Jain et al. (2004) suggested that these categories might best be replaced with a continuum of postfire changes, along the lines of Simard’s (1991) space/time continuum of fire issues. It has also recently been suggested that fire intensity and severity be replaced with new categories such as “active fire characteristics” and “post-fire effects” (Lentile et al. 2006).

The present paper is prompted because of strong agreement about the problems in this terminology, but here I argue for retention of the original terminology as a valuable organizational tool. I believe that much of the confusion can be alleviated by clarification of the original operational definition of these terms and suggest a model that may help clarify the phenomena under consideration (Fig. 1). The emergence of remote imaging technology and its application to fire issues has contributed to some of the problems, in part because the speed of technology development has not always been in sync with our ability to relate it to useful purposes. It is argued that the basis of some of the problems has been the more recent introduction of the term burn severity and the extension of this term to include not just fire severity but what are here termed *ecosystem responses* (Fig. 1). These problems are illustrated with an example of the relationship of remote imaging signals to fire severity and ecosystem responses in southern California shrublands. The overriding goal is to point out those aspects of each term for which there has been general agreement and note those areas where further research and discussion are needed.
Fire Intensity

Fire intensity describes the physical process of fire releasing energy from organic matter. Thus, it would be logical to consider the usage of the term “intensity” in the field of physics, where it is defined as a measure of the time-averaged energy flux or in other words the energy per unit volume multiplied by the velocity at which the energy is moving; the resulting vector has the units of watt/m². Rothermel’s (1972) reaction intensity, which represents the heat source in his firespread model, is consistent with this definition. However, fire science is like many other fields that have demonstrated other needs for the term “intensity.”

One example is fireline intensity, which is the rate of heat transfer per unit length of the fire line (kW m⁻¹) (Byram 1959). This represents the radiant energy release in the flaming front and is an important characteristic for propagation of a fire and thus is critical information for fire suppression activities and has been incorporated into fire danger rating calculations (Salazar and Bradshaw 1986; Hirsch and Martell 1996; Weber 2001). Increasingly, fireline intensity is presented in the literature as the only appropriate measure for fire intensity (e.g., Johnson 1992; Michaletz and Johnson 2003; Chatto and Tolhurst 2004; Sugihara et al. 2006), but this is misleading because it fails to acknowledge that for many fire scientists other measures of energy release from fires provide more useful metrics.

Fireline intensity is most frequently used in forested ecosystems as there is a well developed literature showing a relationship between fireline intensity or flame length and scorching height of conifer crowns and other biological impacts of fire. However, some fire effects are more closely tied to other fire intensity metrics. For example, modeling duff consumption requires understanding smoldering combustion, which is more related to temperatures at the soil surface and the duration of heating than to fireline intensity (Ryan and Frandsen 1991; Hartford and
Frandsen 1992; Valette et al. 1994; Miyanishi 2001). Even with tree mortality, fireline intensity often can not explain mortality patterns since mortality may be more a function of total heat output reflected in flame residence time or a function of smoldering combustion in the duff after the flame front passes (Wade 1993; Sackett et al. 1996). Also, the development of non-wettable layers in soil may be more closely related to duration of soil heating (DeBano 2000), and survival of seed banks or rhizomes may be closely tied to duration of heating as well as maximum soil temperatures (Beadle 1940; Flinn and Wein 1977; Auld and O’Connell 1991; Bradstock and Auld 1995; Brooks 2002). Measurements of these other metrics are often required since fireline intensity may be weakly correlated with maximum temperature or heating duration (Bradstock and Auld 1995; Keeley and McGinnis 2007). This should be no surprise since very little radiant or convected heat from combustion of aerial fuels may be transferred to the soil, and often soil temperatures are more dependent on consumption of fine fuels on the surface (Bradstock and Auld 1995). Although fireline intensity provides information for fire managers involved in fire containment, temperature and duration of heating (residence time) may be far more critical information for managers concerned with prescribed burning conditions required to retain sensitive ecosystem components. In addition, the future for fire science will be heavily influenced by remote imaging technologies and these may not always scale with fireline intensity (Smith et al. 2005). Other metrics, such as radiative energy appear to be a more readily measurable metric for fire intensity in remote imaging studies of fire impacts (Wooster et al. 2003; Dennison et al. 2006).

Another reason for not discounting other metrics of fire intensity is that fireline intensity has important limitations, particularly in how it is measured and its ability to make cross ecosystem comparisons. Byram's fireline intensity assumes that available fuel weight reflects fuels entirely
consumed during the flaming phase of combustion as the flame front passes. This metric excludes glowing combustion or post-frontal smoldering, which may continue for many hours after the front passes. Thus, fireline intensity requires that one distinguish fuels consumed by the flaming front from the total fuel consumption. However, fuel consumption usually is estimated as the difference between pre- and post fire fuel inventories, and this inflates estimates of fireline intensity (Alexander 1982; Scott and Reinhardt 2001). Because of these difficulties the majority of papers reporting fireline intensity do not measure it directly, rather they utilize surrogate measures that are assumed to be allometrically related. Typically, flame length is used and much work has gone into methodology development for making such measurements (Ryan 1981; Finney and Martin 1992). Empirical studies show there is a significant relationship between flame length and fireline intensity in forest and shrubland ecosystems (Andrews and Rothermel 1982; Johnson 1992; Wade 1993; Burrows 1995; Fernandes et al. 2000). However, in vegetation with a mixture of fine fuels and woody fuels such as palmetto understories or grasslands and savanna forests the relationship is not always reliable (Nelson and Adkins 1986; Catchpole et al. 1993; Keeley and McGinnis 2007). Cheney (1990) found that fireline intensity is system dependent and fires of identical intensities in different fuel beds will have very different flame lengths. Thus, flame length is only applicable to fuel types with the same fuel structure characteristics.

In summary, fire intensity represents the energy released during various phases of the fire and no single metric captures all of the relevant aspects of fire behavior. Different metrics, including reaction intensity, fireline intensity, temperature, residence time, radiant energy and others are useful for different purposes.
Fire Severity

The term fire severity was born out of the need to provide a description of how fire intensity affected ecosystems, particularly following wildfires where direct information on fire intensity was absent. Some definitions of fire severity have been rather general statements about broad impacts of fires, e.g., the degree of environmental change caused by fire (e.g., White and Pickett 1985; Simard 1991; Jain et al. 2004, NWCG 2006), and consequently have not lent themselves to operationally useful metrics. However, most empirical studies that have attempted to measure fire severity have had a common basis that centers on the loss or decomposition of organic matter, both aboveground and belowground. Aboveground metrics such as crown volume scorch used in forests or twig diameter remaining on terminal branches used in forests and shrublands are indicators of biomass loss (e.g., van Wagner 1973; Moreno and Oechel 1989; Tolhurst 1995; Dickinson and Johnson 2001). Soil characteristics include the loss of the litter and duff layers and ash characteristics, all of which reflect the level of organic matter consumed (Wells et al. 1979; Stronach and McNaughton 1989; Neary et al. 1999; Ice et al. 2004).

One of the first metrics for fire severity that captured the essence of how it subsequently has been used empirically was that proposed by Ryan and Noste (1985). They maintained that any metric for fire severity needed to consider the immediate impacts of heat pulses aboveground and belowground, which they noted were directly related to fire intensity. They developed an index that comprised a matrix of vegetation and soil impacts reflecting the degree of organic matter consumed, which in most studies has been simplified to categories of fire severity (Table 1). They, and others (e.g., Cram et al. 2006), have found this index does capture the fire intensity signal, and appears to be a function of fireline intensity, residence time (heating duration) and soil and plant dryness (Chatto and Tolhurst 2004). Of course other factors such as prefire species...
composition, stand age, topography, substrate, and climate will all have some effect on how fire intensity translates into fire severity.

Many studies that report fire severity have utilized an index similar to Table 1 or at least an index based on the concept of organic matter loss, such as crown volume scorch, and these have been shown to be correlated with measures of fire intensity (Buckley 1993; Williams et al. 1998; Catchpole 2000). Depending on the focus of the study they may report only on vegetation or on soils. For example, the BAER (Burned Area Emergency Response (formerly Rehabilitation) assessment, which is conducted by U.S. federal government agencies has traditionally focused on soil changes induced by fire and has often referred to this as the soil burn severity assessment (see Burn severity section). In these soil assessments the metric is largely based on loss of soil organic matter or deposition of ash from the aboveground combustion of biomass (Lewis et al. 2006). Other parameters that are sometimes included in this assessment of fire severity impacts to soils include changes in soil structure, increased hydrophobicity, and iron oxidation, many of which are indirectly tied to organic matter decomposition as well. Of course the purpose of such assessments is not because of any perceived need to determine organic matter loss, but rather because it is presumed that these are keys to other impacts (discussed under Ecosystem response). Whether or not studies have used the Ryan and Noste (1985) index in its entirety, most have used metrics that depend on loss of organic matter and in that respect share the same functionality as that index.

Remote imaging studies have found a good correlation between the LANDSAT signals, particularly the Normalised Difference Vegetation Index (NDVI), and fire severity estimates based on biomass loss (e.g., Turner et al. 1994; Miller and Yool 2002; Conard et al. 2002; Chafer et al. 2004). Much of this work has been done in forests and woodlands and studies that have
sampled more broadly have found that the vegetation type markedly influences the detection of fire severity (Hammill and Bradstock 2006).

Plant mortality, which is also a measure of biomass loss, is often included in fire severity metrics, or sometimes the fire severity metric is based entirely on mortality (e.g., Chappell and Agee 1996; Larson and Franklin 2005). Numerous studies have shown that fire intensity is correlated with mortality and other measures of biomass loss such as crown scorch (e.g., Wade 1993; McCaw et al. 1997). Tree mortality has been widely used in conifer forests in North America that historically have been exposed to low severity or mixed severity fire regimes where there is substantial tree survivorship. In these forests the dominant trees are non-sprouting species so that aboveground mortality reflects mortality of the entire genet. One limitation to using mortality is that it sometimes is not evident for a year or more after a fire event. Where the use of this metric becomes very problematical is when it is applied to understory species in many forest types or to dominant species in crown-fire ecosystems such as shrublands. In these species the aboveground ramets are nearly always killed, but some percentage survive belowground. A problem is created when the degree of resprouting is incorporated into the mortality index because resprouting is often not related to fire intensity. Many species are innately incapable of resprouting (Keeley 1981) and within resprouting species there is substantial variation in resprouting capacity that is related to species-specific differences (Vesk and Westoby 2004) and plant age (Keeley 2006a). Without considering site to site variation in prefire species composition, resprouting should not be included as a measure of fire severity and as discussed below, is best viewed as an ecosystem response variable.

In summary, fire severity refers to loss or decomposition of organic matter aboveground and belowground. Metrics for this parameter vary with the ecosystem. Including mortality is
consistent with the definition of fire severity as a loss of organic matter, however, it is only
advisable when dealing with forest trees that lack any resprouting capacity. Fire severity is
correlated with fire intensity.

Burn severity

The term *burn severity* has gained popularity in recent years but it has caused some confusion
because it is often used interchangeably with fire severity, and often using metrics consistent
with fire severity measurement (e.g., White et al. 1996; Turner et al. 1999; Rogan and Franklin
2001). In the U.S. BAER (Burned Area Emergency Response) assessments, the term burn
severity has largely replaced fire severity although the metric is very similar and is largely based
on loss of organic matter in the soil and aboveground organic matter conversion to ash. In the
recent “Glossary of Wildland Fire Terminology” the term burn severity is restricted to the loss of
organic matter in or on the soil surface (NWCG 2006), and in this respect represents what
BAER assessments term “soil burn severity” (Parsons 2003).

Remote sensing applications to assessing burned areas typically use the term burn severity
rather than fire severity, and as remote sensing has increased in burned area assessments, so has
the use of the term burn severity. In some of the initial studies of remote sensing applications to
burned area assessments the term burn severity was used for the index calculated from the
satellite sensors (van Wagendonk et al. 2004). Various sensors (e.g., MODIS, AVIRIS) have
been tested for their ability to match field measurements of severity and the Landsat Thematic
Mapper sensor is widely accepted as most appropriate for this task (van Wagendonk et al. 2004;
Epting et al. 2005; Brewer et al. 2005; Cocke et al. 2005; Chuvieco et al. 2006; but c.f. Roy et al.
2006; Kokaly et al. 2007). These remote sensing data are used to generate an index known as
the differenced Normalized Burn Ratio (dNBR), which is a preferable term over burn severity as it keeps separate the remote imaging index from surface measurements of the burned site.

BAER assessments are now commonly expedited by the use of satellite sensing data that use the dNBR index to produce a burn severity map of conditions on the ground, and this is termed the Burned Area Reflectance Classification (BARC). There appears to be a reasonably good correlation between these BARC map categories and field assessments of fire severity (Bobbe et al. 2004; Robichaud et al. 2007b), however, since the assessments must be done very soon after the fire it is not always possible to coordinate satellite pass-over with clear skies.

In many remote sensing studies field validation of the method has utilized metrics of fire severity, i.e., organic matter loss through combustion or mortality viz a viz Ryan and Noste (1985), although sometimes using the term burn severity (White et al. 1996; Rogan and Franklin 2001; Miller and Yool 2002; Chafer et al. 2004; Hammill and Bradstock 2006; Roldán-Zamarrón et al. 2006).

In recent studies utilizing remote sensing indices, field validation has used the term burn severity in a way that diverges from the concept of fire severity as a measure of just organic matter loss, rather in these studies burn severity defines a much broader collection of attributes that include both fire severity and ecosystem responses (van Wagtendonk et al. 2004; Epting et al. 2005; Cocke et al. 2005; Chuvieco et al. 2006). This approach is described as the composite burn index and it is designed to provide a single index that represents many different phenomena of interest to land managers (Key and Benson 2006). The composite index combines fire severity metrics and ecosystem recovery that includes resprouting of herbs, shrubs and hardwood trees, and seedling colonization. Recent studies of several major fires in southern California raise concerns about the value of combining fire severity and ecosystem responses into a single
“composite” index (Box 1). These studies show that while dNBR is significantly correlated with field measurements of fire severity, this signal is not necessarily a good predictor of ecosystem responses. This is critical because the remote imaging signal is most important to land managers only as far as it is a predictor of ecosystem responses. The potential for remote sensing techniques to contribute to postfire management has not yet been fully realized and it is suggested that this will develop best if we parse out the separate contributions of fire severity and ecosystem response (Fig. 1).

In summary, when the term burn severity is used interchangeably with fire severity it may lead to some minor confusion but is not a significant problem. However, where the term has been defined to include fire severity and ecosystem responses it may lead to a significant amount of confusion as it has the potential for confounding factors with different effects. It is recommended that fire severity and ecosystem responses be evaluated separately.

Ecosystem Response

Fire intensity, fire severity and burn severity are operationally tractable measures, but they are largely of value only so far as they can predict ecosystem responses such as soil erosion or natural revegetation. In addressing this issue, fire scientists may take one of two approaches: the descriptive approach or the process-based approach (Johnson and Miyanishi 2001; Michaletz and Johnson 2003). The former yields statistical descriptions of relationships between for example fire intensity and fire severity, or fire severity and ecosystem responses, and this is often the only approach available when studying impacts of wildfires. Under more controlled experimental conditions one can use the process-based approach that studies the direct path from measures of fire intensity to fire severity or from fire intensity to ecosystem response variables and tests underlying mechanisms. Regardless of the path studied, it is clear that many biotic and abiotic
factors also enter into the relationship between fire intensity and ecosystem response (e.g., Peterson and Ryan 1986; Neary et al. 1999; Moody and Martin 2001; Pérez-Cabello et al. 2006).

Statistical studies show correlations between fire intensity and fire severity metrics (e.g., McCaw et al. 1997) and between different measures of fire severity and ecosystem responses. For example, in forests it has been shown that fire severity is tied to forest recovery and alien plant invasion (Turner et al. 1999; Wang and Kemball 2003) and belowground changes in fauna and flora (Neary et al. 1999). In crown-fire forests and shrublands, increased fire severity has been correlated with decreased resprouting of herbs and shrubs (Flinn and Wein 1977; Keeley 2006). Fire severity has also been correlated with ecosystem responses such as species richness and patterns of seedling recruitment (Whelan 1995; Bond and van Wilgen 1996; Ryan 2002; Keeley et al. 2005; Johnstone and Chapin 2006). In some shrublands, high fire severity is correlated with reduced alien plant invasion (Keeley 2006). In Canadian boreal forests fire severity may be correlated with long lasting impacts on forest regeneration and carbon storage (Lecomte et al. 2006). On the other hand in some ecosystems important responses such as vegetative regeneration or resprouting after fire are not correlated with fire severity measures on the ground or remote sensing indices (Box 1).

Process-based studies can provide a mechanistic basis for translating fire intensity measures directly into fire severity impacts such as tree mortality as well as ecosystem responses such as erosion. One of the clearest examples is the use of heat transfer models of the flame and plume heat into a plant to account for tree mortality patterns (Gill and Ashton 1968; Dickinson and Johnson 2001). Mercer et al. (1994) demonstrated that seed survival in woody fruits was predicted by a mathematical model that used heat-flow equations with time-dependent temperature inputs and used this model to predict seed survival in the field. Temperature
response curves for seed survival, when coupled with field measures of fire intensity, also provide predictive models for subsequent seedling recruitment (Keeley and McGinnis 2007). A major reason for postfire assessments of fire or burn severity is because it is believed to be an important indicator of the potential for water runoff and erosion (Robichaud et al. 2000; Wilson et al. 2001; Ruiz-Gallardo et al. 2004; Lewis et al. 2006). Indeed, it is sometimes stated that these severity measurements are indicators of changes in soil hydrologic function (Parsons 2003; Ice et al. 2004). Conceptually this inference is logical based on various types of indirect evidence. For example, loss of aboveground biomass exposes more soil surface, which increases the kinetic force of precipitation on the soil surface and that can increase overland flow (Moody and Martin 2001). Also, loss of soil organic matter alters the binding capacity of soil and results in other structural changes that can affect erosional processes (Hubbert et al. 2006). Postfire increases in soil water repellency due to hydrophobic soil layers is tied, albeit sometimes weakly, to fire severity (Robichaud 2000; Lewis et al. 2006), although in some ecosystems soil hydrophobicity is unrelated to fire severity (Cannon et al. 2001; Doerr et al. 2006).

In general, there is little direct evidence that fire severity measurements are a reliable indicator of specific changes in hydrologic or other ecosystem functions (Robichaud et al. 2000; Gonzalez-Pelayo et al. 2006), and some even suggest that fire severity classifications are unsuitable for predicting fire impacts on soil hydrological responses (Doerr et al. 2006). The primary reason is that ecological responses such as erosion, overland water flow and debris flows are affected as much by topography, soil type, rates of weathering, fire-free interval, and precipitation as they are by fire severity (Moody and Martin 2001; Cannon et al. 2001; Nearing et al. 2005). In short, the factors responsible for hydrologic responses to fire are multi-factorial and until we have better mechanistic models explaining these phenomena it would be prudent to
keep separate the metric for fire or burn severity from inferred ecosystem responses. Applied efforts focused on this include Erosion Risk Management Tool (ERMiT) (Robichaud et al. 2007a).

Ecosystem responses include those processes that are differentially affected by fire intensity, measured either directly, or indirectly with fire severity metrics, and include erosion, vegetation regeneration, faunal recolonisation, restoration of community structure and a plethora of other response variables. Predicting how fire intensity or severity will affect these responses is critical to postfire management.

Conclusions

A summary of the appropriate and inappropriate use of these terms is in Table 2. Fire intensity is the energy output from fire and should not be used to describe fire effects. Fire severity and burn severity have been used interchangeably and operationally have generally emphasized degrees of organic matter loss or decomposition both aboveground and belowground. Both are positively correlated with fire intensity. Significant confusion has arisen from rather broad definitions for fire or burn severity that include ecosystem responses. Another source of confusion has arisen by using these terms for remote sensing indices and separate terms such as BARC or dNBR are preferable. Ecosystem responses include vegetative regeneration and faunal recolonization as well as abiotic watershed hydrologic processes. Some of these have been directly correlated with fire intensity and others indirectly with fire or burn severity metrics. Ecosystem responses may be positive, negative or neutral in their response to fire intensity and severity.

This approach has value for resource managers because it emphasizes the distinction between measures of severity after a fire and the resource impact of the fire. Most managers are not specifically interested in severity measures per se, but rather the extent to which they reflect
potential ecosystem responses. Metrics that combine burn severity and measures of vegetative recovery can provide misinformation when those measures are not correlated. It is recommended that field measurements of severity be restricted to measures of organic matter loss, such as canopy scorch or ash deposition, and these be analyzed separately from measures of ecosystem response such as vegetative regeneration. Mortality needs to be evaluated with consideration of species-specific traits. Mortality is a straightforward measure in most conifer dominated forests but in other ecosystems it can only be evaluated in the context of prefire community composition because of species-specific differences in resprouting capacity.

Acknowledgments

This manuscript has greatly benefited from discussion with, and/or comments on an earlier draft by, the following colleagues: Jan Beyers, James Grace, Carl Key, Jay Miller, Jason Mogahaddas, Annette Parsons, David L. Peterson, Karen Phillips, Bill Romme, Kevin Ryan, Hugh Safford, Phillip van Mantgem and Marti Witter Thanks to Jeff Eidenshink for providing remote sensing dNBR indices. This research was made possible through funding of the Joint Fire Science Program Project 04-1-2-01. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. government.
References

Buckley AJ (1993) 'Fuel reducing regrowth forests with a wiregrass fuel type: fire behaviour guide and prescriptions.' Department of Conservation and Environment (Melbourne, Victoria, Australia)

Chatto K, Tolhurst KG (2004) 'A review of the relationship between fireline intensity and the ecological and economic effects of fire, and methods currently used to collect fire data.' Fire Management, Department of Sustainability and Environment (Victoria, Australia)

Hartford RA, Frandsen WH (1992) When it's hot, it's hot ... or maybe it's not! (surface flaming may not portend extensive soil heating). *International Journal of Wildland Fire* 2, 139-144.

Key CH, Benson NC (2006) 'Landscape assessment: sampling and analysis methods.' USDA Forest Service, Rocky Mountain Research Station (Ogden, UT)

Parsons A (2003) 'Burned Area Emergency Rehabilitation (BAER) soil burn severity definitions and mapping guidelines. Draft.' USDA Forest Service, Rocky Mountain Research Station (Missoula, MT)

Rothermel RC (1972) 'A mathematical model for predicting fire spread in wildland fuels.' USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-115 (Ogden, UT).

Ryan KC (1981) 'Evaluation of a passive flame-height sensor to estimate forest fire intensity.' USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, Research Note PN@-390 (Portland, OR).

Ryan KC, Noste NV (1985) Evaluating prescribed fires. In 'Proceedings, symposium and

Scott JH, Reinhardt ED (2001) 'Assessing crown fire potential by linking models of surface and crown fire behavior.' USDA Forest Service, Rocky Mountain Research Station, Research Paper RMRS-RP-29 (Fort Collins, CO)

Table 1. The matrix originally proposed by Ryan and Noste (1985) that related changes in aboveground vegetation and soil organic matter has generally been simplified to a table such as the below; modified from Ryan (2002) and Turner et al. (1994).

<table>
<thead>
<tr>
<th>Fire severity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unburned</td>
<td>Plant parts green and unaltered, no direct effect from heat.</td>
</tr>
<tr>
<td>Scorched</td>
<td>Unburned but plants exhibit leaf loss from radiated heat.</td>
</tr>
<tr>
<td>Light</td>
<td>Canopy trees with green needles although stems scorched.</td>
</tr>
<tr>
<td></td>
<td>Surface litter, mosses, and herbs charred or consumed.</td>
</tr>
<tr>
<td></td>
<td>Soil organic layer largely intact and charring limited to a few mm depth.</td>
</tr>
<tr>
<td>Moderate or severe</td>
<td>Trees with some canopy cover killed, but needles not consumed.</td>
</tr>
<tr>
<td>surface burn:</td>
<td>Fine dead twigs on soil surface consumed and logs charred.</td>
</tr>
<tr>
<td></td>
<td>Pre-fire soil organic layer largely consumed.</td>
</tr>
<tr>
<td>Deep burning or crown</td>
<td>Canopy trees killed and needles consumed.</td>
</tr>
<tr>
<td>fire:</td>
<td>Surface litter of all sizes and soil organic layer largely consumed.</td>
</tr>
<tr>
<td></td>
<td>White ash deposition and charred organic matter to several cm depth.</td>
</tr>
</tbody>
</table>
Table 2. Summary of fire terminology and metrics

<table>
<thead>
<tr>
<th>Fire Intensity</th>
<th>Fire Severity</th>
<th>Burn Severity</th>
<th>Ecosystem Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriate usage</td>
<td>Energy output from fire.</td>
<td>Aboveground and below ground organic matter consumption from fire.</td>
<td>Aboveground and below ground organic matter consumption from fire. Sometimes subdivided into ‘vegetation burn severity’ and ‘soil burn severity’</td>
</tr>
<tr>
<td>Metrics</td>
<td>Strictly speaking is the time-averaged energy flux in Watt m$^{-2}$, but more broadly can be measured as fireline intensity, temperature, residence time, radiant energy and other.</td>
<td>Aboveground measures include tree crown canopy scorch, crown volume kill, bole height scorch, skeleton twig diameter. Belowground and soil measures include ash deposition, surface organic matter, belowground organic matter contributing to soil structure, degree of hydrophobicity, and heat-induced oxidation of minerals. Mortality is a common measure that is best applied to non-sprouting trees in surface fire regimes. In crown fire regimes aboveground mortality may be useful when fires are patchy.</td>
<td>Often used interchangeably with fire severity. Usually the term is applied to soils and designated ‘soil burn severity.’ In the U.S. it is the preferred term used in postfire BAER assessments and is considered to be the relative change due to fire; i.e., two soils with poor structure and low organic matter content may be rated differently if one was in that condition prior to the fire and another was not. Degree of severity may be influenced by socio-political concerns such as values at risk.</td>
</tr>
<tr>
<td>Inappropriate usage</td>
<td>Should never be used to describe fire effects such as those described under any of the remaining columns.</td>
<td>Should not include ecosystem responses. Also, in shrubland ecosystems, complete above- and belowground mortality should not be considered here because it depends on vegetation composition and the proportion of sprouting and non-sprouting species.</td>
<td>Should not include ecosystem responses. Also, this term should be restricted to field measurements and not be used to name remote sensing indices because the interpretation of remote data is dependent on ground-truthing with field measurements of burn severity; calling both measures burn severity is circular.</td>
</tr>
</tbody>
</table>
Box 1. Interpreting the Landsat dNBR signal in terms of fire severity and ecosystem response in crown-fire chaparral shrublands

In late October 2003 five large wildfires burned more than 200,000 ha in southern California. A total of 250 0.1-ha plots were sampled in these burned areas to assess fire severity and vegetation recovery (Keeley, Brennan and Pfaff, in preparation). Fire severity was assessed using the twig diameter method commonly used in crown fire ecosystems (Moreno and Oechel 1989; Perez and Moreno 1998) on multiple samples of the same shrub (*Adenostoma fasciculatum*) at all sites. Vegetation recovery was based on plant cover in the first spring following fires. The early assessment dNBR data were provided by EROS data center (USGS, Sioux Falls, SD).

The Landsat TM index is strongly correlated with our field measurement of fire severity (Fig. 3a), explaining over a third of the variation between these 250 sites. However, if dNBR is then used to predict ecosystem response variables we find little or no relationship. Total vegetative recovery (Fig. 3b) was very weakly related to dNBR and explained only about 1% of the variation, and there was no significant relationship with woody cover ($P = 0.94$, not shown), or percentage of the prefire *Adenostoma fasciculatum* population resprouting (Fig. 3c). These results argue against the concept of a composite burn index that mixes fire severity and ecosystem responses, even if such composites generate significant relationships with dNBR. For example, a standardized index that includes fire severity (Fig. 3a) and the two ecosystem impact variables (Figs. 3b, 3c) was created and it did generate a highly significant relationship with dNBR ($P < 0.000$), but clearly this “composite index” is driven by the fire severity response variable (Fig. 3a).

Further complications arise with composite indices when adding in terms that have species-specific differences in the direction of response. For example, in this data set fire severity was slightly negatively correlated with log seedling recruitment of facultative-seeding shrubs, whereas fire severity was positively correlated with obligate seeding shrub recruitment. These shrublands may be an example in which remote sensing data can provide some information on fire severity but has limited predictive ability for ecosystem impacts, thus requiring coupling of remote sensing data with field studies (e.g., Ludwig et al. 2007).

![Fig. 3](image-url)
Figure Legends

Fig. 1. Schematic representation relating the energy output from a fire (fire intensity), the impact as measured by organic matter loss (fire severity), and ecosystem responses and societal impacts.

Fig. 2. (a) Arizona ponderosa pine forest illustrating different degrees of fire severity; entire scene burned, foreground mostly low severity with patches of scorched canopy of moderate severity and background high severity, b) soil burn severity assessment with characteristics of high severity, including heavy white ash deposition indicating loss of substantial levels of organic matter and loose unstructured soil, c) chaparral shrublands with large shrub skeletons retaining small twigs indicative of low fire severity and d) high fire severity.

Fig. 3. Relationship of Landsat TM differenced Normalized Burn Ratio based on spectral analysis of Landsat TM sensing data taken in the first growing season after the Fall 2003 wildfires in southern California chaparral (scaled from 0 – 250) to (a) field measurement of fire severity and the extent to which dNBR can predict ecosystem response variables of (b) first year plant cover and (c) resprouting percentage of the common shrub *Adenostoma fasciculatum*, for 250 sites distributed across the Otay, Cedar, Paradise, Old and Grand Prix fires (Landsat imagery from the USGS EROS Center, field data from Keeley, Brennan and Pfaff, in press).
Fire Severity

Erosion
Vegetation recovery

Societal Impact

Loss of life or property
Suppression costs

Energy released
Organic matter consumed

Fire Intensity

Ecosystem Response