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Abstract 

The U.S. Forest Service Remote Sensing Applications Center (RSAC) and the U.S. Geological 
Survey Earth Resources Observation and Science (EROS) Data Center produce Burned Area 
Reflectance Classification (BARC) maps for use by Burned Area Emergency Response (BAER) 
teams in rapid response to wildfires. BAER teams desire maps indicative fire effects on soils, but 
photosynthetic, non-photosynthetic vegetation, and other materials also affect the spectral 
properties of post-fire imagery. Our objective was to assess burn severity both remotely and on 
the ground at six 2003 and two 2004 wildfires. We measured or calculated fire effects variables 
at 418 plots, nested in 50 field sites, located across the full range ofbum severities observed at 
the 2003 Black Mountain, Cooney Ridge, Robert, and Wedge Canyon wildfires in western 
Montana, the 2003 Old and Simi wildfires in southern California, and the 2004 Porcupine and 
Chicken wildfires in interior Alaska. We generated the Normalized Burn Ratio (NBR), delta 
Normalized Bum Ratio (dNBR), Relative dNBR (RdNBR), Normalized Difference Vegetation 
Index (NDVI), and delta NDVI (dNDVI) bum severity indices from Landsat 5 Thematic Mapper 
(TM) imagery across these eight wildfires. The NBR correlated best with the fire effects 
measures but insignificantly, meaning other indices could act as suitable substitutes. The 
overstory (trees in Montana and Alaska, shrubs in California) measures appear to have more 
influence on the image variables, followed by understory and surface cover measures. Exposed 
mineral soil and soil water repellency were poorly correlated with the image variables, while 
green vegetation was most highly correlated. The BARC maps are more indicative of post-fire 
vegetation condition than soil condition. Our future research will focus on spectral mixture 
analysis (SMA) because it acknowledges that pixel reflectance is fundamentally a mixture of 
charred, dead, green, and nonphotosynthetic vegetation, soil, rock and ash materials that are 
highly variable at fine scales. 
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Introduction 

Large wildfires have occurred and will continue to occur often in ecosystems of the United 
States, especially the drier ecosystems of the western USA (Morgan et al. 2003). Wildfires are an 
essential component of these ecosystems, but have become increasingly expensive to suppress as 
human development expands the wildland-urban interface (WUI), where local inhabitants would 
rather protect their property than maintain long-term ecological processes. The U.S. Forest 
Service and other government land management agencies annually expend millions ofdollars to 
suppress wildfires that endanger people or their property. Additional millions are spent by 
Burned Area Emergency Response (BAER) teams to rehabilitate recently burned areas, 
especially severely burned areas that are especially vulnerable to erosion, sedimentation ofwater 
supplies, or encroachment by undesirable invasive species. Efforts to increase the efficiency of 
post-fire rehabilitation treatments rely in large part on accurate maps ofwhere severely burned 
areas occur across the landscape, along with their appropriate use in their assessments. 

Increasingly, BAER team leaders tum to Burned Area Reflectance Classification (BARC) maps 
for planning emergency response to wildfires. BARC maps are produced as rapidly as possible 
by the Remote Sensing Applications Center (RSAC) on U.S. Forest Service (USFS) managed 
lands, and U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science 
(EROS) on Department of Interior managed lands. BARC maps are so named to distinguish 
themselves from burn severity maps, which require ground validation by the BAER teams to 
determine appropriate thresholds for distinguishing severely burned areas from areas only 
moderately or lightly burned. BARC products are derived from either the Normalized Bum Ratio 
(NBR) or delta NBR (dNBR) indices (Key and Benson 2003b, van Wagtendonk et al. 2004). 
Although dNBR is the default choice as a burn severity indicator, Bobbe et al. (2003), in a field 
validation ofBARC products, found dNBR to be no more accurate than NBR. They called for 
further assessments across a greater range of ecosystems, a need that prompted this study. 

Imagery from low spatial resolution satellite sensors such as MODIS, SPOT-VEG, and AVHRR 
have been widely used for regional measures ofburned area (Barbosa et al. 1999, Stroppiana et 
al. 2002). Landsat imagery is the default choice for mapping smaller fires key to local 
management needs (Clark et al. 2003), but satellite sensors such as SPOT, ASTER, and other 
imagery are important supplements. Regional burn area products (e.g., GBA2000, GLOBS CAR, 
etc.) have been heavily evaluated (Gregoire et al. 2003), and there currently exists extensive 
literature that has investigated the application of remote sensing techniques to measure the area 
burned using a wide variety of satellite sensors at both moderate (Smith et al. 2002, Hudak and 
Brockett 2004) and broad scales (Barbosa et al. 1999, Zhang et al. 2003). 

In contrast, the remote assessment of the fire severity from aerial and satellite imagery remains 
relatively under researched (Lentile et al. 2006). Indeed, the relationships between spectral 
properties ofburned areas and field measures ofburn severity have been evaluated in few studies 
(Landmann 2003, van Wagtendonk et al. 2004, Smith et al. 2005, Lewis et al. 2006, Robichaud 
et al. In Press). The remote assessment ofburn severity is expected to be highly dependent on the 
acquisition date of the image following the fire, as spectral evidence such as soil charring the 
quantity and character of the ash produced by the fire will be quickly altered by meteorological 
processes and vegetation regrowth (Robinson 1991). Therefore, the utility ofNBR, dNBR, and 
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other indices with potential for mapping bum severity needs to be quantitatively tested across a 
variety of image types and acquisition dates. Preferably, maps of specific fire effects (e.g., cover 
ofexposed soil, organic matter, or vegetation) with biophysical relevance might be produced, 
instead ofmaps keyed using loose burn severity definitions that are less interpretable and useful 
(Lentile et al. 2006), and may even run the risk ofmisinterpretation ofmisuse. To obtain this 
information, we conducted an extensive field validation project at four wildfires in western 
Montana, two in southern California, and two in interior Alaska. Our objective was to assess how 
well burn severity indices derived from Landsat Thematic Mapper (TM) imagery relate to a suite 
of immediate post-fire effects measured on the ground. 

Methods 
Wildfires Sampled 

We characterized fire effects across the full range ofburn severity observed in the field, as soon 
as possible after eight large wildfire events in 2003 and 2004 (Fig. I). The Black Mountain and 
Cooney Ridge wildfires, located west and east of Missoula, Montana, respectively, together 
burned over 10,000 ha during much ofAugust and into September, 2003. Beginning in mid-July 
and for the next two months, the Robert and Wedge Canyon wildfires west of Glacier National 
Park burned nearly 45,000 ha combined. In less than two weeks between late October and early 
November, 2003, the Old and Simi wildfires north of San Bernadino and Simi Valley, 
respectively, collectively burned over 80,000 ha in southern California. The largest 2004 
wildfires in the United States were in interior Alaska, the largest ofwhich was the Taylor 
Complex southeast ofFairbanks. The Porcupine and Chicken wildfires sampled in this project in 
late July expanded along with the Billy Creek and Gardiner Creek fires to the west to eventually 
merge into the >520,000 ha Taylor Complex portrayed in Fig. 1. 

Before entering an active fire zone and upon leaving, we followed established safety protocols 
and communicated our location and intention with the active Incident Command. The 
importance of strict adherence to wildfire safety procedures cannot be overemphasized (Lentile 
et al. In Press). One advantage ofour rapid response research project was our ability to obtain 
fire progression records from the Incident Command GIS team, while on these active incidents. 
From these records, or by asking fire personnel who were on the ground at the time ofburning, 
we established the burn dates for all of the plots we sampled. This later allowed us to calculate 
how soon after each plot burned were the fire effects characterized. 

(Figure 1 about here) 

Image Processing 

The spectral channels, spatial resolution and coverage, temporal frequency, and low cost of 
Landsat TM make it the preferred image sensor for rapid production ofBARC maps by RSAC 
and EROS. Satellite images are selected based on the availability of a cloud-free scene as soon as 
possible after the need for BARC products is identified. 



All imagery used in this paper were from the Landsat 5 TM sensor (Table 1), eliminating sensor 
type as a source ofvariation in the analysis. All the images were provided by either RSAC 
(Montana and California fires) or EROS (Alaska fires). Each was already rectified geometrically 
and radiometrically, and calibrated to top-of-atmosphere reflectance, following accepted 
preprocessing procedures (http://landcover. usgs. gov/pdf/image preprocessing. pdf). 

(Table 1 about here) 

We calculated NBR (Eq. 1) because it is the most applied bum severity index, together with its 
corresponding delta index, delta NBR (dNBR; Eq. 2), developed by Key and Benson (2003b). 
We also assessed the Relative dNBR (RdNBR; Eq. 3), which transforms the dNBR to a relative 
scale and can remove heteroscedasticity from the distribution ofdNBR values, which improved 
bum severity classification accuracy in the Sierra Nevada mountains of California (Miller and 
Thode, In Press). In addition, we included the NDVI (Eq. 4) because of its broad use in remote 
sensing across most satellite sensors, and the corresponding change index, delta NDVI (dNDVI; 
Eq.5). 

NBR = (NIR - SWIR)/(NIR + SWIR) (1) 

dNBR = NBRprejire - NBRpostfire (2) 

RdNBR = (NBRprejire -NBRpostfirJ/ ~(INBRpr~firel/1000) (3) 

NDVI = (NIR-RED)/(NIR+RED) (4) 

dND VI = NDVIprejire - NDVIpostfire (5) 

In the above formulas, RED denotes the red band, Landsat band 3; NIR denotes the near infrared 
band, Landsat band 4; and SWIR denotes the short wave infrared band, Landsat band 7. These 
bum severity indices were created in ERDAS Imagine. 

We also applied spectral mixture analysis (SMA) to the six reflectance bands of each post-fire 
Landsat TM image to estimate green vegetation (green), nonphotosynthetic vegetation (NPV) 
(brown), and char (black) fractional cover, using the linear SMA tool in the ENVI software 
package (RSI, Boulder, CO). SMA is an established remote sensing method that has been 
applied to both delineate areas burned and calculate the fractional cover ofvegetation and char 
within burned pixels (Wessman et al. 1997, Cochrane and Souza 1998, Smith et al. In Press). In 
SMA, the solution of a linear model enables the calculation of the relative proportions that a 
given cover type contributes to a pixel's reflectance. The linear mixture model is defined 
according to Eq. 6 by (Drake et al. 1999): 

n (6)
R; = L(rjfij)+en 

c=1 

Where, Rn is the reflectance for the ith pixel, rj is the spectral reflectance 
of the lh surface component, fij is the fraction of the lh surface component in the ith pixel, and en 
denotes the pixel noise term. Following Smith et al. (In Press), generic example spectrums of 
green vegetation, non-photosynthetic vegetation (NPV), and char (as presented in Smith et al. 
2005) were applied to the "ENVI linear spectral unmixing" tool as these example spectrums are 

http://landcover
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broadly similar across most vegetation types (Elvidge 1990, Landmann 2003). The same generic 
endmembers were used for all of the fires. 

Pixel values from the five burn severity index images and three fractional cover images were 
extracted at the field subplot center point locations using an ArcInfo GRID AML (coded by J. 
Evans). For simplicity throughout the remainder of this paper, we may refer to all eight image 
variables as indices, although strictly speaking fractional cover images are not indices but 
physically-based estimates. 

Field Sampling 

Fire effects data were collected 11 Sep - 13 Oct, 2003 at the Missoula fires in Montana; 29 Sep ­
23 Oct, 2003 at the Glacier fires in Montana; 6-14 Dec, 2003 in California; and 22-31 Jul,2004 
in Alaska. The goal for selecting field sites was to find burn severity conditions that were large 
enough to include many Landsat image pixels and be broadly representative of the range of post­
fire conditions occurring across the post-fire landscape. When a desired burn severity condition 
that could be safely accessed was found, the center of the field site was placed a random distance 
away from and on a compass bearing perpendicular to the access road. While preliminary BARC 
maps were used as rough guides to navigate to burned areas of interest, field sites were classified 
as low, moderate, or high severity ifthe tree crowns were predominantly green, brown, or black, 
respectively. This field assessment ofbum severity class often did not agree with the class shown 
on the preliminary BARC map. Each field site was intended to sample variation in fire effects 
within that bum severity condition, while other field sites were placed to sample variation in fire 
effects between different burn severity conditions. 

Thus, the field site center was randomly located within a selected severity condition that was 
consistent in terms of observed fire effects and apparent pre-fire stand structure and composition. 
The site center was designated the center of plot A, while the remaining eight plots were laid out 
systematic distances away, with the site oriented according to slope direction (Fig. 2). The nine 
plots were intentionally spaced apart by unequal intervals of 20, 30, or 40 m to spread out the 
distribution of lag distances separating the observations. This was done to facilitate a more 
robust assessment of the spatial autocorrelation in fire effects that underlies observed patterns, 
which will be a topic for another paper. Each plot was further subdivided into fifteen 1 m x 1 m 
subplots arrayed in a 3 row x 5 column grid as depicted in Fig. 2. The centers of plots A-I were 
all geolocated with a Global Positioning System (GPS), using a GeoExplorer (Trimble 
Navigation Limited, Sunnyvale, CA; Trade names are included for the benefit of the reader and 
do not imply endorsement by the U.S. Department of Agriculture or the University of Idaho.) to 
log a minimum of 150 positions, which were later differentially corrected and averaged to 
decrease the uncertainty to <2 m. Horizontal distances between plot centers were measured using 
a laser rangefinder to correct for slope effects. The centers of the other subplots were laid out 
using a cloth tape for distance and a compass for bearing, and marked with reusable pin flags. 
Subplot centers were not geolocated with the GPS, but their geolocations were later calculated 
based on their known systematic distance and bearing from the measured plot centers. 

(Figure 2 about here) 
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A suite of fire effects were measured at the subplot or plot scale at each field site (Table 2). At 
the subplot scale, surface cover fractions of green vegetation, rock, mineral soil, ash, litter (new 
and old), and any large organics were estimated ocularly, with the aid of a 1 m2 square quadrat. 
Percent char of each cover component was also recorded. At the plot scale, a ruler was used to 
measure depth ofnew litter (deposited post fire), old litter, and duff. Duff moisture was 
measured with a duff moisture meter (Robichaud et al. 2004 but only recorded in Alaska. Water 
repellency of soils that were charred lightly (black), moderately (gray), deeply ( orange), or 
uncharred was measured using both a mini-disk infiltrometer (Decagon Devices, Pullman, WA; 
Trade names are included for the benefit ofthe reader and do not imply endorsement by the U.S. 
Department of Agriculture or the University of Idaho.) and a water drop penetration test 
(DeBano 1981). The water drop penetration test has been used more, but the mini-disk 
infiltrometer is considered a superior measurement because it is volumetric while the water drop 
test is not (Lewis et al. 2006). Water repellency was measured in only 7 of the 15 subplots within 
each plot (Fig. 2), to reduce the sampling effort required. Water repellency was not measured at 
19 of the 50 sites sampled because the soils were too wet after recent precipitation for reliable 
measurements. A convex spherical densiometer was used to measure canopy closure around the 
center subplot (subplot 8), facing the four cardinal directions. Topographic features were also 
recorded at every plot, along with a digital photograph for reference. 

At every site, percent canopy cover of grasses, forbs, low shrubs «1 m tall, or <1 cm basal 
diameter ifonly a charred stub remained), and tree seedlings was estimated in a 11750 ha circular 
plot; tall shrubs (> 1 m tall, or > 1 cm basal diameter if only a charred stub remained) and tree 
saplings were tallied in a 11100 ha plot; and trees and snags (>12 em dbh) were inventoried in a 
1150 ha plot. These three fixed-radius vegetation plots were arranged concentrically at site center 
(Fig. 2). With the exception of canopy closure measured at every square plot, the other overstory 
and understory vegetation variables were only assessed in one of the circular plots centered over 
plot A of each site (Fig. 2), and therefore comprised only 119 the sampling effort as the measures 
made at the 9 square plots A-I (Table 2). 

(Table 2 about here) 

Analysis 

A number ofvariables in Table 2 were not measured directly in the field but later calculated in 
Excel. Total organic charred and uncharred cover fractions were derived by combining the 
charred and uncharred fractions of the old litter and other organic constituents (stumps, logs, 
etc.) estimated in the field. Total inorganic charred and uncharred cover was similarly calculated 
by summing the charred and uncharred mineral soil and rock fractions estimated in the field. 
Total green, charred, and uncharred cover fractions, constrained to sum to unity to represent the 
entire 1 m x 1 m subplot, included all constituents except new litter (fallen since the time of 
burning). Water repellency measurements were weighted by the light, moderate, deep, and 
uncharred soil cover fractions they represented within the subplot sampled, then aggregated. The 
four canopy closure measurements made at each field plot with a convex spherical densiometer 
were rescaled from 0-96 canopy counts/measurement to 0-100%, as is standard with this 
instrument, and then averaged. Moss, liverwort, fern, forb, and low shrub cover estimates from 
the 11750 ha center vegetation plot were summed to estimate total green (living), brown 
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(scorched), or black (charred) understory cover. The number of dead seedling, sapling, high 
shrub, and tree stems was divided by the total number of living and dead stems tallied in the field 
to calculate percent mortality. Field estimates of the green, scorched, or charred proportions of 
individual tree crowns were weighted by their crown length before averaging to represent the 
entire plot. 

All ofthe eight image and 32 field variables were aggregated to the plot scale for this analysis. 
This was deemed necessary because the 2-m sampling interval between subplots was smaller 
than the positional uncertainty of the subplot locations. Also, not all variables were measured at 
the subplot scale, but all variables were measured at the plot scale (although not necessarily at 
every plot), and every plot position was geolocated with the GPS, making the plot scale most 
appropriate for this analysis of image-field data relationships. Correlation matrices between the 
image and field variables were generated in R (R Development Core Team, 2004), as were the 
boxplots and scatterplots that efficiently illustrate the highly variable relationships between the 
image and field variables. 

Results 
Rapid Response 

Ours was a rapid response project, so it is useful and fair to ask how quickly image and field data 
were acquired after the fire. Each wildfire we sampled was wholly contained within a single 
Landsat TM Path (Table 1), which simplified the image acquisition variable to a single date. 
Thus on every wildfire, the distribution ofdays elapsed between burn date and image acquisition 
date, or field characterization date and image acquisition date, was wholly a function of the fire 
progression or the speed at which we characterized the plots in the field, respectively (Fig. 3). 
The California wildfires spread rapidly, driven by Santa Ana winds in predominantly chaparral 
vegetation. Fire progressions were typically slower in forests in Montana and Alaska, especially 
in Alaska where smoldering combustion in the deep duff can continue for months (Roger 
Ottmar, personal communication). The delay between when the field plots burned and when a 
cloud-free Landsat TM image was acquired ranged from 0-97 days (Fig. 3). In the case of the 
California and Montana fires (except Cooney Ridge), BAER teams needed BARC maps before a 
suitable Landsat TM image was available, prompting RSAC to obtain images from alternative 
sensors. 

(Figure 3 about here) 

The delay between when the plots burned and when they were characterized in the field ranged 
from 5-93 days (Fig. 3). The longest delays were in sampling the Robert and Wedge Canyon 
fires, because we were unable to access these fires west of Glacier National Park until after we 
had finished sampling the Black Mountain and Cooney Ridge fires near Missoula. The Missoula, 
Glacier, California, and Alaska wildfires are arranged top-bottom along the y-axes in Fig. 3 by 
the order in which they were sampled. Generally, the speed of field work increased as the crews 
grew accustomed to the sampling protocol. 



The dates of image acquisition and field plot characterization were fairly well balanced (Fig. 3). 
The field plots at the Cooney Ridge and two California wildfires were imaged 43-19 days before 
we could reach them on the ground, while field plot sampling at the other five wildfires followed 
image acquisitions by 1-48 days (Fig. 3). 

We tested if any of the time lags between burning, image acquisition, and field characterization 
dates might confound the image-field data relationships ofprimary interest. Plot-level correlation 
matrices were generated between the eight image variables and the 14 surface cover fractions 
measured or calculated at all of the subplots. Ofthe 418 field plots sampled in this study, 117 
had no variation in 30 m pixel values between the subplots, preventing calculation of correlation 
matrices within these. The mean of the correlations (absolute values) for each of the remaining 
301 plots was plotted against the three time lag variables to form three scatterplots, and 
smoothed loess functions were fit to these scatterplots to illustrate the trends (Fig. 4). These 
trends were tested for significance, but none proved to be significant over the ranges of time lags 
shown. 

(Figure 4 about here) 

Image Indices 

The distributions of correlations between the eight image-derived variables and 32 fire effects 
measures from the field varied somewhat between the eight wildfires sampled, but were usually 
not statistically significant when compared across the eight image variables (Fig. 5). When the 
correlation matrices from the Montana, California, and Alaska regions were combined, so that 
the three regions were apportioned equal weight despite their different plot counts, it became 
more evident that green fraction and NBR performed best across these three very different 
ecosystems (Fig. 6). Green fraction was more highly correlated to NBR than any of the other 
image indices in Montana (r = 0.82), California (r = 0.63), and Alaska (r = 0.86). 

(Figure 5 about here) 
(Figure 6 about here) 

Fire Effects 

The distributions of correlations between the 32 fire effects measures and the eight image 
variables were highly variable when compared across the fire effects variables (Figs. 7-9). No 
fire effects were consistently highly correlated to any of the image variables across all fires. The 
overstory measures of canopy closure, green and charred tree crowns were most highly 
correlated to the image variables in Montana, while understory measures had less influence (Fig. 
7). Old litter depth was more highly correlated to the image variables than other surface or 
subsurface measures, which varied widely in correlation strength (Fig. 7). 

(Figure 7 about here) 

The poorest correlations generally among the three regions sampled were observed in California 
(Fig. 8). Trees were usually lacking in this predominantly chaparral vegetation, making tall shrub 



--
and sapling mortality the best vegetation correlates to the image variables. Water repellency as 
measured by infiltrometer rate was better correlated to the image variables here than in Montana 
or Alaska (Figs. 7-9), perhaps because the relative lack ofvegetation and litter/duff cover in 
California exposed so much more soil here than in the other regions. However, spectral 
differentiation between the organic and inorganic surface components was poor (Fig. 8). 

(Figure 8 about here) 

In Alaska, canopy closure and green tree crown overstory measures, and understory tall shrubs, 
were more highly correlated to the image variables than were other vegetation effects (Fig. 9). 
Charred and uncharred organics were correlated relatively well, as were total green, charred, and 
uncharred cover fractions, because little inorganic fraction existed to confuse the spectral 
reflectance signal in Alaska compared to Montana and California (Figs 7-9). The deep surface 
organic layer appears to be a more influential driver of spectral reflectance here in the black 
spruce forests ofAlaska than in the ecosystems we sampled in Montana or California. 

(Figure 9 about here) 

We present more detailed results for exposed mineral soil cover, a measure ofparticular interest 
to BAER teams, to exemplify the high variability in observed fire effects between our selected 
study regions. Percent soil cover was twice as prevalent in California (68 %) than in Montana 
(33 %), while it comprised <9% of total surface cover in Alaska (Table 3). Although not shown 
here, surface organics followed the opposite trend. Aggregating the soil subplot measures to the 
plot and site levels improves the calculated correlations to the image variables by better 
capturing both the fine-scale (subpixel) variability in soil cover sampled on the ground, as well 
as the moderate-scale variability between pixels within the sampled bum severity condition (Fig. 
2). However, aggregation reduces the sample size (N) at an even faster rate, hence producing 
fewer significant correlations at the plot scale, and fewest at the site scale (Table 3). 

(Table 3 about here) 

Discussion 
Rapid Response 

Satellite Measures. Landsat images were often not immediately available when BAER teams on 
the ground had critical need for BARC maps. SPOT imagery was used for BARC maps at the 
Montana fires. Coarse-resolution MODIS imagery was first used at the California fires, which 
was later supplanted by a higher-resolution MASTER (airborne) image at the Simi fire, and an 
ASTER image at the Old fire (Clark et al. 2003). 

Further discussion of alternative satellite sensors to Landsat is warranted given that other sensors 
are used, and because the aging Landsat 5 and 7 satellites will inevitably fail like their 
predecessors, which is likely to precede the successful launch of a replacement from the Landsat 
Data Continuity Mission (http://ldcm.nasa.gov/). The SPOT 4 and 5 satellites have a short-wave 
infrared (SWIR) band 4 (1580-1750 nm) that closely approximates Landsat SWIR band 5 (1550­

http:http://ldcm.nasa.gov
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1750 run), rather than the Landsat SWIR band 7 (2080-2350 run) preferred for calculating NBR 
(Eq. 1). In theory, the SPOT SWIR band 4 may be less useful for burn severity mapping using 
NBR than Landsat band 7 (Key and Benson 2003b). At the Cooney Ridge fire, we compared 
NBR calculated from the 31 Aug 2003 Landsat 5 image used in this paper to NBR calculated 
from a 1 Sep 2003 SPOT 4 image acquired the next day. A paired t-test showed that Landsat 5­
derived NBR did only insignificantly better (p = 0.25) than SPOT 4-derived NBR in terms of 
mean correlation strength to our 32 fire effects measures, although Landsat 5 NDVI did 
significantly better (p < 0.0001) than SPOT 4 NDVI, perhaps because the latter image appeared 
more smoky. We repeated these statistical tests at the Old fire, where a 18 Nov 2003 ASTER 
image was acquired one day prior to the 19 Nov 2003 Landsat 5 image used in this analysis. In 
this case, the ASTER SWIR band 6 (2185-2225 run) very closely approximates Landsat SWIR 
band 7. Here, the mean correlation strength of Landsat NBR to the 32 field measures was only 
negligibly higher (p = 0.73) than with ASTER NBR, while ASTER NDVI did only negligibly 
better than Landsat NDVI (p = 0.95). Finally in Alaska, we took advantage of a 9 Sep 2004 
Landsat 7 ETM+ image acquired one day after the 8 Sep 2004 Landsat 5 TM image to compare 
these two sensors. Fortunately, all of our field plots happened to be situated along the center of 
the ETM+ scene, the portion of the satellite path unaffected by the data gaps in ETM+ imagery 
since the 31 May 2003 failure of the scan line corrector (http://landsat7.usgs.gov/updates.php). 
We found Landsat 7 did significantly better than Landsat 5 using NBR (p = 0.002), but only 
insignificantly better using NDVI (p = 0.89). Using a 3 Aug 2002 pre-fire ETM+ scene to also 
calculate delta indices, we also found significant improvements using Landsat 7 dNBR (p < 
0.0001) and RdNBR (p = 0.0008), but only insignificant improvement using Landsat 7 dNDVI 
(p = 0.30). We attribute the better Landsat 7 results to the improved radiometric resolution and 
less degraded condition of the ETM+ sensor compared to Landsat 5 TM. 

Field Measures. Fire effects can change quickly. Ash cover in particular is rapidly redistributed 
by wind and rainfall, which may largely explain why it was a consistently poor correlate to the 
image variables (Figs. 7-9). Needlecast (new litter) on moderate severity sites is another dynamic 
phenomenon, as is green vegetation regrowth. In only two weeks post fire, bear grass appeared in 
Montana; manzanita, chamise, and other chaparral shrubs sprouted in California; and fireweed 
sprouted in Alaska and Montana. We made every effort to characterize our field sites as quickly 
after burning as was safely possible, but at a rate of one field site characterized per day, plus 
travel time just to get to the fire, it proved difficult to complete the fieldwork at each fire before 
weather and vegetation recovery had altered the post-fire scene. Indeed, the plot-level correlation 
strength between image and field data diminished as more days elapsed between field plot 
burning and field plot characterization (Fig. 4). Although this proved insignificant when assessed 
out to the maximum delay of93 days (p = 0.35), the 0-32 day portion of the trend was significant 
based on 91 field plots (p = 0.008). Thus conditions on the ground may change more rapidly for 
about the first month after a fire than afterwards. This addressed a concern expressed by Hudak 
et al. (2004b) over fire effects changing before they can be characterized in the field, but the 
weakness of this trend does more to alleviate this concern since it is apparently not an overriding 
factor. 

Bum Severity Indices 

http://landsat7.usgs.gov/updates.php
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Several other indices were tested in a preliminary analysis of this same dataset (Hudak et ai. 
2006) but were excluded from the results presented in this paper because they were unhelpful. 
Hudak et ai. (2006) found that neither the Enhanced Vegetation Index (EVI) (Huete et ai. 2002) 
nor delta EVI performed significantly better than the NBR or dNBR, respectively. Hudak et ai. 
(2006) also tested three mathematical manipulations of the NBR that include the Landsat thermal 
band 6 (Holden et ai. 2005), along with their respective delta indices, but these also performed 
no better than simple NBR and dNBR (Hudak et ai. 2006). 

The NBR index currently used by RSAC and EROS appears to be slightly more satisfactory than 
NDVI, not only because it performed slightly better in our broad analysis, but because the SWIR 
band used in the NBR formula (Eq. 1) is less vulnerable to the scattering effects of smoke and 
haze particulates than the RED band used to calculate NDVI (Eq. 4). On the other hand, NDVI 
did not perform significantly worse than NBR, meaning NDVI could be substituted for NBR if, 
for example, Landsat or other imagery with a SWIR band were unavailable. 

Hudak et ai. (2006) found the NBR and NDVI indices outperformed their corresponding delta 
indices, as well as RdNBR, at the Montana and Alaska fires. On the other hand, the delta indices 
performed better at the California fires. We analyzed the dataset in greater detail here by 
partitioning the results by individual fires (Fig. 5), but the same general conclusions still hold. 
The RdNBR performed best at the Old fire in California, which among the vegetation types we 
sampled was probably most similar structurally to the vegetation in the Sierra Nevada Mountains 
where RdNBR was successfully applied (Miller and Thode In Press). However, few differences 
between bum severity indices were significant at any of the fires (Fig. 3), which was our 
rationale for combining the correlation matrices from the Montana, California, and Alaska 
regions to assess which indices best correlated to fire effects over these very different ecosystems 
(Fig. 6). NBR produced the highest correlations overall, although by a negligible margin over 
NDVI. RSAC and EROS use the dNBR by default to produce BARC maps, which should be 
advantageous over NBR for extended (instead of immediate) bum severity assessment (Key and 
Benson 2003b). The influence of immediate fire effects on pixel reflectance attenuates over time, 
so including a pre-fire image to map the magnitude of change in the scene is advantageous over 
simply mapping post-fire condition (Hudak et ai. 2007). RSAC and EROS currently archive the 
continuous pre-fire NBR, post-fire NBR, and dNBR products, and our results support this as a 
sensible practice. 

Fire Effects 

Green vegetation had more influence on the image variables than any other surface constituent 
(Figs. 5-9). In other words, bum severity as indicated in BARC maps is more sensitive to 
vegetation effects than soil effects, so we caution against interpreting BARC maps as bum 
severity maps, particularly in terms of soil severity (Parsons and Orlemann 2002), without the 
field verification that BAER teams often do to improve their interpretation ofbum severity from 
these maps. It is should be expected that indices derived from a satellite image overhead will 
correlate better with vegetation than with soil characteristics, because vegetation occludes the 
ground. Percent soil cover was most highly correlated to NBR in Montana and to dNDVI in 
California and Alaska (Table 3). The strength of these correlations corresponded with the degree 
of soil exposure: strongest in California, less strong in Montana, and weakest in Alaska. 
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Similarly, surface organics that protect the soil were more prevalent in Alaska than in Montana 
or especially California, again matching the trend in their correlation strength to the image 
variables (Figs. 7-9). We also found burn severity indices generally correlated better to surface 
variables than soil water repellency variables (Figs. 7-9), since surface reflectance should be 
more correlated to surface characteristics than to soil processes measured beneath the surface. 

Hudak et al. (2004a) used semivariagrams to show that fire effects can vary greatly across 
multiple spatial scales ranging from the 2-m sampling interval between adjacent subplots to the 
130-m span of an entire field site (Fig. 2). Our study supports earlier evidence that fire effects are 
more heterogeneous on low and moderate severity sites than on high severity sites (Turner et al. 
1999). This helps explain why higher severity sites are more accurately classified on BARC 
maps than lower severity sites (Bobbe et al. 2003). Observed pixel reflectance is a function of all 
of the constituents occurring within that pixel, and to a lesser degree its neighboring pixels. Thus 
an image index ofburn severity should not be expected to correlate very well with any single fire 
effect measured on the ground, when pixel reflectance is a function of multiple fire effects. 

Pixels are fundamentally mixed, which is our primary justification for pursuing spectral mixture 
analysis (SMA) as a more robust strategy for mapping fire effects. The green, brown, and black 
variables included with the five burn severity indices in our analysis (Figs. 5-6) represent green 
vegetation, dead or non-photosynthetic vegetation (NPV), and char fractional cover, respectively, 
estimated via SMA. The six multispectral bands of Landsat TM images are not nearly as suited 
for SMA as hyperspectral images, but sufficient for estimating green and possibly char fractions. 
Our green fractional cover estimate performed negligibly better than NBR (Figs. 5-6), the best of 
the bum severity indices tested. Perhaps most importantly, an image of estimated green 
vegetation cover has direct biophysical meaning, even to a non-expert, unlike NBR or any other 
index. Importantly, calculation of the green (and other) fractions by spectral mixture analysis 
does not rely on the inclusion of all six Landsat bands. In the event that imagery is only available 
with the spectral equivalent of say, Landsat bands 1-4, these cover fractions could still be 
produced, whereas the NBR could not. Our inclusion of the green, brown, and black fractional 
cover estimates is instructive as it suggests that the five burn severity indices tested correspond 
more closely to green and black fractions than to brown fraction, the poorest correlate to 
measured fire effects. Unlike ash cover, char fraction remains relatively intact in the post-fire 
scene, and might be a suitable biophysical variable upon which to base a bum severity map 
derived using SMA. Green vegetation fraction is even more highly correlated with fire effects 
(Figs. 5-6) and NBR than char fraction, so a map of green vegetation fraction could be just as 
useful to BAER teams as the current dNBR-based BARe maps. For instance, it would be more 
difficult to misconstrue a green cover fraction map (labeled as such) as a soil severity map, as 
NBR- or dNBR-based BARC maps have been misinterpreted (Parsons and Orlemann 2002). An 
added advantage of mapping fractional cover estimates is that they represent remote analogues to 
the traditional field 'severity' measures ofpercent green, brown, and black (Lentile et al. 2006). 

An important consideration not conveyed in Figs. 7-9 is the tremendous variation in inorganic 
and organic surface cover fractions observed in this study both within and between study 
regions. Lentile et al. (this issue) details the variability in ash, soil, and surface organics in each 
region and across low, moderate, and high severity bum classes. Ash cover was highest in 
Montana, soil cover in California, and surface organics in Alaska. The broader reach of the 
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boxplots in Figs. 7-8 compared to Fig. 9 is in large part due to greater variability in inorganic and 
organic cover fractions in Montana and California than in Alaska, where much of the organic 
matter persists even after a severe bum. Conversely, little soil was exposed in Alaska compared 
to Montana or especially California. We tested whether correlations between percent soil and the 
image variables were higher on high severity sites. Generally they were not, except in Alaska, 
because so little soil was exposed except on high severity sites (Lentile et al. this issue). 
Summarizing all of the fire effects measured in the field is not essential for communicating the 
image-field data relationships central to this paper, yet it is helpful to remember that sampling a 
wide range ofvariability in fire effects in the field is essential for understanding the influence 
any of them may have on pixel reflectance, because of scale effects related to the spectral mixing 
issue already described. 

We chose percent exposed mineral soil, probably the most important fire effects measure to 
BAER teams (H. Shovic, personal communication), to further illustrate this scaling issue. When 
percent soil is correlated to pixel values at the fundamental subplot scale, often only 1 or at most 
4 Landsat TM pixels will be sampled in a 9 m x 9 m plot. Aggregating the data from the 15 
subplots to the plot scale invariably improves the correlations (Table 3), with the multiple 
subplot locations providing appropriate weight to the pixels being aggregated. Further 
aggregation to the site scale further improves the correlations because that much more pixel 
variation gets sampled (Table 3). This same pattern can be observed for the other fire effects 
sampled under our spatially nested design (Fig. 2). Many validation studies may find poor 
relationships because widely separated points only sample single pixels in the image product 
subject to validation, and single points are not very representative of image pixel values if the 
field variables of interest vary greatly at subpixel scales. 

The downside ofnested sampling designs such as ours is fewer field sites get sampled across the 
landscape, because so much time is required to characterize a single site. We did not aggregate 
our data to the site scale for the bulk ofour analysis (Figs. 5-9) because that would have left too 
few sample units upon which to base the correlations, especially at the level of individual 
wildfires (Fig. 5). Table 3 uses percent soil cover to exemplify the scale considerations that are 
important for statistically analyzing nested sample data. The significance tests at the subplot 
scale have unreliably inflated degrees of freedom stemming from spatial autocorrelation, because 
the same image pixels get oversampled by the closely spaced subplots. On the other hand, the 
significance tests at the plot scale are reliable because plots A-I are spaced far enough apart to 
ensure that different image pixels get sampled (Fig. 2), although this does not completely 
eliminate potential autocorrelation effects (Hudak et al. 2004a). In summary, our hierarchical 
sampling strategy is not recommended for BAER teams or others who require rapid response or 
rapid results. It was designed specifically to explore and exploit the spatial autocorrelation that 
underlies observed patterns in fire effects, a topic for a future paper. 

While a soil fractional cover map would be very useful to BAER teams, spectra for most soil 
types would be well mixed with the spectra for surface organics and NPV, and difficult to 
differentiate with 6-band multispectral Landsat data. Soil types varied greatly within and 
between our sample sites, making application of a single, generic soil endmember untenable. A 
spectral library of endmember spectra for specific soil types is available online from USGS 
(http://pubs.usgs.gov/of/2003/ofr-03-395/datatable.html). We used a field spectroradiometer 

http://pubs.usgs.gov/of/2003/ofr-03-395/datatable.html


(ASD FieldSpecPro FR) to gather endmember spectra of soils, char, ash, NPV, litter, and the 
major plant species at all of our sampled wildfires, and will make these available in an online 
spectral library much like the USGS has. We also obtained airborne hyperspectral imagery over 
all of our field sites in the eight wildfires sampled, to test more rigorously whether maps of 
green, char, soil, or other cover fractions derived from spectral mixture analysis could potentially 
replace current bum severity maps based on indices (Lewis et al. this issue). Moreover, the 4-5 
m spatial resolution of our hyperspectral imagery will allow more rigorous assessment of the 
tremendous spatial heterogeneity occurring at subpixel scales (i.e., 30 m Landsat). Our spatially 
nested field data will serve as valuable ground truth for validating estimates of multiple cover 
fractions derived from spectral mixture analysis. 

Conclusions 

Our results show that the NBR and dNBR bum severity indices, as are currently used in BARC 
maps of large wildfires in the United States, are sound choices for rapid, preliminary assessment 
of immediate post-fire bum severity across different ecosystems. We recommend that RSAC and 
EROS continue their current practice of archiving the continuous NBR and dNBR layers upon 
which BARC maps are based, for future retrospective studies. The correlations of NDVI and 
dNDVI to the same suite of 32 fire effects measures generally were not significantly worse, so 
these indices could serve as suitable substitutes for NBR and dNBR. The Monitoring Trends in 
Bum Severity project should consider extending their historical scope and apply NDVI or 
dNDVI to map bum severity on fires preceding the availability of Landsat TM imagery, or from 
the 1972-84 Landsat Multispectral Scanner (MSS) image record, since MSS images lack the 
SWIR band needed to calculate NBR. The RdNBR only produced better correlations to fire 
effects at one of the eight wildfires sampled; thus, it may have more limited broad-scale utility. 
Time and money limited our sampling to only three regions, but it is difficult to imagine three 
ecosystems that could be more representative of the diverse fire ecology in North America than 
the three we selected in western Montana, southern California, and interior Alaska. 

Our results show high variability in the relationships between indices derived from satellite 
imagery and fire effects measured on the ground, yet some remarkable consistencies across the 
three ecosystems sampled. First, none of the indices were very highly correlated with any of the 
32 specific fire effects measured, which is likely a reflection of the 30-m scale of Landsat data 
relative to the finer scale at which fire effects vary. Second, the uppermost vegetation layers 
(trees in Montana and Alaska, shrubs in California) had more influence on the image indices than 
surface vegetation. Likewise, larger surface cover fractions were better correlated to the image 
indices than minor surface cover fractions or subsurface measures of soil water repellency. 
BAER teams should consider BARC maps much more indicative of post-fire vegetation 
condition than soil condition, and factor in that awareness when validating BARC maps on the 
ground. In terms of soil effects, BARC maps are more likely to be inaccurate on low or moderate 
severity sites than on high severity sites, where less vegetation remains to obstruct the view of 
the soil condition from above, as in an image. 

By definition, bum severity is a measure of the ecological changes wrought by fire. Understory 
vegetation response (Lentile et al. this issue, and references therein), potential for soil erosion, 
and probable effects on soil nutrients are all more pronounced where fires have consumed more 
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fuel and resulted in more mineral soil exposure. Our results demonstrate that image spectral 
reflectance upon which indices are based is largely a function of the proportions of surface 
materials comprising the scene. Our future research will focus on spectral mixture analysis of 
hyperspectral imagery. We think this approach acknowledges that pixel reflectance is 
fundamentally a mixture of charred, dead, green, and nonphotosynthetic vegetation, soil, rock 
and ash materials that are highly variable at fine scales. 
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