Stand-replacing fires and carbon storage:

Effects of stand age and density on carbon storage in lodgepole pine ecosystems

Daniel M. Kashian
Colorado State University

Michael G. Ryan
USDA Forest Service

William H. Romme
Colorado State University
The Yellowstone landscape

• Stand-replacing fires

• 100-300 year fire interval

• Large, “natural” landscape

• Mosaic of stand ages and densities
In directing succession, stand-replacing wildfires strongly affect carbon storage
Carbon balance = C gained – C lost

ΔC Vegetation

ΔC Dead Wood

Years Since Stand-Replacing Fire

ΔC (g C/yr)
Variability in structure follows fires

- >50,000 stems/ha
- 1,000 stems/ha
- 0 stems/ha
Questions:

• How closely related are carbon stocks (esp. live biomass and dead wood) to stand age?
Questions:

• How closely related are carbon stocks (esp. live biomass and dead wood) to stand age?

• How do carbon stocks vary with stand density?
Questions:

• How closely related are carbon stocks (esp. live biomass and dead wood) to stand age?
• How do carbon stocks vary with stand density?
• How variable are carbon pools within age and density classes?
Methods:

- Replicated chronosequences (n = 77 stands);

Age classes:
- < 25 years
- 40-70 years
- 80-130 years
- 170-230 years
- > 250 years
Methods:

- Replicated chronosequences (n = 77 stands);

High density
Density classes:

- < 25 > 25
- 40-70 > 5,000 stems/ha
- 80-130 > 5,000 stems/ha
- 170-230 Beetle killed
- > 250 Beetle killed
Methods:

• Replicated chronosequences (n = 77 stands);

Moderate density
Density classes:
< 25 7 - 40,000 stems/ha
40-70 1,300 - 5,000 stems/ha
80-130 1,300 - 5,000 stems/ha
Methods:

- Replicated chronosequences (n = 77 stands);

Low density

Density classes:

- < 25 < 1,000 stems/ha
- 40-70 < 1,300 stems/ha
- 80-130 < 1,300 stem/ha
- 170-230 Not beetle killed
- > 250 Not beetle killed
Methods:

• Mass balance approach using field measurements of all C pools in 77 stands:
 Above and belowground biomass (on-site allometrics)
 Standing and down dead wood
 Stumps and dead coarse roots
 Forest floor and mineral soil
Aboveground Live Carbon

<table>
<thead>
<tr>
<th>Density</th>
<th>Total Aboveground Carbon (kg C/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Density</td>
<td>40-70</td>
</tr>
<tr>
<td>Moderate Density</td>
<td>80-130</td>
</tr>
<tr>
<td>High Density</td>
<td>170-230</td>
</tr>
</tbody>
</table>

CV=42%

CV=49%
Dead Wood Carbon

Dead Wood Carbon (kg C/m²)

- Low Density
- Moderate Density
- High Density

Density Ranges:
- < 25
- 40-70
- 80-130
- 170-230
- > 250
Dead Wood Carbon

Dead Wood Carbon (kg C/m²)

Low Density
Moderate Density
High Density

CV = 76%
CV = 79%
Total Ecosystem Carbon Stocks

Low Density

High Density

Moderate Density

Total Ecosystem Carbon (kg C/m²)

<25 40-70 80-130 170-230 >250

Low Density

Moderate Density

High Density
Location of Carbon Stocks

- **Low**: <25, 40-70, 80-130, 170-230, >250
- **Mod**: <25, 40-70, 80-130, 170-230, >250
- **High**: <25, 40-70, 80-130, 170-230, >250

Legend:
- Green: Aboveground
- Light Blue: Dead Wood
- Light Yellow: Belowground
- Purple: Forest Floor
- Blue: Soil Carbon
Conclusions:

- Carbon stocks for most important pools vary with age, but less with density.
Conclusions:

- Carbon stocks for most important pools vary with age, but less with density.

- Most change in carbon storage occurs in the first 100 years following the fire.
Conclusions:

- Carbon stocks for most important pools vary with age, but less with density.
- Most change in carbon storage occurs in the first 100 years following the fire.
- Dead wood component varies more than live biomass within age and density classes.
Take-home Point:

For a single fire cycle, initial post-fire stand densities are probably not important for carbon storage on these landscapes; even the age effect is relatively short-lived.
Acknowledgements:

Field work: Kellen Nelson, Heather Lyons, Therese Tepe, Lance Farman, Lance East, Rick Arcano, Andy Whelan, Deborah Fritts, Lauren Alleman, Caitlin Balch-Burnett, Lisa Huttinger, Kevin Ruzicka, Megan Busick, Brandon Corcoran

Lab work: Kellen Nelson, Heather Lyons, Lauren Alleman, Kevin Ruzicka, Valerie Miller, Ashlee Wallin, Marc Barker, Tiann Heit, Tiffany Mitton, Todd Hunsaker

This research was funded by the Joint Fire Sciences Program
Belowground Live Carbon

Total Belowground Carbon (kg C/m2)

- Low Density
- Moderate Density
- High Density

Belowground Live Carbon concentrations for different density ranges:

- < 25 kg C/m²: Limited data, CV=57%
- 40-70 kg C/m²: Moderate concentration, CV=33%
- 80-130 kg C/m²: High concentration
- 170-230 kg C/m²: High concentration
- >250 kg C/m²: High concentration

Note: CV values indicate variability coefficients.
How important are stand age and density for carbon storage?

(Kashian et al. 2006, Bioscience)

• Stand age is less important than stand density in affecting landscape carbon storage; large changes in fire intervals (< 100 years) are necessary.

• Large (?) changes in the stand density distribution are necessary to shift landscape carbon storage.