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Abstract. The ability to predict spatial patterns of species richness using a few easily 
measured environmental variables would facilitate timely evaluation of potential 
impacts of anthropogenic and natural disturbances on biodiversity and ecosystem 
functions. Two common hypotheses maintain that faunal species richness can be 
explained in part by either local vegetation heterogeneity or primary productivity. 
Although remote sensing has long been identified as a potentially powerful source of 
information on the latter, its principal application to biodiversity studies has been to 
develop classified vegetation maps at relatively coarse resolution, which then have 
been used to estimate animal diversity. Although classification schemes can be 
delineated on the basis of species composition of plants, these schemes generally do 
not provide information on primary productivity. Furthermore, the classification 
procedure is a time- and labour-intensive process, yielding results with limited 
accuracy. To meet decision-making needs and to develop land management 
strategies, more efficient methods of generating information on the spatial 
distribution of faunal diversity are needed. This article reports on the potential of 
predicting species richness using single-date Normalized Difference Vegetation Index 
(NDVI) derived from Landsat Thematic Mapper (TM). We use NDVI as an 
indicator of vegetation productivity, and examine the relationship of three measures 
of NDVI-mean, maximum, and standard deviation-with patterns of bird and 
butterfly species richness at various spatial scales. Results indicate a positive 
correlation, but with no definitive functional form, between species richness and 
productivity. The strongest relationships between species richness ofbirds and NDVI 
were observed at larger sampling grains and extent, where each of the three NDVI 
measures explained more than 50% of the variation in species richness. The 
relationship between species richness of butterflies and NDVI was strongest over 
smaUer grains. Results suggest that measures of NDVI are an alternative approach 
for explaining the spatial variability of species richness of birds and butterflies. 

1. Introduction 
Whether the driving mechanism is climate change, human popUlation growth, 

urbanization or agricultural expansion, the impacts of environmental change on 
biodiversity are substantial. Understanding the spatial patterns of species distribu­
tions will help guide sustainable land management and design more effective 
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conservation strategies. Ground-based observations are crucial to obtain data on 
species richness (total number of species) and occurrence (presence or absence 
of individual species). Measurements of environmental variables that are key 
determinants of species distributions, such as topography and land cover, also are 
important for developing and testing predictive models of species distributions. 
However, measuring and monitoring environmental variables through field surveys 
can be expensive and logistically challenging, particularly in topographically 
complex terrains or remote regions. 

The availability of satellite imagery at various spatial resolutions has generated 
interest among the scientific community regarding the potential of remote sensing 
to measure and monitor variables/that affect biodiversity (Roughgarden et al. 1991, 
Turner et al. 2001). The internally consistent measurements and long observational 
record of satellite sensor data make it an attractive source of reliable infolmation 
on land cover. Beginning with the launch of the first Landsat satellite in 1972 and 
continuing with Landsat 7, there now exists a 30-year time series of high resolution 
imagery for much of Earth's surface. At coarser spatial resolutions , the Advanced 
Very High Resolution Radiometer (AVHRR) has provided global, daily observa­
tions for more than two decades . Together with a generation of new data from 
Terra and other satellites, remotely sensed imagery provides exciting opportunities 
to explain and predict species distributions, their environmental determinants, and 
potential consequences of environmental perturbations. 

However, data availability does not necessarily equate with either suitability or 
utility. As satellite-derived data become increasingly available, many ecologists have 
been tempted to measure or estimate almost every possible environmental variable in 
the hopes that a multivariate analysis will tease out statistically and biologically 
meaningful correlates of species distributions (Mac Nally 2001). But the latter 
approach can be statistically suspect at worst (e .g. if the number of predictor variables 
begins to approach the number of observations) and inefficient at best (e.g. if all 
possible 2K models are computed, where K is the number of predictor variables) . 

One of the greatest challenges facing the global environmental research 
community is making conceptual and technical advances in integration of data 
across multiple spatial scales (Lam and Quattrochi 1992, Liu 2001). For example, 
there is often a mismatch in the scale of remote sensing data and field observations. 
Ecologists traditionally have worked at both small grains (the smallest resolvable 
unit of study, or resolution) and small extents (the total area over which observa­
tions are made, or geographic scale). More recently, ecologists have begun to 
expand the spatial extent of their research to increase its relevance to land 
management. Widely available global datasets (DeFries et al. 2000, Friedl et al. 
2000a) derived from A VHRR have limited utility for small-grain species modelling, 
although they may be suitable for larger-grain studies that cover broad areas. 
Moreover, the use of AVHRR Normalized Difference Vegetation Index (NOV!) 
for land cover classification may be appropriate only for generating highly 
generalized classes with limited accuracy (Friedl et al. 2000b). For small-grain 
applications, high resolution Landsat data provide an attractive alternative, but 
currently there are no pre-processed global land cover products at this scale. 

The most common approach to integrate remotely sensed data with field 
measurements of species occurrence is to generate a broad classification of land 
cover, and then to correlate distributions of individual species with the map classes 
(Fuller et al. 1998, Saveraid et al. 2001) . The classification process adds an 
additional level of complexity to the analysis in terms of the time required to collect 
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tralnmg data, test classification algorithms, and conduct field-based accuracy 
assessments of the classification results . Most land cover classifications have accuracies 
between 75% and 95%. Therefore, attempts to model species richness using classified 
maps invariably will be confounded by errors of misclassification. Both the labour­
intensive process of classifying images and the errors associated with that process 
reduce the timeliness and value of remote sensing to measure environmental variables 
correlated with species distributions. To be useful for ecological modelling, remote 
sensing data inputs must be (1) easy to interpret, (2) available in a timely manner, and 
(3) measured at spatial scales similar to field observations. 

Most previous efforts to use remote sensing data to explain species distributions 
focused on measuring and mapping species richness of vegetation (Reed et al. 
1994, J0rgenson and N0hr 1996, Gould 2000, Griffiths et al. 2000, Muldavin et al. 
2001, Nagendra 2001). The latter emphasis is not surprising because much of 
remote sensing research is geared towards improving techniques to characterize 
land cover (Gopal et al. 1999, Muchoney el al. 2000, Saatchi et al. 2000). Among 
studies that have used satellite sensor data to map faunal distributions, a majority 
concentrated on birds or large mammals (Lyon 1983, Palmeirim 1988, Avery and 
Haines-Young 1990, N0hr and J0rgensen 1997, Verlinden and Masogo 1997, De 
Merode et al. 2000, Griffiths et al. 2000, Osborne et al. 2001, Oindo 2002, Oindo 
and Skidmore 2002). 

In this paper, we evaluate the utility of NOVI measures derived from a single 
Landsat Thematic ' Mapper (TM) image to explain spatial variance in species 
richness of birds and butterflies in the central Great Basin of western North 
America. With a pixel resolution of 30 m, Landsat TM is highly compatible with 
field measurements of birds and butterflies. If species richness can be predicted with 
an easily derived index like NOVI then the need for image classification would be 
obviated. Thus, in comparison with approaches that first use remote sensing to map 
land cover, then attempt to correlate land cover with patterns of species occurrence 
and species richness, resource managers and ecologists might be able to evaluate 
more quickly the potential biodiversity impacts of alternative management and 
conservation strategies. 

2. Study area 
The Great Basin of western North America (figure 1) includes more than 

425000 km 2 of internal drainage extending from the Sierra Nevada in the west to 
the Wasatch Range in the east (Grayson 1993). The topography of the Great Basin 
is dominated by more than 200 north-south oriented mountain ranges of various 
sizes. Elevation ranges from 80 to 4310 m, with a mean of 1670 m. Numerous 
canyons incise the east and west slopes of the ranges . More than 75% of the region 
is federally owned and therefore is managed for multiple, and often competing, land 
uses , which include livestock grazing, localized mining operations, and recreation . 
Resource agencies generally develop separate management plans for individual 
mountain ranges under their jurisdiction, but lack of information on patterns of 
species diversity limits the scientific basis of management planning. Within 
mountain ranges, land uses commonly are delineated at the extent of individual 
canyons or several adjacent canyons. 

As the elevation increases in the mountain ranges of the central Great Basin, 
the dominant vegetation shifts from sagebrush (Artemisia tridentata ssp.) to 
pinon-juniper woodland (Pinus monophylla, Juniperus osteosperma) to low brush 
(Tueller and Eckert 1987). Patches of mountain mahogany (Cercocarpus ledifolius) 
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Figure 1. The Great Basin of western North America . 

occur within and above the pinon-juniper zone, and aspen (Populus tremuloides) 
grow in riparian canyons and around groundwater seeps on exposed slopes. Limber 
pines (Pinus flexilis) can be found at timberline, and a depauperate alpine flora 
grows on the slopes of the tallest summits (Grayson 1993). Canyons with either 
permanent or ephemeral surface water often have willow (Salix spp.), rose (Rosa 
woodsii) , nettle (Urtica dioica) , and an understorey of various grasses and forbs . 

The climate of the Great Basin is highly variable across space and time 
(Houghton et al. 1975). The region is a cold desert; it generally receives less than 
250 mm of precipitation per year, most of which falls as snow during the winter 
(Ricketts et al. 1999). Summer rains from the Gulf of Mexico sometimes reach the 
southern half of the Great Basin (Brussard et al. 1998). Precipitation tends to 
increase as elevation increases, but average annual precipitation can vary 
dramatically over a small area. Water is a limiting resource for many species of 
plants and animals in the Great Basin. Most resources used by birds and butterflies, 
such as nesting sites for birds and larval host plants and adult nectar sources for 
butterflies, tend to be concentrated in the bottoms of canyons, many of which have 
permanent or ephemeral streams (Mac Nally and Fleishman 2002). 

Biological research in the Great Basin has yielded landmark contributions to 
ecology and biogeography (Brown 1971 , Lomolino 1996), yet land managers in the 
region often lack even baseline data on species distributions. At present, numerous 
native species face substantial threats. For example, non-native invasive species 
such as cheatgrass (Bromus tectorum) are changing the magnitude and frequency of 
disturbance events and the structure and composition of vegetation over vast areas. 
In addition, there is a high likelihood of a shift in species distributions in response 
to climate change (Fleishman et al. 1998, Lawlor 1998, Murphy and Weiss 1992). 
Thus, an understanding of spatial patterns of species richness, and development of 
relatively fast and cost-efficient measurements, is critical to identification of effec­
tive mitigation strategies . 

3. Methods 
3.1. Bird and butterfly data 

Birds and butterflies frequently have been proposed as surrogate measures of 
the status of each other, of other taxonomic groups, or of environmental variables 
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(Ehrlich and Davidson 1960). Birds and butterflies are well understood biologically, 
relatively easy to study and monitor, and have short generation times (thus may 
respond rapidly to environmental changes). To evaluate the ecological information 
conveyed from the distribution of birds and butterflies, it is important to test whether 
richness of each taxon group reflects dominant environmental gradients and whether 
the taxon--environment relationships are scale-dependent. 

Bird and butterfly data for our analyses were collected in three adjacent 
mountain ranges in the Great Basin: the Shoshone Mountains, Toiyabe Range 
and Toquima Range (figure2(a)). The ranges are similar in terms of their regional 
climate, biogeographic past, ancestral biota, and human land-use histories 
(Grayson 1993). Birds were sampled in five canyons each in the Shoshone 
Mountains and Toiyabe Range and six canyons in the Toquima Range. We divided 
canyons into mUltiple segments from base to crest. Each segment was located on 
the canyon floor, measuring 150 m wide and long enough to span a 100 m change in 
elevation (Fleishman et al. 1998, 2001). Mean segment length was 1.5 km; more 
than two-thirds of the segments were greater than 1km long. Segment area ranged 
from 1.5 to 44.4 ha. We conducted surveys for birds in 25 segments in the Shoshone 
Mountains, 31 in the Toiyabe Range, and 28 in the Toquima Range. 

We followed standard inventory methods for birds in temperate regions (Bibby 
ef al. 2000). Birds were surveyed during the breeding season (late May through 
June) using two or three 75 m fixed-radius point counts in each segment. Within a 
segment, points were located in each of the dominant vegetation types (e.g. aspen, 
willow, piiion-juniper, wet meadow, sagebrush) to account for the influence of 

(u) (b) 

Figure 2. (a) Location of bird and butterfly inventories in the Shoshone Mountains, 
Toiyabe Range and Toquima Range. (b) Landsat TM 432 (RGB) of the Shoshone 
Mountains, Toiyabe Range and Toquima Range. 
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variables such as tree species composition, tree size, and water availability on avian 
species richness and abundance (Betrus 2002, Poulson 2002). Each segment 
included at least two point-count locations even if there was only one major 
vegetation type. Segments included three point-count locations when there were 
three different vegetation types within the segment. Point count locations were at 
least 200 m apart. We surveyed a total of 175 points-51 in the Shoshone 
Mountains, 69 in the Toiyabe Range, and 55 in the Toquima Range. 

Each time a point was surveyed, we recorded all birds actively using terrestrial 
habitat within a 75 m radius. Each point was visited three times during the breeding 
season for 5 min per visit. Three surveys are considered sufficient to determine 
which species of birds are present at point count locations (Siegel et al. 2001). In 
addition, point counts have been shown to be an effective method of sampling birds 
in riparian areas in the Great Basin (Dobkin and Rich 1998). In our work, species 
accumulation curves for birds at the segment and canyon levels generally appro­
ached an asymptote by the third round of surveys. Point counts were conducted 
only under fair skies. Each point received at least one count within 2 h of dawn and 
at least one count between 2 and 3.5 h after dawn. No counts were conducted more 
than 3.5 h after dawn. 

Butterfly inventories were conducted in eight canyons (39 segments) in the 
Shoshone Mountains, 14 canyons (102 segments) in the Toiyabe Range, and 11 
canyons (54 segments) in the Toquima Range. Our butterfly inventories followed 
standard methods for this taxonomic group in temperate regions (Shapiro 1975, 
Harding et al. 1995). From 1994 to 2001, we inventoried resident butterflies using 
walking transects, an established technique that reliably detects species presence 
and permits assessment of distributional trends across space and time. Approxi­
mately every 2 weeks throughout the majority of the adult flight season 
(approximately late May through August), we walked the length of each segment 
at a constant pace (thus, sampling effort was equal per unit area) and recorded the 
presence of all butterfly species seen. Methods for butterfly data collection are 
described in greater detail in Fleishman et al. (1998). It is reasonable to interpret 
that a given butterfly species is absent if the area has been searched using these 
methods during the appropriate season and weather conditions (Pullin 1995). 

In our study system, the rank order of locations with respect to species richness 
of birds and butterflies appears to be fairly stable over time (Mac Nally and 
Fleishman 2002). The rank order of locations with respect to overall greenness 
also appears to be temporally constant, although vegetative growth and reproduc­
tion in any given location may fluctuate between years in response to variation in 
temperature, precipitation, and other stochastic events. 

3.2. Vegetation heterogeneity, productivity, and ND VI 
The seminal work of Rouse et al. (1973, 1974) established the utility of a 

vegetation ratio computed by the dividing the difference between the Near-Infrared 
and Red bands by the sum of the two bands : 

NDVI= NIR-Red (1) 
NIR+Red 

Since then, NDVI has become the most extensively used vegetation ratio in 
remote sensing. NDVI is sensitive to photosynthetically active biomass (Tucker 
1979); correlated with leaf area index (Asrar et al. 1984); and related to amount of 
absorbed photosynthetically active radiation (APAR) (Gamon et al. 1995, Goward 
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and Huemmrich 1992), fraction of absorbed photosynthetically active radiation 
(FAPAR) (Myneni and Williams 1994), and net primary productivity (Box et al. 
1989, Cramer et al. 1999). NOVI has been applied to measurement and monitoring 
of vegetation at continental scales (Townshend and Justice 1986), agricultural 
productivity (Pax Lenney et al. 1996), urban growth (Masek et al. 2000), drought 
and crop type (Unganai and Kogan 1998), urban heat island effects (Gallo and 
Owen 1999), and plant biodiversity (Fje1dsa et al. 1997, Nagendra and Gadgi1 1998, 
Chust et al. 1999, Gould 2000, Burrough et al. 2001, Oindo and Skidmore 2002). 

The effectiveness of NOVI as an indicator of green vegetation may depend on 
the quantity of ground biomass (Huete and Jackson 1987). It has been suggested 
that the Soil Adjusted Vegetation Index (SA VI) may be a more suitable measure of 
vegetation for arid and semi-arid areas (Huete 1988). Although the Great Basin is a 
desert, most of our inventory locations had nearly continuous ground cover of 
sagebrush and other low shl'Ubs, trees, grasses, and forbs. In areas where pifion­
juniper woodland dominated, bare soil was sometimes apparent below the canopy. 
Because of these vegetation characteristics, NOVI was deemed more appropriate 
for our analyses than SAVI. 

We calculated NOVI mean, maximum, and standard deviation and examined 
the utility of these measures as direct correlates of species richness of birds and 
butterflies. In so doing, we tested two widely held hypotheses: (1) species richness of 
birds and butterflies can be explained in part by vegetational heterogeneity and (2) 
species richness of animals, like plants, can be explained partly by primary 
productivity. We treat standard deviation of NOVI as a surrogate measure of 
vegetational heterogeneity, and maximum and mean NOVI as surrogate measures 
of primary productivity. The underlying assumption of the first hypothesis is that 
birds and butterflies rely on specific compositional and structural aspects of 
vegetation for food, breeding, and shelter. In other words, 'green vegetation ' per se 
is necessary, but not sufficient, to support high species richness of native fauna. 
High vegetational heterogeneity increases the likelihood that particular resources 
will be available for a given species of bird or butterfly. 

The second hypothesis stems from a debate that began in the 1960s on the 
relationship between species diversity and productivity. The theory holds that 
higher levels of productivity in plant communities, measured as above-ground 
biomass or NPP, lead to greater floral and faunal diversity. The specific shape of 
this relationship is controversial and may be scale dependent. Some argue that the 
relationship is unimodal (most often hump-shaped), with greatest species diversity 
at intermediate levels of productivity. Others maintain the relationship is linear or 
near-linear, with higher levels of diversity associated with greater productivity. 
The unimodal relationship is valid for many empirical examples (Guo and Berry 
1998, Kassen et al. 2000, Mittelbach et al. 2001), but there is much variation 
in the relationship across geographic scales, taxonomic groups, and ecosystems 
(Blackburn and Gaston 1996, Gross et al. 2000, Waide et al. 1999). 

Our NOVI parameters were generated from one cloud-free, geo-corrected 
Landsat Thematic Mapper image (WRS 41-33) acquired in June 2000, during the 
peak of the growing season (figure 2(b)). Annual precipitation for 2000 in Austin, 
Nevada (roughly parallel to and equidistant from the northern end of the Toquima 
Range and Shoshone Mountains) was 109 mrn, relatively close to the average for 
the period during which we measured species richness of birds and butterflies 
(100 mm) (Western Regional Climate Center 2003). We calculated each of the three 
NDVI measures at two sampling grains, canyon segment and canyon . In each case, 
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the NDVI values were calculated from the bottom of the canyon, therefore 
topographic effects on spectral reflectance were minimal. We analysed values at the 
canyon segment grain at two spatial extents, mountain range and landscape (i.e . all 
three mountain ranges). Due to the limited number of canyons sampled in each 
mountain range, values at the canyon grain were analysed only at the landscape 
extent and not at the mountain range extent. 

We first calculated NDVI for the entire image at the pixel scale (figure 3). 
Maximum NDVI was calculated from the maximum NDVI value for all pixels 
within a sampling unit (canyon segment or canyon). Standard deviation of NDVI 
was calculated as the standard deviation of all pixel values within a sampling unit. 
Data on species richness of bird's and butterflies were georeferenced to the TM 

Figure 3. NDVI values for a sample canyon segment. 
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image, and the NOVI parameters were extracted for each sampling unit. We used 
linear and quadratic regressions to test whether any of the three measures of NOVI 
was a statistically and ecologically significant linear or quadratic predictor of 
species richness of birds or butterflies at the canyon segment and canyon grains. 

4. Results 
An exploratory analysis of the range of NOVI parameter values indicated that 

the NOVI values were consistent with the climatic and topographic attributes of the 
three mountain ranges (table 1). The Toiyabe Range receives more precipitation 
than the Shoshone and Toquima ranges, and is also the largest and most productive 
of the three. As expected, maximum NOVI values were highest for the Toiyabe 
Range. The range of mean NOVI values was smallest for the Shoshone Mountains, 
probably reflecting the range's overall aridity. While the range of mean and maxi­
mum NOVI values varied among mountain ranges, the range of standard deviation 
NOVI values was relatively stable. This may indicate that vegetation composition 
and productivity varies less within a single mountain range than among mountain 
ranges. 

At the canyon segment grain, maximum NOVI was significantly correlated with 
species richness of birds in the Toiyabe and Toquima ranges and across the 
landscape (table 2). None of the NOVI measures was significantly correlated with 
species richness of birds in the Shoshone Mountains. At the mountain range extent, 
maximum NOVI explained more than 40% of the variation in species richness of 
birds in the Toiyabe and Toquima ranges. In addition, mean NOVI was a statisti­
cally significant linear and quadratic predictor of species richness of birds in the 
Toquima Range and at the landscape extent (table 2). 

At the canyon grain (landscape extent), there was a particularly strong 
relationship between all NOVI measures and species richness of birds (table3). For 
both linear and quadratic functional forms, the coefficients of determination 
between species richness of birds and mean, maximum and standard deviation 
NOVI were all greater than 50%, with the quadratic form a marginally a better fit 
than the linear model. At the canyon grain, maximum NOVI again was the 
strongest correlate with species richness of birds, accounting for more than 20% of 
variation. 

At the canyon segment grain in the Toiyabe and Toquima ranges and at the 
landscape extent, mean and maximum NOVI were statistically significant linear and 
quadratic predictors of species richness of butterflies (table 2). Maximum NOVI 
explained more than 20% of the variation in species richness of butterflies at the 

Table I. Range of NOVI values at the canyon segment and canyon grains. 

Canyon segment grain Canyon grain 

Landscape Landscape 
Mountain range extent extent extent 

NDVI Shoshone Toiyabe Toquima 

parameter (Il = 39) (n = 102) (n = 54) (n=195) (n= 33) 


Mean -0.176-0.092 -0.272-0.124 -0.293 to -0.088 -0.293-0.124 -0.240-0.031 
Maximum -0.075-0.218 -0.229-0.434 -0.242-0.342 -0.242-0.434 -0.073- 0.452 
Standard -0.011-0.113 -0.016-0.160 -0.014-0.157 0.011-0.160 -0.037-0.154 

deviation 
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Table 2. Coefficient of deten11ination (R2) between species richness and NDVI measures at the canyon segment grain. 

Mountain range extent Landscape extent 

Shoshone (N; = 25, Nu = 39) Toiyabe (N;=32, Nu= 102) Toquima (N; = 28, Nu = 54) (N;=84, N,,= 195) 

Birds 

Butterflies 

NDVI parameter 

mean 
maximum 
standard deviation 

mean 
maximum 
standard deviation 

Linear 

0.00 
0.11 
0.02 

0.03 
0.02 
0.22* 

Quadratic 

0.00 
0.18 
0.06 

0.04 
0.08 
0.25* 

Linear 

0.05 
0.40** 
0.01 

0.10* 
0.22** 
0.00 

Quadratic 

0.17 
0.43** 
0.24 

0.16** 
0.23** 
0.00 

Linear 

0.23* 
0.42** 
0.00 

0.11 
0.22* 
0.02 

Quadratic 

0.25 
0.42* 
0.05 

0.12 
0.22* 
0.07 

Linear 

0.10* 
0.29** 
0.00 

0.07** 
0.19** 
0.00 

Quadratic 

0.13* 
0.29** 
0.02 

0.09** 
0.19** 
0.02 

?\ 
n 
~ 
B" 
~ 

~ 

Nu = Sample size of butterflies; N; = Sample size of birds. 

Values in bold indicate p";0.05. 

*p";O.OI, **p";O.OOI. 
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Table3. Coefficient of determination (R2) between species richness and NDVI measures at 
the canyon grain. 

Landscape extent 


CN,,=33 , N;=16) 


NDVI parameter Linear Quadratic 

Birds mean 0.50* 0.54* 
maximum 0.53* 0.64* 
standard deviation 0.54* 0.55* 

Butterflies mean 0.1 0.11 
maximum 0.23* 0.27* 
standard deviation 0.12 O.18t 

Nu = Sample size of butterflies; Ni = Sample size of birds. 

Values in bold indicate p ~ 0.05 . 


*p~O.01. 


tF1•32 =3 .30, p=O.05 . 

mountain range extent, and nearly 20% of the variation at the landscape extent. 
Standard deviation of NOVI was not a significant predictor of species richness of 
butterflies in the Toiyabe Range, Toquima Range, or at the landscape extent. The 
inverse was true for the Shoshone Mountains, in which mean and maximum NOVI 
were not statistically significant predictors of species richness of butterflies, but 
standard deviation of NOVI explained more than 20% of the variation in species 
richness of butterflies. 

5. Discussion 
I t has been argued that the shape of the relationship between productivity and 

species richness is dependent on both scale of observation and taxonomic group 
(Gross et al. 2000, Mittelbach et al. 2001). While others have used A VHRR NOVI 
data to confirm a unimodal relationship between species richness of plants and 
productivity (Oindo and Skidmore 2002), we did not find a quadratic model to be a 
significantly better fit to species richness of birds and butterflies than a linear model. 
Only for species richness of birds at the canyon grain were the linear and quadratic 
models noticeably different, with R2 values of 0.53 and 0.64, respectively. However, 
at other scales, the linear and quadratic results were not distinct enough to 
discriminate between models . 

Plant productivity is largely dependent on regional and subregional variables, 
such as climate, geology and gradient. Consequently, NOVI depends on and is 
related to these environmental factors . Our results suggest that NOVI is related to 
environmental variables that affect species richness, and support hypotheses that 
this relationship is taxonomically dependent. In our study system, the strongest 
relationships between species richness of birds and mean and maximum NOVI were 
observed a t larger sampling grains. However, as the grain of our observations 
increased, the strength of the relationship between species richness of butterflies 
and productivity, measured through mean and maximum NOVI , decreased. This 
inverse relationship is not surprising, and may reflect differences in home range size 
between the two taxonomic groups. Birds can more easily travel within and between 
canyons , with territory sizes in the Great Basin ranging upward to 40 ha (American 
Ornithologists' Union 1992), while butterflies are more likely to have a lifetime 
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home range of several hundred metres (Fleishman et al. 2001). These results 
highlight the importance of working with remote sensing data at levels of resolution 
comparable to field observations, and confirm the dependence of relationships 
between NDVI and species richness on both geographic extent and spatial grain 
(Walsh et al. 1997). 

Surprisingly, with the exception of the quadratic model in the Toiyabe Range, 
standard deviation of NDVI was not associated with species richness of birds at 
the canyon segment grain. However, all measures of NDVI (mean, maximum, and 
standard deviation) were positively correlated with species richness of birds at the 
canyon grain . Only at the canyon segment grain in the Shoshone Mountains was 
standard deviation of NDVI a sig~ificant predictor of species richness of butterflies. 
These results may reflect the fact that birds obtain their resources from a larger 
geographic area than butterflies, and therefore might be affected more strongly by 
vegetation heterogeneity at large scales than at s:mall scales . In general, as the size 
of the sampling unit and the geographic extent increased, the strength of the 
relationship between vegetation heterogeneity and species richness of birds and 
butterflies also increased. This may reflect a positive correlation between 
vegetational diversity and area. 

The methodology presented in this paper should not be applied universally. In our 
study, locations, grains, and extents for sampling NDVI were determined a priori, 
based on ancillary field data on birds and butterflies. Other locations outside of our 
study boundaries, such as alfalfa fields, may have similar NDVI values, but lower 
species richness. Our approach does not eliminate the need for field measurements, 
but rather improves the efficiency with which the field measurements can be synthesized 
with remote sensing to understand spatial patterns of diversity. 

This study confirms the utility of using single-date NDVI to measure spatial 
patterns of species richness . For many small-scale studies, the ability to incorporate 
remotely sensed information is limited by budget constraints. Although multi­
temporal data would provide information on interannual shifts in vegetation and 
support more detailed models with the incorporation of time lags and temporal 
changes in productivity, it is encouraging to note that information from a single 
image yields promising results, particularly for birds. In our study system, 
interannual vegetation productivity may vary across the landscape in response to 
different weather conditions. However, 10 years of field assessments suggest that 
spatial differences in productivity are relatively stable over time . This supports our 
use of single-date NDVI measures to predict spatial variability in species richness. 
Traditionally, four intensive steps have been required before remote sensing could 
be applied to biodiversity assessments: collection of training data for classification, 
image classification, accuracy assessment, and modelling the relationship between 
species richness and map categories. The direct use of NDVI to measure spatial 
patterns of species richness reduces the time and labour requirements associated 
with image classification. 

6. Conclusion 
Identifying the factors that influence the spatial patterns of species richness has 

been a subject of intense research and debate . There are numerous theories, but no 
hypothesis is universally applicable across space and taxonomic groups. Rather, it 
appears that relationships between species richness and environmental variables are 
dependent on scale, location, and taxonomic group. This suggests the need for a 
large number of studies in many ecoregions and on a wide variety of species around 
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the world. From a practical standpoint, such a task is impossible to achieve using 
only ground observations. Although remote sensing has long been identified as a 
potentially powerful tool for biodiversity assessments, its use for measuring faunal 
diversity has been limited, with most studies incorporating remotely sensed 
information via classification maps . 

In this paper, we have demonstrated that three NDVI parameters, mean, 
maximum and standard deviation, are directly correlated with species richness of 
birds and butterflies in the Great Basin of western North America. The use of an 
easily derived index such as NDVI obviates the need to generate classification maps 
and therefore can provide more timely information to land managers . At relatively 
small grains, species richness of birds was most consistently correlated with maximum 
NDVI. The relationship between species richness of birds and NDVI increased as 
sampling extent and grain dimension increased. Species richness ofbutterfties was most 
strongly associated with mean and maximum NDVI at the smaller grain, while 
maximum NDVI was the best correlate at the larger grain. Our results suggest that 
NDVI, calculated at a sampling grain and extent suitable for a given taxonomic 
group of interest, can be a useful measme to assess biodiversity patterns. 
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