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Abstract: Values of species richness are used widely to establish conservation and management priorities.
Because inventory data, money, and time are limited, use of surrogates such as “indicator” species to estimate
species richness bas become common. Identifying sets of indicator species that might reliably predict species
richness, especially across taxonomic groups, remains a considerable challenge. We used genetic algoritbms
and a Bayesian approach to explain individual and combined species richness of two taxonomic groups as
a function of occurrence patterns of indicator species drawn from either both groups or one group. Genetic
algorithms iteratively screen large numbers of potential models and predictor variables in a process that emu-
lates natural selection. The best-fitting models of bird species richness and butterfly species richness explained
approximately 80% of deviances and included only indicator species from the same taxonomic group. Using
species from both taxonomic groups as potential predictors did not improve model fit but slightly improved
the parsimony (fewer predictors) of the model of bird species richness. The best model of combined species
richness included five butterflies and one bird and explained 83% of deviance, whereas a model of combined
species richness based on six bultterflies as indicators explained 82% of deviance. A model of combined species
richness based on birds alone explained 72% of deviance. We found that a small, common set of species could
be used to predict separately the species richness of multiple taxonomic groups. We built models explaining
approximately 70% of the deviance in species richness of birds and buiterflies based on a common set of three
bird species and three butterfly species. We also identified a set of six species of butterflies that predicted >66%
of both bird species ricbness and butterfly species richness. Our approach is applicable to any assemblage or
ecosystem, and may be useful both for estimating species ricbness and for gaining insight into mechanisms
that influence diversity patterns.

Key Words: Bayes information criterion, bird species richness, butterfly species richness, genetic algorithm,
Great Basin, land cover, land use, species occurrence

Utilizacién de Especies Indicadoras para Predecir la Riqueza de Especies de Multiples Grupos Taxonémicos

Resumen: Los valores de riqueza de especies son ampliamente utilizados para definir prioridades de conser-
vacion y manejo. Debido a que los datos de inventarios, el dinero y el tiempo son limitados, se ba vuelto comuin
el uso de sustitutos, como las especies “indicadoras,” para estimar la riqueza de especies. La identificacion de
conjuntos de especies indicadoras que pronostiquen la riqueza de especies confiablemente, especialmente en
varios grupos taxonémicos, es un reto importante. Utilizamos algoritmos genéticos y un método Bayesiano
para explicar las riqguezas de especies individuales y combinadas de dos grupos taxondmico como una funcion
de patrones de ocurrencia de especies indicadoras extratdas de ambos grupos o de uno. Los algoritmos genéticos
reiterativamente filtran grandes niimeros de modelos potenciales y variables predictoras en un proceso que
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emula a la seleccion natural. Los modelos que mejor se ajustaron a la riqueza de especies de aves y de mari-
posas explicaron aproximadamente 80% de las anormalidades e incluyeron solo a especies indicadoras del
mismo grupo taxonémico. Utilizando a especies de ambos grupos taxondmicos como predictores potenciales
no mejoro el ajuste del modelo pero mejor6 ligeramente la parsimonia (menos predictores) del modelo de
riqueza de especies de aves. El mejor modelo de la riqueza de especies combinada incluyo a cinco especies de
mariposas y una de ave y explico 83% de la anormalidad, mientras que un modelo de riqueza de especies
combinadas basada en seis especies de mariposas explico 82% de la anormalidad. Un modelo de riqueza
de especies combinadas basado solo en aves explicé 72% de la anormalidad. Encontramos que un conjunto
pequerio, comun, podria ser utilizado para pronosticar, por separado, la riqueza de especies de miiltiples
grupos taxondmicos. Construimos modelos que explicaron aproximadamente 70% de la anormalidad en la
riqueza de especies de aves y mariposas con base en un conjunto comin de tres espectes de aves y tres de
mariposas. También identificamos un conjunto de seis especies de mariposas que predijeron > 66% de la
riqueza de espectes tanto de aves como de mariposas. Nuestro método es aplicable a cualquier ensamble o
ecosistema, y puede ser titil tanto para estimar la riqueza de especies como para incrementar el entendimiento
de los mecanismos que influyen sobre los patrones de cliz'uersz'dad.

Palabras Clave: algoritmo genético, cobertura de terreno, criterio Bayesiano de informacién, Great Basin, ocur-
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Introduction

Protection of locations with a relatively large number of
native species is thought to be an efficient way to main-
tain overall biodiversity (Scott et al. 1987; Myers et al.
2000). Data on species richness have supported a range
of high-profile conservation efforts, particularly when in-
formation on endemism and changes in land use and land
cover has also been available (Mittermeier et al. 1998;
Hobohm 2003; Kareiva & Marvier 2003). Whether pro-
tection of locations containing large numbers of species
has been effective in achieving broad conservation goals
remains an open question (Christensen 2003), but exten-
sive use of species richness as a criterion for develop-
ment of conservation and management strategies almost
certainly will continue.

Given that inventory data for many regions are sparse
and acquisition of new data is costly, surrogate-based ap-
proaches to estimate species richness from data on land
cover, land use, climate, and topography have become
common (e.g., Mayer & Laudenslayer 1988; Boyce & Mc-
Donald 1999; Scott et al. 2002). Work also has been done
to build functional relationships between species rich-
ness and the occurrence of “indicator” species (Pearson
1994; Scott 1998; Gustafsson 2000), which we define as
a small set of species with presence or absence patterns
that are correlated functionally with species richness of a
larger group of organisms. If validation data sets demon-
strate that the functions are effective, then—depending
on the target system—it may be far more feasible to mea-
sure occurrence of indicator species than to conduct com-
prehensive species inventories (Gustafsson 2000).

A central challenge in predicting species richness as a
function of indicator species is finding good sets of indica-
tors. Selection of potential indicators through statistically
based methods is most likely to be effective, especially
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when compared with selection based on ad hoc criteria
such as a species’ charisma or its legal protection status
(Landres et al. 1998; Andelman & Fagan 2000; Mac Nally
et al. 2000). An additional question is whether species
from one taxonomic group (e.g., butterflies) might serve
as indicators of the species richness of other taxonomic
groups (e.g., herptiles or birds). Life-history characteris-
tics that affect how species perceive and react to envi-
ronments (Kotliar & Wiens 1990; Mac Nally 2005) are
likely to be more different among than within major taxo-
nomic groups. Therefore, it seems reasonable to assume
that species richness of a given taxonomic group will be
predicted more accurately on the basis of species drawn
from that same taxonomic group than from a different
taxonomic group. But conservation biologists have not
quantified the magnitude of difference in predictive abil-
ity between indicators drawn from the same taxonomic
group against indicators drawn from a different taxo-
nomic group. Nor have they shown whether the fit of
models of species richness for one taxonomic group can
be improved by including indicator species from a second
taxonomic group.

Accordingly, we addressed six related objectives con-
cerning within-taxon and among-taxon models of species
richness based on indicator species. First, we examined
whether models of species richness for one taxonomic
group could be improved by including indicator species
from a second taxonomic group. Second, we quanti-
fied the fit of models of species richness for one tax-
onomic group based on indicator species drawn exclu-
sively from a different taxonomic group. Third, we eval-
uated whether models of the combined species richness
of two taxonomic groups could be built based on indi-
cator species drawn either from both of those groups or
exclusively from one of the groups. Fourth, we assessed
whether the same set of indicator species could be used
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to predict species richness of two different taxonomic
groups. Fifth, we explored whether taxonomic groups
differ consistently in their ability to serve as indicators of
species richness. Last, we considered the ecological char-
acteristics of selected indicator species to gain insight into
why the selected species might convey information about
species richness.

We used the general statistical methodology developed
by Mac Nally and Fleishman (2002, 2004) to identify indi-
cators of species richness. This approach proved highly
successful in a recent case study, in which a model based
on the occurrence of five butterfly species explained 88%
of the deviance of species richness of 56 species of butter-
flies in 2 mountain range in western North America (Mac
Nally & Fleishman 2002). Validation tests showed that
predicted and observed values of species richness were
highly correlated, with 93% of the observed values falling
within the 95% Bayesian-credible intervals of the predic-
tions (Mac Nally & Fleishman 2004). Here, we extend
this approach by employing a genetic algorithm to select
indicator species from a set of potential indicators (139
total) that is too large to be evaluated using exhaustive
search methods. Genetic algorithms are heuristic, itera-
tive search procedures that emulate the process of natural
selection. They are useful for large combinatory problems
and have been used successfully to select input variables
in neural networks (Jefferson et al. 1997) and logistic re-
gression models (Vinterbo & Ohno-Machado 1999). The
software we used also allowed for modeling based on Pois-
son errors, which is most appropriate for the numerical
distribution of species richness (i.e., non-negative inte-
gers).

Methods

Field Methods

Data for our analyses were collected from 1996-2003
in three adjacent mountain ranges in the central Great
Basin (Lander and Nye counties, Nevada, U.S.A.) that
have similar biogeographic and human land-use histories,
the Shoshone Mountains (1850 km?, approximate north-
south boundaries 39°14'19” to 38°57'32"); the Toiyabe
Range (3100 km?, 39°54'00” to 38°30'0"); and the To-
quima Range (1750 km?, 39°17'50” to 38°29'9"). Our
data collection incorporated established techniques that
detect species presence reliably and permit assessment of
distributional trends (Pollard & Yates 1993; Pullin 1995;
Bibby et al. 2000; Buckland et al. 2001; Siegel et al. 2001).
These methods have been described in detail and tested
for sampling adequacy (e.g., Fleishman et al. 1998, 2000,
2001; Mac Nally et al. 2004). Inventories for birds were
conducted in 84 sites, and inventories for butterflies were
conducted in 195 sites. Site areas ranged from 1.5 ha
to 44.4 ha. The area of our study sites explained little
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variance in species richness (<3%) of either taxonomic
group, perhaps because area often is not correlated with
heterogeneity of topography or land cover in our study
system, at least for locations smaller than mountain ranges
(Mac Nally et al. 2003).

Model Building

We recorded 74 species of birds and 65 species of but-
terflies from our study sites (a complete list is available
from E.E). Site-level species richness ranged from 5 to
34 for birds (mean 17.3) and from 3 to 51 for butterflies
(mean 24.9). We modeled the site-level species richness
of birds (henceforth, bird species richness), butterflies
(butterfly species richness), and both groups (combined
species richness) as functions of the presence or absence
of small subsets of “indicator” species. For each response
variable (bird species richness, butterfly species richness,
and combined species richness), we sought three sets of
indicator species: birds only, butterflies only, or a com-
bination of birds and butterflies. We limited the num-
ber of indicator species for each model to six, which
is <10% of the number of species for each taxonomic
group. We used Poisson regression to model species rich-
ness because Poisson error structures are appropriate for
non-negative “counts” data such as number of species
(McCullagh & Nelder 1989).

SELECTION OF INDICATOR SPECIES

With large sets of predictor variables, many of the screen-
ing approaches used to identify the “best” subset of vari-
ables are statistically suspect (Mac Nally 2000). Informa-
tion criteria, such as Bayes information criterion (BIC;
Schwarz 1978), have been recommended to identify the
most efficient model(s) (Mac Nally 2000). The BIC en-
forces a compromise between model fit (ability to explain
observed deviance in the response variable) and model
complexity (number of predictor variables). The BIC is
calculated as —2 x log likelihood + log(V) x Q, where
N is the number of observations and Q is the number of
model parameters. Ideally, all possible models are fitted,
and the model with the lowest BIC value is retained.
Because we had such a large number of potential pre-
dictor variables (potential indicator species), it was im-
practical to fit all possible models, even if we consid-
ered only models with <6 predictors. We could have
reduced the number of possible models by eliminating
some species a priori on the basis of their distributions or
otherattributes (e.g., widespread, rare, or cryptic species;
Mac Nally & Fleishman 2002). Only a severe pruning,
however, which risks elimination of useful indicators,
would have enabled us to fit all possible Poisson mod-
els. Another possibility would have been to conduct a
less-severe pruning followed by an exhaustive search of
ordinary multiple linear regression models, which can be
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computed more rapidly, but this process would not nec-
essarily yield the best Poisson model per se. Instead, we
employed a genetic algorithm to assess candidate Poisson
models.

Genetic algorithms iteratively refine a “population” of
potential solutions, usually generated randomly, by a pro-
cess analogous to natural selection. The value of the func-
tion to be optimized—in our case, BIC for each model—is
used as a measure of individual “fitness,” with fitter indi-
viduals (models) given a greater probability of “reproduc-
ing.” Genetic operations such as crossover and mutation
are emulated and applied to a proportion of individuals in
each generation. Therefore, characteristics of individuals
with high fitness are retained and recombined unti] very
good solutions are found.

We implemented a genetic algorithm by using the R
statistical programming software (R Development Core
Team 2003; Sekhon & Mebane 1998) to search for Pois-
son models with low BIC values for each of the nine
combinations of response and predictor variables. First,
an initial population of 1000 random models (individual
“genomes”) is generated. Each model in the population
is encoded by a binary string of Q bits, where Q is the
number of candidate predictors. Each bit corresponds to
a potential predictor, which may be included in (1) or
excluded from (0) the model. In the genetic analogy, the
strings and bits are equivalent to chromosomes and in-
dividual genetic loci, respectively. In each generation, all
models in the population are fitted as Poisson regression
models with generalized linear modeling functions, and
BIC is calculated for each model. Each model then is as-
signed a fitness rank according to its BIC value (fitness
increases as BIC decreases). The model in each genera-
tion with the lowest BIC is propagated into the next gen-
eration. All other models are replaced with the results
of genetic operators applied to parents selected, with re-
placement, from the entire population. The probability
that a model will be selected as a parent decreases as its
fitness decreases.

To produce offspring, five genetic operators are ap-
plied to selected parents in predetermined proportions:
cloning (0.125), single-point mutation (0.375), multiple-
point crossover (0.250), polytope crossover (0.125), and
whole mutation (0.125). A clone is an exact replica of the
parent model. Single-point mutation assigns a new value
to one randomly selected bit (i.e., drops or adds one in-
dicator species). Multiple-point crossover produces two
offspring models from two parent models by exchanging
randomly selected segments of strings between parents.
Polytope crossover creates one offspring model that is
a combination of as many parent models as there are
bits (species). Whole mutation assigns a new, random
value to all bits (i.e., randomly generates a new geno-
type). Because of the applied selective pressure, species
(or “genes”) present in models with low BIC (individuals
with high fitness) are propagated throughout the popula-

Conservation Biology
Volume 19, No. 4, August 2005

Fleishman et al.

tion and, through crossover and mutations, are combined
with new species until combinations with very high fit-
ness are found. After 25 generations with no improvement
in fitness (i.e., no reduction in the minimum BIC), the ge-
netic algorithm terminates and the model with the lowest
BIC (the solution) is reported.

Genetic algorithms can be trapped in local optima and,
as with all heuristic methods, there is no guarantee that
a particular solution is the best possible solution (global
optimum). The concept of an absolute best regression
model is vague in any case, and the model with the low-
est BIC may not necessarily be the most useful model. Ac-
cordingly, we generated solutions from five random starts
for each combination of response and predictor variables
and then assessed the usefulness of each unique solution
(from 1-5 solutions per combination, mean = 3.5) on the
basis of model fit and attributes of indicator species (see
Final Model Selection section).

In addition to searching for separate sets of indicator
species for each response variable (bird species rich-
ness, butterfly species richness, and combined species
richness), we searched for sets of “common” indicator
species. To do this, we used the genetic algorithm to seek
sets of <6 indicator species (from one or both taxonomic
groups) that could be used to predict both bird species
richness and butterfly species richness. We searched for
three sets of common indicator species: birds only, but-
terflies only, and any combination of birds and butter-
flies. We modified the genetic algorithm to fit two mod-
els, one each with butterfly species richness and bird
species richness as the response variable, for each individ-
ual in the population (i.e., for each unique set of indicator
species). The BIC values were calculated for both models
and summed for each individual. Fitness ranks then were
assigned on the basis of summed BIC values.

MODEL FITTING

We computed parameters for each model selected by the
genetic algorithm runs with the WinBUGS programming
framework (Spiegelhalter et al. 2003). The model used
was

Q
log(k) = oo + ). xeXpe.
k=1

Y; ~ Poisson (u,),

where the os are the regression coefficients to be esti-
mated (an intercept [« o] and coefficients for each of the O
indicator species); W, is the estimated mean species rich-
ness at site 7 given the presence or absence (X;) of each
of the Q indicator species; and Y; is the observed species
richness at site #, which is assumed to be distributed (~)
as a Poisson variable with mean ;.

WinBUGS uses Markov chain Monte Carlo methods to
iteratively estimate model parameters by repeatedly “sam-
pling” from distributions specified in the model (Gilks
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et al. 1996). The Bayesian approach to estimating param-
eters formally incorporates prior knowledge about the
value of a parameter and produces a posterior (or final)
distribution of estimated values for each parameter. If one
has virtually no prior knowledge about parameter values,
it is appropriate to use a “noninformative” prior distri-
bution for that parameter—typically a normal distribu-
tion with high variance—which means that the posterior
probability distributions are dictated by the newly col-
lected data (Lee 1989). We initially gave the as noninfor-
mative normal priors [¢ ~ normal(x = 0, 62 = 1000)].
Probability distributions for parameters were allowed to
settle (“burn in”) over 1000 iterations before posterior
parameter distributions were built for another 3000 sam-
pling iterations. Initial values were randomly generated.

We used the proportion of the posterior probability dis-
tributions of the estimated parameter values lying above
or below zero (the posterior probability mass, PPM) to
evaluate whether each indicator species contributed sta-
tistically to the prediction of species richness. We retained
species if PPM >90%—that is, if at least 90% of the pos-
terior probability distribution was either >0 (positive ef-
fect) or <0 (negative effect). Therefore, if PPM <90%,
the corresponding species was omitted and the model
was refitted. For a general overview of Bayesian statistical
methods and associated terminology, see Bergerud and
Reed (1998) and references therein.

FINAL MODEL SELECTION

Running the genetic algorithm and fitting models in
WinBUGS generated from one to five candidate models
for each response-predictor combination. Although the
model with the lowest BIC is the best model found statis-
tically (at least for the models searched), attributes of the
indicator species also affect the usefulness of each model
for predicting species richness. In particular, species that
are difficult to detect or that have erratic patterns of oc-
currence among years may be unreliable indicator species
even if their occupancy in at least 1 year is a good predic-
tor of species richness. Thus, false negatives, or species
recorded as absent from sites they do occupy in >1 year,
decrease the accuracy of predictions of species richness.
The probability of false negatives may be high for species
that occupy sites infrequently even if surveys are repeated
over several years and observer error is minimal (Mac
Nally & Fleishman 2004). Therefore, we eliminated mod-
els containing indicator species with erratic occupancy
patterns.

We used data from all sites that were surveyed for >2
years to calculate p(— | occupied), the probability of ob-
taining a false negative in a single year. This is the condi-
tional probability that a species will be absent in any year
from a site, given that it is known to occupy the site at
some point in time. The probability of obtaining a false
negative for surveys repeated over #n years is p(— | occu-
pied)”. To estimate this probability for each species, we
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used a Bayesian calculation to model the number of ab-
sences Y, from occupied sites in n; years as a Bernoulli
trial with probability p;, as follows:

logit(p;) = a,
Y; ~ binomial(p;, n,),

(o3

Dp(—l|occupied) = T
where ¢ is the log-odds ratio of p(— | occupied). We elim-
inated all models in which the maximum or mean values
of p(— | occupied) for indicator species were >0.66 or
>0.50, respectively. These values corresponded approx-
imately to the tenth and fiftieth percentiles for p(— | oc-
cupied) for both birds and butterflies. We then selected
the lowest BIC model for each response-predictor combi-
nation from the remaining models.

MODEL PREDICTIONS

We investigated the uncertainty of predictions of species
richness made using each of the final models by apply-
ing those models to all possible combinations of indica-
tor species presence and absence (i.e., to the 2¢ pos-
sible results of an inventory of Q indicator species at a
site). We used WinBUGS to produce a posterior distribu-
tion of predicted richness values for each combination
of indicators from which 95% credible intervals were cal-
culated. Bayesian calculations produce probability distri-
butions for model parameters, such as regression coeffi-
cients. One often uses “95% Bayesian credible intervals”
(Lee 1989) to characterize the range of values for the pa-
rameter that encompasses 95% of the probability mass
for that parameter. We calculated 95% credible intervals
for a hypothetical, multiyear inventory in which the true
occurrence of all indicator species is known (no false neg-
atives).

Results

The genetic algorithm was an efficient method for identi-
fying indicator species. All species selected as indicators
contributed substantially (i.e., PPM > 90%) to predictions
of species richness, demonstrating that the genetic algo-
rithm identified indicator species with high explanatory
capacity. Indicators in models for one taxonomic group
always contributed to prediction of species richness of
that group, and species selected as indicators in models
for two taxonomic groups always contributed to the pre-
diction of species richness for at least one of those groups.

We found promising models for all combinations of re-
sponse variables (bird species richness, butterfly species
richness, and combined species richness) and predictor
variables (birds, butterflies, and both; Fig. 1) with se-
lected models explaining 55-83% of deviances (mean =
74%; Table 1). After evaluating the false-negative probabil-
ities of selected indicator species, we retained the lowest
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Figure 1. Fitted versus observed species richness for each combination of response variable and predictor variable:
(a) butterfly species richness with butterfly indicators, (b) bird species richness with bird indicators, (¢) bird
species richness with combined indicators, (d) bird species richness with butterfly indicators, (e) butterfly species
richness with bird indicators, (f) combined species richness with combined indicators, (g) combined species
richness with butterfly indicators, (b) combined species richness with bird indicators, (i) butterfly species richness
with combined “common” indicators, () bird species richness with combined common indicators.
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Table 1. Parameter values (mean and standard deviation) for Poisson regression models of species richness of birds (bird S), butterflies (butterfly
S), and both taxonomic groups (combined S) based on occurrence patterns of indicator species.

Variable (indicator species) Mean Factor” SD p(occupied )® p(— | occupied )*
Butterfly $? with butterfly indicators

(78% deviance explained, BIC® = 534)

constant 2.519 0.051

Icaricia lupini 0.266 1.30 0.037 0.69 0.44

Ocbhlodes sylvanoides 0.237 1.27 0.042 0.66 0.56

Papilio multicaudatus 0.203 1.23 0.035 0.51 0.47

Euchloe ausonides 0.162 1.18 0.031 0.50 0.49

Chlosyne acastus 0.113 1.12 0.031 0.49 0.27

Phyciodes mylitta 0.239 1.27 0.035 0.22 0.54
Bird S with bird indicators

(82% deviance explained, BIC = 453)

constant 2.150 0.072

Black-throated Gray Warbler (Dendroica nigrescens) 0.222 1.25 0.067 0.68 0.23

MacGillivray’s Warbler (Oporornis tolmiei) 0.234 1.26 0.067 0.58 0.17

Western Scrub-Jay (Aphelocoma californica) 0.251 1.29 0.062 0.54 0.49

Red-shafted Flicker (Colaptes auratus) 0.186 1.20 0.066 0.45 0.45

Western Tanager (Piranga ludoviciana) 0.140 1.15 0.060 0.38 0.47

Fox Sparrow (Passerella iliaca) 0.297 1.35 0.077 0.27 0.61
Bird S with combined indicators/

(81% deviance explained, BIC = 451)

constant 2.276 0.068

Western Scrub-Jay (Aphelocoma californica) 0.289 1.33 0.059 0.54 0.49

Audubon’s Warbler (Dendroica coronata) 0.263 1.30 0.058 0.38 0.47

Fox Sparrow (Passerella iliaca) 0.350 1.42 0.065 0.27 0.61

Incisalia erypbon 0.185 1.20 0.071 0.64 0.31

Satyrium sylvinum 0.240 1.27 0.070 0.13 0.44
Bird § with butterfly indicators

(63% deviance explained, BIC = 479)

constant 2.375 0.075

Incisalia eryphon 0.417 1.52 0.068 0.64 0.31

Pontia beckerii -0.167 0.85 0.064 0.55 0.33

Papilio multicaudatus 0.345 1.41 0.062 0.51 0.47

Speyeria nokomis 0.307 1.36 0.079 0.07 0.50
Butterfly S with bird indicators

(55% deviance explained, BIC = 599)

constant 2.946 0.046

Rock Wren (Salpinctes obsoletus) 0.156 1.17 0.043 0.56 0.39

Western Tanager (Piranga ludoviciana) 0.203 1.22 0.043 0.38 0.47

Yellow Warbler (Dendroica petechia) 0.315 1.37 0.044 0.35 0.35

Black-headed Grosbeak (Pheucticus ludovicianus) 0.151 1.16 0.048 0.33 0.55

Chukar (Alectoris chukar) 0.259 1.30 0.063 0.13 0.41

Western Meadowlark (Sturnella neglecta) —-0.310 0.73 0.080 0.10 0.37
Combined S with combined indicators

(83% deviance explained, BIC = 565)

constant 2.902 0.097

Yellow-breasted Chat (Icteria virens) 0.216 1.24 0.074 0.04 0.64

Hesperia comma 0.336 1.40 0.090 0.92 0.11

Incisalia eryphon 0.233 1.26 0.039 0.64 0.31

Papilio multicaudatus 0.346 1.41 0.035 0.51 0.47

Satyrium bebrii 0.213 1.24 0.036 0.50 0.41

Polygonia zepbyrus 0.172 1.19 0.036 0.32 0.65
Combined S with butterfly indicators

(82% deviance explained, BIC = 568)

constant 2,957 0.094

Hesperia juba 0.410 1.51 0.095 0.87 0.18

Incisalia erypbon 0.217 1.24 0.041 0.64 0.31

Papilio multicaudatus 0.217 1.24 0.044 0.51 0.47

Nympbhalis antiopa 0.156 1.17 0.042 0.50 0.50

Polygonia zephyrus 0.130 1.14 0.038 0.32 0.65

Phyciodes mylitta 0.165 1.18 0.044 0.22 0.54

continued
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Table 1. (continued)

Fleishman et al.

Variable (indicator species) Mean Factor” SD p(occupied )® p(— | occupied )
Combined S with bird indicators
(72% deviance explained, BIC = 604)
constant 3.393 0.036
Rock Wren (Salpinctes obsoletus) 0.126 1.13 0.036 0.56 0.39
Western Tanager (Piranga ludoviciana) 0.239 1.27 0.033 0.38 0.47
Yellow Warbler (Dendroica petechia) 0.254 1.29 0.037 0.35 0.35
Black-headed Grosbeak (Pheucticus ludovicianus) 0.176 1.19 0.035 0.33 0.55
Song Sparrow (Melospiza melodia) 0.175 1.19 0.040 0.29 0.33
Red-tailed Hawk (Buteo jamaicensis) 0.247 1.28 0.065 0.06 0.61
Butterfly S with “common” indicatorsé
(73% deviance explained, BIC = 540)
constant 2.605 0.070
Gray Flycatcher (Empidonax wrightit) 0.121 1.13 0.049 0.43 0.46
Warbling Vireo ( Vireo gilvus) 0.182 1.20 0.051 0.39 0.09
Ocbhlodes sylvanoides 0.385 1.47 0.068 0.66 0.46
Satyrium bebrii 0.302 1.35 0.047 0.50 0.41
Lycaena rubidus 0.231 1.26 0.047 0.19 0.57
Bird S with “common” indicators
(68% deviance explained, BIC = 479)
constant 2.173 0.085
Mountain Chickadee (Poecile gambeli) 0.279 1.32 0.055 0.58 0.31
Gray Flycatcher (Empidonax wrightii) 0.247 1.28 0.064 0.43 0.46
Warbling Vireo ( Vireo gilvus) 0.533 1.70 0.066 0.39 0.09
Ochlodes sylvanoides 0.161 1.17 0.075 0.66 0.46
Lycaena rubidus 0.108 1.11 0.061 0.19 0.57

%A multiplicative factor (the exponentiated mean, €"¢4") by which the presence of the indicator species affects the predicted species richness.
5 Probability that a site is ever occupied by that species (i.e., the proportion of sites occupied).
“Conditional probability that a species will be absent in any year from a site given that it is known to occupy the site at some point in time.

4Species richness.
¢ Bayes information criterion.
f Combined indicators include both birds and butterflies.

84 single set of species that can be used to predict species richness of both bzrds and butterflies.

BIC models for all but two response-predictor combina-
tions. The lowest BIC models predicting butterfly species
richness and combined species richness with butterfly
indicators both included one species with a false nega-
tive probability that we deemed unacceptably high, Col-
ias philodice [ p(— | occupied) = 0.77]. As a result, we
rejected the latter models in favor of the models with
second-lowest BIC values. In both cases, the retained
model included many of the same indicator species as
the rejected model (three for combined species richness
and four for butterfly species richness) and had similar fit
(within 2% explained deviance).

Model predictions with 95% credible intervals are
shown in Fig. 2. Credible intervals were relatively narrow
but widened with increasing predicted species richness
because the response variables had Poisson distributions
(i.e., mean equal to variance).

Species Richness of One Taxonomic Group

The best-fitting models of bird species richness and but-
terfly species richness included only indicator species
from the same taxonomic group as the response variable.
The best models of bird species richness with birds as
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indicators and butterfly species richness with butterflies
as indicators each included six indicator species and ex-
plained 82% and 78% of deviances, respectively (Table
1). Sample sizes for models of butterfly species richness
(195 sites) were much larger than those for models of bird
species richness (84 sites).

Using species from both taxonomic groups as poten-
tial predictors did not improve explanatory capacity for
butterfly species richness. Genetic algorithm solutions
did not include bird species as predictors of butterfly
species richness if butterflies were also available as pre-
dictors. Only the 84 sites surveyed for birds as well as
butterflies could be included in searches for models us-
ing both taxonomic groups as predictors. As a result, the
predictors and fit of the best model of butterfly species
richness with combined indicators, which included only
butterflies as predictors, were not identical to those of
the best model of butterfly species richness with butter-
flies as indicators (data from 195 sites). The two models
did, however, have three indicator species in common
(Icaricia lupini, Ochlodes sylvanoides, and Chlosyne
acastus). We present only the latter model because it in-
cludes all available data and is likely to be the most useful
(Table 1).
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Figure 2. Predicted species richness values and 95% credible intervals versus each possible combination of
indicator species presence and absence: (a) butterfly species richness with butterfly indicators, (b) bird species
richness with bird indicators, (¢) bird species richness with combined indicators, (d) bird species richness with
butterfly indicators, (e) butterfly species richness with bird indicators, (f) combined species richness with
combined indicators, (g) combined species richness with butterfly indicators, (b) combined species richness with
bird indicators, (1) butterfly species ricbness with combined “common” indicators, (j) bird species richness with
combined common indicators.
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Using both taxonomic groups as predictors of bird
species richness resulted in a slight improvement in
model parsimony. The fit of a model including three bird
species (two of which were included in the model of
bird species richness with birds as indicators) and two
butterfly species as predictors (81% deviance explained)
was similar to a six-species model of bird species rich-
ness with birds as indicators (82% deviance explained,;
Table 1).

Models of species richness of one taxonomic group
based on indicator species drawn exclusively from a dif-
ferent taxonomic group had poorer fits than within-taxon
models or combined models; nonetheless, we identified
potentially useful indicators. A model with just 4 but-
terfly indicator species explained 63% of the deviance
in bird species richness (Table 1). This model was the
only solution produced by five runs of the genetic algo-
rithm, suggesting that these 4 butterfly species were sub-
stantially better predictors of bird species richness than
were other butterfly species. The latter inference was sup-
ported by the results of an additional genetic algorithm
run that was constrained to optimize, with <6 indicator
species, model fit (percent deviance explained) rather
than BIC. The best solution added 2 species to the exist-
ing model but had only marginally better fit (66% deviance
explained).

The best model of butterfly species richness with birds
as indicators explained 55% of deviance and included 6
indicator species (Table 1). One of these species, West-
ern Meadowlark (Sturnella neglecta), had a negative co-
efficient, indicating a negative association with butterfly
species richness. Prediction of butterfly species richness
with bird indicator species could be improved by includ-
ing >6 indicator species in the model. For example, mod-
els with 7 bird indicator species explained >60% of de-
viance in butterfly species richness.

Species Richness of Two Taxonomic Groups

Butterfly species were better indicators of combined
species richness than were bird species (Table 1). The
best model of combined species richness included five
butterfly species and one bird species and explained only
1% more deviance (83%) than a model with six butterfly
species (82%). Nonetheless, bird species alone could be
used to predict combined species richness, with a six-
species model explaining 72% of deviance.

Our search for a common set of species that could be
used to predict both bird and butterfly species richness
yielded promising results. We built models explaining
68% and 73% of species richness of birds and butterflies,
respectively, with a common set of three bird species
and three butterfly species. Four of these species (two
birds, Gray Flycatcher [Empidonax wrightii] and War-
bling Vireo [Vireo gilvus], and two butterflies, Ochlodes
sylvanoides and Lycaena rubidus) were included in both
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models, whereas the remaining bird (Mountain Chick-
adee [Poecile gambeli]) and butterfly (Satyrium bebrii)
were retained only in models predicting richness of their
oW [axonomic group.

We also identified a set of six species of butterflies that
might reasonably predict both bird species richness and
butterfly species richness. This set included the four in-
dicator species in the best model of bird species rich-
ness and two additional species, Ochlodes sylvanoides
and Lycaena beteronea. These six species explained 70%
of the deviance in butterfly species richness. The addi-
tional two species did not improve the fit of the model of
bird species richness. Thus, a set of six butterfly indicator
species yielded good models of both bird species richness
(four indicator species, 66% of deviance explained) and
butterfly species richness (six indicator species, 70% of
deviance explained).

The best set of six common bird indicator species ex-
plained 66% of deviance in bird species richness and
48% of deviance in butterfly species richness. It prob-
ably would be necessary to increase the total number
of bird indicator species to adequately predict both bird
species richness and butterfly species richness. Three
of the six bird species identified as indicators of butter-
fly species richness, Western Tanager (Piranga ludovi-
ciana), Yellow Warbler (Dendroica petechia), and Black-
headed Grosbeak (Pbeucticus ludovicianus), also had ca-
pacity to predict bird species richness (a model including
only the latter three species explained 54% of deviance
of bird species richness). Western Tanager, Yellow War-
bler, and Black-headed Grosbeak could be combined with
three additional species, Western Scrub-Jay (Aphelocoma
californica), Red-shafted Flicker (Colaptes auratus), and
Song Sparrow (Melospiza melodia), to produce a model
that explained 77% of deviance of bird species richness.
Thus, a set of nine bird indicator species yielded a good
model of bird species richness (six indicator species, 77%
of deviance explained) and a reasonable model of but-
terfly species richness (six indicator species, 55% of de-
viance explained).

Discussion

Our work suggests that although indicator species proba-
bly are most effective within taxonomic groups, it is pos-
sible to identify suites of species whose occurrence pat-
terns explain high percentages of deviance—sometimes
more than 80%—in species richness of multiple taxo-
nomic groups. Occurrence of species in one taxonomic
group could be used to explain species richness of a dif-
ferent taxonomic group, and species richness of two tax-
onomic groups could be explained using species drawn
from either one or both of those groups. Moreover,
our work demonstrated that a common set of species
can provide information on the species richness of two



Fleishman et al.

taxonomic groups, implying that it may be possible to use
relatively few indicator species to predict separately the
species richness of multiple taxonomic groups. Our mod-
eling framework is applicable to any ecosystem and may
be a useful tool for estimating cross-taxonomic species
richness at scales pertinent to conservation and land man-
agement. Whether a given threshold of explanatory or
predictive accuracy (e.g., 80%) is “good enough” is in-
evitably context specific. Each real-world situation must
be considered to determine the optimum trade-off be-
tween the ability and need to make predictions and the
accuracy of those predictions.

The genetic algorithm, an iterative screening approach
that emulates the process of natural selection, appeared to
be an excellent method for rapidly identifying useful com-
binations of predictor species from astronomically large
numbers of possible combinations, reducing the need to
use inappropriate model error structures or to fit all possi-
ble models. Exhaustive model searches will be impossible
for many systems, especially when multiple taxonomic
groups are considered. Genetic algorithms can be used
to identify indicator species from any system. Indeed, ge-
netic algorithms may prove useful in any modeling task
that requires identification of a suitable subset of a large
number of potential predictor variables.

A model that explains considerable deviance in the data
used for its creation should not be used to guide conserva-
tion and land management unless it also makes effective
predictions. Thus, prediction of species richness based
on any functional relationship, including occurrence of
indicator species, should be regarded as a testable hy-
pothesis to be confronted with newly collected test data
(Landres et al. 1998; Mac Nally et al. 2000; Fleishman et al.
2003; Mac Nally & Fleishman 2004). Based on much ex-
perience with real data sets, we believe cross-validation is
inadequate for evaluating the utility of predictive models.
Accordingly, we are in the process of collecting valida-
tion data to facilitate tests of the models presented here.
In terms of both biogeography and land use, mountain
ranges are an appropriate scale for developing and testing
the transferability (sensu Leftwich et al. 1997) of indicator
species models in this geographic region. If the models
successfully predict species richness, we will combine
the mode] building and validation data sets to yield an im-
proved or “updated” model that more effectively repre-
sents species richness patterns over a large area (Hilborn
& Mangel 1997; Mac Nally & Fleishman 2004). Previous
work on prediction of butterfly species richness with but-
terfly indicators gives us much cause for optimism about
the success of the current models (Mac Nally & Fleishman
2004).

Species Richness of One Taxonomic Group

Models of species richness of single taxonomic groups
based on same-taxon indicator species explained approx-
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imately 80% deviance and did not appear to be highly
sensitive to number of locations used to build the model.
Regardless of response-predictor combination, effective
indicator species collectively represented the variety of
land-cover associations in the taxonomic group(s) for
which they conveyed information about species richness.
For example, the model of bird species richness with
birds as predictors included two species, each associated
with relatively dry vegetation (Western Scrub-Jay, Black-
throated Gray Warbler [Dendroica nigrescens]), riparian
vegetation (MacGillivray’s Warbler [Oporornis tolmiei],
Fox Sparrow [Passerella iliaca]), and mixed vegeta-
tion (Red-shafted Flicker, Western Tanager). Similarly, the
model of species richness of butterflies with butterflies
as predictors included species whose larvae feed on a
full range of vegetation growth forms (Fleishman et al.
1997): grasses (fed on by Ochlodes sylvanoides), forbs
(Icaricia lupini, Chlosyne acastus, Phyciodes mylitia),
shrubs (Fuchloe ausonides), and trees (Papilio multicau-
datus). Moreover, each of the latter six butterfly species
uses at least two of the three most prominent local to-
pographic features (dry canyons, riparian canyons, and
uplands), and the six species represent all five families of
butterflies present in the Great Basin.

The fit of models of species richness for one taxo-
nomic group was not improved by including indicator
species from a second taxonomic group. Models of but-
terfly species richness, in particular, were not improved
by including birds. A potential explanation may be that
in the Great Basin, most if not all land-cover types used
by birds are also used by butterflies. Butterflies, how-
ever, are typically diverse and abundant in meadows, a
land-cover type that provides relatively few resources for
birds, especially when subject to livestock grazing and
recreational use (Warkentin & Reed 1999). Differences
in occurrence patterns of birds and butterflies with re-
spect to land cover may explain why genetic algorithm
solutions did not include birds as predictors of butter-
fly species richness if butterflies were also available as
predictors and why butterflies were better indicators of
combined species richness than birds. Consistent with
this hypothesis, the model of bird species richness with
butterflies as indicators included one species primarily
associated with low-elevation grasses and shrubs, Pontia
beckerit. Sites at which P beckerii was present usually
had lower bird species richness than sites at which it was
absent.

There was a slight improvement in model parsimony
(i.e., fewer indicator species could be used to explain a
similar percentage of deviance) when indicator species
from two taxonomic groups were used to predict bird
species richness. In practice, the advantages of survey-
ing or monitoring indicator species from a single taxo-
nomic group likely would outweigh the benefit of includ-
ing one fewer indicator species in a model of species
richness.
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Practical Applications of Predictions for Multiple Taxonomic
Groups

Our results suggest that information from different taxo-
nomic groups can be pooled to predict species richness
ofa comprehensive biota. Among the most promising out-
comes of our work is the discovery that it may be possible
to use a common set of species to predict species rich-
ness for more than one taxonomic group. For example,
68% of bird species richness and 73% of butterfly species
richness could be explained using a set of three species of
birds and three species of butterflies, four of which were
included in both models. If sufficient data existed, our
methods certainly could be applied to a larger number of
taxonomic groups in an effort to identify reliable indica-
tors of species richness for a comprehensive set of plants
and animals in a given ecosystem or geographic region.
Alternatively, it may be more effective to use our meth-
ods to select, in turn, indicators within each taxonomic
group of conservation concern.

Given that rare species often do not occur in locations
with greatest species richness, it may not be possible to
draw inferences about the presence of rare species on the
basis of indicators of species richness with any method
(Lawler et al. 2003). None of the birds or butterflies in
our study system is listed as threatened or endangered,
and there are no species-level endemics. Also, definition
and estimation of rarity in the context of large-scale land
management presents substantial challenges. In our study
system, occurrence rates of individual species often vary
among mountain ranges (Fleishman et al. 2003). More-
over, low occurrence rates may not equate to extinction
risk: the relatively uncommon resources used by some
species of birds and butterflies with low rates of occur-
rence, such as plants with patchy distributions, are not
directly threatened by current land uses.

Efforts to identify surrogate-based approaches to esti-
mate species richness and other measures of ecological
status are popular because inventory data for many re-
gions are insufficient to directly inform conservation and
land-use planning decisions. Accordingly, a method for se-
lecting indicator species that requires relatively complete
species data might appear to be anything but a shortcut.
Our methods, however, select indicator species poten-
tially applicable across an extensive landscape on the ba-
sis of data that, although representative of the larger sys-
tem, are collected from a small fraction of the total land
area. Across planning landscapes of tens to hundreds of
thousands of square kilometers, we believe the method
is a realistic approach to deriving estimates of species
richness that can inform strategies for allocation of mul-
tiple land uses, including conservation. The Great Basin,
for example, covers more than 400,000 km? and includes
approximately 350 major mountain ranges. If indicator
species identified on the basis of data collected from sec-
tions of three mountain ranges can be used to predict
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species richness at any location even within the 30,000
km? biogeographic subregion in which our work was
centered (Austin & Murphy 1987), we believe that the
method can serve as an effective and practical tool for
prioritizing management activities.

Comparative values of species richness are used as a
primary criterion for establishing conservation and man-
agement priorities. The lack of data, money, and time has
prompted scientists and practitioners to seek shortcuts
for estimating species richness. Our work is the first to
demonstrate empirically not only that species richness of
one taxonomic group can be explained using indicators
drawn from the same taxonomic group, but also that indi-
vidual and combined species richness of two taxonomic
groups can be explained using indicator species drawn €i-
ther from both of those groups or exclusively from one of
the groups. Our approach to selecting indicator species
may help provide reliable data on species richness for
meeting biological objectives in diverse assemblages and
ecosystems. In addition, by developing and testing hy-
potheses to explain why particular species convey infor-
matjon about a larger biota, we gain insight into patterns
and drivers of species richness and the nature of ecolog-
ical assemblages.
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