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Ecologists and land managers around the world are 
charged with first arresting and then reversing declines 
in native species. Revegetation has been proposed as 
one of the mechanisms by which landscapes can be reha­
bilitated to support viable populations ofnative Jildlife. 
Because large-scale revegetation often proves to be tech­
nically difficult and costly, it is critical to evaluate the 
likely outcome ofalternative proposals for landscape re­
construction. Here we describe a new approach for exam­
ining the potential effects of spatially extensive ecologi­
cal restoration on species of concern. Our method links 
validated models of species occurrence with GIS-based 
models of various revegetation scenarios to estimate the 
range of biodiversity responses under each option. 

Explaining and predicting species occurrence long 
has been a major goal in ecology, conservation biology, 
and wildlife management (Rosenzweig 1995, Mac Nally 
1995, Bel/200 1). There are many possible ways to predict 
species occurrence. Traditional 'habitat modeling'-pre­
dicting occurrence as a function ofresource requirements, 
such as food sources or nesting sites-may have a high 
probability ofsuccess (HanslG 1999, Miller and Cale 2000), 
but obtaining such data can be expensive, particularly 
over extensive areas. Therefore, predicting species oc­
currence as a function of environmental variables that 
can be quantified easily, at small spatial grains, and over 
large areas, is appealing (Austin et al. 1990, Guisan and 
Zimmerman 2000, Jackson et al. 2000). 

We recently developed a statistically rigorous frame­
work for examining the generality ofpredictors ofspecies 
occurrence using an iterative process of model building, 
testing, and refinement (Fleishman et al. 2001, in press) . 
We make extensive use of Bayes-based methods, which 
facilitate more detailed and practical assessment and im­
provement of predictions than conventional approaches 
(Ellison 1996, Sit and Taylor 1998). Our framework seeks 
to identify predictors ofspecies occurrence at grain sizes 
on the order of several km2 over extents of 1OOs to 1000s 
ofkm2. This corresponds to the scale at which many land­
use decisions must be made. 

To be useful, the predictions of species-occurrence 
models must be tested using explicit standards (Guisan 
and Zimmerman 2000, Jackson et al. 2000). We test our 
models-which effectively are hypotheses about predic-
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tors of species distributions-using independent data that 
were not used to build the models (Fleishman et al. in 
press). The process of generating and testing model pre­
dictions increases our understanding of relationships 
between organisms and environmental variables and con­
tributes to the scientific foundation for regional conser­
vation and management (Mac Nally and Bennett 1997, 
Hawkins et al. 2000, Mac Nally et al. 2000). 

Species-specific occurrence modeling has been em­
ployed widely in the past (Braithwaite et at. 1989, 
Lindenmayeret al . 1990, Scottet al. 2002), but occurrence 
models rarely have been linked with GIS-based models of 
alternative management strategies or revegetated land­
scapes (Bennett 1999, Marzluffet at. 2002). The alterna­
tives we develop are based on ecological vegetation 
classes, which are defined as one or more similar floristic 
communities that exist under a common regime of eco­
logical processes and that are linked to broad landscape 
features (Muir et al. 1995). Because ecological vegetation 
classes are closely connected with broad-scale topo­
graphic, edaphic, and climatic variables, they are a useful 
link between vegetation and landscape-scale planning 
and management. Alternatives vary with respect to the 
amount and spatial configuration of different ecological 
vegetation classes. Our approach recognizes that not only 
is there a spectrum ofhabitat quality (Mclntyre and Barrett 
1992), but also that animals respond to more than one 
vegetational community (Mac Nally et al. 2002) . 

Connecting occurrence models with revegetation 
models allows us to estimate the quantity and distribu­
tion of suitable habitat for each species that would be 
available under each scenario. By treating models for in­
dividual species as probabilistic, we can generate ranges 
of outcomes (i.e., confidence intervals) for each alterna­
tive. Thus, we can gauge the overall potential of each 
alternative to achieve specified ecological objectives. 

MODELING FRAMEWORK 
Our modeling approach involves 4 main steps. We 

have successfully applied the first 2 steps to a study 
system in North America. We currently are laying the 
biological and collaborative groundwork to apply all 4 
steps to a second study system in Australia. First, we 
develop species-specific occurrence models (Fleishman 
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et al. 200 I). We derive potential predictors ofspecies oc­
currence, such as elevation, topographic heterogeneity, 
and precipitation, from GIS-based models of topography 
and climate. We have devised a process to exhaustively 
search through millions ofpossible models for each spe­
cies of animal (there are 2Q models for Qpredictor vari­
ables). After reducing the set ofpredictors to a relatively 
small number of variables (usually .s: 6), we fit models 
using Bayesian logistic methods. Bayesian approaches 
are useful because they generate distributions (rather than 
point estimates) for the probability that a species will be 
present in a given location. I 

Second, we validate the models by conducting new, 
independent field surveys of species occurrence at loca­
tions that were not used to build the models (Fleishman 
et al. in press) . The Bayesian model for each species, with 
computed regression-coefficient distributions, is used 
with data for the predictor variables from the new loca­
tions to generate probability distributions for occurrences 
at those new locations. The reliability ofspecies-specific 
models is assessed by compiling the numbers of suc­
cessful predictions. This phase also identifies those spe­
cies whose distributions are either inherently difficult to 
predict or for which model predictions are poorer than 
expected. In many cases, validation data can be used to 
improve models (i.e., to alter values ofmodel parameters 
or to remove or include different independent variables). 
Third, we use GIS to specify alternative reconstruction 
scenarios-to emulate alternative distributions of ecologi­
cal vegetation classes across the landscape. This ap­
proach is applicable to virtually any landscape, and sce­
narios can be based on any combination of ecological, 
land management, or economic criteria. For example, we 
can simulate how the percent cover of native vegetation 
in the landscape might be increased to a target threshold 
by replanting (1) different amounts of the most depleted 
ecological vegetation classes, (2) locations least able to 
support economic uses such as agriculture, (3) locations 
that have been subject to the most severe human im­
pacts, or (4) ecological vegetation classes that are least 
expensive and most biologically feasible to restore. In 
practice, creation ofexplicit scenarios will depend on the 
physical and biological attributes of the planning area 
and the priorities and constraints of the relevant public 
or private land managers. 

Finally, we link the alternative reconstruction sce­
narios with the species-specific models to evaluate the 
potential effectiveness of each scenario in sustaining or 
increasing native biodiversity. Again using GIS, we com­
pute species-specific logistic models corresponding to 
each alternative reconstruction scenario. This step pro­
vides probability fields of occurrence across the land­

scape based on the pertinent environmental variables. 
For each species, we estimate the total area that would be 
"highly likely" (say, :::: 70% probability) to support the 
species according to each reconstruction scenario. After 
the species-specific results have been computed, we can 
estimate the biological success of alternative scenarios 
using a variety of criteria . For example, we might simply 
calculate total area with a high probability of supporting 
occupancy. We also might differentially weight taxa by 
conservation concern-e.g., high weightings for threat­
ened species, no weighting for ubiquitous species. 

CASE STUDIES 
We focused on butterflies in the Great Basin ofwest­

em North America as our initial study system. In temper­
ate ecoregions, butterflies are well understood ecologi­
cally, easy to study and monitor, and may respond rap­
idly to management (New 1991, Holl1995, Blair and Launer 
1997). Biological research in the Great Basin has yielded 
landmark contributions to ecology and biogeography (e.g., 
Brown 1971, Lomolino 1996). The Great Basin also is an 
appropriate focal system from a natural resource perspec­
tive, as more than 75% of the ecoregion is public land 
that is managed under multiple-use mandates. 

We used 14 topographically based, GIS derived en­
vironmental variables (and, to capture possible non-lin­
ear responses, their squares) from 49 locations in the 
Toquima Range (Lander and Nye Counties, Nevada, USA) 
and species inventories conducted over 4 years (1996­
1999) to model logistically occurrence ofresident butter­
fly species in the Great Basin. We obtained statistically 
significant models for 36 of the 56 species (Fleishman et 
al. 2001). To test the models, we collected new validation 
data from 39 locations in the nearby (ca 40 km) and eco­
logically similar Shoshone Mountains. We conducted 
inventories ofbutterflies in 22 locations in 2000-2001 and 
in another 17 locations in 2001. 

Validation tests (Fleishman et al. in press) showed 
that success rates for predicted absences were uniformly 
higher than for predicted presences. Increasing the tem­
poral extent of data from 1 to 2 years elevated success 
rates for predicted presences but decreased success rates 
for predicted absences, leaving the overall success rates 
essentially the same. Model fit (measured by the explained 
deviance) was an indicator of the probable success rate 
of predicted presences. Occurrence rates for several spe­
cies differed dramatically between the model-building and 
model-validation data sets, suggesting that some of the 
locations used to build models should be inventoried 
again during the validation phase to discriminate between 
temporal and spatial sources of variability in occupancy. 
To refine the models, we will use existing and new valida­
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tion data to 'update' model parameter estimates to im­
prove the fit and/or predictive success ofmodels for spe­
cies that were not modeled well in the first iteration. 

Our work in the Great Basin serves as a template for 
conducting parallel exercises with other taxonomic groups 
or in different study areas. We have initiated comparable 
assessments of birds and mammals in the box-iron bark 
forests of central Victoria, Australia, in which 85% of 
presettlement vegetation has been lost (Environment 
Conservation Council 2000). Managers in the 2 
ecoregions confront similar patterns ofIandscape degra­
dation and its impacts on native wildlife. Howder, the 
study areas have different management and legislative 
infrastructures, biotas, and evolutionary histories. These 
correspondences and contrasts allow us to evaluate the 
generality of our approach and, therefore, the practical 
applicability of its outcomes. 

In the box-ironbark forests, we have surveyed birds 
in 160 locations in a 30,000 km2 region over 2 full years 
(Mac Nally et al. 2000, 2002).80 of these locations also 
have been surveyed for mammals, including bats (Mac 
Nally et al. 2002). We have categorized all locations with 
respect to ecological vegetation classes using GIS-based 
maps of topography, soils, and geology and ground­
truthing. We are in the process of collecting validation 
data from 80 new locations and from 40 of the original 
locations . Simultaneously, we are collaborating with the 
Victorian Department ofNatural Resources and Environ­
ment and other stakeholders to develop a suite of alter­
native reconstruction scenarios. 

Landscape reconstruction offers a potential means 
to mitigate pervasive losses of native species and pro­
mote future ecological sustainability. The focus ofreveg­
etation and other types of ecological restoration ·has usu­
ally been on either relatively small areas or reestablish­
ment of ecosystem functions, such as releasing enough 
water at the appropriate point in time to support fish 
spawning in a river. The theoretical and conceptual basis 
for creating vegetational communities that will be suffi­
cient in extent and geometry to support viable native 
populations ofnative wildlife, however, is relatively weak 
(Lindenmayeret al. 1990). 

Our approach will bridge existing gaps between mod­
eling current occurrence patterns of individual species 
and analyzing the costs and benefits ofalternative future 
scenarios for landscape reconstruction. Our methods al­
low us to consider the potential effects on species of 
concern ifa landscape were managed for a specified allo­
cation and spatial configuration of various vegetation 
classes or land uses. For example, we can ask how the 
distribution of 1 or more endangered species might be 
affected if 25%,60% or 90% of each presettlement eco-
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logical vegetation class was restored. Although our work 
has focused on native species, a similar process could be 
followed to predict the occurrence of non-native inva­
sive species. We believe that our approach has promise 
for using ecological information to more effectively tar­
get conservation and restoration of locations with the 
greatest potential for achieving explicit biodiversity ob­
jectives. 
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