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ABSTRACT 

Aim Predictive models of species occurrence have potential for prioritizing areas for 

competing land uses. Before widespread application, however, it is necessary to evaluate 

performan'ce using independent data and effective accuracy measures. The objectives 

of this study were to (1) compare the effects of species occurrence rate on model accuracy, 

(2) assess the effects of spatial and temporal variation in occurrence rate on model 

accuracy, and (3 ) determine if the number of predictor variables affected model accuracy. 

location We predicted the distributions of breeding birds in three adjacent mountain 

ranges in the Great Basin (Nevada, USA). 

Methods For each of 18 species, we developed separate models using five different 

data sets - one set for each of2 years (to address the effects of temporal variation), and 

one set for each of three possible pairs of mountain ranges (to address the effects of 

spatial variation). We evaluated each model with an independent data set using four 

accuracy measures: discrimination ability [area under a receiver operating characteristic 

curve (AUC) ], correct classification rate (CCR), proportion of presences correctly 

classified (sensitivity), and proportion of absences correctly classified (specificity). 

Results Discrimination ability was not affected by occurrence rate, whereas the 

other three accuracy measures were significantly affected. CCR, sensit ivity and 

specificity were affected by species occurrence rate in the evaluation data sets to a 

greater extent than in the model-building data sets. Discrimination ability was the 

only accuracy measure affected by the number of variables in a model. 

Main conclusions Temporal variation in species occurrence appeared to have 

a greater impact than did spatial variation. When temporal variation in species 

distributions is great, the relative costs of omission and commission errors should be 

assessed and long-term census data should be examined before using predictive 

models of occurrence in a management setting. 

Keywords 
Accuracy measures, birds, Great Basin, Nevada, occurrence rate, receiver operating 

characteristic curves, species occurrence models. 

INTRODUCTION 

The accuracy of predictive models of species distributions has 

become a fundamental concern for both ecologists and land 

managers . Interest is due, in part, to the numerous direct appli­
cations of models that predict where a species is likely to be 
present or absent. Of particular interest are those applications 
with relevance to species conservation. The occurrence of 
rare and endangered species can be modelled with the aim of 

determining which land use practices are suitable for their 

protection (Scott et al. , 1993; Caicco et al. . 1995) or of prioritiZ­
ing areas for different land uses (Peterson et al., 2000). Predictive 

models of occurrence can also be utilized in conjunction with 

potential restoration strategies to predict how certain species 
might respond to various revegetation scenarios (Fleishman & 
Mac Nally, 2004). Other applications of modelling species 
occurrences include predicting where invasive species are 
likely to colonize (Wadsworth et al., 2000) and shifts in species 
distr ibutions as a result of climate change (Aspinall & Matthews, 
1994). 
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Predictive models have become popular because of the need 

for efficiency in the design and implementation of conservation 

management. Traditionally, conservation research has been based 

on the collection of detailed natural history data (Stauffer, 2002). 

More recently, methods in quantitative ecology have offered the 

potential to increase efficiency in the land use decision-making 

process. This change has been facilitated in part by the use of 

Geographic Information Systems (GIS) and computationally 

intensive statistical procedures. GIS allows for the management 

of spatially eX']Jlicit data sets at state- or province-wide, regional, 

or continental scales (Boone & Krohn, 2000; Peterson, 2001), 

and thus affords the ability to develop and evaluate models of 

species distributions at multiple levels. In many parts of the 

world, landscape and regional scenarios will be the mo,st useful 

to managers because land use decisions are often made at these 

spatial extents. To make land use decisions based on models of 

species distributions, one must assess the degree of spatial and 

temporal variations in a system and thereby understand the 

limits of a model's usefulness. A model built using data from 

one time or place may not be suitable for use in another time or 

place. However, if model predictions are focused on a location 

or time period similar to that used to develop the model, and the 

species being modelled are not exceptionally plastic in their 

habitat requirements, models of occurrence may be sufficiently 

reliable in many situations. 

Predictive models are generally static, having no intrinsic 

ability to account for variation in the distribution of species or 

environmental variables in space and time (Guisan & Zimmerman, 

2000). In contrast, ecosystems and the organisms inhabiting them 

are dynamic, such that prediction errors based on static models 

are inevitable (Fielding, 2002). The usefulness of static models 

in terms of relative reliability across space and time, however, 

should be assessed. Furthermore, the selection and presentation 

of accuracy measures for predictive models should incorporate 

the understanding that models are estimations of reality and are 

affected by natural variation. 

Despite the widespread application of species distribution 

models, there has been little evaluation of model performance in 

a predictive capacity (Manel et al., 2001). The few existing evalua­

tions often simply state the proportion of sites in which the 

presence or absence of the species is predicted correctly. This 

measure of accuracy is a correct classification rate (CCR) and 

is calculated from a two-by-two classification table (Table 1). 

Measures of CCR can be misleading because they are affected by 

the relative occurrence rate (proportion of occupied sites) of the 

Ta ble 1 Classification of the observed and predicted occurrences of 
a species. A + B + C + D is equal to the total number of observations 
in the evaluation data set. Correct classification rate (CCR) = (A + D)I 

(A + B + C + D). Sensitivity = Al(A + C). Specificity = D/(B + D) 

Observed present Observed absent 

Predicted present A (true positive) B (false positive) 


Predicted absent C (false negative) D (true negative) 


species being modelled (Pearce & Ferrier, 2000a; Manel et al., 

2001). In addition, a species is predicted to be present or absent 

at a given site based on an arbitrarily selected probability thresh­

old. For example, if the probability threshold is set at 0.5, then a 

species is predicted to be present whenever the predicted prob­

ability of occurrence is greater than or equal to 0.5 and to be 

absent whenever the predicted probability of occurrence is less 

than 0.5. This confounds assessment of model performance 

because every probability threshold is associated with a different 

level of accuracy (Pearce et al., 2002; rleishman et al., 2003b). 

Regardless of the probability threshold chosen, it can be help­

ful to separately assess a model's ability to predict presences and 

absences. This can be accomplished by calculating sensitivity and 

specificity from the values in a classification table for any given 

probability threshold. Sensitivity is the proportion of true posi­

tives, or sites correctly predicted as occupied (Table 1). Specifi­

city is the proportion of true negatives, or sites correctly 

predicted as being unoccupied (Table 1). 

Another measure of model performance is the area under a 

receiver operating characteristic (ROC) curve. In the past, ROC 

curves were used primarily in medical applications, but recently, 

they have been used in ecological studies (Manel et al., 2001). 

ROC curves are excellent accuracy measures because they are not 

based on arbitrary thresholds and are less sensitive to occurrence 

rate than other commonly used evaluation methods (Pearce & 

Ferrier, 2000a; Manel et al., 2001; Pearce et al., 2002). The area 

under an ROC curve (AUC) provides a measure of discrimina­

tion ability (i.e. how well a model can distinguish betwee.n occu­

pied and vacant sites) (Pearce & Ferrier, 2000b). Indeed, Hanley 

and McNeil (1982) demonstrated that an AUC value could be 

interpreted as a probability that a model will distinguish cor­

rectly between occupied and unoccupied sites. The ROC curve 

plots sensitivity against the proportion of false negatives (i.e. 1­

specificity) for several probability thresholds (Pearce & Ferrier, 

2000a). AUC values range from 0.5 (no discrimination ability) to 

1.0 (perfect discrimination). Values greater than 0.9 indicate 

excellent discrimination ability; values between 0.7 and 0.9 in­

dicate a usable, reasonable level of discrimination; and values 

between 0.5 and 0.7 indicate poor discrimination ability (Pearce 

& Ferrier, 2000a). 

Study system 

The Great Basin is a useful region within which to develop and 

evaluate models of species distribution based on vegetation and 

topography. The Great Basin includes more than 200 mountain 

ranges, most in a north-south orientation. These ranges were 

isolated from each other and the intervening valleys as the region 

became warmer and drier following the Pleistocene. Hence, for 

many species, these mountain ranges represent distinct habitat 

islands in the Great Basin landscape (Brown, 1978; Grayson, 

1993). The numerous canyons that drain the east and west slopes 

of these mountain ranges may also act as habitat islands for some 

species due to the riparian vegetation and the resources they 

harbour relative to the intervening uplands (McDonald & Brown, 

1992). 
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Figure 1 Location of the Shoshone 
Mountains, Toiyabe Range and Toquima 
Range (black rectangle, see inset) in the 
Great Basin (black border, see inset). The 
inventoried canyons ,,~thin the three 
mountain ranges are illustrated with black 
lines. Three pairs of canyons in the Toquima 
Range and one pair of canyons in the Toiyabe 
Range connect at the crest of these ranges. 

Three adjacent mountain ranges, the Toquima Range, Toiyabe 

Range and the Shoshone Mountains (Lander and Nye counties, 

Nevada), were the focus of our study (Fig. I). These ranges are in 

the same biogeographical subregion (Austin & Murphy, 1987; 

Grayson, 1993) and contain similar biotic communities. How­

ever, differences in elevation and precipitation among mountain 

ranges lead to differences in land cover (Grayson, 1993). For 

example, the Toiyabe Range has higher mean elevation and 

receives more precipitation annually than the other 1\"0 ranges. 

Consequently, the canyons that drain its east and west slopes 

have more riparian vegetation than the relatively dry canyons of 

the Toquima Range and the Shoshone Mountains. Thus, these three 

mountain ranges offer an opportunity to test hypotheses regarding 

the performance of predictive models of species occurrence when 

faced with spatial variation in the distribution of land cover. 

Fleishman et al. (2001, 2003b) constructed butterfly occur­

rence models using data from the Toquima Range and evaluated 

the models in the Shoshone Mountains. These butterfly models 

predicted both presences and absences fairly well (Fleishman 

et al., 2001, 2003b), suggesting that the spatial applicability of the 

models extended beyond the mountain range in which they were 

developed. Predictions of absence consistently had higher success 

rates than predictions of presence, which is often the case for spe­

cies with occurrence rates of < 0.5. We expected that models for 

breeding birds with occurrence rates similar to butterflies, con­

structed and evaluated within the same region, would also yield 

good results. We anticipated this success for !\vo reasons. First, 

the species composition of Great Basin birds exhibits a distinct 

stratification across an elevational gradient (Medin et al., 2000), 
making their distributions relatively easy to predict based on 

topographic variables in addition to vegetation. Second, other 

researchers have successfully modelled bird distributions in 

diverse landscapes around the world (Dettmers & Bart, 1999; 

Manel et al., 2001; Pearce et al., 2001; Pearce et al., 2002). 

In this study, we developed and evaluated predictive models 

of breeding bird distributions in the Toquima Range, Toiyabe 
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Table 2 Data sets used to build and evaluate models of species occurrence. See Fig. 1 for geographical locations. Data for the temporal models 
were drawn from all three mountain ranges 

Model type Model-building data set Number of sites Evaluation data set Number of sites 

Temporal 2001 176 2002 176 
2002 176 2001 176 

Spatial Toiyabe Range and Toquima Range 125 Shoshone Mountains 51 
Toiyabe Range and Shoshone Mountains 120 Toquima Range 56 
Toquima Range and Shoshone Mountains 107 Toiyabe Range 69 

Range and Shoshone Mountains. For each of 18 species, we 

constructed predictive models using five different subs<jts of the 

available data, two temporal (200 1 and 2002) and three spatial 

(Toiyabe/Toquima, Toiyabe/Shoshone and Toquima/Shoshone), 

and then evaluated each model using three different measures of 

accuracy and independent data (i.e. the remaining data not used 

to develop the model) (Table 2). 

We used the 90 models of species occurrence (18 species by 

five data sets) (Table 2) to address three main issues. First, we 

compared four different measures of model accuracy and deter­

mined whether those measures were correlated and whether they 

were affected by occurrence rate. The four accuracy measures were 

discrimination ability (AUC), CCR, sensitivity (proportion of true 

positives) and specificity (proportion of true negatives). Second, 

we assessed whether the accuracy of predictive models of species 

distributions was affected by either spatial or temporal variation 

in occurrence rates. Third, we determined whether the number 

of variables in a model affected each measure of model accuracy. 

METHODS 

Field methods 

Our data collection incorporated established techniques that 

reliably detect species presence and permit assessment of distri­

butional trends (Bibby et al., 2000; Buckland et al., 2001; Siegel 

et al., 2001 ). These methods have previously been described in 

detail (Mac Nally et al., 2004). In brief, we conducted inventories 

for birds in 176 locations throughout five canyons in both the 

Shoshone Mountains and the Toiyabe Range, and six canyons in 

the Toquima Range, during the breeding seasons of 2001 and 

2002 using 75-m fixed radius point counts (Ralph et al., 1995; 
Dobkin & Rich, 1998) . Survey effort was equal between years. 

Within each canyon, we placed point counts at least 200 m apart 

along an elevational gradient in each of the three major vegeta­

tion types: (1) riparian areas with aspen groves or willow and 

rose thickets, (2) pinon-juniper woodland, and (3) sagebrush­

dominated shrubland. Within each year, we conducted at least 

one of three point counts at each site very early, and at least one 

later in the morning. This enabled us to account for daily tempo­

ral variation in detection probability; most birds tend to sing less 

as the daily temperature increases and different birds tend to sing 

at different intensities throughout the morning. We allowed for 

at least 10 days between each visit to each site to account for 

temporal variation in species detectability throughout the breeding 

season. 

We collected vegetation data during the breeding season of 

2002. AU data were collected within three 11.3-m radius circles 

(0.04 ha l near the centre of each 75-m radius point count site 

(Martin et al., 1997). We gathered vegetation density readings at 

each cardinal direction in each circle using a density board 

(Noon, 1981). We also measured height and diameter at breast 

height (d.b.h.) of all trees within each II.3-m radius circle. We 

collected 22 ocular tube readings from each point count site and 

used these to calculate percent cover of canopy, shrub and 

ground vegetation (Noon, 1981). We also recorded the presence, 

length (or height) and d.b.h. of dead wood (logs and snags) and 

the presence, mean width and type of water (i.e. seep, flowing 

and standing) present at each poin t count site. 

Model development 

We used multiple logistic regression to construct predictive 

models of species occurrence (presence/absence). Subsets of 

potential explanatory variables were selected based on the eco­

logy of the species being modelled. We included environmental 

variables derived from a digital elevation model (see below) and 

vegetation data collected at each point count site. Using a GIS, we 

derived environmental values from several grids within a 90-m 

buffer around the centre of each point (Table 3). All except one of 

our GIS layers were composed of 30-m grid cells; thus, a buffer of 

90 m allowed for complete representation of the point count 

area. The grid for mean annual precipitation has a 4.5-km grid 

cell resolution and is derived from PRISM (Daly et al., 1994); 
due to a lack of weather stations in this region, this is one of the 

best estimations of precipitation available. Grids representing 

distance to water, elevation, slope, aspect as described by mean 

easiness and mean northness, and topographic exposure were 

derived using the spatial analyst extension in ArcView 3.2 (ESRI, 

1996). We considered quadratic terms for precipitation, eleva­

tion, topographic exposure, and slope during model construc­

tion to allow for the possibility of a non-linear relationship 

between occurrence and these explana tory terms. Finally, we used 

a measure of primary productivity, the Normalized Difference 

Vegetation Index (NDVI), which was obtained from a satellite 

image taken on 2 June 2000. Seto et al. (2004) demonstrated that 

NDVI had a significant relationship with avian species richness 

in the same mountain ranges used in this study. 
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Table 3 Independent variables derived from a digital elevation model using GIS. Asterisk (*) indicates that quadratic terms were also used in 
model building as potential predictor variables 

Grid Value derived within a 90-m buffer around each point count centre 

' Digital elevation model (OEM) Mean elevation 
' Slope Mean slope 
Northness Mean northness on a scale fi'om -100 (south facing) to 100 (north facing) 
Eastness Mean eastness on a scale fi'om -100 (west facing) to 100 (east facing) 
Distance to water Mean distance to water (running or standing) in metres 
Normalized difference vegeration index (NDVI) Mean NOVI 
Topographic exposure Mean topographic exposure where negative numbers represent valleys and positive values 

represent ridge tops 
'PRISM (Dalyetal., 1994) Mean annual precipitation 

We developed models of species occurrence using five differ­

ent data sets (two temporal and three spatial) and validated each 

of the five sets of models using an independent set of data not 

used to develop the model (see Table 2). Because of the large 

number of potential independent variables, we took measures 

to avoid multicollinearity. Prior to model construction for each 

species, we conducted Pearson correlation analyses and defined 

any combination of two independent variables as highly corre­

lated if r > 0.40. We then conducted univariate logistic regression 

analyses with each independent variable and the occurrence of the 

modelled species. We retained all variables with log-likelihood 

P < 0.25 as potential variables for the final multiple regres­

sion model (Hosmer & Lemeshow, 1989). If two independent 

variables were correlated in the Pearson correlation analyses, 

we retained the variable with the lower P value. However, if log­

likelihood P values for the two variables were the same, we ran 

a separate multiple logistic regression model with each variable. 

We developed multiple logistic models for each of the 18 spe­

cies of breeding birds for which, in all five subsets of data, the 

number of candidate predictor variables was less than the total 

number of sites where the species was present. Across the land­

scape, the number of presences of these species ranged from 3 to 

130 (f11ean 38.2) across the 176 sites. During model construction, 

we used a stepwise selection procedure followed by a best subset 

selection. In order to obtain a potential model for each significance 

level, we used stepwise selection (SAS version 8.0, SAS Institute, 

2002 ) with high alpha values (0.9) (Shtatland et al., 200l). We 

then used the smallest Akaike's Information Criterion (AIC) 

value to select the optimal model (Burnham & Anderson, 1998). 

AIC is a model selection criterion that attempts to balance model 

complexity (overfitting) and bias (underfitting) using the principle 

of parsimony (Burnham & Anderson, 2001), and can be used 

with numerous and diverse modelling approaches, from genetic 

algoritluns (Jefferson et aI., 1997; Vinterbo & Ohno-Machado, 

1999) to semivariograms (Banerjee et al., 2004). 

Next. we conducted a best subset regression with all models 

containing one predictor variable more or less than the AIC­

optimal model from the stepwise procedure (Shtatland et al.• 
2001). For example, if the model with the smallest AIC value 

from the stepwise proced ure had three predictor variables, we 

ran a best subset regression with all models having tw'O, three and 

four predictor variables. Model hierarchy was maintained such 

that models with a quadratic term were considered only if the 

corresponding linear term for that variable also entered the 

model. We again selected the model with the lowest AlC value; 

this model was identified as the final explanatory model for each 

species in each model-building data set. The use of AIC values 

precludes the selection of a final, best model such that practition­

ers should compare a subset of candidate models and evaluate 

reoccurring predictors therein. However, for the purposes of this 

paper regarding model accuracy, we selected a final explanatory 

model to facilitate model evaluation. The explanatory models 

were used to make predictions for locations or years not included 

in the model-building data set; these were the predictions that we 

subsequently evaluated. 

Model evaluation and comparisons 

Following model development and prior to model evaluation 

using independent data sets, we assessed the accuracy of the 

explanatory models using the same four measures: the area under 

a receiver operating characteristic curve (AVC) (SAS version 8.0. 

SAS Institute, 2002). correct classification rate (CCR) for a prob­

ability threshold of 0.7, sensitivity (the proportion of true positives 

Table 1) and specificity (proportion of true negatives. Table 1). 

We used a probability threshold of 0.7 rather than 0.5 because we 

preferred to have fewer overall predictions of higher quality 

(Fleishman et al.• 2003b). 

In the same manner in which we assessed the accuracy of the 

explanatory models, we calculated the AVe, CCR, sensitivity and 

specificity for each of the models tested with independent, evalu­

ation data sets. We performed a simple linear regression between 

each pair of accuracy measures (AVC, CCR. sensitivity and spe­

cificity). For example, we wanted to know whether there was a 

positive correlation between CCR and AVe. We also used simple 

linear regression to assess the relationship between each accuracy 

measure and species occurrence rates in both the model-building 

and evaluation data sets. In other words, we examined whether 

species occurrence rates affect the different measures of accuracy. 

To assess the effects of spatial and temporal variations in species 

occurrence rates on model accuracy, we compared mean values 

of the different accuracy measures across model type (spatial vs. 
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temporal) using two-tailed t-tests. In addition, we used simple mean CCR of > 77%. and one of these (2002) had a mean CCR 

linear regression to test whether the number of variables in a of 85%. In each of the data sets, specificity was much greater than 

model affected the four measures of model accuracy. sensitivity, which means that species absences were predicted 

more accurately than species presences (Table 4). Indeed, there 

was a negative relationship between sensitivity and specificity
RESULTS 

across al.l 89 models. There was also a negative relationship 

between sensitivity and CCR. In contrast, there was a positive 
Overall model performance and correlations among 

relationship between a model's ability to predict absences (spe­
accuracy measures 

cificity) and CCR. and a positive relationship between a model's 

We recorded 76 species of breeding birds duri.ng the 2001 and ability to predict presences (sensitivity) and a model's discrimi­

2002 censuses. Species richness was similar between years with nation ability (AUC). 

65 species recorded in 2001 and 66 recorded in 2002, whereas 

species composition was more variable between years (Fleish­
Effect of occurrence rate on model accuracy 

man et al., 2003a). We developed occurrence model~ for the 

18 species of breeding birds that met our criteria with respect to Species occurrence rate (proportion of sites occupied) was posi­

model stability using each of the five data sets (two temporal and tively correlated between the model-building and evaluation 

three spatial) for a total of 90 models. We present the results of data sets for each of the five sets of models (11 =89, R' =0.37, 

89 mode.ls evaluated with independent data sets; a model for sage P < 0.0001). This suggests that a species present in a high propor­

thrasher (O reoscoptes montanus) developed using data from the tion of sites in the model-building data set was likely to be 

Toquima Range and Shoshone Mountains was omitted because present in a high proportion of sites in the evaluation data set. 

of the small number of occurrences (n = 3) in the evaluation There was a significant relationship between model accuracy and 

data set. occurrence rate in both the model-building and the evaluation 

The mean discrimination ability of each of the five sets of data. For example, there was a significant positive quadratic rela­

models (i.e. the average discrimination ability of the 18 models tionship between CCR and occurrence rate across the model­

constructed using each different set of data) was good building data sets and between CCR and occurrence rate across 

(mean AUC ;:: 0.7) when evaluated with an independent data the evaluation data sets (P < 0.0001 in both cases) (Fig. 2). How­

set (Table 4). Furthermore, > 55% of the individual occurrence ever, occurrence rate in the evaluation data set explained 80% of 

models within each data set had good discrimination ability the variation in CCR, whereas occurrence rate in the model­

(Table 4). Only 3% of al.l models had excellent discrimination building data set explained only 22%. 

ability (AUC > 0.9), and nearly 40% of the models had poor There was a positive linear relationship between sensitivity 

discrimination ability (AUC < 0.7). Model discrimination and occurrence rate in the model-building data sets (n =89, 

in the evaluation data sets (when tested on independent data) R' =0.29, P < 0.0001) and between sensitivity and occurrence 

was not significantly correlated with discrimination ability of the rate in the evaluation data sets (n =89, R' = 0.81, P < 0.0001) . In 

explanatory models (n =89, R' =O.OO,P =0.70). In other words, general, a model's ability to predict presences increased as occur­

performance of the explanatory models does not necessarily rence rate increased (Fig. 2). However, there was a negative quad­

indicate that the same models will perform well when predicting ratic relationship between model specificity (ability to predict 

occurrence in another time or place. absences) and occurrence rate in both the model-building and 

The CCR (probability threshold = 0.7) of model predictions evaluation data sets (P < 0.0001 for both data sets), with more 

was> 70% for a.ll five sets of models (Table 4). In other variance in specificity explained by occurrence rate in the evalu­

words, > 70% of the predictions were correct when the predicted ation data sets (84%) than in the model-building data sets (33%) 

probability of presence was;:: 0.7. Four of the five data sets had a (Fig. 3). The differential effects of occurrence rate in the model-

Table 4 Accuracy measures across al.l data sets. Thresholds for 'poor', 'good' and 'excellent' were < 0.7, ;:: 0.7-D.9 and > 0.9, respectively (Pearce 

& Ferrier, 2000a). TQ, Toquima Range; SH, Shoshone Mountains; TY, Toiyabe Range 

Discrimination ability 

Model·building Evaluation Mean Mean Mean Mean Poor Good Excellent 

Model type data set data set eeR Sensitivity Specificity AVe (AVe < 0.7) 0.7 < Ave < 0.9 (AVe> 0.9) 

Temporal 2001 2002 78.6 0.148 0.963 0.721 8 (44.4%) 10 (55.6%) 0 

2002 2001 85.1 0.001 0.996 0.735 8 (44.4%) 10 (55.6%) 0 

Spatial TYSH TQ 77.7 0.158 0.902 0.735 7 (38.9%) 10 (55.6%) I (5.6%) 

TYTQ SH 70.6 0.239 0.899 0.731 6 (33.3%) !O (55.6%) 2 (J J.l %) 

TQSH TY 77.2 0.183 0.867 0.718 7 (41.2%) !O (58.8%) 0 

Ali models NA NA 77.8 0.145 0.926 0.728 36 (40.4%) 50 (56.2%) 3 (3.3%) 
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Figure 2 Effects of observed species occurrence rate on model 
accuracy in the model-building and evaluation data sets. 

building and evaluation data sets on specificity and sensitivity are 

illustrated in Fig. 3. There was more variation in model specifi­

city and sensitivity for species in the model-building data set 

than for species in the evaluation data set (Figs 2 & 3). Table 5 

shows the values for mean occurrence rate and mean accuracy 

for each species modelled. The relationship between model 

discrimination (AUC) and species occurrence rate was not 

stat istically significant in either the model-building data (11 =89, 

R2 =0.03, P =0.11) or the evaluation data (n =89, R2 =0.01, 

P = 0.31) (Fig. 2). 

Although the occurrence rates in the model-building and evalu­

ation data sets were correlated, some species had higher rates of 

occurrence in one of the tv.'o data sets. The difference in species 

occurrence rates between model-building and evaluation data 

sets helps explain variability in model accuracy across space or 

time (i.e. in spatial or temporal models, respectively). Because 

the majority of species were present in more s.ites in 2002 than in 

2001, all differences in species occurrence rates between the 200 1 

model-building and 2002 evaluation data sets were negative 

(Fig. 4). 

Across all 89 models, AUC did not change as the absolute value 

of the difference in occurrence rates between the model-building 

and evaluation data sets increased (n =89, R2 =0.03, P =0.\0). 

However, when each of the five sets of models was considered 
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Figure 3 Effects of observed species occurrence rate on sensitivity 
and specificity in the model-building and evaluation data sets. 
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Table 5 Mean and standard deviation of occurrence rate and model accuracy for IS species of breeding birds. Values for each species are aver­
aged across the five data sets (three spatial and two temporal). AVe, area under a receiver operating characteristic curve; CCR, correct classifica­
tion rate 

Mean Mean Mean 
Species occurrence ra te MeanAUC Mean CCR sensitivity specificity 

American robin, Turdus migratorius 
Blue-grey gnatcatcher, Polioptila caerulea 
Brewer's sparrow, Spizella breweri 
Broad-tailed hummingbird, Selasph orus platycercus 
Black-throated grey warbler, Dendroica nigrescens 
Bushtit, Psaltriparus inimus 
Cassin's finch, Carpodacus cassinii 
Chipping sparrow, Spizella passerina 
Dark-eyed junco, Junco "yema/is 
Green-tailed towhee, Pipilo chlorurus 
McGillivray's warbler, Oporornis tolmiei 
Mountain bluebird, Sialia currucoides 
Mountain chickadee, Poecile gambe/i 
Mourning dove Zenaida macroura 
Red-shafted flicker, Colaptes aurafus 
Sage thrasher, Oreoscopfes mOn/anus 
Spotted towhee, Pipilo maculatus 
Western tanager, Piranga ludoviciana 

0.376 (0.16) 

0.154 (0.07) 

0.476 (0.11) 

0.241 (0.11 ) 

0.470 (0.20) 

0.102 (0.05) 

0.194 (0.08) 

0.2?0 (0. 11 ) 

0.097 (0.05) 

0.748 (0. 15) 

0.426 (0.16) 

0.108 (0.06) 

0.349 (0.12) 

0.108 (0.04) 

0.210 (0.08) 

0.085 (0.04) 

0.505 (0.13) 

0.191 (0.07) 

0.687 (0.10) 

0.793 (0.04) 

0.791 (0.10) 

0.762 (0.07) 

0.820 (0.06) 

0.640 (0.10) 

0.680 (0.10) 

0.730 (0.08) 

0.785 (0.08) 

0.743 (0.09) 

0.803 (0.05) 

0.726 (0.10) 

0.724 (0.05) 

0.610 (0.07) 

0.685 (0.04) 

0.840 (0.10) 

0.699 (0.15) 

0.615 (0.05) 

63 .9 (19.8) 0.09 (0.14) 0.90 (0.19) 

85.2 (7.69) 0.06 (0.14) 0.99 (0.01) 

64.9 (12.6) 0.36 (0.21) 0.83 (0.24) 

77.4 (12.4 ) 0.06 (0.10) 0.97 (0.05) 

76.9 (3 .98) 0.41 (0.40 ) 0.86 (0.14) 

89.5 (7.10) 0(0) I (0) 

79.6 (12.3) 0.04 (0.06) 0.98 (0.03) 

76.2 (14.7) 0.04 (0.06) 0.97 (0.06) 

90.6 (4.70) 0.10 (0.10) 0.99 (0.02) 

74.2 (13.2) 0.69 (0.39) 0.53 (0.37) 

71.6 (14.3) 0.30 (0.30) 0.87 (0.14) 

88.5 (8 .40) 0(0) 0.99 (0.0 1) 

67.3 (13.9) 0.17 (0.16) 0.90 (0.12) 

88.9(7.09) 0(0) I (0) 

78.3 (13. J) 0.01 (0.01 ) 0.99 (0.01) 

90.4 (6.04) 0(0) I (0) 

59.8 (14.5) 0.24 (0.31) 0.91 (0.10) 

80.4 (12.2 ) 0(0) 0.99 (0.01) 

independently, we found that the difference in occurrence rates 

between the 2001 model-building and 2002 evaluation data sets 

had a positive relationship with discrimination ability (n =36, 

R2 =0.25, P =0.04). Across all models, the relationship between 

CCR and the difference in occurrence rates between the model 

buildi.ng and evaluation data sets was not significant (n = 89, 

R2 = 0.04, P = 0.08 ). However, when each data set was considered 

individually, the difference in species occurrence rates between 

the 2001 model-building data and the 2002 evaluation data 

showed a significant negative relationship with CCR (n =36, 

R2 =0.50, P =0.001 ), as did the difference in occurrence rates 

between the 2002 model-building and the 2001 evaluation data 

sets with CCR (n =36, R2 = 0.41, P =0.003). As the difference in 

occurrence rates between the model-building and evaluation 

data sets increased, there was no change in a model's ability to 

predict presences (sensitivity) (n =89, R2 =0.03, P =0.08) or its 

ability to predict absences (specificity) (n =89, R' =0.01, 

P = 0.27), even when each data set was assessed individually. 

Effect of model predictor variables 

Of the 18 predictor variables used during model development, 11 

were derived from GIS and seven were measured in the field. Four 

of the five predictors that entered occurrence models most 

frequently were GIS-derived (elevation, precipitation, NOVl and 

slope). The most frequent field-based predictor was canopy 

cover. Elevation and canopy cover were the most common 

predictors in species occurrence models: elevation en tered 28 

models (31 %), whereas canopy cover entered 26 (29%). Quadratic 

terms for elevation, slope and precipitation entered 9%, 4% and 

6% of the models, respectively. Six models (7%) included only 

predictors that were measured in the field and 17 models (19%) 

included only GIS-derived predictors. 

The number of predictors per model ranged from one to 

SeVen. Most models had three or four predictors (31 % and 28%, 

respectively). Across all models, as the number of predictor vari­

ables in a model increased, the model discrimination (AVC) 

increased as well (n =89, R2 =0.21, P < 0.0001), This relation­

ship was driven by a positive association between AVC and the 

number of predictor variables in two sets of models: the models 

built with the 2001 data set and evaluated with 2002 data , and the 

models built with the Toiyabe/Toquima data set and tested with 

Shoshone data. Similarly, across all models, there was a positive 

relationship between sensitivity and the number of predictor 

variables (n = 89, R2 == 0.06, P = 0.02 ), but the positive relation­

ship was attributable solely to the models developed with 2001 

data and evaluated with the 2002 data. The relationships between 

the number of predictor variables and either CCR or specificity 

were not statistically significant. 

Spatial and temporal variations 

Model discrimination ability was not affected by whether a 

model predicted species occurrence in space (Toiyabe/Toquima, 

Toiyabe/Shoshone and Toquima/Shoshone) or species occurrence 

in time (2001 and 2002). The mean AVC for spatial models and 

temporal models was the same (0.73) (Fig. 5). However, temporal 

models had higher average CCR and a higher average specificity 

than spatial models (i.e. temporal models classified absences 

better than spatial models). In contrast, spatial models exhibited 

higher average sensitivity than temporal models (i.e. spatial 

mode.ls classified species presences better than temporal models) 
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(Fig. 5). Overall, the variation in model accuracy was greater in 

spatial models than in temporal models (Fig. 5). 

DISCUSSION 

Overall model performance 

Several of the avian occurrence models presented here appeared 

to perform fairly well when evaluated with independent data from 

another time period or location. The spatial and temporal extent 

across which these models apparently can be applied successfully 

makes their use practical given the scales of most management 

decisions, at least in western North America. The Great Basin, for 

example, covers more than 400,000 km'. If effective models of 

species occmrence can be built on the basis of data collected 

from sections of three mountain ranges, those models should be 

cost-effective even within the 30,000-krn' biogeographical sub­

region where our work was centred (Austin & Murphy, 1987). 

Within a region, it is reasonable to assume that land use decisions 

might be based on occurrence models derived from census data 

collected in a previous year (or years) within a subset of the same 

landscape. Therefore, the framework we present for the develop­

ment and evaluation of species occurrence models can potentially 

be applied in any region and to a variety of taxonomic groups. 

Virtually all distributional patterns reflect an ecological 

response to abiotic or biotic phenomena. Nonetheless, those 

responses can be exaggerated by sources of non-independence 

such as spatial autocorrelation (Legendre, 1993; Diniz-Filho 

et al., 2003; Tobin, 2004). We recently examined patterns of 

spatial autocorrelation in avian species composition and three 

measures of birds' habitats (vegetation composition, vegetation 

structure, and estimated productivity) in the same study system 

Avian occurrence models 

100 

90 

80 
t5 

0 
~ 70 
U 

60 

50 

40 

Temporal Spatial Temporal 

0 

1.0 r­

0 .8 ~ ep 
0 

.z­
;g 
'(3 

0.6 '­ 0 

o 

0 
Q) 
0­

(f) 
0.4 - 8 

0 0.2 -
II 

0.0 - q> I 

Temporal Spatial Temporal 

(E. Fleishman and R. Mac Nally, unpublished manuscript). We 

found that avifaunal composition was spatially autocorrelated at 

lag distances (distances between sites) of approximately 0 to 

30 krn. The three measures of habitat were also spatially auto­

correlated, but to different distances than each other or avifaunal 

composition. Although our results suggested that the spatial 

pattern of avifaunal composition was influenced more strongly by 

vegetation composition (variables not emphasized heavily in this 

study) than by vegetation structure or estimated productivity, 

patterns in the bird data ,vere not closely concordant with 

patterns in any of our three measures of bird habitats. Thus, we 

believe that spatial autocorrelation was unlikely to have a strong 

influence on model selection and performance. 

Our results illustrate the importance of calculating more than 

one measure of model accuracy and of assessing separately the 

ability of a model to predict presences and absences (Fielding & 
Bell, 1997; Manel et al., 1999). However, there are two major 

drawbacks associated with measures of accuracy derived from 

classification tables (Forbes, 1995; Fielding & Bell, 1997; Manel 

et al., 1999). First, they are often based on an arbitrarily chosen 

probability threshold value, and second, as our work demon­

strates, their accuracy can be greatly affected by occurrence rate. 

Nonetheless, it is useful to conduct some type of comparison 

between the ability of a model to predict presences vs. absences. 

Effect of occurrence rate 

Species occurrence rates in the evaluation data sets had a much 

stronger relationship with CCR, sensitivity and specificity than 

did occurrence rates in the model-building data sets (Figs 2 & 3). 

The fact that so much of the variation in these accuracy measures 

is explained by species occurrence alone makes them inferior 
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measures compared with AUC (area under the ROC curve). In 

general, accuracy measures describe how well models perform 

when evaluated with independent data. Therefore, the observed 

occurrence rates in the evaluation data affected these accuracy 

measures more so than the occurrence rates in the model-building 

stage. Unfortunately, one cannot anticipate the magnitude of 

temporal variation in occurrence rate of a species unless multiple 

years of survey data exist. We suggest that whenever possible, 

surveys of breeding birds in temperate ecosystems be conducted 

approximately every 3 to 4 years to ensure that occurrence rates 

have not changed dramatically, which would render predictive 

models less reliable. 

Like other researchers (Manel et at., 1999; Fleishman & 

Mac Nally, 2004), we found that species absences were predicted 

more accurately than species presences (i.e. specificity was greater 

than sensitivity), even when the overall predictive success (CCR) 

was considered to be good. One possible explanation is that 

occurrence rate has considerable influence on accuracy measures. 

Species occurrence rate in this study ranged from 0.01 to 0.85 

(mean = 0.28). The trend presented here and commonly seen 

in the literature - that low occurrence rate often corresponds to 

low model sensitivity - highlights the difficulty in predicting 

the presence of rare species. 

Our choice of decision threshold could also explain why the 

ability of our models to predict absences was consistently much 

greater than their ability to predict presences. We used a thresh­

old of 0.7, whereby a species was considered to be present when 

the probability of occurrence was ~ 0.7, as opposed to a more 

traditional threshold of 0.5. Stricter classification rules (i.e. deci­

sion thresholds) may produce fewer overall predictions of higher 

quality compared with more lenient classification rules (Fleish­

man et aI., 2003b). Zweig and Campbell (1993) suggested that 

researchers determine the optimal threshold value for each indi­

vidual circumstance based on 'costs' assigned to commission 

errors [predicting that a species is present when it is in fact absent 

(false positive) J and omission errors [predicting that a species is 

absent when it is in fact present (false negative)]. Depending on 

the purpose of anyone occurrence model, the relative 'costs' 

associated with commission and omission errors can be deter­

mined (Zweig & Campbell, 1993; Fielding, 2002). A probability 

threshold of 0.5 assumes that the costs of commission and omis­

sion errors are equal, whereas a threshold of 0.7 assumes that 

omission errors are more serious. Increasing this threshold tends 

to decrease sensitivity and increase specificity. An optimal 

threshold that considers both occurrence rate and the relative 

costs of commission and omission for the situation at hand can 

be estimated by calculating the slope of a line tangent to an ROC 

curve that incorporates occurrence rates and costs associated 

with the errors (Zweig & Campbell, 1993; Fielding, 2002). 

Effect of number of predictor variables 

Although discrimination ability (AUC) is a useful measure of 

model accuracy that is not affected by occurrence rate, we found 

that it was significantly correlated with tl1e number of predictor 

variables in a model. Including a large number of variables in a 

modelli.mits the model 's temporal or spatial generality. In this 

study, Akaike's Information Criterion (AlC) was used in model 

selection. This criterion attempts to balance model fit (ability to 

explain observed variation in the dependent variable) and model 

complexity (number of independent variables). Therefore, if we 

had used a method of model selection that did not constrain the 

number of independent variables, the relationship between dis­

crimination ability and k (the number of predictors in the 

model) might have been different. 

Effects of spatial and temporal variations in 
occurrence rate 

The differences in accuracy between temporal and spatial models 

may also be attributed to species occurrence rates. Temporal 

models had significantly higher mean CCR and specificity and 

significantly lower sensitivity than spatial models. In our study, 

there was less variation in species occurrence rates in space 

(among mountain ranges) than in time (between years). The 

mean occurrence rate in 2002 for the 18 species modelled (0.27) 

was nearly twice the mean occurrence rate in 2001 (0.15). 

Temporal models consistently predicted absences well while 

predicting presences poorly. Spatial models also classified 

absences better than presences, but their accuracy values were 

much more variable; some presences were classified well and 

some absences were classified poorly (Fig. 5). In our study sys­
tem, variation in occurrence rates of breeding birds from year to 

year may be greater than variation among mountain ranges, ~nd 

consequently may constrain the accuracy of predicted presences. 

Other researchers have documented considerable temporal 

variation in avian occurrence in desert systems (Johnson, 1995; 

Gutzwiller & Barrow, 200 l). In systems where large annual 

fluctuations in occurrence are the norm, it is advantageous to 

collect multiple years of occurrence data to develop and evaluate 

models. 

If management plans are to be based in part on predictive 

models of occurrence, then follow-up censuses across the land­

scape are essential to determine whether management is indeed 

sufficient to protect species of concern, and to trigger changes in 

land use if current management is not achieving ecological 

objectives. Such an adaptive management framework helps to 

ensure that land uses and available funding are being appropri­

ately assigned. Ecosystems and the species that inhabit them are 

inherently dynamic and no model is universally applicable across 

space and time. Nonetheless, there is a need to understand the 

distributions of species in order to protect them and their habi­

tats. Predictive models of occurrence, and more importantly 

their subsequent evaluation using independent data, provide 

substantial insight into spatial and temporal variations in species 

occurrences. Such insight better equips ecologists and land man­

agers to make responsible decisions. 
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