
i 

 
 
 
 
 
 
 

TOPOGRAPHIC ANALYSIS AND PREDICTIVE MODELING USING 
GEOGRAPHIC INFORMATION SYSTEMS 

 
 

A Dissertation 
Presented to 

the Graduate School of 
Clemson University 

 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy 
Forest Resources  

 
 

by 
Steven Thomas Hall 

December 2008 
 
 

Accepted by: 
Dr. Chris J. Post, Committee Chair 

Dr. Elena A. Mikhailova 
Dr. Thomas A. Waldrop 
Dr. Patrick D. Gerard  

 



 ii 

ABSTRACT 
 
 

This dissertation describes three GIS models developed to better model 

topographic features and the occurrence of mountain laurel (Kalmia latifolia) in the 

southern Appalachian Mountains. The first study presented “A LiDAR based GIS model 

to calculate Terrain Shape Index on a landscape scale”, attempts to develop a GIS based 

model to calculate the Terrain Shape Index (TSI). TSI is typically collected in the field 

using a series of elevation measurements to determine the average elevation change 

within the study plot. In this study, a GIS model is developed and TSI values compared to 

those collected using conventional methods. The second study, “A GIS model for 

determining landform type and slope position”, uses a progressive scanning method 

developed within a GIS to identify ridges and subsequently landform type. The results 

from this study are compared to landform classifications made visually by a group of 

volunteers. The third study presented, “A predictive GIS model for determining the 

probability of mountain laurel occurrence in the southern Appalachian Mountains”, 

attempts to develop a statistical model to better predict the presence or absence of 

mountain laurel on the landscape. Mountain laurel, often associated with decreased 

hardwood regeneration and its role as a vertical fuel, is important in both stand and fire 

management. In this study, results from a comprehensive, long term field study are used 

predict the occurrence of mountain laurel across the landscape. The GIS models 

described herein were designed to be efficient, user friendly and accurate in their results 

as well as easily transferable between parties and locations.  
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CHAPTER I 
 

INTRODUCTION 

As technology advances, so does the ability to predict and model real world 

phenomenon. Typical modeling attempts to accurately demonstrate and quantify the 

interaction of multiple environmental variables in order to not only understand the role of 

such parameters in nature, but also to predict their behavior under varying conditions.  

 One of the more common methods of modeling and predicting spatial data is 

through the use of a Geographic Information System (GIS). A GIS is a “computer based 

system to aid in the collection, maintenance, storage, analysis, output, and distribution of 

spatial data and information” (Bolstad 2003). Described in lay terms, a GIS is comprised 

of specialized software designed with the explicit purpose of handling spatial data. 

Spatial data is simply data – such as soil temperature – that includes a spatial reference 

(e.g. latitudinal and longitudinal coordinates). The ability to associate a dataset with its 

spatial location allows for more than standard statistics to be performed; it allows 

researchers to incorporate geographic locations into their analysis and also understand 

what role, if any, the spatial location itself fills.  

 The use of GIS is most often coupled with environmental research. For example, 

GIS has been used in a multitude of environmental research studies, such as habitat 

identification (Creque et al. 2005; Eikaas et al. 2005; Pettorelli et al. 2005; Store and 

Jokimaki 2003), habitat restoration (Gillenwater et al. 2006; Greer 1994; Richardson and 

Gatti 1999), soil science (de Paz et al. 2006; Liu et al. 2004; Lufafa et al. 2003), water 

quality (Baker et al. 2001; Vivoni and Richards 2005; Wang and Yin 1997) and fire 
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ecology (Keane et al. 2001; Ruiz-Gallardo et al. 2004; Theodore 2004) to name just a 

few. Other fields taking advantage of the many capabilities of a GIS include city and 

regional planning (Jat et al. 2008), public health (Lu 2005) and even sociology (Brown 

2003). In truth, GIS is not limited by the field in which it is used, but only by the 

availability of spatial information.  

 A large portion of GIS analysis is performed using ArcGIS, a software package 

developed by Environmental Systems Research Institute (ESRI 2006). In it, users can 

create anything from simple, explanatory maps to complex, analysis-driven models. In 

ModelBuilder®, users can connect various analysis tools in the form of a workflow 

diagram to aid in model creation and processing. ModelBuilder® keeps track of all 

analysis tools, their interdependencies and gives users a way to create large, complicated 

models with little effort. Additionally, ModelBuilder®
 allows models to be quickly and 

easily edited, and analysis tools can be run separately or in unison (Ormsby et al. 2004). 

ModelBuilder® is used extensively in each of the chapters presented in this paper.  

 Each of the succeeding chapters represents a different approach to modeling 

environmental variables using a GIS. All spatial analysis was completed using ArcMap 

9.2 (ESRI 2006) and statistical analysis using SAS 9.13 (SAS Institute 2008) and Maple 

11 (Maplesoft 2008). Since each project was undertaken individually with the explicit 

purpose of publication, some information contained within the chapters may overlap.  

 The overall theme behind the studies was to develop methodologies that better 

represent the physical world using a GIS. In each case, information typically derived 

from rigorous field work was generated using a variety of spatial analysis tools. In the 
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first study, a GIS model was developed to mimic the procedure used by McNab (1989) to 

determine the Terrain Shape Index. The Terrain Shape Index, or TSI, has been used in 

numerous studies, but is often related to site quality and tree growth (McNab 1989). 

Hutto et al. (1999) used TSI data collected from the field in a GIS model to predict the 

landscape ecosystem classification unit (LEC). Essentially, TSI measures the micro-

topography of a site, classifying it as either convex or concave.  

 To best simulate the methodology used in the field to calculate TSI, a raster based 

analysis was developed using a custom kernel, or neighborhood. Results for the study 

were compared to field derived data at 245 plots located in western North Carolina. 

These sites were generated randomly as part of a forest fuels study (Waldrop et al. 2007). 

All of the confirmation data used for each of the studies contained herein were obtained 

from Waldrop et al. (2007).  

 The second study discussed here is the ability to determine slope position – ridge, 

side slope or cove – in an automated fashion using a GIS model. Slope position has been 

cited as an important factor in many studies, but is often cited in fire ecology studies, 

particularly those concerned with fuel loading (Waldrop et al. 2007). A universal method 

for determining slope position was first developed by McNab (1993). In his 

methodology, McNab used the degree of inclination to surrounding landforms to 

determine on what type of landform a study site resided.  

 To best estimate slope position in a GIS model, a progressive scanning technique 

was developed and employed. This allowed for the slope position to be determined across 

an entire region, instead of at only individual study sites. Similar to the TSI study, the 
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study sites from Waldrop et al. (2007) were used for comparison. However, instead of 

using the predefined slope position used in that study, a group of volunteers were asked 

to manually classify all 250 field sites. Doing so helped to eliminate user bias as well as 

create a distribution of the most common slope classifications.  

 The third and final study conducted was the development of a predictive statistical 

model, estimating the probability for mountain laurel (Kalmia latifolia) presence. 

Mountain laurel has been shown to increase the likelihood of crown fires (Vose et al. 

1999; Waldrop and Brose 1999; Waldrop et al. 2007), and thus it serves an important role 

in wildfire management and planning. In order to predict the presence of mountain laurel, 

various types of spatial data – including a LiDAR based canopy model – were used to 

create a discriminant function based on presence and absence data collected by Waldrop 

et al. (2007). Using the discriminant function, it was possible to calculate a probability 

raster that denotes the likelihood of mountain laurel presence in the southern Appalachian 

Mountains included in this study. Results of this study may be found in Chapter IV.  

 The difference between these studies and other GIS models that have attempted to 

produce similar output is the use of LiDAR – Light Detection and Ranging – as the 

foundation for the elevation model. LiDAR, while an advanced remote sensing technique, 

is very simple in nature. A laser, mounted to the underside of an aircraft, travels over an 

area of concern firing thousands of laser pulses to the ground per second. As the laser 

pulses are reflected from the earth’s surface, the elevation of the reflected pulses can be 

determined allowing for the creation of highly accurate elevation models (Dubayah and 

Drake 2000; Lefsky et al. 2002).  
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 The inclusion of LiDAR data in each of these studies offers several advantages 

over conventional methods. Because LiDAR is collected at such a high density (in some 

cases, a data  point every 1.5 m) and often has a vertical accuracy of less than 25 cm, it 

may help to minimize the error found in ordinary elevation models, which, at best, have a 

vertical accuracy of 1 m and horizontal resolution of 30 m (USGS 1998). More accurate 

elevation models are available from the federal government, but coverage of the 

continental United States is not yet complete (Anderson et al. 2006). 

 At first glance, each of the three studies mentioned here may seem only loosely 

associated with one another. However, when considered at a landscape scale and the 

potential savings in time, money and resources – the efficacy of the GIS models 

presented here is clear. Not only is there potential to eliminate certain aspects of data 

collection, but most importantly, there is great potential for advances in fire ecology and 

wildfire management should reliable predictions of mountain laurel presence be possible.  

  



 6 

LITERATURE CITED 
 

Anderson, E.S., Thompson, J.A., Crouse, D.A., & Austin, R.E. (2006). Horizontal 
 resolution and data density effects on remotely sensed LIDAR-based DEM. 
 Geoderma, 132, 406-415 

Baker, M.E., Wiley, M.J., & Seelbach, P.W. (2001). GIS-based hydrologic modeling of 
 riparian areas: Implications for stream water quality. Journal of the American 
 Water Resources Association, 37, 1615-1628 

Bolstad, P. (2003). GIS Fundamentals: A first text on Geographic Information Systems. 
 White Bear Lake: Eider Press 

Brown, S. (2003). Spatial analysis of socioeconomic issues: Gender and GIS in Nepal. 
 Mountain Research and Development, 23, 338-344 

Creque, S.M., Rutherford, E.S., & Zorn, T.G. (2005). Use of GIS-derived landscape-scale 
 habitat features to explain spatial patterns of fish density in Michigan rivers. 
 North American Journal of Fisheries Management, 25, 1411-1425 

de Paz, J.M., Sanchez, J., & Visconti, F. (2006). Combined use of GIS and environmental 
 indicators for assessment of chemical, physical and biological soil degradation in 
 a Spanish Mediterranean region. Journal of Environmental Management, 79, 150-
 162 

Dubayah, R.O., & Drake, J.B. (2000). Lidar remote sensing for forestry. Journal of 
 Forestry, 98, 44-46 

Eikaas, H.S., Kliskey, A.D., & McIntosh, A.R. (2005). Spatial modeling and habitat 
 quantification for two diadromous fish in New Zealand streams: GIS-based 
 approach with application for conservation management. Environmental 
 Management, 36, 726-740 

ESRI (2006). ArcGIS Desktop 9.2. In. Redlands, CA 

Gillenwater, D., Granata, T., & Zika, U. (2006). GIS-based modeling of spawning habitat 
 suitability for walleye in the Sandusky River, Ohio, and implications for dam 
 removal and river restoration. Ecological Engineering, 28, 311-323 

Greer, J.D. (1994). Gis and Remote-Sensing for Wildland Fire Suppression and Burned 
 Area Restoration. Photogrammetric Engineering and Remote Sensing, 60, 1059-
 1064 



 7 

Hutto, C.J., Shelburne, V.B., & Jones, S.M. (1999). Preliminary ecological land 
 classification of the Chauga Ridges Region of South Carolina. Forest Ecology 
 and Management, 114, 385-393 

Jat, M.K., Garg, P.K., & Khare, D. (2008). Monitoring and modelling of urban sprawl 
 using remote sensing and GIS techniques. International Journal of Applied Earth 
 Observation and Geoinformation, 10, 26-43 

Keane, R.E., Burgan, R., & van Wagtendonk, J. (2001). Mapping wildland fuels for fire 
 management across multiple scales: Integrating remote sensing, GIS, and 
 biophysical modeling. International Journal of Wildland Fire, 10, 301-319 

Lefsky, M.A., Cohen, W.B., Parker, G.G., & Harding, D.J. (2002). Lidar remote sensing 
 for ecosystem studies. Bioscience, 52, 19-30 

Liu, X.M., Xu, J.M., Zhang, M.K., Huang, J.H., Shi, J.C., & Yu, X.F. (2004). Application 
 of geostatistics and GIS technique to characterize spatial variabilities of 
 bioavailable micronutrients in paddy soils. Environmental Geology, 46, 189-194 

Lu, X.L. (2005). A framework of web GIS based unified public health information 
 visualization platform. Computational Science and Its Applications - Iccsa 2005, 
 Pt 3, 3482, 256-265 

Lufafa, A., Tenywa, M.M., Isabirye, M., Majaliwa, M.J.G., & Woomer, P.L. (2003). 
 Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based 
 Universal Soil Loss model. Agricultural Systems, 76, 883-894 

McNab, W.H. (1989). Terrain Shape Index - Quantifying Effect of Minor Landforms on 
 Tree Height. Forest Science, 35, 91-104 

McNab, W.H. (1993). A Topographic Index to Quantify the Effect of Mesoscale 
 Landform on Site Productivity. Canadian Journal of Forest Research-Revue 
 Canadienne De Recherche Forestiere, 23, 1100-1107 

Ormsby, T., Napoleon, E., Burke, R., Groessl, C., & Feaster, L. (2004). Getting to Know 
 ArcGIS Desktop: Basics of ArcView, ArcEditor and ArcInfo. Redlands, CA: ESRI 
 Press 

Pettorelli, N., Dray, S., & Maillard, D. (2005). Coupling Principal Component Analysis 
 and GIS to map deer habitats. Wildlife Biology, 11, 363-370 

Richardson, M.S., & Gatti, R.C. (1999). Prioritizing wetland restoration activity within a 
 Wisconsin watershed using GIS modeling. Journal of Soil and Water 
 Conservation, 54, 537-542 



 8 

Ruiz-Gallardo, J.R., Castano, S., & Calera, A. (2004). Application of remote sensing and 
 GIS to locate priority intervention areas after wildland fires in Mediterranean 
 systems: a case study from south-eastern Spain. International Journal of Wildland 
 Fire, 13, 241-252 

SAS Institute, I. (2008). SAS. In. Cary, North Carolina 

Store, R., & Jokimaki, J. (2003). A GIS-based multi-scale approach to habitat suitability 
 modeling. Ecological Modelling, 169, 1-15 

Theodore, J. (2004). GIS analysis and remote sensing support Southern California 
 wildfire response - Vast array of applications give numerous agencies the benefit 
 of spatial analysis, high-powered visualization. Photogrammetric Engineering 
 and Remote Sensing, 70, 997-999 

USGS (1998). Standards for Digital Elevation Models. In. Reston, VA: National 
 Mapping Program 

Vivoni, E.R., & Richards, K.T. (2005). Integrated use of GIS-based field sampling and 
 modeling for hydrologic and water quality studies. Journal of Hydroinformatics, 
7, 235-250 

Vose, J.M., Swank, W.T., Clinton, B.D., Knoepp, J.D., & Swift, L.W. (1999). Using 
 stand replacement fires to restore southern Appalachian pine-hardwood 
 ecosystems: effects on mass, carbon, and nutrient pools. Forest Ecology and 
 Management, 114, 215-226 

Waldrop, T.A., & Brose, P.H. (1999). A comparison of fire intensity levels for stand 
 replacement of table mountain pine (Pinus pungens Lamb.). Forest Ecology and 
Management, 113, 155-166 

Waldrop, T.A., Brudnak, L., & Rideout-Hanzak, S. (2007). Fuels on disturbed and 
 undisturbed sites in the southern Appalachian Mountains, USA. Canadian 
 Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 37, 
 1134-1141 

Wang, X.H., & Yin, Z.Y. (1997). Using GIS to assess the relationship between land use 
 and water quality at a watershed level. Environment International, 23, 103-114 
 
 



 9 

CHAPTER II 

A LIDAR-BASED GIS MODEL TO CALCULATE TERRAIN SHAPE INDEX ON 
THE LANDSCAPE SCALE 

 
ABSTRACT 

 
 Terrain Shape Index is a common measure for determining the shape of the micro 

landform. Previous studies have shown that terrain shape is significantly correlated with 

site quality and tree growth. In this study, a GIS model was developed to accurately 

calculate the Terrain Shape Index using a LiDAR derived elevation model. Index values 

from the GIS model were compared to Terrain Shape Index values calculated on 245 

field sites located in western North Carolina. Results indicate that the GIS based Terrain 

Shape Index calculations are similar to field collected values. A T-test showed no 

significant difference (p=0.26) between the means of the two datasets, and when plotted 

there was no significant difference between the intercept and slope (p=.055), implying 

agreement among the datasets. The R2 for a linear model, however, is .42. A low 

explanation of variance between the models may at least be partially explained by error 

associated in both LiDAR and field collected data, particularly if the plots are located in 

dense vegetation and elevation data is collected with a handheld GPS device. In total, the 

GIS model correctly predicted nearly 3 out of 4 study sites as being either convex or 

concave when compared to field collected data.  
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INTRODUCTION 
 
 Since first being introduced to mainstream ecology, the Terrain Shape Index 

(McNab 1989) has been used as the standard method to quantify the effects of minor 

landform on vegetation growth. McNab’s (1989) objective was to develop a methodology 

to express landform as a continuous, objectively measured variable. He did this by 

calculating the mean relative difference in elevation between the center of the study plot 

and eight surrounding points at 45° intervals. When divided by the plot radius, the result 

quantifies the shape of the minor landform; negative indices indicate that the study site is 

on a convex landform and positive indices indicate that the study site is on a concave 

landform. McNab concluded that the Terrain Shape Index (TSI) was significantly related 

to the total tree height of yellow-poplar trees in his study. Since then, many studies have 

used his TSI method to help quantify vegetation patterns and growth (Abella and 

Covington 2006; Humphries et al. 2008; Thompson et al. 2006).  

 In this study, a Geographic Information System (GIS) model was created to 

calculate TSI using Light Detection and Ranging (LiDAR) data. Results were compared 

to field calculated TSI values at 245 study sites. Comparisons were made to determine 

whether or not computer based TSI models would be an accurate substitute for field 

generated data.  

 A GIS is a “computer based system to aid in the collection, maintenance, storage, 

analysis, output, and distribution of spatial data and information” (Bolstad 2003). A GIS 

is a means of using the spatial information (such as latitude and longitude) of a feature to 

perform analysis on it. Analyses can range from simple to the complex; in this case, a 
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GIS is used to calculate the TSI values for a given region. All GIS analyses in this study 

were performed using ArcMap 9.2 (ESRI 2006). 

 Since its inception, GIS analysis has been used in many ecological studies. Some 

common applications of GIS include habitat restoration (Massey et al. 2008; Mollot and 

Bilby 2008), soil mapping (Lewis et al. 2005; Tischler et al. 2007) and hydrology 

(Frankenberger et al. 1999; Zheng and Baetz 1999) as well as several diverse landform 

mapping studies (Blaszczynski 1997; Gallant et al. 2005; Jenson and Domingue 1988). 

This study differs from previous attempts to calculate TSI using a GIS (Humphries et al. 

2008) in that it attempts to calculate TSI identical to McNab’s (1989) method using a 

LiDAR surface model and an automated mathematical approach. 

 Despite being an advanced form of remote sensing, the underlying concept behind 

LiDAR is simple in nature. Instruments mounted on the underside of an aircraft emit 

laser pulses at a specified target. The return signal from these pulses (i.e. the reflected 

light) from the target’s surface are collected by a receiver on the LiDAR instrument 

(Dubayah and Drake 2000; Lefsky et al. 2002). By measuring the time elapsed between 

the initial laser pulse and the reception of the return signal, along with the distance 

traveled, the surface elevation can accurately be calculated (Dubayah and Drake 2000; 

Lefsky et al. 2002). Furthermore, laser pulses often travel through vegetation (including 

some dense vegetation), giving researchers elevation data of both the ground surface and 

forest canopy. When combined with the number of elevation points retrieved per second, 

this allows for exceptionally accurate surface models to be produced (Lefsky et al. 2002; 

Means et al. 1999). For the purposes of this study, a LiDAR derived digital elevation 
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model was used as the foundation for TSI calculation. The objective of this study was to 

develop a computer based model to accurately calculate the TSI for a region and be 

comparable to values derived from field observations.  

 

METHODOLOGY 

 LiDAR data for this study was acquired from April to December 2003 by 

EarthData International of North Carolina for the Floodplain Mapping Program, part of 

the North Carolina Division of Emergency Management. The horizontal datum is NAD83 

North Carolina State Plane Feet and the vertical datum NAVD88 US Survey Feet. 

The area of concern for this project is a 33.7 Km2 (13 mi2) section of North 

Carolina, covering a portion Macon county, NC (Figure 2.1). The landscape is considered 

mountainous, as the Appalachian Mountains are the dominant topographical feature for 

this region.  

The initial Digital Elevation Model (DEM) was created using the LiDAR points 

identified as bare earth. These points were interpolated in ArcMap 9.2 (ESRI 2006) using 

Kriging, a commonly used geostatistical method for creating surface models (Lloyd and 

Atkinson 2006). Optimal Kriging parameters were automatically determined in ArcMap 

using the Geostatistical Analyst extension. The cell size for the DEM is 5 feet, which is 

comparable to the average posting between the LiDAR data points and matches the units 

used for both the horizontal and vertical datum.  

To best duplicate McNab’s (1989) procedure, it was necessary to develop a raster 

based model that queried cells at 45° intervals, 18 m (59 ft) from the plot center. In this 
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study, individual plot locations were not used as plot centers; instead, each cell in the 

DEM was considered a plot center and a predictive TSI raster was created for the entire 

study area.  

To best create the required interval, a new, single point shapefile was created and 

placed in an empty map document. From this point the Euclidean direction was 

calculated and extracted to fit the 18 m boundary required. Map Algebra was used to 

identify the eight boundary measurements (1 every 45°) and the result of which was 

converted into an ASCII text file. The ASCII file was then used as the input kernel file 

for a focal statistics irregular neighborhood. A second ASCII text file was created that 

represented only the center point of the 18m plot.  

The sum of the boundary measurements were calculated, and from that, the 

elevation from the center cell, multiplied by eight, was subtracted. The product of this 

was divided by eight and multiplied by the plot radius as seen in the following equation: 

Radius
Z

*8
)8*()( 081 −Ζ∑ − , 

ultimately producing the final TSI values for the raster.  

Although the method of calculation is slightly different than McNab’s (1989) 

method described earlier, identical TSI results may be obtained regardless of whether or 

not McNab’s approach or the one described here is used. This approach was used over 

the conventional approach because it limits computer processing time and minimizes the 

size of the final model (Figure 2.2). 
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Figure 2.1: Map of North Carolina study sites, all of which were contained within the Nantahala 
National Forest. 
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Figure 2.2: Basic GIS model used to calculate TSI 
 
 
 To best confirm the results, a simple linear regression was used to predict field 

based TSI measurements using LiDAR data. The slope and intercepts of each dataset 

were compared, testing whether the slope is equal to 1 and the intercept equal to zero, 

implying agreement among the datasets. Additionally, the correlation coefficient was 

calculated as well as frequency tables to determine how often the two datasets agreed 

according to landform shape (concavity and convexity). A paired T-test was also 

conducted to determine whether or not a statistical difference between the means of the 

two datasets existed. All statistical analysis was performed using SAS 9.13 (SAS Institute 

2008). 

 

RESULTS 

 Basic statistical analysis shows that the two datasets are comparable. A paired T-

test reveals that there is no statistical difference (p=0.2615) between the mean 

observations from the field collected TSI values and those generated by ArcMap.  



 16 

Additionally, both the field TSI and the LiDAR derived TSI values are normally 

distributed (p=0.4461 and p=0.1879, respectively). The Pearson Correlation Coefficient 

for LiDAR and field derived TSI values were significant at .65 (p < 0.0001), and 

frequency tables reveal that 73% – nearly 3 out of 4 study sites – match one another in 

terms of convexity and concavity. A scatter plot (Figure 2.3) shows the linear relationship 

between the TSI values. Comparisons of the slope (0.984) and intercept (-0.007) of both 

datasets reveal that they are in agreement (p=0.5521) with one another. It should be 

noted, however that the R2 for the linear model is 0.4285. Further discussion as to why 

this may be is found later in this chapter.  

The final output from the GIS analysis is a raster layer containing calculated TSI 

values (Figure 2.4). In it, high TSI values (concave landforms) are bright white in color. 

Low TSI values (convex landforms) are dark in color.  
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Figure 2.3: Scatter plot comparing LiDAR and field derived TSI values 
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Figure 2.4: LiDAR derived TSI values. Brightly colored sections represent concave landforms, such 
as drainages or streams. Dark colored areas represent convex landforms, such as ridges. 
  

DISCUSSION 

Results indicate that the datasets do not statistically differ from one another, and 

that 3 out of 4 study sites were correctly identified as either convex or concave. However, 

it should be noted that a regression model using the LiDAR derived values accounts for 
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only 42% of the variability seen in the field calculated values. There are several potential 

explanations for this apparent lack of predictive ability. 

 One rationalization for poorly explained variability in this model is the inherent 

error associated with LiDAR data. Given that LiDAR depends on light reflectance to 

accurately determine surface height, areas with little to no vegetative cover may have a 

higher density of surface points (and thus result in a more accurate surface model)  than 

comparable regions with a dense canopy (Barber and Shortridge 2005; Cowen et al. 

2000; Jensen et al. 1987) because not all light pulses will reach the earth’s surface. 

Cowen et al. (2000) estimates that when the canopy is 80-90 percent closed, only 10-40 

percent of the light pulses reach the ground and are reflected back to the LiDAR sensor. 

Additionally, LiDAR collected for this study are horizontally and vertically accurate 

within 1-25 cm (.01 -.2 5m or .03-.8 2ft), thus there is potential for some of the elevation 

values to be inflated, albeit by a negligible amount.  

 A second potential cause for disagreement is the accuracy of field collected data. 

Perhaps the most common and likely form of error found in the field observations is the 

error associated with setting up the field plot itself. In cases where vegetation is dense 

and the topography highly variable, it can be very difficult to accurately determine the 

plot boundaries and thus take plot measurements in the proper location. Furthermore, all 

of the elevation values for the field collected TSI dataset were obtained using a Trimble 

Geo Explorer 3 Global Positioning System (GPS) as a C/A code receiver. Typically, a 

C/A code receiver has an accuracy of 3-30m; post-differential correction may improve 

the accuracy of GPS points to within a few meters (Bolstad 2003). Still, even with post-
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differential correction, changes of even a few meters in horizontal or vertical position can 

potentially have a large influence on the final TSI.  

 For example, a typical field plot as described in this paper requires eight measures 

of elevation around the plot center in order to calculate the TSI. If, hypothetically, four of 

the eight measurements experienced even minor amounts of error (in this example, a 

difference of 3 m – well within the range of expected GPS error) – whether due to 

satellite obstruction, poor signal or any other number of causes – the final TSI can be 

considerably different (Table 2.1). It is reasonable, then, to consider the possibility that 

even a small amount of error within GPS derived elevations could mean the difference 

between classifying a study site as convex or concave.  

Table 2.1: This table outlines a hypothetical situation, showing the difference in final TSI values 
should only half of the field collected points have a negative 3m error associated with it. 
 

 Point 
1 

Point 
2 

Point 
3 

Point 
4 

Point 
5 

Point 
6 

Point 
7 

Point 
8 

Avg. Elev. 
Difference TSI 

GPS 
Elev. 1 0 -1 2 2 3 4 -2 1.125 .06 

True 
Elev. -2 0 -4 2 -1 3 1 -2 -.375 -.16 
 
 
 Ultimately, it is doubtful that the low level of explained variance can be solely 

attributed to LiDAR, GPS or field error. Instead, it is likely to be a combination of all 

factors. However, when considering the inherent error associated with both forms of 

measurement, the LiDAR based TSI calculations may serve as an adequate supplement or 

perhaps even replacement of field based TSI measurements. The computer based model 

allows the user to calculate TSI over a large landscape (instead of on a point-specific 

basis) and is simple to construct in addition to being time efficient.  
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CONCLUSION 

 In this study a computer based model was created using ArcMap 9.2 to calculate 

the Terrain Shape Index for a 33.7 Km2 (13 mi2) area. Results were compared to 245 

study sites where field based TSI measurements were taken. A 73% accuracy rate of 

identifying a site as either convex or concave was achieved. Most of the minor 

inconsistencies between the two datasets are likely due to the inherent error present in 

both LiDAR and GPS derived measurements, as well as field measurement error 

associated with dense vegetation or other obstructions. With this in mind, results indicate 

that the LiDAR based model produces an accurate representation of minor landform 

shape on a landscape. This methodology offers a simple and quick alternative to field 

based measurements as well as producing results for an entire area of concern instead of 

being limited to individual study sites.  
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CHAPTER III 

 
A GIS MODEL FOR DETERMINING LANDFORM TYPE AND SLOPE POSITION 

ABSTRACT 

 Landform identification (ridges, side slope, cove) is often a part of field based 

ecology studies. In this study, a GIS model was developed to progressively scan a digital 

elevation model (DEM) and determine the slope position. Once the ridges were 

identified, a stream layer was used as to represent the bottom of the slope. With both the 

ridges and the slopes identified, the data were reclassified into three equally divided 

groups – ridges, side slopes and coves. To confirm the results generated in the GIS 

model, 245 randomly generated study sites were classified according to their slope 

position on a digital elevation model by a group of 16 volunteers. Each volunteer worked 

independently when classifying the study sites, the results of which were compiled and 

compared to those generated in the GIS model. Only study sites which had more than 

nine (56%) volunteers classify the sites equally were used. Sites not fitting this criterion 

were not believed to have a distinct classification, and therefore would produce 

misleading results. Two-hundred fifteen sites met the criterion. When compared to the 

results generated by the GIS model, correct identification of slope position was 

consistently equivalent to the standards placed upon the volunteers. When there was 60% 

agreement among volunteers, the GIS model correctly identified 60% of slope positions. 

This trend is visible throughout the study, including when there is 100% agreement of 

site classification among volunteers. 
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INTRODUCTION 

The characteristic shape and form of a landmass – often referred to as the 

landform – has long been regarded as an important factor affecting the distribution of 

forest tree species. Some of the earliest studies to recognize the importance of landform 

on vegetation include Auten’s (1945) yellow-poplar study, where he describes the affect 

of landform on soil moisture and poplar distribution. As McNab (1993) explains, Auten 

(1945) went so far as to classify landform into coves, slopes and ridges, but little more.  

 Since then, the significant influence of landform on environmental attributes has 

become well known. Numerous studies show the effects of landform on variables such as 

soil moisture (Hanna et al. 1982; Helvey et al. 1972; Lookingbill and Urban 2004; 

McNab 1993; Yeakley et al. 1998) and vegetation distribution (Abella 2003; McNab 

1993; Miller and Franklin 2002).  

 Despite the number of studies that incorporate landform as a variable, there did 

not exist a standard method for determining landform shape until McNab (1993) 

introduced his Landform Index (LFI) methodology. The calculation of McNab’s index is 

straightforward and relatively simple to compute. Based on the observers’ physical 

position on the landscape, one may use a clinometer to measure the gradient from the plot 

center to the horizon in eight directions, averaging all of the gradients to determine the 

index. A concave landform (such as a valley) will have a positive index and a convex 

landform (such as a ridge) a negative index.  
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 Although the LFI index is an effective and accurate method of identifying 

topographic landform, it has the potential to be time and labor intensive should a large 

number of study plots need to be surveyed. The objective of this study was to develop a 

customizable Geographic Information System (GIS) procedure that identifies landform 

type (ridge, slope and cove) as well as the approximate slope position based on a 0-100 

scale (100 being the bottom of a slope, 0 being the ridge).  

 A GIS is a “computer based system to aid in the collection, maintenance, storage, 

analysis, output, and distribution of spatial data and information” (Bolstad 2003). A GIS 

is a means of using the spatial coordinates (such as latitude and longitude) of a feature to 

perform analysis on it and its related attributes. Analyses can range from a 

straightforward proximity analysis to a complex, model-driven procedure.  

 Over its relatively short lifespan, GIS analysis has been used in many ecological 

studies. Some of the more common applications of GIS in ecology include habitat 

restoration (Massey et al. 2008; Mollot and Bilby 2008), soil mapping (Lewis et al. 2005; 

Tischler et al. 2007) and hydrology (Frankenberger et al. 1999; Zheng and Baetz 1999) as 

well as several diverse landform mapping studies (Blaszczynski 1997; Gallant et al. 

2005; Jenson and Domingue 1988). This study differs from previous landform 

characterizations in that it attempts to identify landform type using a LiDAR (Light 

Detection and Ranging) surface model as well as an automated mathematical approach in 

conjunction with known hydrologic pathways.  

 LiDAR has become a popular and cost effective method of retrieving three 

dimensional surface data. Although a technologically advanced technique, the underlying 
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concept behind LiDAR is simple in nature. Instruments – usually mounted on the 

underside of an aircraft – emit laser pulses at a specified target. These pulses are reflected 

(often referred to as the return signal) off the target’s surface and collected by a receiver 

on the LiDAR instrument (Dubayah and Drake 2000; Lefsky et al. 2002). By determining 

the time elapsed between the initial laser pulse and the reception of the return signal, 

along with the distance traveled, one can accurately calculate elevation of a given LiDAR 

point (Dubayah and Drake 2000; Lefsky et al. 2002). Additionally, laser pulses will often 

travel through vegetation (including some dense vegetation), giving researchers elevation 

data of both the ground surface and forest canopy; when combined with the number of 

elevation points retrieved per second, this allows for exceptionally accurate surface 

models to be produced (Lefsky et al. 2002; Means et al. 1999). In this study a LiDAR 

derived digital elevation model is used as the foundation for landform identification. The 

objective of this study was to identify topographical ridges and calculate, on a 0-100 

scale (0 being the ridge) the approximate slope position.  

 

METHODOLOGY 

 LiDAR data for this study was collected and finalized between April and 

December 2003 by EarthData International of North Carolina for the Floodplain Mapping 

Program, part of the North Carolina Division of Emergency Management. The horizontal 

datum is NAD83 North Carolina State Plane Feet and the vertical datum NAVD88 US 

Survey Feet. The area of concern for this project is a 33.7 Km2 (13 mi2) section of North 

Carolina, including parts of both Clay and Macon counties (Figure 3.1). Topography for   
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Figure 3.1: Study sites were located in the Southwestern corner of Macon County, NC, adjacent to 
Clay County and were part of the Nantahala National Forest. 
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this region is considered mountainous, as the southern Appalachian Mountains are the 

dominant topographical feature. 

 ArcGIS 9.2 (ESRI 2006) was used to create the digital elevation model (DEM) as 

well as the corresponding landform identification model. The cell size for the DEM was 5 

ft (1.5 m) to best match the resolution of the LiDAR data. Elevation data was interpolated 

using Kriging, a common and often recommended method for creating accurate and high 

resolution DEMs (Lloyd and Atkinson 2006).  

 In order to best identify ridgelines on a DEM, focal statistics were used to 

progressively scan the elevation model both horizontally and vertically. Focal statistics, 

one of the analysis tools available in ArcGIS, is an overlapping form of analysis that 

allows the user to calculate simple statistics – such the mean, standard deviation, 

minimum and maximum – for a specified neighborhood in a raster data layer. The shape 

and size of the neighborhood is customizable by the user. For the purposes of this study, a 

custom kernel, or neighborhood, was created.  

 The kernel developed for this study was linear in nature. For both the horizontal 

and vertical scans, the kernel was 500 cells long (with respect to orientation) and one cell 

wide. Two kernels were developed each for the horizontal and vertical scans for a total of 

four kernel files. Each of the kernels collected the maximum elevation value for different 

sections of the neighborhood. For example, Horizontal Kernel 1 (HK1) collected the 

maximum elevation value for the left third of its 500 cell neighborhood. HK2 collected 

elevation values for the right third. The vertical kernels performed similar operations.  
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 A kernel length of 500 cells was chosen because it is the best compromise 

between correct ridge identification and processing speed. A shorter kernel size could be 

used if topographic features were closer together. For example, should one be interested 

in not only the main ridges but all convex areas along a slope, a shorter kernel would be 

appropriate. Conversely, a longer kernel would add to processing time but would identify 

only the most major of ridges.  

 With data layers describing the topographic trends, it was then possible to 

combine the information and determine where ridgelines existed. Ideally, ridgelines exist 

where a cell’s elevation is greater than the surrounding cells in at least three directions to 

help ensure saddles (a ridgeline that connects two higher ridges) are identified. 

Essentially, the maximum elevation value in the elevation model must be greater than the 

maximum elevation value found in at least three out of four combinations of the other 

kernels (HK1, HK2, VK1 and VK2). 

A slope and elevation parameter were added into the model to allow a user to 

more strictly define where ridgelines should be identified. For example, should a user 

wish to only identify ridges with a slope less than 20%, the slope parameter can constrain 

the results to slopes less than 20%. Similarly, the elevation parameter allows a user to 

adjust the sensitivity of ridge identification. The larger the elevation parameter is, the 

more likely the model is to identify a cell as a ridge.  

With the ridges identified, it was possible to gauge the slope position, on a zero to 

one-hundred scale (zero being the ridge) using a stream layer as the reference for the 
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bottom of the slope. The stream layer was acquired from the National Hydrography 

Dataset (USGS 2008a).  

By calculating the Euclidean distance (straight line distance) from the identified 

ridges and the streams, and performing simple arithmetic, one can approximate the slope 

position by dividing the distance from the nearest ridge by the sum of the stream distance 

and ridge distance: 

RidgeDistStreamDist
RidgeDist

+
 . 

This allows the model to create a 0-100 scale of the slope position, with 0 being the ridge 

and 100 the bottom of the slope. Reclassifying the slope position into three broad 

categories makes it possible to label high (ridge), medium (side slope) and low slope 

positions. A ModelBuilder® model was created to streamline the workflow for this 

project (Appendix A).  

 To best confirm the results of this study, the slope position from 245 randomly 

generated study sites were used for comparison. More information on the study sites may 

be found in Waldrop et al. (2007), as the sites were used in an extensive forest fuels study 

in the southern Appalachian Mountains. 

 Classification of study sites as existing on a ridge, medium or low slope was 

performed independently by 16 volunteers (all familiar with using a GIS), each 

classifying all 245 study plots. General instructions on how to classify the points were 

provided to all volunteers, including a sample classification for all three classes. 

Volunteers used a 1/3 Arc Second elevation model from the USGS National Elevation 
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Dataset (USGS 2008b) for their classifications. It should be noted that the elevation 

model used for the volunteer classification was independent of the one created for this 

study to eliminate any misclassification due to elevation model error. The sites with the 

highest levels of agreement among volunteer classifications were used to confirm the 

results of this study. Volunteer classifications where more than half (9 out of 16 

volunteers) agreed on the slope position were used. Multiple volunteers were used to 

classify the data such that a consistent, independently generated classification could be 

achieved with minimal user bias. This approach, when compared to field based 

observations, offers a more objective perspective than would be possible with field based 

observations. Field based observations, particularly for the large number of study plots 

used here, would be difficult to coordinate using the same number of volunteers. 

Furthermore, field based observations of this type can often be obscured by vegetation, 

further limiting the accuracy of such measurements. 

 

RESULTS 

 Output from the GIS model designed for this study consisted of three raster (grid) 

layers. The first and arguably most important output from the model is the ridge 

identification raster. This raster displays where ridges (in red) occur on the landscape as 

defined by the GIS model (Figure 3.2). Visually, the majority of ridges and ridge saddles 

are identified.  
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 The second useful output from the GIS model is the slope position, on a 0-100 

scale with 0 being the top of the ridge. Using hydrography data as a base of calculation, 

the percentage distance between known streams and ridges were calculated. Slope 

 

Figure 3.2: Three-dimensional representation of the elevation model with the identified ridges in red. 
 

position can then be reclassified into three categories: High, Medium and Low slope 

position with respect to ridges, side slopes and drainages (Figure 3.3).  

 The final slope position raster was used as a comparison against the classifications 

made by the group of volunteers. Study sites with less than half of the volunteers in 

agreement were not included; any results derived from including them would have been 

misleading knowing that a consistent classification was not available. Much of the 

disagreement found in the sites not used occurred in areas where a site could be classified 

as either low or medium, or medium and high depending on the volunteer’s interpretation 

of the elevation model.  
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 Of the 245 study sites, 215 had nine or more (i.e. 56%) volunteer classifications in 

agreement. A complete breakdown of how the user classified points compared to the GIS 

generated classifications is available in Table 3.1.  

 

Figure 3.3: Three-dimensional representation of the elevation model with the slope position (high, 
medium, low) as an overlay. 
  

Table 3.1: Overall agreement between volunteer derived classifications and the GIS derived 
classification. As user agreement rises, so does agreement with the GIS model. 
 

Level of 
Agreement 

Volunteer 
Agreement # Plots Model Derived 

Plots in Agreement 
Percent 

Agreement 
> 50% 9 of 16 215 137 63.72% 
80% 13 of 16 84 69 82.14% 
90% 14 of 16 55 50 90.91% 
95% 15 of 16 26 25 96.15% 
100% 16 of 16 5 5 100.00% 
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DISCUSSION 

 Typically, when the slope position is determined in the field, it is done through 

visual estimation, which may or may not be obscured by either vegetation or a 

topographical feature. In this study, computer based evaluations of slope positions were 

used to determine the accuracy of the GIS model created. Results of this study indicate 

that the GIS model described herein may be an effective means of determining slope 

position to approximately the same level of accuracy achieved when computer based 

visual classification is employed. As more stringent requirements are placed on visually 

classified study sites, a higher degree of correct identification can be seen in the GIS 

model.  

 A number of factors play a role in the effectiveness of both visual identification 

and computerized classification. Perhaps the most significant challenge to address when 

identifying topographic landforms is the schema by which the landforms are defined. 

During the course of having the volunteers classify all 245 study sites, they were given 

only minor instructions on how to classify the study sites. The purpose was to let their 

interpretations of what a high, medium and low slope should be dictate how they 

classified the study sites. Too much instruction would have skewed their results to match 

that of the GIS model and therefore potentially invalidating some or all of this study. 

Thus, the user classifications compared to the results from the GIS model are completely 

independent of one another; the volunteers had not seen the results of this study before 

performing the classification and were unaware of how a high, medium and low slope 

was defined within the context of the GIS model.  
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 The use of the GIS model described in this paper offers several advantages over 

conventional slope position identification. First, and likely the most appealing aspect of 

this study, is the ability to identify landforms across an entire region instead of just at 

individual study sites, as would normally be the case. To confirm the results of this study, 

245 study sites were used; in reality, however, any number of confirmation points – 500, 

1,000, 10,000 or more – could have been generated and compared against the results 

because landform was identified throughout the region. Regardless of the number of 

confirmation sites, it takes the same amount of time to identify the landform type using 

the GIS model, whereas field identification of the points would take an exponentially 

longer amount of time as the number of plots increases. This opens the potential to not 

only consider the landform type of a particular study site within an analysis, but also the 

landform surrounding the study site.  

 A second point of consideration is the accuracy of field based position estimates. 

Often times field measurements are visually estimated, and unless the observer can 

reasonably see both the top and bottom of the slope, it can be difficult to accurately 

estimate one’s position, particular if the observer is surrounded by dense vegetation. The 

GIS model described in this paper negates the effect of dense vegetation on position 

estimates. 

 A third advantage of this GIS model when compared to conventional methods is 

the ability to customize it to one’s analysis. Because the model is heavily dependent on 

the accuracy of hydrographic data, it allows a significant amount of flexibility when 

determining the final results. For example – stream networks are relatively simple to 
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delineate and divide into classes (ephemeral, intermittent etc…). Different classes of 

hydrographic data could potentially be used to alter the level of detail and specificity 

found in the final slope position classification.  

 There are, however, two items to consider that may produce unwanted effects 

within the GIS model. First is the reliability of the elevation model that is being used as 

the basis for ridge identification. In this study, a LiDAR DEM was created and used as 

the foundation for all the analysis. Great effort was put forth to ensure that the original 

LiDAR data consisted of entirely bare earth points with no remnants of vegetation. 

However, it is highly unlikely that all traces of vegetation were removed from the initial 

bare earth data set, meaning that some vegetation artifacts may have been incorporated in 

the DEM used in this project. While this alone likely had a little to no effect on the final 

results, it is possible that in a similarly designed project using a poorly classified DEM, 

vegetation artifacts could have a negative influence on the validity of the analysis.   

 A second item to consider is the precision of computer based modeling. While it 

can be challenging to visually see (both on a computer screen and in the field) every 

undulation of topography, it is not necessarily a difficult task for a computer. It was 

found during the course of this study that the GIS model described here has the ability to 

identify not only topographic ridges, but also all convex regions naturally found in the 

landscape. It was necessary to design the model to limit the output to only main ridges, 

and this was accomplished by using the large kernel neighborhoods described earlier. 

Smaller kernels identify the same ridges as the large kernels, but also identify many of 

the small regions not of concern to this study. It is important to consider the type of 
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topography being analyzed with the model. The main difference in criteria when deciding 

to use a large versus small kernel is the distance found between the ridges themselves. If 

it is expected to be a large gap between ridgelines, a large kernel will help to identify 

only the major ridges and eliminate the smaller, negligible areas that may otherwise be 

identified as a ridge. However, in areas where ridgelines are close together, a smaller 

kernel size would be needed to identify ridges that are close to one another, such as one 

only 100 to 200 cells in length. In truth, it is unlikely that any one kernel length will 

accurately identify all ridges in a given region. A comprise may need to be made to 

optimize ridge identification and computer processing time.  

 It is also possible that a similar model could be developed using a non-LiDAR 

based elevation dataset so long as the resolution would support such an intensive 

analysis. Although it was not considered during the course of this study, it seems only 

logical that as DEM resolution decreases, the accuracy of the slope position predictions 

would follow suit.  

 

CONCLUSION 

 The objective of this study was to develop a GIS based model to identify 

topographic ridges, and using that information, calculate the approximate slope position 

on a 0-100 scale (0 being the ridge) and then break the slope position into three broad 

categories – high, medium and low slope.  

 To best accomplish this, a progressive scanning technique in ArcMap 9.2 was 

developed using Focal Statistics and kernels creating a neighborhood specific to this 
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study. Ridges were identified using a combination of methods, but most heavily relied on 

the elevation of the surrounding topography.  

 Sixteen volunteers independently classified 245 study sites as residing on either a 

high, medium or low slope. Once their classifications were compiled, those study sites 

that had a high level of agreement among classifications (at least 9 out of 16 volunteers 

had to agree on a site’s classification) were used to confirm the results of the study. The 

results from the GIS model followed an almost identical trend to that of the volunteer 

classifications: the higher user agreement led to higher agreement with the GIS derived 

values.  

 In total, the authors of this study feel as though the GIS model described here 

identifies slope position and landform type as well as, if not slightly better, than what can 

be accomplished through visual identification. The GIS model has several advantages 

over conventional landform identification in that it requires no field work, can 

approximate landform type over entire regions (as opposed to single points) and is highly 

customizable. Furthermore, it eliminates the risk of error associated determining slope 

position in the field in an area with dense vegetation. Conversely, there are certain 

considerations to be made about the GIS model. Primarily, the accuracy of the elevation 

model as well as the model sensitivity to ridge identification has potential to influence the 

final results given with this GIS model. 
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CHAPTER IV 
 

A PREDICTIVE GIS MODEL FOR DETERMINING THE PROBABILITY  
OF MOUNTAIN LAUREL OCCURRENCE IN THE  

SOUTHERN APPALACHIAN MOUNTAINS 
 

ABSTRACT 
 
 The presence of mountain laurel (Kalmia latifolia) is often associated with 

diminished seedling establishment in hardwood forests and its function as a vertical fuel 

in forest fires. In this study, a GIS model was developed to predict the presence or 

absence of mountain laurel over a 33.7 Km2 study area using 245 study sites with field 

observations for the basis of the analysis and confirmation of the results. Within the GIS, 

numerous raster layers were created to supplement the field collected data. Of these 

layers, four were found to be statistically significant in predicting the presence of 

mountain laurel using stepwise discriminant analysis. These included the canopy 

structure, aspect, canopy height and elevation, all of which were created using LiDAR 

derived models. Cross validation showed that the statistical model correctly predicted 

81% of mountain laurel occurrence among the 245 study sites. A linear discriminant 

function was applied in the GIS to create both a binary presence/absence map and a 

posterior probability map. Results of the binomial and probability maps agree with those 

found in the statistical analysis. Accurate prediction of mountain laurel presence may 

significantly influence hardwood regeneration management as well as forest fire 

mitigation. 
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INTRODUCTION 
 
 Mountain laurel (Kalmia latifolia) extends in range from New England to the Gulf 

coast (Kurmes 1967). Other reports indicate that mountain laurel extends as far north as 

Ontario and New Brunswick (Kurmes 1967; Munns 1938; Preston 1961). One region in 

which mountain laurel has received considerable attention is the southern Appalachian 

Mountains. Numerous studies have attempted to quantify the importance of mountain 

laurel in both vegetation dynamics and its response to fire.  

 One of the earlier studies to consider the affects of mountain laurel is Day and 

Monk (1974). In their study, focusing on the Coweeta Basin in Franklin, NC, it was 

found that 58.5% of all stems ≥ 2.5cm dbh were either mountain laurel or rhododendron 

(Rhododendron maximum), and both were considered to be the most important 

understory species. They also noted that certain patterns emerged for both understory 

species, such as rhododendron primarily occurring low on NE-facing slopes and 

mountain laurel appearing largely on or near ridges (Day and Monk 1974).  

 Other studies agree that the presence of mountain laurel significantly affects the 

community structure found in hardwood forests (Mcgee and Smith 1967; Monk et al. 

1985). Several studies, however, report that mountain laurel presence does not affect 

survivorship or establishment of hardwood species. Waterman et al. (1995) concluded 

that the removal of mountain laurel from study plots was not a significant factor in pitch 

pine communities. Their results confirmed those found by Kittredge and Ashton (1990), 

where it was determined that the density of mountain laurel had no affect on hardwood 

regeneration.  
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 Waterman et al. (1995) did note, however, that although the density of mountain 

laurel did not have a measurable affect on hardwood regeneration, mountain laurel litter 

may. It has been noted numerous times in the literature that other laurel species, perhaps 

through allelopathy, limit the germination and growth of competing vegetation (Damman 

1971; Mallik 1987; Zhu and Mallik 1994). Were mountain laurel litter to play an 

important role in hardwood regeneration, it would only add to the importance of fire and 

prescribed burning in the ecosystem. 

The use of low intensity prescribed fires has been experiencing a surge in 

popularity as an understanding of the relationship between fire and oak regeneration 

improves (Brose et al. 2001). The objective behind using low intensity prescribed fires is 

to remove thin barked mid-story shrubs as well as consume the litter layer and is believed 

to encourage grasses, herbaceous vegetation and oak regeneration (Brose et al. 2001).  

Several studies have investigated the affect of prescribed burning on the density 

of mountain laurel thickets and the subsequent diversity of regeneration. Ducey et al. 

(1996) determined that after low intensity fires in a mountain laurel dominated landscape, 

most species responded with an increase in density and frequency. They did note, 

however, that the diversity of species on moderately burned sites was lower than 

expected, perhaps due to the rapid regeneration of mountain laurel compared to other 

species. Similar results were recorded by Elliott et al. (1999). 

In a study comparing fire intensity levels necessary for table mountain pine (Pinus 

pungens) stand replacement, the density of mountain laurel was a significant factor in 

determining different fire intensity levels (Waldrop and Brose 1999). Furthermore, in 
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areas with mountain laurel present, fire intensity is related to the mountain laurel density 

because the shrub serves as a vertical fuel. Waldrop and Brose (1999) found that low 

intensity fires had 30% or less mountain laurel cover, while medium and high intensity 

fires had 41 and 86% cover, respectively.  

  One of the central themes that associate both hardwood regeneration and forest 

fire intensity is the presence of mountain laurel. In this study, a statistical model was 

created that accurately predicts the presence or absence of mountain laurel based on a 

number of environmental factors. To accomplish this task, high resolution remote sensing 

data – Light Detection and Ranging – were used to develop an elevation model, canopy 

model, and vertical structure model within a Geographic Information System (GIS). This 

data was then exported for use in the statistical model. 

 A GIS is a “computer based system to aid in the collection, maintenance, storage, 

analysis, output, and distribution of spatial data and information” (Bolstad 2003). A GIS 

is a method of combining ordinary data with their spatial location (i.e. latitudinal and 

longitudinal coordinates). GIS analyses can range from simple explanatory maps to an 

intricate, model-driven product. In this study, ArcGIS 9.2 (ESRI 2006) is used 

exclusively for all GIS analysis.  

  Light Detection and Ranging (LiDAR) is an advanced form of remote sensing. 

Originally, desired output derived from LiDAR data was simply high resolution elevation 

models. With advances in technology, not only are highly accurate elevation models a 

possibility, but also canopy models (Lefsky et al. 1999; Lovell et al. 2003; Lovell et al. 
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2005), biomass estimates (Lefsky et al. 1999; Nelson et al. 2004) and even fuel modeling 

(Andersen et al. 2005). 

 LiDAR data are collected by a laser mounted to the underside of a plane. 

Thousands of light pulses are emitted from the laser and as the pulses are reflected from 

the earth’s surface, the return pulses are received by the LiDAR transmitter. Knowing the 

altitude and location of the plane and the time it took for the light pulse to travel from the 

plane and return to it, it is possible to calculate the elevation of the reflective surface with 

high accuracy (Dubayah and Drake 2000; Lefsky et al. 2002). One of the characteristics 

of LiDAR that makes it so attractive to ecological studies is the fact that the laser pulses 

emitted by the plane are reflected off all surfaces which they strike – vegetation, bare 

earth, all man-made structures and others. Because of this diversity of data, it is possible 

to create detailed canopy models for a region of concern (Lefsky et al. 1999; Lovell et al. 

2003; Lovell et al. 2005).  

 The objective of this study was to develop a GIS model to accurately predict the 

occurrence of mountain laurel in the southern Appalachian Mountains.  

 

METHODOLOGY 

 The project area is a 33.7 Km2 (13 mi2) section of North Carolina, including 

portions of Clay and Macon counties (Figure 4.1). As a whole, the topography for this 

section of North Carolina is considered mountainous. The Appalachian Mountains are the 

dominant topographical feature for this region.  
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Figure 4.1: Study sites were located in the Southwestern corner of Macon County, NC, adjacent to 
Clay County and part of the Nantahala National Forest. 



 50 

 Two-hundred forty five study plots were randomly located throughout the study 

region, and at each plot a multitude of topographical data was gathered including Terrain 

Shape Index (McNab 1989), Landform Index (McNab 1993) and a complete vegetation 

survey, paying particular attention to ericaceous shrubs such as mountain laurel and 

rhododendron. Used as part of a forest fuels study, complete information on the design 

and designation of study plots may be found in Waldrop et al. (2007). 

 LiDAR data for this study was acquired between April and December 2003 by 

EarthData International of North Carolina for the Floodplain Mapping Program, part of 

the North Carolina Division of Emergency Management. The horizontal datum is NAD83 

North Carolina State Plane Feet and the vertical datum NAVD88 US Survey Feet. 

 All GIS analysis was completed in ArcGIS 9.2 (ESRI 2006). Kriging, a form of 

geostatistical interpolation, was used to generate the surface model and canopy model 

incorporated in this project. Kriging is the recommended method for interpolating LiDAR 

data (Lloyd and Atkinson 2006). All parameters necessary to perform Kriging were 

automatically calculated in ArcGIS.  

 LiDAR data points were initially classified by EarthData International prior to 

delivery to the North Carolina Floodplain Mapping Program. Bare earth points, as 

classified by EarthData International, were the source of points for the elevation model. 

Canopy points used for interpolation were all of the remaining points not classified as 

bare earth. Because the study area is located in a very mountainous region, no man-made 

structures appeared in the LiDAR.  
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 An initial canopy model was created from Kriging using the vegetation height 

values found in the LiDAR data. These values would be the height of the tree (or other 

vegetation) plus that of the elevation itself. Once the first canopy model was created, it 

was subtracted from the surface model to reveal the actual canopy heights without the 

influence of the underlying topography.  

 In order to create a map layer representing the structure of the forest, the 

vegetation points were separated into five classes (Table 4.1). The classes were 

designated in order to best capture the height ranges in which vegetation existed.  

Table 4.1: Classification of the LiDAR vegetation data into functional classes. 
 

Class Height Range Vegetation Class 
1 0-10ft (0-3m) Understory 
2 10-30ft (3-9m) Low-Midstory 
3 30-50ft (9m-15m) Midstory 
4 50-80ft (15-25m) Mid-Upper Canopy 
5 Greater than 80ft (25m) Upper Canopy 

 
 
 With the vegetation points separated into their respective classes, each was 

converted to a raster, reclassified into a single value, and “layered” on top of one another. 

Rasters for this portion of the project were 25 ft (8 m) in resolution. This resolution was 

chosen to ensure that some overlap between cells occurred, but not in all cases. Using a 

smaller cell size would have resulted in almost no overlap, and therefore no structural 

information. Too large of a cell size would have resulted in the majority of cells 

overlapping and thus creating what would appear to be uniform vertical structure 

throughout the study area. The resolution chosen was thought to be a good comprise 

between the two extremes. 
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Summing the vegetation classes present at each of the study plots allowed for the 

creation of 15 different structural classes among the study plots. For example, in Figure 

4.2, Line a, vegetation data exists in height classes 1 and 3 as they are described in Table 

4.1. This would be given a structural class of 4. A full description of the structural classes 

may be found in Appendix B. Other data generated to help predict the presence of 

mountain laurel included flow direction, flow accumulation, aspect and slope. Because 

aspect is directional, it was broken into two categorical groups dividing the aspect into 

Northeast\west (315° – 135°) and Southeast\west (135°- 315°) segments. Terrain Shape 

Index, slope position, maximum canopy heights, distance from the nearest stream and 

elevation were also included in the statistical model.  

 

Figure 4.2: Profile view of LiDAR data. Black dots represent individual LiDAR points broken into 5 
vegetation height classes.  Blue vertical lines intersect some of the points. This intersection made it 
possible to break the height classes into structural classes based on where LiDAR points were present 
in the vertical column. For example, line a has vegetation points in classes 1 and 3, line b has 
vegetation present in class 1, 2,  4 and 5 and line c has vegetation present in class 1, 3 and 5. In total, 
there were 15 different combinations of vertical structure present at the study site. 
 
 SAS 9.13 (SAS Institute 2008) was used for initial statistical analysis. Stepwise 

discriminant analysis (PROC STEPDISC) was used to model the percent mountain laurel 

coverage to the environmental variables. With significant variables identified, 

discriminant analysis (PROC DISCRIM) was performed with cross validation to assess 
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the accuracy of the model. Maple 11 (Maplesoft 2008) was then used to determine the 

linear discriminant function, and, using this function, a probability and binary 

presence\absence map was calculated in ArcGIS.  

 

RESULTS 

 Of the 245 study sites included in this study, 62 (25%) had mountain laurel 

presence. Four environmental variables were identified as significant parameters in the 

identification of mountain laurel presence using stepwise discriminant analysis. These 

variables include vertical structure, aspect, canopy height and elevation. The remaining 

variables were not significant to the model. Average values at each study plot for the four 

variables included in the statistical model may be found in Table 4.2. 

Table 4.2: Average values for the four variables included in the statistical model on sites with and 
without mountain laurel present. 
 

Variable Average Value (ML Present) Average Value (ML Not Present) 
Structure 9 11 
Aspect .71 0.40 

Canopy Height 31.1 53.8 
Elevation 3817 3992 

 
 

Cross validation performed during discriminant analysis achieved an overall 

accuracy of 77%. Individually, 138 (75%) of 183 sites with no mountain laurel present 

were correctly classified, and 45 (25%) of 183 were incorrectly classified as having 

mountain laurel present when there was not. Conversely, 50 (81%) of 62 sites with 

mountain laurel present were correctly classified using this model, and 12 (19%) were 
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incorrectly classified as not having mountain laurel present when in fact it was. These 

values are summarized in Table 4.3.  

Table 4.3: Cross validation table generated in SAS 9.13 
 
 

 

 

 

With the discriminant model in place, a linear discriminant function was 

developed using Maple 11 (Maplesoft 2008), resulting in both a probability map and 

binary presence\absence map. The linear discriminant function is:  
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And where =x the environmental variable (such as aspect), =µ  the average value for the 

environmental variable and 1−∑  the inverse covariance matrix (Johnson 1998). 

 Results from the discriminant function applied in the GIS model are very similar 

to those obtained with cross validation in SAS. Of the 62 sites with mountain laurel 

present, 51 (82%) were correctly classified in the binary presence\absence map (Figure 

4.3) and 51 (82%) were correctly classified according to the probability function (where 

greater than 50% indicates presence), seen in Figure 4.4. Conversely, 46 (25%) sites, 

which did not have mountain laurel present, were incorrectly classified in the binary 

Field Observations Analysis Results 
 ML Not Present ML Present Total 
ML Not Present 138 (75%) 45 (25%) 183 
ML Present 12 (19%) 50 (81%) 62 
Total 150 95 245 
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presence\absence model. Lastly, 46 sites (25%) were incorrectly classified as having 

mountain laurel present using the probability model when in reality mountain laurel is not 

present at the site. The overall accuracy of the GIS based model was 77%.  

 Of the eleven study sites where mountain laurel was present but not accurately 

predicted (according to the presence\absence probability maps), all but two were located 

less than 10 ft (3 m) from at least one cell identified as possibly having mountain laurel. 

The average distance between the misclassified study sites and cells identified as 

mountain laurel was 9 ft (3 m), with a maximum distance of 50 ft (15 m). 

 
 

DISCUSSION 
 

Of the four variables identified as significant in the statistical model, the most 

unique is canopy structure. Numerically, the lower the structure classification, the simpler 

the forest structure is at that cell. For example, a structure class of one implies that 

vegetation is only present from 0-10 ft (0-3 m) above the earth’s surface. As the structure 

classification increases, so does the complexity of the forest structure. The highest 

structure class implies that there is vegetation present throughout each of the five 

vegetation classes described in Table 4.1 (Figure 4.5). 

Of the fifteen structure classes present, the average structure class in which 

mountain laurel was present was class nine, and the average class in which mountain 

laurel was not present was class eleven. Class nine was typically comprised of vegetation 

relatively evenly dispersed among the height classes, but on average only two to three 

height classes were represented at sites with mountain laurel present. Class  
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Figure 4.3: Map of mountain laurel presence\absence as predicted using discriminant analysis. 
 
eleven was comprised of vegetation that also appears to be evenly dispersed throughout 

the five height classes, however sites without mountain laurel present on average had 

vegetation in three to four of the height classes. A complete description of structural 

classes may be found in Appendix A.  
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Figure 4.4: Map detailing the Probability of Mountain Laurel Presence 
 

Numerous theories may be posed as to why mountain laurel preferred structural 

class nine. An important observation to make is that the average canopy height on sites 

where mountain laurel was present was 31ft. This seems to support, at least to some 

degree, the tendency for mountain laurel to be present on sites with only two to three 
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Figure 4.5: Map of vertical structure complexity (bottom right). Darker colors represent areas with higher amounts of vertical structure. 
Visual similarities between the vertical structure and aerial imagery (top left) are evident. 
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height classes present. Alternatively, the average canopy height on plots without 

mountain laurel present was 53 ft, also supporting the tendency for sites without 

mountain laurel to have more height classes present. It should be noted, however, that as 

canopy density increases, LiDAR penetration decreases (Barber and Shortridge 2005; 

Cowen et al. 2000; Jensen et al. 1987). Cowen et al. (2000) estimated when the canopy is 

80-90 percent closed, only 10-40 percent of the light pulses reach the ground and are 

reflected back to the LiDAR sensor. Some caution should be exhibited when interpreting 

the potential relationship between vertical structure and mountain laurel presence, as the 

structure classes presented here are wholly dependent upon the presence of LiDAR data 

in each of the classes.  

 Other results show differences in the average values among plots with and 

without mountain laurel. Considering the aspect was converted to a binary variable 

(Northeast\west aspects equaling zero and Southeast\west aspects, where mountain laurel 

is expected to be found, equaling one), on average, plots with mountain laurel occurred 

on southeast\westerly aspects 71% of the time whereas plots without mountain laurel 

occurred on southeast\westerly aspects only 40% of the time. This is in agreement with 

numerous other studies that cite mountain laurel’s preference for southerly aspects (Day 

and Monk 1974; Waldrop et al. 2007). Additionally, mountain laurel preferred sites, on 

average, 175 ft (53 m) lower in elevation than sites without mountain laurel.  

Other interesting results from this study are how well the statistical model, based 

on the field plots, translated into a prediction raster in ArcGIS. Results from the cross 

validation performed in SAS were nearly identical to the results attained when the 
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discriminant function was applied to the entire landscape. While it is logical to expect the 

study sites to have similar results in the GIS model as they did in SAS, the visual patterns 

displayed in Figures 4.3 and 4.4 were unexpected.  

The resemblance between the structural classes and the predicted presence of 

mountain laurel, however, cannot go unnoticed (Figure 4.6). It is possible that the true 

relationship between the vertical structure classes and mountain laurel presence may not 

be fully realized in this study. Based on these results, it would be prudent to further 

investigate the potential relationship between the two variables, and perhaps even 

improve upon the predictions described here.  

It is also necessary to consider the scale of this study. When comparing the GIS 

model results to that of field observations, it is crucial that more than just the single 

spatial location of a study site be considered. In this study, 12 plots were known to have 

mountain laurel present but were not identified as such in the statistical model. However, 

it should be taken into consideration that 10 of the 12 incorrectly identified sites were all 

within 10 ft (3 m) of an area likely to have mountain laurel present. One might consider 

then, that although not all of the study sites matched the statistical results perfectly, that, 

when applied in a real world setting, it may be possible to attain results better than 

described here, should the strictest of interpretations not be taken. It should also be noted 

that the study sites were located in the field using a GPS (Global
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Figure 4.6: A comparison between vertical structure and mountain laurel probability.
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Positioning System) device which typically has an error rate of 3-30 m; post-differential 

correction may improve this to within a few meters (Bolstad 2003), however the average 

distance between misclassified points and regions with a high probability of mountain 

laurel presence is still within the acceptable range of GPS error. 

The ability to predict mountain laurel presence is one that would be of great 

service to not only forest managers with the goal of stand regeneration, but also to fire 

ecologists attempting to better understand wildfire dynamics. One potential extension of 

research similar to this would be to predict the actual percent cover of mountain laurel 

over a given landscape. Knowing that mountain laurel often serves as vertical fuel in 

forest fires, it may be possible to predict, at least to some degree, where a low intensity 

fire may transition to a medium or high intensity fire based upon predicted density. 

Waldrop and Brose (1999) state that low intensity fires had 30% or less percent cover of 

mountain laurel, while medium and higher intensity fires had 40 to 80% mountain laurel 

coverage, respectively. Not only would statistical models that predict the percent cover of 

mountain laurel be useful during a forest fire, but also during early stages of prevention 

or mitigation. 

 

CONCLUSION 

 In this study, a LiDAR based GIS model was used to statistically predict the 

presence or absence of mountain laurel in the southern Appalachian Mountains. Data 

from 245 study plots were collected, and data ranged from basic topographical measures 

(such as TSI and LFI) to intensive vegetation surveys.  
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Once all of the data was compiled, multiple GIS based map layers were created 

using high resolution LiDAR data. Data included an elevation model, canopy model and 

a model of vertical forest structure. A sample of all plot and GIS data was used as the 

input for discriminant analysis, and four environmental variables were identified as 

statistically significant to the presence of mountain laurel: elevation, canopy height, 

aspect and vertical structure. A linear discriminant function was produced, and GIS based 

presence\absence and probability models were generated.  

 It was found that there was over 80% agreement on sites known to have mountain 

laurel present and those that were predicted both in SAS and in the GIS model. One of 

the more interesting results of this study is the potential association between mountain 

laurel presence and vertical forest structure given the stark visual similarities between the 

two.  

 The potential uses for accurate predictions of mountain laurel presence are broad. 

The two most obvious applications of such results deal with hardwood regeneration and 

wildfire mitigation and prevention. In both cases, the removal or management of 

mountain laurel in high risk areas may aid hardwood regeneration and perhaps lower the 

risk of mountain laurel being used as vertical fuel, transitioning low intensity fires to 

more severe, high intensity fires.  
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CHAPTER V 
 

CONCLUSION 
 

 The underlying theme behind the studies presented here was the continued and 

increasing ability to more accurately describe and model the topographic landscape of the 

southern Appalachian Mountains. In the preceding pages, it was shown how GIS 

modeling may be used to calculate the Terrain Shape Index (TSI), slope position, and 

probability of mountain laurel presence across a landscape.  

 In each of the studies, an attempt was made to develop not only accurate GIS 

models, but also ones that are easily reproduced and transferable among users and 

locations. In Chapter II, a GIS based model was developed to calculate TSI. TSI, first 

introduced by McNab (1989), quantified the degree of convexity or concavity for a given 

study plot. Numerous studies cite using TSI as an indicator of site quality and as a 

measure for projected vegetative growth (Abella and Covington 2006; Humphries et al. 

2008; Thompson et al. 2006). Limitations do exist, however. Field based TSI 

observations are limited to a fixed number of sites simply because the amount of time it 

takes to collect field data is directly related to how many sites are included in the study. 

Additionally, only information regarding the study site is available; a classification of the 

surrounding landform is not included unless other study sites are located nearby.  

 Given these limitations, it is clear where the GIS model presented in Chapter II 

may have certain advantages over conventional measurement practices. In that study, a 

straightforward GIS model is described that calculated TSI not only for individual study 

sites, but also for the entire landscape. Using LiDAR (Light Detection and Ranging) data, 
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high resolution elevation models may be generated and TSI values calculated. Following 

the procedure laid forth, nearly 3 out of every 4 study plots were correctly classified as 

either convex or concave when compared to field based observations. It is possible that 

any remaining disagreement between the field based observations and GIS based 

calculations may be a result of measurement error in both the field based TSI values and 

those derived from within the GIS model.  

 Nonetheless, the ability to calculate TSI values in a GIS offers many advantages. 

Primarily, it provides a simple and efficient method of generating values across an entire 

landscape. Furthermore, the model described here is simple and uses functions available 

to anyone with basic GIS knowledge and access to the ArcGIS Spatial Analyst extension.  

 The second study described in this paper details the methodology behind using a 

GIS model to determine the slope position (ridge, side slope and cove) at a given 

location. Most conventional methods used when determining slope position in the field 

involve either simple visual estimation, or use of McNab’s (1993) Landform Index 

methodology. In this study, a progressive scanning technique was employed that, simply 

put, looked for local maximums in elevation in order to identify ridges. Combined with 

the location of known streams and rivers, it became possible to measure the distance 

between the ridges and the bottom of the slope, thus calculating the percent slope position 

across the landscape.  

 The results of this study were nearly equivalent to those obtained when slope 

position is classified manually using a digital elevation model. The potential uses of this 

GIS model are multifold; not only appear to accurately classify slope position across the 
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landscape, but it also provides an estimated slope position on a scale of 0-100, with 0 

being the ridge top. Conventional field based methods visually estimate the scalar slope 

position, which at times may be obstructed by vegetation or other topographic features 

making the true slope position difficult to gauge. The GIS model presented here removes 

the affect of vegetation and other sources of error.  

 The third and final study presented here moves away from typical topographical 

modeling and focuses on the development of a GIS model to predict the presence or 

absence of mountain laurel, an ericaceous shrub known to serve as a vertical fuel in forest 

fires (Waldrop et al. 2007) and also potentially limit hardwood regeneration in areas 

where mountain laurel growth is dense (Damman 1971).  

 The objective of this study was to accurately predict the presence or absence of 

mountain laurel in the southern Appalachian Mountains. To do this, a number of raster 

based GIS layers were created, including flow direction, accumulation, slope, aspect, a 

canopy height profile and a layer describing the vertical structure of the region. This 

study made significant use of LiDAR based data, and it was found that several of the 

LiDAR derived models (canopy height, vertical structure, aspect and elevation) were 

significant to the presence or absence of mountain laurel. With this information available 

and combined with data collected in the field, a nonlinear discriminant function was 

developed and applied in the GIS model. It determined that just over 80% of the known 

locations of mountain laurel were accurately predicted using the discriminant analysis.  

 Significant results as those seen in this study have the potential to greatly alter 

future management practices for both hardwood regeneration and fire 
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prevention\mitigation. Data on the probability of mountain laurel occurrence, as 

developed in this study, may provide managers concerned with mountain laurel presence 

with the information they need to focus their efforts on key geographical areas likely to 

harbor mountain laurel. Whether it is to remove leaf litter (thought to inhibit seeding 

establishment) or the mountain laurel entirely, there is potential for significant amounts 

of time, capital and effort to be saved by focusing on areas with a high likelihood of 

mountain laurel occurrence.  

 As a whole, this paper presents several advances in topographic and predictive 

modeling in a GIS. It has been shown that a GIS model, properly configured, can produce 

TSI values similar to those collected using conventional field based methods, identify 

slope positions to the same accuracy that can be achieved by manually classifying a 

location on an elevation model, and also predict the presence or absence of mountain 

laurel across a landscape. Perhaps the most alluring attribute of each of the models is that 

they can each be readily transferred and used by other parties. No complicated 

programming was used; in fact, only readily available analysis tools in ArcGIS were 

employed throughout each study. Lastly, each has the potential to be used in real world 

applications, potentially saving time, money and effort for those involved.  
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Appendix A 

 

GIS Model for the Determination of Slope Position and Ridge Identification 

 

Figure A-1: ModelBuilder Model of the processes involved in ridge identification and slope position calculation. 
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Appendix B 

Height Class 
1 

Height Class Combinations Used to Define Structure Classes 

Height Class 
2 

Height Class 
3 

Height Class 
4 

Height Class 
5 

Structure 
Class 

- - - - - 0 
X - - - - 1 
- X - - - 2 
X X - - - 3 
- - X - - 3 
X - X - - 4 
- - - X - 4 
- X X - - 5 
X - - X - 5 
- - - - X 5 
X X X - - 6 
- X - X - 6 
X - - - X 6 
- - X X - 7 
X X - X - 7 
- X - - X 7 
X - X X - 8 
- - X - X 8 
X X - - X 8 
- X X X - 9 
- - - X X 9 
X - X - X 9 
X - - X X 10 
X X X X - 10 
- X X - X 10 
- X - X X 11 
X X X - X 11 
- - X X X 12 
X X - X X 12 
X - X X X 13 
- X X X X 14 
X X X X X 15 

 

Table B-1: Structure classes were defined by summing the presence of vegetation within each height 
class. For example, structure class 3 implies vegetation was present in height classes 1 and 2 (1 + 2 = 
3) but no others.  


