CHARACTERIZING UNCERTAINTY IN WILDLAND FIRE: OCCURRENCE, DECISION MAKING, AND MANAGEMENT

A SPECIAL SESSION

AT THE 6TH INTERNATIONAL FIRE ECOLOGY CONGRESS OF THE ASSOCIATION FOR FIRE ECOLOGY

MODERATED BY KARIN RILEY,
FORESTRY SCIENCES LAB, US FOREST SERVICE, MISSOULA, MT

Natural Hazard Uncertainty Assessment

Modeling and Decision Support

Peter Webley, Karin Riley, and Matthew Thompson

Editors

UNCERTAINTY ANALYSIS OF WILDFIRE MODELING

Karin Riley and Matt Thompson Forestry Sciences Lab, US Forest Service, Missoula, Montana

FIRE MODELING IS USED FOR RISK MANAGEMENT, DECISION SUPPORT, AND LAND MANAGEMENT PLANNING

- Three planning horizons:
 - Incident (1-30 days)
 - Mid-term (1-10 years)
 - Long-term (10-50 years)

Sheep Fire, Montana, 2015

WHY ANALYZE SOURCES OF UNCERTAINTY?

When not done:

- Model accuracy can be undermined
- Inappropriate data or modeling techniques may be chosen

When done:

- Guides model calibration and validation
- Increases managers' confidence in results
- Guides future investments in data collection, research, or modeling
- Facilitates communication of uncertainty

A FRAMEWORK FOR UNCERTAINTY ANALYSIS

Based on Ascough II et al. [2008], Warmink et al. [2010], and Skinner et al. [2014], but tailored to the wildfire modeling context

A FRAMEWORK FOR UNCERTAINTY ANALYSIS

Landscape

Fire ignition, spread, and intensity

Climate

Which processes are inside model?

Wind speed and direction forecasts

Data for specific run

Algorithmic & software implementation

Fire spread (2D)

Rate-of-spread and intensity equations

Relationship between variables & system

Fire behavior fuel model loading parameters

Values invariant in model

A FRAMEWORK FOR UNCERTAINTY ANALYSIS

Climate change

Don't know probability

Observed temperature distributions

Know probability

Can't quantify

UNCERTAINTIES COMMON ACROSS PLANNING HORIZONS:

FIRE BEHAVIOR

- Mechanisms producing fire spread not yet known
 - Direct flame contact produced by buoyancy-driven instabilities=likely mechanism, but not yet modeled (Finney et al 2015)

UNCERTAINTIES COMMON ACROSS PLANNING HORIZONS:

FIRE BEHAVIOR (AS IMPLEMENTED)

 Current empirical models of fire spread (e.g. Rothermel 1972) provide estimates of spread considered accurate within a factor of 2-3

UNCERTAINTY IN IGNITIONS ACROSS PLANNING HORIZONS

Planning Horizon	Ignitions				
Wildfire Incident Response	Observed				
Mid-term (1-10 years)	Historical patterns				
Long-term (10-50 years)	Scenarios for changes in patterns due to climate change and land use change				

FACTORS INFLUENCING FIRE OCCURRENCE ACROSS PLANNING HORIZONS

Planning Horizon	Ignitions	Weather	Landscape	Management				
Wildfire Incident Response	Observed	Forecasts and historical patterns	Static landscape	Suppression tactics provided by incident commander				
Mid-term (1-10 years)	Historical patterns	Historical patterns	Static landscape	Historical patterns of effectiveness; policy scenarios for suppression and fuel management provided by land manager				
Long-term (10-50 years)	Scenarios for changes in patterns due to climate change and land use change	Climate scenarios	Scenarios for biome migration, land use change, management, and disturbance (including no-analog fuel conditions)	Scenarios for policy change in suppression, fuel management, and land use				

UNCERTAINTY MATRIX

			Nature			Location			Level			
Planning horizon	Uncertainty domain	Uncertainty source	Knowledge	Variability	Context	Input	Model structure	Model technical	Parameter	Statistical	Scenario	Recognized ignorance
Incident	Weather	Wind speed & direction forecast		X		X				X		
		Temp & RH forecast		X		X				X		
	Landscape	Vegetation type & configuration	X			X					X	
		Surface & canopy fuel model	X			X					X	
		Fuel moisture	X			X					X	
		Landscape representation	X			X					X	

COMPOUNDING UNCERTAINTY

CONCLUSIONS

Systematic identification and classification of uncertainty faced in wildfire modeling

- Some sources of uncertainty are common across incident, mid-term, and long-term planning horizons -> fire behavior
- At broader spatial and temporal scales, more sources of uncertainty appear while others grow in magnitude → compounding uncertainty
 - Are modeling approaches used in one planning horizon appropriate in others?

CONCLUSIONS

Positive aspects of identifying and analyzing uncertainty:

- Can increase confidence in model predictions
- Can improve the modeling process
- Can improve study design
- Can enhance communication across modelers, analysts, decision makers, and stakeholders
- We present a framework for future analyses

QUESTIONS?

"UNCERTAINTY IS AN UNCOMFORTABLE POSITION. BUT CERTAINTY IS AN ABSURD ONE." -- VOLTAIRE