CHARACTERIZING UNCERTAINTY IN WILDLAND FIRE:
OCCURRENCE DECISION MAKING AND MANAGEMENT
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FIRE MODELING IS USED FOR RISK MANAGEMENT, DECISION
SUPPORT, AND LAND MANAGEMENT PLANNING
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WHY ANALYZE SOURCES OF UNCERTAINTY?
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OBJECTIVE

* Present an uncertainty analysis framework

Systemattic
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A FRAMEWORK FOR UNCERTAINTY ANALYSIS
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 Based on Ascough Il et al. [2008], Warmink et al. [2010], and Skinner et
al. [2014], but tailored to the wildfire modeling context



A FRAMEWORK FOR UNCERTAINTY ANALYSIS

Algorithmic & software
implementation
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A FRAMEWORK FOR UNCERTAINTY ANALYSIS
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UNCERTAINTIES COMMON ACROSS
PLANNING HORIZONS:

* Mechanisms producing fire NATURE
Variability
spread not yet known Aleatory

Irreducible
Inherent system variability

* Direct flame contact produced
by buoyancy-driven

instabilities=likely mechanism, r -
but not yet modeled (Finney et technical

al 2015)
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UNCERTAINTIES COMMON ACROSS
PLANNING HORIZONS:

Variability
Aleatory
Irreducible
nherent system variability

Current empirical models of
fire spread (e.g. Rothermel
1972) provide estimates of
spread considered accurate i
within a factor of 2-3 ] comex -
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UNCERTAINTY IN ACROSS
PLANNING HORIZONS

e e B o

NATURE

Planning Horizon m

Wildfire Incident LOCATION
Response

technical

Historical

patte FNs Context — . Model

structure

Parameter

Output

Long-term (10-50 Scenarios for
years) changes in
patterns due
to climate
change and
land use _ anized | NROEEEE
change Determinism Ignorance

Increasing magnitude ——

Increasing spatial & temporal scale

Increasing uncertainty

R ————

S S |




Increasing spatial & temporal scale

<

FACTORS INFLUENCING FIRE OCCURRENCE
ACROSS PLANNING HORIZONS

Increasing uncertainty

Wildfire Incident

Response Observed

Mid-term (1-10

years) Historical

patterns

Long-term (10-50 Scenarios for
years) changesin
patterns due
to climate
change and
land use
change

Forecasts and
historical patterns

Historical patterns

Climate scenarios

Suppression tactics provided by
incident commander

Static landscape

Historical patterns of effectiveness;

policy scenarios for suppression and

fuel management provided by land
manager

Static landscape

Scenarios for biome
migration, land use
change, Scenarios for policy change in
management, and  suppression, fuel management, and
disturbance land use
(including no-analog
fuel conditions)




UNCERTAINTY MATRIX

Incident

Weather

Landscape
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COMPOUNDING UNCERTAINTY

Incident Mid-term Long-term

(next 1-30 days) (next 1-10 years) (next 10-50 years)
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CONCLUSIONS

e

Systematic |dent|f|cqt|on and classification of uncertainty faced in
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At broader spatial and temporal scales, more sources of uncertainty
appear while others grow in magnitude 2 compounding

uncertainty

* Are modeling approaches used in one planning horizon
appropriate in others?



CONCLUSIONS

+ Positive aspects of identifying and analyzing uncertainty:
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Can enhance communication across modelers, analysts,
decision makers, and stakeholders

Can improve study de5|gn

« We present a framework for future analyses
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“UNCERTAINTY IS AN UNCOMFORTABLE POSITION. BUT
CERTAINTY IS AN ABSURD ONE.” --VOLTAIRE




