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ABSTRACT

ANALYSIS OF FIELD DATA AND SPATIAL METHODS FOR THE PARAMETRIZATION
OF A SPATIAL DUFF CONSUMPTION MODEL

William Levi Gill

Field data collected from the consumption of organic forest soil (duff) by smoldering com-
bustion are analyzed to determine the spatial patterns as input for a smoldering combustion
model. Moisture, organic, and inorganic contents were measured at longleaf pines to de-
tect patterns that could be used to explain the spatial patterns in post-burn consumption.
The model takes these environmental predictors as input values and then outputs spatial
consumption patterns. Methods are also developed to describe the two-dimensional spa-
tial patterns of consumption created by the smoldering combustion. The spatial patterns
revealed that smoldering combustion occurs most often at the base of a tree stem at the
reintroduction of wildland fire in long-unburned forest. The data from the organic soil pa-
rameters were unable to completely predict this behavior, indicating that other factors might
be involved. Duff depth was noted as being significantly higher at the areas of smoldering
initiation indicating that understanding the soil characteristics of these deep duff mounds at

the tree base will help predict smoldering patterns, and therefore deserve further research.
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INTRODUCTION

Forest land managers and policy makers are faced with the goal of enacting fire policy that
ensures both the safety of private and public lands, biodiversity, and ecological restoration
(Dickinson and Ryan, 2010). Past strategies and policies to this end included fire suppres-
sion; however, current research has indicated that fire suppression was counteracting land
management goals because of the accumulation of forest fuel loads, particularly with the
increase of organic soil (often called “duff”) (Hungerford et al., 1996; O’Brien et al., 2010;
Dickinson and Ryan, 2010). While wildland fires are necessary for reducing fuel loads,
contemporary re-introductions of wildland fire into long-unburned forests have resulted in
greater severity, producing cascading ecological effects (Varner et al., 2005, 2007). Many
of these impacts are positively correlated with the amount of organic soil consumed (Sand-
berg, 1980; Swezy and Agee, 1991; Hille and Stephens, 2005; Varner et al., 2007; Hood,
2010). Thus, it is important to be able to predict the window of conditions that enable the
reduction of forest fuel loads without triggering these effects.

The forest floor consists of organic matter that overlies mineral soil. In long-unburned
stands where organic matter has accumulated, the organic layer is composed of three hori-
zons. The uppermost horizon (0O;) is the litter and consists of recently fallen and unaltered
organic matter from trees and other vegetation such as twigs, leaves, and bark (Miyanishi,
2001; Varner et al., 2005). Beneath the litter is the fermentation horizon (O,.), where or-
ganic matter has begun to decompose yet is still distinguishable despite changes in color
and structure. The lowermost horizon is called the humus (O,) and consists of finely de-
composed organic material that is no longer recognizable (Miyanishi, 2001). The fermen-
tation and humus horizons are collectively referred to as “duff.” Cellulose, hemicellulose,

and lignin compose the primary chemical structure of duff, and a diverse array of other



chemicals determined by local vegetation are also contained within duff (Miyanishi, 2001).
Additionally, the small particle sizes and dense packing of the decomposed material results
in low oxygen contents, compromising the flammability of these fuels.

Forest fuels are consumed through the oxidation process of combustion. Fuels contain
components that have lower molecular weights (e.g., fats, oils, waxes), which cause those
components to volatilize at lower temperatures (Miyanishi, 2001). Flaming combustion is
the result of rapid oxidation, characterized by the consumption of gaseous products created
during the pyrolysis of the fuel, releasing large amounts of heat. Smoldering combustion,
on the other hand, is a non-flaming combustion that relies on solid-phase oxidation to pro-
duce its heat and is a slower process, resulting in prolonged periods of raised temperatures.
Although duff can be consumed by flaming combustion from a surface fire, it is more regu-
larly consumed by smoldering combustion due to the high packing ratios (Frandsen, 1991;
Miyanishi, 2001). It is common for flaming combustion of a passing surface fire to either
initiate smoldering combustion in the underlying duff, or to ignite vectors (e.g., a pine cone
or woody fuel) that will in turn ignite the duff (Fonda and Varner, 2005). Since moisture
acts as a heat-sink, duff has to be dry enough for ignition, so in some cases enough heat
must be generated to both dry and subsequently ignite the duff. Whereas a quick-passing
surface fire may not be able to produce the necessary amount of heat to initiate smolder-
ing combustion, often smoldering combustion of duff can continue long after a surface fire
has passed, producing enough heat sustain the process up to hours and days (Rein, 2009),
increasing the likelihood of secondary surface fires or excessive consumption of organic
material.

A model to predict the behavior of smoldering duff fire was constructed by Holt (2008)
as an extension of the previous research of Campbell et al. (1994) and Frandsen (1997).

Holt’s model is a spatial cellular automata model (Cronhjort, 2000) with discrete space and



time, and uses both deterministic and stochastic elements to simulate duff consumption.
The model is designed to take input from various site conditions and then predict the spa-
tial consumption patterns. Holt uses the equations by Campbell to determine the heat and
moisture contents at each location, while relying on Frandsen’s statistical equations to pre-
dict duff ignition of specific fuel types in order to avoid having to account for the numerous
variables that would be impractical to collect from the field. As a result of combining these
two methods, the model circumvents the issues of being too complicated or too site-specific
for general use.

Holt’s model is applied to a lattice, where each cell is given various parameters. Ideally,
these values of each cell on the lattice would be determined from actual field data, although
it is possible to apply estimates across the lattice as well. While some variables do not
change during the combustion process until the cell is actually consumed (e.g., inorganic
content), others variables are affected by the heat generated by neighboring cells in the
combustion process (e.g., moisture content and temperature). Therefore, it is necessary
to update some variables during each time step, while others can remain constant. Each
cell in the lattice exists in one of three discrete combustion states (Figure 1): unburned,
burning, or burned. It is assumed that a cell will not ignite unless a neighboring cell is
already burning, and burn time of a cell is stochastically determined.

Since smoldering combustion typically occurs in the humus horizon with the fermenta-
tion horizon providing insulation (Varner et al., 2009), field values for humus horizon (O,,)
are most applicable to the Holt model. Parameter input in the Holt model doesn’t distin-
guish between horizons, so if there is a choice between measurements at the two horizons,
values are taken from humus horizon.

The Holt model lacks field validation, therefore data from controlled field burns from

northern Florida were collected for this purpose. Some of the field data could not be taken
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Figure 1: An individual cell in the Holt model can be in three combustion states: unburned,
burning, and burned. The lattice starts almost entirely in the unburned state except for at
predetermined locations that start in the burning state, which simulates ignition points. An
unburned cell with no neighbors in the burn state has a zero probability of transitioning
into the burning state. When it a unburned cell has a neighbor in the burning state, then the
probability of ignition is determined by governing equations and Frandsen probabilities.
The cell remains in a burning state for a randomly predetermined amount of time and then
transitions and remains in the unburned state.
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directly from a lattice without compromising the integrity of the experiment; instead sam-
ples were taken from other trees nearby the burn site (see Methods). Before the data can
be used to validate the model, these estimates must be tested for their ability to predict the
spatial patterns found on a lattice. Further, the post-burn spatial duff consumption patterns
from the field must be compared to the output of the model. While there are numerous ways
to measure spatial variability on a lattice with varying degrees of precision, this situation
requires comparing spatial consumption patterns at two different scales. In order for the
model to be stable it requires a scale significantly smaller than the scale of the field lattices.

This thesis has two primary objectives. The first is to develop and apply methods that
can describe spatial patterns from the post-burn field data produced by smoldering com-
bustion. To do this, a general metric is developed for this specific situation using pair
approximations. One advantage of pair approximations is the ability to summarize the eco-
logical behavior through clusters and edges (Iwasa, 2000). While various techniques exist
for quantifying cluster and edge behavior, Iwasa (2000) demonstrates that often the most
applicable technique can be developed individually for each modeling situation. For the
Holt 2008 model two situations need to quantified: the clustering of burned cells and the
spatial distribution of burn cells across the lattice. These two metrics are general enough
to compare the output of the model and the field results without requiring a perfect match.
These metrics can also be summarized with dimensionless proportions, which allows for
comparisons to be made between results at different scales.

The second objective is to analyze the collected pre-burn field data to determine if they
can explain the spatial patterns of post-burn combustion. However, before the pre-burn
data can be applied it must be determined whether the samples taken at trees separate from
the locations of the burns can be applied. This necessitates that the samples described

an overarching pattern which can hold for all the trees within the stand where they were



collected; thus, statistical analysis is performed on the pre-burn data to find and described

these patterns.

Literature Review

Many effects of duff consumption are a result of the length of time that smoldering per-
sists. Frandsen (1991) reported durations of twelve hours at temperatures exceeding 300°C,
while Hungerford et al. (1996) reported temperatures reaching a maximum of 600°C. Al-
though flaming combustion results in higher temperatures, living tissue mortality occurs at
only ca. 60°C (Byram, 1958). As the organic soil smolders, the underlying mineral soil
can reach temperatures of 100°C to depths of 20cm (Varner et al., 2009). As a result, smol-
dering combustion often has been observed to kill or injure tree root tissues and dormant
seeds. that reside in the mineral soil (Hungerford et al., 1996; Swezy and Agee, 1991;
Zeleznik and Dickmann, 2004; O’Brien et al., 2010). Further, long-unburned stands often
have an increased presence of embedded fine roots, which can be completely consumed
along with the duff matrix (O’Brien et al., 2010). Duff consumption can also damage tree
vascular tissues, especially when the duff accumulates against the base of the stem (Ryan
and Frandsen, 1991). Although injury incurred during the smoldering combustion rarely
results in immediate mortality, the stress from tree injury can leave the tree susceptible to
future mortality (Varner et al., 2009; O’Brien et al., 2010).

Forest floor consumption also has a major impact on other ecosystem components. Be-
cause of the slow decomposition rate of duff, nutrients can become unavailable until a
fire consumes the organic soil and makes the stored nutrients available (Miyanishi, 2001;
Hungerford et al., 1996). The organic soil also contains dormant seeds capable of germi-

nating only in a nutrient-rich ash seedbed, so their germination is dependent on forest floor



consumption (Hungerford et al., 1996). Smoldering combustion often results in patterned
consumption leaving networks of unburned patches surrounded by large burned out depres-
sions of exposed mineral soil, making accommodations for new vegetation (Miyanishi and
Johnson, 2002; Knapp et al., 2007; Hungerford et al., 1996). While wildland fire is neces-
sary for a variety of ecosystem processes, under adverse conditions it can cause excessive
damage. Under prolonged heating, soil nutrients experience chemical changes, and dor-
mant seeds can be killed (Hungerford et al., 1996; Hille and Stephens, 2005). Smoldering
duff has been identified as a major source of noxious emissions and air pollutants (Sand-
berg, 1980; Frandsen, 1991), and with the urbanization into remote wildlands, air-quality
issues have become increasingly important, narrowing the window of time that forest man-
agers can safely burn (Knapp et al., 2007).

In order to understand and predict the process and results of smoldering combustion,
mathematical modeling has been used. Modeling smoldering combustion of forest duff has
been approached by two classical techniques: process-based and statistical modeling. The
first approach is process-based (or deterministic) mathematical models that seek to create a
set of equations based on the mechanisms of combustion (de Vries, 1963; Fahnestock and
Hare, 1964; Dieckmann et al., 2000a; Dickinson and Ryan, 2010). The equations originate
from theoretical research, while the variables are determined by empirical research. The
equations are solved analytically or numerically. The advantage of a process-based model
is that it can yield predictions across a variety of contexts (Dickinson and Ryan, 2010).
Once a model has been validated against empirical data, it can be used in hypothesis test-
ing to further the understanding of the mechanisms of combustion. The downside to this
approach, however, is that process-based models can often become too complex, and risk
either becoming difficult to interpret or too elaborate for practical use.

The second approach is statistical modeling, wherein a set of independent variables are



hypothesized to contribute to fire behavior or effects. Data are collected from experiments
designed to test the hypothesis, and relationships are estimated. The advantage of the sta-
tistical approach is that it circumvents the need to understand the details and complexities
of combustion and enables identification of the essential variables that drive the process.
The primary disadvantage is that statistical models may only make predictions under situ-
ations in which they were developed, limiting their use to site-specific contexts. Creating a
statistical model also presents the challenge of trying to create meaningful hypotheses that
further scientific understanding, a consideration which has been overlooked (Miyanishi,
2001). In the past these two methods of modeling have been viewed as parallel methods of
the same task. Recently a third approach has been developed that combines the advantages
of both methods by creating deterministic equations for key parts of the processes, then
using statistical equations to generalize site specific details.

There have been a progression of process based models that seek to understand how
heat transfers during smoldering combustion. Most notably de Vries (1958) created a
model that sought to predict the transport of heat and moisture in a porous media (e.g.
duff), and has been used extensively as a framework for other models in soil physics. de
Vries made an important distinction between liquid and vapor flux, because they can con-
tribute uniquely to the transport of thermal energy, particularly when temperature gradients
influence the flow of moisture vapor (de Vries, 1958). It was later shown by Cahill and
Parlange (1998) by experimentation that vapor flux was a significant factor in thermal and
moisture changes in the soil under heating, and that the model introduced by de Vries was
able to reasonably capture this behavior. Campbell et al. (1994) developed a model based
on a modification of the de Vries model in order to simulate soil heat and moisture trans-
port during a surface fire. Campbell’s model was validated against empirical data and was

able to accurately predict temperatures but failed to accurately predict the moisture con-



tent (Hungerford et al., 1996; Holt, 2008). Campbell et al. (1995) suggested modifications
of their original model that allowed for alternate mass flow assumptions that made better
predictions of the moisture content.

Other types of smoldering combustion models have been proposed by Aston and Gill
(1976) and Steward et al. (1990). These models reflect the general difficulties found in
modeling smoldering combustion. The model by Aston and Gill (1976) was built and
calibrated under the conditions of high temperatures, and as as result is only useful to
similar situations limiting the scope of the model (Hungerford et al., 1996). In particular,
Hungerford et al. (1996) found that outside those specific conditions, the model was unable
to account for moisture content causing the model predictions to disagree with observed
results. Steward et al. (1990) created a model of soil heat transfer to predict the depths at
which temperatures could reach a level lethal to soil organisms. Since the objective was so
specific, the model was one-dimensional and failed to account for moisture content, making
it too simple for general application.

The statistical models by Frandsen (1987, 1991, 1997, 1998) have been seminal in
understanding smoldering combustion. Many of Frandsen’s models were created from
empirical data, wherein he used peat as an equivalent for duff. Frandsen (1991) modeled the
smoldering rate and mass loss as a function of variation in organic bulk density, moisture
content, and inorganic content. Frandsen also worked to develop ignition probabilities of
peat and a varieties of soils dependent only on moisture and inorganic content (Frandsen,
1987, 1991). Frandsen used logistic regression to predict a binary “burn/no burn” response.
The advantage of this method is that it simplifies the process of making accurate predictions
for the ignition of various soils since it uses only their moisture and inorganic content,
rather than using deterministic equations that account for all of the details. Miyanishi and

Johnson (2002) were able to use statistical models to show the significance of moisture in
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the consumption process in field burns.

This research uses pair approximations to measure spatial variability that results from
the complex spatial structures resulting from smoldering combustion. Pair approximations
have been used extensively in spatially structured lattice models in the field of ecology
(Iwasa (2000) provides a list of models). The original application of pair approximations
in ecology was done by Matsuda et al. (1992) as an extension to the Lotka-Volterra model
on a lattice. This method departed from the traditional mean-field approximation analy-
sis used in spatial interaction models because the method assumed the homogeneity of the
surroundings environment (Dieckmann et al., 2000b). Matsuda et al. (1992) instead devel-
oped a system of Ordinary Differential Equations to determine a state of a cell based on the
state of its immediate neighbors, allowing for heterogeneity of the environment to effect
the current state. The Holt (2008) model expands on this idea by using a system of Partial
Differential Equations to determine, in part, the state of a cell from its neighbors, while

also allowing for random effects.



METHODS

Field Data

Fuel samples were collected from experimental forest floor fires that occurred from 06
January to 06 April 2011 at the Ordway-Swisher Biological Station near Melrose (Putnam
County), Florida (N 29° 40°, W 81° 74’). The research site had not been burned for approx-
imately 45 years and had accumulated a significant duff layer. The stand was composed
of an overstory of longleaf pine (pinus palustris) with a midstory of oaks (Quercus spp.)
(et al., 2012).

Thirty-three trees were randomly selected for burning, and of these burns 29 resulted in
complete data sets that were usable for this research. There were notable accumulations of
duff around the base of the tree stems (see Figure 2). At each tree a two-dimensional lattice
of pins was arranged extending from the tree base. These pins were used to measure pre-
and post- duff depths (see Figure 3). A perimeter was raked around the lattice down to the
mineral soil as a buffer in order to contain the effects of fire to the lattice.

When the plots were burned, a fire was ignited at the far end of the plot away from
the tree stem. The surface fire generally passed over the entire plot, consuming the litter.
When the flaming front passed over there was opportunity for the initiation of smoldering
combustion of underlying duff. Either the front itself generated sufficient heat to ignite the
duff, or a fuel embedded in the litter (i.e. a vector: Varner et al. (2009)) ignited and initiated
smoldering combustion in the underlying duff. The fire was allowed to burn until the end
of the day before it was extinguished. The average burn time was five hours, ranging from
4.5 to 6 hours.

The organic bulk density (:T%) and inorganic content (Z—i) of the soil could not be sam-

pled from the lattice without affecting the outcome of the burn. Instead seven trees were

11
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Figure 2: A plot from the field site at Ordway before the lattice of pins was installed.
The perimeter was raked down to the mineral soil to contain the fire on the plot. The
accumulation of duff at the base of the stem is clearly seen as well as the embedded pine
cones. Other embedded fuels found in other plots might include 10hr, 100hr, and 1000hr
woody fuels.
randomly selected from the stand to measure these properties, and the results of these sam-
ples were then applied to the trees selected for burning. Each of these seven trees were
sampled at points 15, 45, 90, and 135 cm along a row extending away from the tree stem
(see Figure 4).

Since the samples were taken at neighboring trees, in order to apply them to either the
burn lattice or the model input a relationship must be determined. It is assumed from the
sampling method that this relationship would generally be linear, thus linear regression was

applied. If a relationship existed that was non-linear then the linear regression would either

fail or some type of pattern would emerge in the residuals. Three regression models were



13

considered for fitting the bulk density or inorganic content data:

Model 1:  y; =0y + (4 - distance + (5 - tree + 5 - distance : tree,
Model 2:  y, =0y + [ - distance + [, - tree,

Model 3:  y3 =05y + f; - distance,

where y; could represent either bulk density or inorganic content. The distances were 15,
45, 90, and 135 cm, correlating to the positions 1, 3, 6, and 9 respectively (see Figure 4).
For each estimated coefficient /3 (3 a t-statistic was calculated and tested for significance
(v = 0.05), where the null hypothesis was that the value of the coefficient is equal to
zero. The fourth term in Model 1 measures the interaction between each tree and distance,
while Model 2 assumes instead that the relationship between consecutive points from the
same tree is the same relationship for the other trees. Model 3 assumes that trees have
no effect whatsoever. These models were compared using Akaike Weights, which are the
probabilities of a model being the best model based on their AIC value (Stauffer, 2008).
The model with the highest Akaike Weight was assumed to be the model that best explains
the data.

Similar to the bulk density and inorganic content, the moisture content (%) could not
be sampled from the lattice of the burn plot. In this case, on the day of burn the moisture
content of two neighboring trees were measured at their tree base and two meters from the
base (see Figure 5). These moisture values would be applied to the plots being burned that
day. If two trees were burned on the same day, the moisture contents from the neighboring
trees would be applied to both. There were eighteen burn days, so thirty-six trees were
measured for moisture content.

Because of the high variability of the moisture content of the two neighboring trees
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(see Figure 11), these measurements could not be directly applied to the plot using aver-
ages. Instead the moisture contents were analyzed using Mixed Effects Linear Modeling
(Stauffer, 2008). This method allows the data from all thirty-six sampled trees to be used
in a regression since it accounts for errors produced both by within-stand variability and
day of burn variability. The difference between the two measurements at each sampled tree
were used as the response variable since taking the difference reduced two data points into

a single measurement. The resulting equation was:

y:BO"i_l;date"i_eNN(Oaa)a

where (3 is the intercept, and the response variable is y. If y >0, then the tree base had a
higher moisture content than two meters from the tree base. The error produced by day of
burn variability is given by baate, and the error produced by within-stand variability is given
by e.

A graphical analysis was performed to study the relationship between moisture content
of the two adjacent trees (on the day of burn) to post-fire consumption. For each burn the
following figures were created: consumption versus the average moisture content of the
adjacent trees at the tree base; consumption versus average moisture content two meters

from the tree base; consumption versus average moisture contents of both the adjacent tree.

Spatial Analysis

Two aspects of the spatial distribution of duff consumption caused by smoldering com-
bustion were measured. The first aspect was the pattern of consumption within regions at
various distances from the tree stem, referred to as concentration. Since the model assumes

that parameters experience changes horizontally but not vertically, the lattice columns were
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Figure 3: A 60 x 150 cm lattice was used for collecting the field data. There are forty cells
(15 x 15 cm) and 55 lattice points corresponding to the location of each pin. Because the
tree often intercepted some of the lattice points, the column of pins closest to the tree was
disregarded for this study, leaving only 50 pins on a 5 x 10 grid. The lattice is divided into
three sections: Base, Middle, and Open.
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Figure 4: Seven trees within the study site were sampled from a 5 x 135 cm grid to measure
both bulk density and inorganic content. In this case four edge pins are averaged to give a

value for a cell.
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Figure 5: Moisture contents for each tree in the study was estimated from two adjacent
trees on the day of the burn. Each adjacent trees were measured at the tree base (TB) and
2 meters from the tree base (Open). The Open position is S0 cm further from the tree stem
than the furthest edge of the lattice.
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categorized into three regions based on distance: Base, Middle, and Open, with the Base
region being the closest to the tree stem (see Figure 3). The Base and Middle regions con-
tained the same number of columns, but the Open region contained an extra column since
the lattice could not be evenly divided into three regions.

Each point on the lattice was evaluated for duff consumption. There were two condi-
tions used to to determine whether or not a point experienced any smoldering combustion.
In the first method the point was considered “Burned” if any amount of duff reduction
occurred, and “Unburned” otherwise (this method referred to as the 0% threshold). The
second method was similar except a point was considered “Burned” if there was at least
5% of duff reduction. The selection of 5% as the second criterion came after observing the
post-burn consumption data. Even with the use of an infrared camera which could track
the consumption throughout the entire burn, it was not always clear whether the consump-
tion was a result of the passing surface fire or from smoldering combustion. Increasing
the criteria to 5%, however, could also remove any points that had just started smoldering
combustion but were extinguished at the conclusion of the experiment. Thus the implemen-
tation of both methods helps ensure that the conclusions weren’t based on false positives:
if certain behaviors were consistent under both conditions, then this would infer stronger
results.

The percent of points burned in the entire plot were calculated, as well as the propor-
tion of points burned in each region. In order to determine whether or not a pattern of
consumption was created by random chance or guided by some mechanism, a permutation
test (Ramsey, 2001) with o = 0.05 was performed under the null hypothesis that the ob-
served distribution of the burned points among the regions was uniformly random, since
under random conditions the distribution of consumed points within the entire plot would

be uniform. Thus the expected distribution of consumed points within each region was
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equal to the area of that region: namely,

[Base, Middle, Open] = [0.3,0.3,0.4].

For each burn the following Euclidean distance was calculated:

VI - x

where X, is the observed proportion of consumed points for a region and X, is the ex-
pected distribution of consumed points for that region, summed over all the regions. To
calculated the p-value, the data from the observation was scrambled 1000 times by ran-
dom permutations, and the Euclidean distances were re-calculated. The p-value was given
by the number of permutations that resulted in Euclidean distances greater or equal to the
Euclidean distances created by the original observations, divided by the number of per-
mutations (Ramsey, 2001). If null hypothesis was rejected, then the distribution was non-
random, indicating that there was some mechanism driving the patterns.

The second aspect of spatial distribution of duff consumption was a measure of general
patchiness, referred to as aggregation. The aggregation of burned points were evaluated
using distributions of burned pairs (Dieckmann et al., 2000a) with von Neumann neighbor-
hoods (i.e. up, down, right, left). To do this, all neighboring pairs were compared, and the
number of burn/burn (bb), unburned/burned (ub), and unburned/unburned (uu) neighbors

were counted (see Figure 6). Then the proportion of each were calculated:
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_ Total Number of wu pairs

UU =
Total Number of Pairs
UB — Total Number of ub pairs
"~ Total Number of Pairs
BB — Total Number of bb pairs

Total Number of Pairs

uB

bb—> ub—> uu—1

[E— —
BB uu

Figure 6: Examples of the pair-wise neighbors uu, ub, and bb. The proportion of each type
of pair is indicated by UU, UB, and BB.

These proportions help describe the overall consumption patterns. If the consumption
is aggregated together, as in a front or a large patch, then either UU and BB will be large
- depending on the amount of consumption - and UB will be small. If however, the con-
sumption didn’t cluster into a front or patch, then both UU and BB would be lower while
UB would be higher since there more edges are present.

To determine whether the aggregation was created randomly or by some mechanism,
a permutation test was again performed (a=0.05), with the null hypothesis that the distri-
bution of pairs arises from a uniform probability, given that the points are independent. If

the distribution of pairs were random, then the expected distribution of UU, UB, and BB
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would be:

BBexpected p 2
UB expected - 2p ( 1 - p ) )
UUexpected ( 1- p ) 2

where, p is the proportion of burned pins in the lattice. The data set was scrambled 1000
times with random permutations, and the pairs were recalculated. The p-value was given
by taking the number of number of permuted sets that resulted in a pair-wise distribution
greater than or equal to the expected distance and dividing by the number of permuted data
sets used. If the test rejected the null hypothesis, then the consumption pattern is more

organized than random, indicating some type of mechanism guiding the aggregation.



RESULTS

Spatial Analysis at 0% threshold

When 0% of duff reduction was used to classify a pin as burned, the median of burned pins
for all plots was 20% (see Tables 1, 2). The average distribution of burned pins throughout
the regions was 51%, 23%, and 25% for the Base, Middle, and Open regions respectively.
The distribution of burned cells amongst the three regions was significantly different than
random (p < 0.05) in twelve of the twenty-nine plots, with those plots having an average
consumption of 27% (median 30%). All twelve plots experienced a concentration of con-
sumption near the tree base. The plots that did not have significant concentration of burned
cells had an average consumption of 29% (median 14%).

The analysis of grouping by neighbor pair types resulted in the average distribution of
61%, 23%, and 16% of the unburned/unburned (UU), unburned/burned (UB), and burn/burn
(BB) pairs, respectively. Clustering of the pairs was significant in fourteen of the twenty-
nine plots, with those plots having an average consumption of 30% (median 31%). The
plots that did not have significant concentration of burned cells had an average consump-

tion of 26% (median 14%).

Spatial Analysis at 5% threshold

When 5% of duff reduction was used to classify a pin as burned, the median of burned pins
for all plots was 20% (see Tables 3, 4). The average distribution of burned pins throughout
the regions was 51%, 20%, and 22% for the Base, Middle, and Open regions respectively.
The distribution of burned cells amongst the three regions was significantly different than
random (p < 0.05), with those plots having an average consumption of 27% (median 26%).

Of those thirteen plots, twelve experienced a concentration of the consumption near the tree

22
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base. The plots that did not have a significant concentration had an average consumption
of 21% (median 10%).

The analysis of grouping by neighbors resulted in the average distribution of 67%, 19%,
and 14% of the unburned/unburned (UU), unburned/burned (UB), and burn/burn (BB) pairs
respectively. The aggregation of the pairs was significant in eighteen of the twenty-nine
plots, with those plots having an average consumption of 25% (median 25%). The plots
that did not have significant aggregation had an average consumption of 23% (median 8%).

In seven cases (plots 12, 16, 18, 22, 24, 32, 34) the two methods disagreed about the
occurrence of clustering. Plot 34 had concentration of consumption in regions but the test
didn’t detect any aggregation of pairs. Plots 12, 16, 18, 22, 24, 32, 34 had detected the
aggregation of consumption by pairs but didn’t detect a concentration of consumption in

regions.

Organic Bulk Density

Two linear regression models were fitted to the bulk density of seven trees at distances of
15, 45, 90, and 135cm from tree stem (see Figure 7). Model 2 best explained the data (AIC
weight = 0.95). Models 1 and 3 had AIC weights of 0.05 and 0.00 respectively. Therefore,
of the models considered Model 2 best explains the data. Both the intercept and distance
coefficients were statistically significant (p < 0.01). The multiple-R? value was 0.65, and
the residual standard error was N(0,0.03). The residuals plotted against the fitted values
resulted in a random dispersion about zero, with no apparent trend that would indicate a

non-linear relationship exists among the data (see Figure 8).
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Ignitions
Plot Burned Base Middle Open p-val Base Middle Open

1 034 0.76  0.06 0.18 <0.01 (3 0 0
2 0.14 0.57 0.14 0.29 033 |4 0 0
5 0.16 1.00 0.00 0.00 <0.01 |7 0 0
6 0.36 067 0.17 0.17 <0.01 |6 0 0
7 0.60 047 0.27 0.27 0.13 (4 2 0
8 0.38 0.68 0.21 0.11 <0.01 (n/a n/a n/a
9 0.04 0.00 1.00 0.00 0.18 |4 2 0
10 0.12 1.00 0.00 0.00 <0.01 |5 0 5
11 0.10 0.60 0.20 0.20 0.52 |n/a n/a n/a
12 0.14 0.14 0.71 0.14 0.07 |2 0 0
13 0.06 0.33 0.33 0.33 1.00 |0 2 0
14 0.02 0.00 0.00 1.00 1.00 |n/a n/a n/a
15 0.20 1.00 0.00 0.00 <0.01 |5 0 0
16 0.16%* 0.63 0.13 0.25 0.18 |4 0 0
17 0.12 1.00 0.00 0.00 <0.01 |n/a n/a n/a
18 0.18* 0.67 0.11 0.22 0.05 |n/a n/a n/a
19 0.12 0.17 0.33 0.50 0.87 |0 2 1
20 0.30 0.73 0.20 0.07 <0.01 |4 1
22 0.32% 0.13 044 0.44 0.16 |n/a n/a n/a
24 0.12 0.17 0.33 0.50 0.87 |[n/a n/a n/a
25 0.10 0.20 0.20 0.60 0.62 |n/a n/a n/a
26 0.36 078 0.11 0.11 <0.01 |n/a n/a n/a
27 0.42 0.67 0.19 0.14 <0.01 |6 0 0
28 0.72 042 031 0.28 037 |7 1 0
29 0.56 025 043 0.32 034 (2
30 0.30 0.73 0.13 0.13 <0.01 |7 1 1
32 0.66* 0.39 0.30 0.30 0.68 |n/a n/a n/a
33 0.70 043 0.26 0.31 023 1|9 4 1
34 0.32 0.25 0.25 0.50 0.35 |n/a n/a n/a
Mean 0.28 0.51 0.23 0.25
Median 0.20 0.57 0.20 0.22

Table 1: Analysis of spatial consumption patterns by concentration in regions at the 0%
consumption threshold; that is, a pin is considered to be burned if there is any duff depth
reduction at all. The Burned column indicates the percentage of pins within the lattice that
were burned. The Base, Middle, and Open columns contain the distribution of those burned
pins. If a p-value is less than 0.05, then the plot experienced a concentration of consumption
within regions. The last three columns contain the number of points of ignition estimated
from the infrared camera images. Consumption marked with ‘*’, indicates that the methods
to detect clustering disagreed.



Plot Burned UU, (expected) UB, (expected) BB, (expected) p-val
1 0.34 0.54 (0.44) 0.25 (0.45) 0.21 (0.12) <0.01
2 0.14 0.76 (0.74) 0.21 (0.24) 0.02 (0.02) 0.30
5 0.16 0.79 (0.71) 0.12 (0.27) 0.09 (0.03) <0.01
6 0.36 0.48 (0.41) 0.33 (0.46) 0.19 (0.13) 0.01
7 0.60 0.21 (0.16) 0.39 (0.48) 0.40 (0.36) 0.09
8 0.38 0.46 (0.38) 0.32 (0.47) 0.22 (0.14) <0.01
9 0.04 0.92 (0.92) 0.08 (0.08) 0.00 (0.00) 1.00

10 0.12 0.86 (0.77) 0.08 (0.21) 0.06 (0.01) <0.01
11 0.10 0.81 (0.81) 0.18 (0.18) 0.01 (0.01) 1.00
12 0.14 0.71 (0.74) 0.28 (0.24) 0.01 (0.02) 0.14
13 0.06 0.89 (0.88) 0.11 (0.11) 0.00 (0.00) 0.66
14 0.02 0.95 (0.96) 0.05 (0.04) 0.00 (0.00) 0.56
15 0.20 0.79 (0.64) 0.06 (0.32) 0.15 (0.04) <0.01
16 0.16%* 0.75 (0.71) 0.20 (0.27) 0.05 (0.03) 0.04
17 0.12 0.85 (0.77) 0.08 (0.21) 0.07 (0.01) <0.01
18 0.18* 0.72 (0.67) 0.24 (0.30) 0.05 (0.03) 0.08
19 0.12 0.75 (0.77) 0.24 (0.21) 0.01 (0.01) 0.36
20 0.30 0.61 (0.49) 0.20 (0.42) 0.19 (0.09) <0.01
22 0.32% 0.53 (0.46) 0.29 (0.44) 0.18 (0.10) <0.01
24 0.12 0.79 (0.77) 0.18 (0.21) 0.04 (0.01) 0.27
25 0.10 0.82 (0.81) 0.16 (0.18) 0.01 (0.01) 0.63
26 0.36 0.52 (0.41) 0.25 (0.46) 0.24 (0.13) <0.01
27 042 0.45 (0.34) 0.26 (0.49) 0.29 (0.18) <0.01
28 0.72 0.09 (0.08) 0.38 (0.40) 0.53 (0.52) 0.62
29 0.56 0.20 (0.19) 0.44 (0.49) 0.36 (0.31) 0.25
30 0.30 0.58 (0.49) 0.26 (0.42) 0.16 (0.09) <0.01
32 0.66* 0.18 (0.12) 0.32 (0.45) 0.51 (0.44) 0.02
33 0.70 0.15 (0.09) 0.34 (0.42) 0.51 (0.49) 0.07
34 032 0.44 (0.46) 0.49 (0.44) 0.07 (0.10) 0.24
Mean 0.28 0.61 0.23 0.16
Median 0.20 0.71 0.24 0.09

25

Table 2: Analysis of spatial consumption patterns by pairs at the 0% consumption thresh-
old; that is, a pin is considered to be burned if there is any duff depth reduction at all.
The Burned column indicates the percentage of pins within the lattice that were burned.

The next three columns show the proportion of total number of pairs that were classified
as UU (unburned/unburned), UB (unburned/burned), and BB (burned/burned) alongside in
parenthesis the expected proportion of these pairs within the plot. The expected values are
calculated assuming a binary distribution. If a p-value is less than 0.05, then an aggrega-
tion of pairs occurred. Consumption marked with ‘*’, indicates that the methods to detect
clustering disagreed.
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Ignitions
Plot Burned Base Middle Open p-val Base Middle Open

1 030 0.87 0.00 0.13 <0.01 (3 0 0
2 0.08 0.75 0.25 0.00 0.08 (4 0 0
5 0.12 1.00 0.00 0.00 <0.01 |7 0 0
6 032 0.75 0.13 0.13 <0.01 (6 0 0
7 048 0.58 0.25 0.17 <0.01 (4 2 0
8 0.34 076 0.18 0.06 <0.01 |n/a n/a n/a
9 0.00 0.00 0.00  0.00 1.00 (4 2 0
10 0.12 1.000  0.00 0.00 <0.01 |5 0 5
11 0.08 0.75 000 025 0.18 |[n/a n/a n/a
12 0.08* 0.00 0.75 0.25 0.18 |2 0 0
13 0.04 0.00 050  0.50 1.00 |0 2 0
14 0.00 0.00 0.00  0.00 1.00 ([n/a n/a n/a
15 0.20 1.00 0.00 0.00 <0.01 |5 0 0
16 0.12* 0.67 0.17  0.17 0.22 (4 0 0
17 0.12 1.00 000 000 <0.01 ([n/a n/a n/a
18 0.12%* 050 0.17 033 0.65 |n/a n/a n/a
19 0.04 0.00 050  0.50 1.00 (O 2 1
20 0.24 0.83 0.08 0.08 <0.01 |4 1
22 0.26%* 0.15 038 046 043 ([n/a n/a n/a
24 0.10* 0.00 040 0.60 0.38 |n/a n/a n/a
25 0.10 020 020 0.60 0.62 |n/a n/a n/a
26 0.34 076 0.12 0.12 <0.01 |n/a n/a n/a
27 040 0.70 020 0.10 <0.01 |6 0 0
28 0.66 045 024 030 0.12 |7 1 0
29 048 029 038 0.33 0.82 (2
30 0.26 0.85 0.08 0.08 <0.01 |7 1 1
32 0.54%* 048 022 030 0.09 |n/a n/a n/a
33 0.62 045 0.23 0.32 0.15 |9 4 1
34 0.22% 0.00 036 0.64 0.03 ([n/a n/a n/a
Mean 0.23 051 020 0.22
Median 0.20 058 0.18 0.17

Table 3: Analysis of spatial consumption patterns by concentration in regions at the 5%
consumption threshold. The Burned column indicates the percentage of pins within the
lattice that were burned. The Base, Middle, and Open columns contain the distribution of
those burned pins. If a p-value is less than 0.05, then the plot experienced a concentration
of consumption in a region. The last three columns contain the number of points of ignition
estimated from the infrared camera images. Consumption marked with ‘*’, indicates that
the methods to detect clustering disagreed.



Plot Burned UU, (expected) UB, (expected) BB, (expected) p-val
1 0.30 0.64 (0.49) 0.15(0.42) 0.21 (0.09) <0.01
2 0.08 0.86 (0.85) 0.13 (0.15) 0.01 (0.01) 0.33
5 0.12 0.84 (0.77) 0.09 (0.21) 0.07 (0.01) <0.01
6 0.32 0.56 (0.46) 0.25 (0.44) 0.19 (0.10) <0.01
7 048 0.36 (0.27) 0.31 (0.50) 0.33 (0.23) <0.01
8 0.34 0.54 (0.44) 0.24 (0.45) 0.22 (0.12) <0.01
9 0.00 1.00 (1.00) 0.00 (0.00) 0.00 (0.00) 1.00

10 0.12 0.86 (0.77) 0.08 (0.21) 0.06 (0.01) <0.01
11 0.08 0.86 (0.85) 0.13 (0.15) 0.01 (0.01) 0.33
12 0.08* 0.81 (0.85) 0.19 (0.15) 0.00 (0.01) 0.04
13 0.04 0.93 (0.92) 0.07 (0.08) 0.00 (0.00) 0.59
14 0.00 1.00 (1.00) 0.00 (0.00) 0.00 (0.00) 1.00
15 0.20 0.79 (0.64) 0.06 (0.32) 0.15 (0.04) <0.01
16 0.12% 0.82 (0.77) 0.14 (0.21) 0.04 (0.01) 0.01
17 0.12 0.85 (0.77) 0.08 (0.21) 0.07 (0.01) <0.01
18 0.12% 0.81 (0.77) 0.16 (0.21) 0.02 (0.01) 0.05
19 0.04 0.92 (0.92) 0.08 (0.08) 0.00 (0.00) 1.00
20 0.24 0.71 (0.58) 0.14 (0.36) 0.15 (0.06) <0.01
22 0.26* 0.59 (0.55) 0.29 (0.38) 0.12 (0.07) 0.04
24 0.10%* 0.84 (0.81) 0.13 (0.18) 0.04 (0.01) 0.03
25 0.10 0.82 (0.81) 0.16 (0.18) 0.01 (0.01) 0.61
26 0.34 0.53 (0.44) 0.27 (0.45) 0.20 (0.12) <0.01
27 0.40 0.48 (0.36) 0.22 (0.48) 0.29 (0.16) 0.00
28 0.66 0.15 (0.12) 0.39 (0.45) 0.46 (0.44) 0.23
29 0.48 0.27 (0.27) 0.44 (0.50) 0.29 (0.23) 0.19
30 0.26 0.65 (0.55) 0.19 (0.38) 0.16 (0.07) <0.01
32 0.54% 0.29 (0.21) 0.33 (0.50) 0.38 (0.29) 0.01
33 0.62 0.18 (0.14) 0.42 (0.47) 0.40 (0.38) 0.36
34 0.22% 0.59 (0.61) 0.38 (0.34) 0.04 (0.05) 0.49
Mean 0.23 0.67 0.19 0.14
Median 0.20 0.79 0.16 0.07

27

Table 4: Analysis of spatial consumption patterns by the aggregation of pairs at the 5%

consumption threshold. The Burned column indicates the percentage of pins within the
lattice that were burned. The next three columns show the proportion of total number
of pairs that were classified as UU (unburned/unburned), UB (unburned/burned), and BB
(burned/burned) alongside in parenthesis the expected proportion of these pairs within the
plot. The expected values are calculated assuming a binary distribution. If a p-value is less
than 0.05, then an aggregation of pairs occurred. Consumption marked with “*’, indicates
that the methods to detect clustering disagreed.
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Bulk Density Data R-regression, Trees 1 - 7
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Figure 7: The plot on the left shows Model 2 plotted with all the Organic Bulk Density
(g/cm?®) data collected from seven trees within the study site at 15, 45, 90, and 135c¢m from
the base of the tree. On the right, Model 1 is plotted with the interactions for each individual
tree along with the data from that tree.

Inorganic Content

Two linear regression models were fitted to the inorganic content of six trees at distances
of 15, 45, 90, and 135cm from tree stem (see Figure 9). Model 1 best explained the data
(AIC weight = 1.00). Models 2 and 3 had AIC weights of 0. Therefore of the models
considered, Model 1 explained the data best. The coefficient for the intercept was not
significant (p = 0.28), while the coefficient for the distance coefficient was (p < 0.01).
Trees 4, 5, and 6 had statistically significant coefficients for the interaction terms. The

multiple-R? value was 0.88 and the residual standard error was N (0, 2.58). The residuals



29

Residuals vs Fitted
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Figure 8: Residuals plotted with the fitted values of the linear regression Model 2 analyzing
the bulk density.

plotted against the fitted values resulted in a random dispersion about zero, with no apparent

trend that would indicate a non-linear relationship exists (see Figure 10).



30

Inorganic Content Data Regression for trees 1,2,4,5,6,7
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Figure 9: The plot on the left shows Model 2 plotted with all the Inorganic Material (%)
data collected from six trees within the study site at 15, 45, 90, and 135cm from the base
of the tree (tree3 was thrown out because of missing data). On the right, Model 1 is plotted
with the interactions for each individual tree along with the data from that tree.

Moisture Content

The linear regression with mixed effects for the moisture data resulted in an intercept co-
efficient estimate of 5y = —0.69(% 2.90). No differences in the moisture content were
detected between fuels at the base of the tree and two meters away (p = 0.81). The error
resulting from the day of burn variation was l;Date = N(0,0.004), whereas the error for the
within-stand variation was much greater at e = N (0, 17.42).

Fuel moisture contents from the two adjacent trees were compared to the amount of

consumption at the respective plots (see Figure 11). These comparisons include the average
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Figure 10: Residuals plotted with the fitted values of the linear regression Model 1 analyz-
ing the inorganic content.

moisture content of the adjacent trees, the average moisture contents at the tree base, and

average moisture contents two meters from the base.
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Figure 11: The moisture content of the sampled trees are plotted with the proportion of the
plot that experienced consumption. The consumption is based on at least 5% reduction of
the duff. The first two plots represent the moisture content of the two sampled trees on the
day of burn at the indicated position. The actual data values of the locations are given as
“** and the average of the two values are given as ‘/\’. The third plot is the average of the
moisture content of the two trees. The error bars are one standard deviation from the mean.



DISCUSSION

Analysis of the spatial patterns created by the smoldering combustion revealed that the
consumption was most often concentrated near bases, and of the ten burns for which this
didn’t occur, seven of them had a minimal consumption. It is notable that for all burns, the
surface fire was ignited at the end of the plot farthest from the tree base, so in order for these
patterns to occur, the surface fire had to pass over the entire plot before initiating smoldering
combustion at the base of the tree without initiating many points of sustained smoldering
combustion in previously burned regions (Miyanishi, 2001). This pattern indicates that
there is some unique condition at the tree base that lends itself to smoldering combustion
more readily than the forest floor away from the tree.

Frandsen (1997) demonstrated that bulk density, inorganic and moisture contents of
duff could be used to determine the probability of ignition of duff. The lower these soil
properties are the more likely duff ignition, therefore it is expect that the soil near the tree
base would have lower values. Yet this pattern cannot be supported by the field burn data.
In the case of the inorganic content, no relationship was found that related the inorganic
content to the distance from the tree, even though visually the data seemed to indicate a
slight linear increase. On the other hand, there was a consistent positive linear relationship
between the distance from tree stem and organic bulk density. However, in both cases the
sample sizes were insufficient to warrant a strong inference. Future work investigations of
these trends should be prioritized.

Similarly, moisture content analysis relied on a small sample size, and the ability of
these limited samples to make predictions is further exacerbated by the large measured
variability. Figure 11 indicates that there is no correlation between the sample moisture

contents and the amount of consumption at the neighboring plot. Again, the small sample
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size prevents a strong inference especially considering the variability of moisture caused
by weather patterns both on and preceding the day of burn.

There was a discrepancy between the probability of ignition predicted by the Frandsen
(1997) equations and the field burning. Figure 12 is adapted from Frandsen’s 1997 research,
and it determines the 50% ignition probability of duff at various parameter values. The
coefficients used were derived from lab burns of southern pine duff (Frandsen, 1997), and
the average bulk density values were taken from the current field data. According to this
probability, the range of values for moisture and inorganic contents were significantly low
enough that the duff in all regions was expected to ignite. Yet not only was the majority of
the consumption often concentrated at one side, the average consumption overall was low
(see Tables 1, 3). The disparity cannot be dismissed as the inability of the data to predict
the spatial patterns, regardless of the spatial patterns since those patterns would likely fall
within that same range.

One explanation for the discrepancy could be the result of using the Frandsen (1997)
ignition probability equation in the wrong context. First, Frandsen used a heated coil to
ensure duff ignition. Thus the use of the Frandsen probability presumes that there is an
appropriate amount of heat transfer to the duff to initiate the smoldering combustion, pro-
vided the soil conditions were conducive to burning. It is only under these conditions, then,
that the Frandsen (1997) probability equation will give accurate prediction of field results.
Second, the coefficients used from Frandsen (1997) are species-specific, and therefore the
choice of coefficients may not have been appropriate for the composition of the stand in
northern Florida. To remedy this, lab burns would have to be performed with samples take
from each new location, and using methods described in Frandsen (1997), calculate the ap-
propriate coefficients for this species. If this is the solution, then building a large database

of coefficients for different species will allow the Holt (2008) model to be used in a wider



35

200 .

—50% ignition probability|
1801 i i ---Low Inorganic Content
- --High Inorganic Content
---Low Moisture Content

160 | - - -High Moisture Content

1401

g

T 1201 Less Likely to Burn
‘2 Range of Field

8100 Values

g

L o

Eo More Likely to Burn

[=2]
=]
T

'
[=}
T

N
o
T

| | |
80 100 120

(=]

60
Inorganic Content (%)

Figure 12: The probability of ignition for Southern pine duff (Frandsen, 1997). The solid
line represents the fifty-percent chance of ignition. Coordinates above the line are less
likely to burn, and coordinates below are more likely. The dotted lines indicate the lowest
and highest values of inorganic content collect from the field. The circles correspond to the
moisture contents measured in the studied.

set of contexts since it uses these equations, in part, to determine the ignition of the cells
at each time step; otherwise, using the equations derived by Frandsen in this context may
need to be re-evaluated.

Another option is that there may be other factors involved in duff ignition that aren’t
accounted for in Frandsen (1997). One soil characteristic that noticeably different at the
base of the tree was duff depth. At each plot the duff depth was greatest at the tree base,
often with a sharp increase creating a mound of duff (see Figure 13), as has been observed
in many studies (Ryan and Frandsen, 1991; Garlough and Keyes, 2011). While the soil
parameters may not be significantly different at the mound compared to the plot, it could
be that the slope exposing fuel to more oxygen inflow or the amount of fuel may create

ideal conditions to initiate the combustion. Future research should focus on the drivers of

basal ignition.
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The implication of the significance of duff depth in the Holt (2008) model remains to
be determined. In the current modeling schema, the initial points of ignition of smolder-
ing combustion are pre-determined. The Holt (2008) model does not make predictions as
to which locations the flaming front will initiate the smoldering combustion, but assumes
that the process has already begun. Therefore, if duff depth or slope only affects the initial
ignition from the surface fire, no changes will be required of the current model. If, how-
ever, duff is more likely to burn because of basal slope or depth, then this will need to be
incorporated more explicitly in the ignition probabilities used in the Holt (2008) model.

The reintroduction of fire into a long-unburned forest resulted in the smoldering com-
bustion concentrating around the base of the tree stem. This demonstrates the need to un-
derstand and predict the process of smoldering combustion at this particular location. Gar-
lough and Keyes (2011) has stressed the importance of understanding these duff mounds
as a unique fuel type, but notes a current paucity of research on this topic. In her research,
Garlough demonstrated that bulk density and inorganic content were not significant in pre-
dicting consumption at the duff mound, whereas moisture content was a major factor. Of
all the parameter estimates of this current data set, moisture was the most variable, both
from difference due to weather from day of burn as well as natural variation in the stand,
so there could have been some type of interaction of moisture at these mounds that would
have better explained these results.

In total, this research indicates that as the process of duff consumption is modeled,
understanding the behavior at the tree base is paramount. Not only has the correlation
between duff consumption at the tree base and tree mortality been emphasized due to the
effects of the fire on the tree (e.g., Ryan and Frandsen (1991); Swezy and Agee (1991)),
but it is now clear that this is also the primary location for the initiation of smoldering

combustion. Modeling this process to predict the outcomes and effects will be necessary
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mentation land management strategies in long-unburned forests.
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Figure 13: Average duff depths by region at each plot.
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APPENDIX A

Spatial Analysis at Different Scales

The scale of the model necessarily has to be finer than the scale of the field data collected
for this study so that the computer model could run stably. To examine how these methods
compare at different scales, a few data sets were selected that reflect particular common
patters (e.g., high consumption, low consumption, edge consumption, and clustered con-
sumption) and rescaled to 10x finer their original scale. These spatial methods were then
applied and compared at both scales.

Plots 7, 16, 19, 30, 34 were rescaled to 10x finer than their original scale. The spatial
analysis by region gave identical results at both scales, while the spatial analysis using
pairs gave slightly different results at the different scales (see Table 14). When the plots
were rescaled the proportion of ub pairs were reduced since the number of wu and bb pairs
became more numerous within locations that were burned (see Figure 14). Since the ub
pairs are the edges of the burns, it reduced linearly to approximately 1/10th its original
size, whereas the uu and bb pairs grew in proportion to their area. In every case the test for

clustering using the aggregation of pairs agreed between scales.
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Scale| 1x 10x
Plot) UU UB BB p-valf UU UB BB p-val
71 021 039 040 0.09( 038 0.03 0.58 0.11
16| 0.75 0.20 0.05 0.04| 0.83 0.02 0.15 0.05
191 0.75 0.24 0.01 0.36( 0.87 0.02 0.11 0.31
30 058 026 0.16 <0.01| 0.69 0.02 0.29 <0.01
34 044 049 0.07 024 066 0.04 030 0.32
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Table 5: Data from the given plots are rescaled to ten times finer than their original scale.
The UU, UB, and BB pairs are reported as well as the p-value for the permutation test that
tests for clustering. A p-value less or equal than 0.05 indicates significant clustering within

the plot.

UU=0.58, UB=0.26, BB=0.16

UU=0.69, UB=0.02, BB=0.29

Figure 14: The spatial pattern from Plot 30 is rescaled to 10x finer than its original scale,
and the proportion of the pair types UU, UB, and BB are reported.



APPENDIX B

This appendix contains binary (burn/no-burn) data from the field data at both the 0% and

5% thresholds described in the methods.

Plot 1 at 0%

Plot 2 at 0%
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Plot 1 at 5%

Plot 2 at 5%
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Plot 4 at 0% Plot 4 at 5%

Plot 5 at 0% Plot 5 at 5%

Plot 6 at 0% Plot 6 at 5%
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Plot 7 at 0% Plot 7 at 5%

Plot 10 at 0% Plot 10 at 5%

Plot 12 at 0% Plot 12 at 5%




Plot 13 at 0%

Plot 15 at 0%

Plot 16 at 0%

Plot 13 at 5%

Plot 15 at 5%

Plot 16 at 5%
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Plot 17 at 0% Plot 17 at 5%

Plot 18 at 0% Plot 18 at 5%

Plot 19 at 0% Plot 19 at 5%
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Plot 22 at 0% Plot 22 at 5%

Plot 24 at 0% Plot 24 at 5%

Plot 26 at 0% Plot 26 at 5%




Plot 27 at 0%

Plot 28 at 0%

Plot 27 at 5%%

Plot 28 at 5%
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Plot 29 at 0%

Plot 30 at 0%

Plot 32 at 0%

Plot 29 at 5%

Plot 30 at 5%

Plot 32 at 5%
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Plot 33 at 0% Plot 33 at 5%

Plot 34 at 0% Plot 34 at 5%
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