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Abstract 18 

Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel 19 

combusted but such a relationship has not been shown at the landscape level of prescribed fires. 20 

This paper presents field and remotely sensed measures of prefire fuel loads, consumption, fire 21 

radiative energy density (FRED), and fire radiative power flux density (FRFD) from which 22 

FRED is integrated, across forested and nonforested RxCADRE 2011 and 2012 burn blocks. 23 

Airborne longwave infrared (LWIR) image time series were calibrated to FRFD and integrated 24 

to provide FRED. Surface fuel loads measured in clip sample plots were predicted across burn 25 

blocks from airborne lidar-derived metrics. Maps of surface fuels and FRED were corrected for 26 

occlusion of the radiometric signal by the overstory canopy in the forested blocks, and FRED 27 

maps were further corrected for temporal and spatial undersampling of FRFD. Fuel consumption 28 

predicted from FRED derived from both airborne LWIR imagery and various ground validation 29 

sensors approached a linear relationship with observed fuel consumption, which conforms to 30 

theory. These field, airborne lidar and LWIR image datasets, both before and after calibrations 31 

and corrections have been applied, will be made publicly available from a permanent archive for 32 

further analysis and to facilitate fire modeling.  33 

 34 

Summary 35 

We present ground-based and remotely-sensed data used to predict surface fuel loads and fire 36 

radiative energy density (FRED) from the 2011 and 2012 RxCADRE prescribed fires. 37 

Relationships between observed and predicted surface fuel loads, and fuel consumption observed 38 

and predicted from FRED, approach linearity as expected by theory.  39 

 40 
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Introduction 41 

The physical process of vegetation biomass burning greatly influences terrestrial ecosystem 42 

structure and function, at spatial scales ranging from forest, savanna, and grassland biomes 43 

where fires affect the Earth system (Seiler and Crutzen 1980; Bowman et al. 2009) to the 44 

landscape level where humans apply prescribed fires and other vegetation management decisions 45 

(Lavorel et al. 2007; Trigg and Roy 2007). Prior remote sensing investigations to measure 46 

biomass burning rates likewise range broadly in scale, from coarse spatial resolution global 47 

monitoring satellites (Roberts and Wooster 2008) to airborne thermal imaging platforms (Riggan 48 

et al. 2004) with high resolution more suited for monitoring individual wildfires.  49 

Geostationary satellites such as Meteosat bearing the Spinning Enhanced Visible and 50 

Infrared Imager (SEVIRI) sensor (Wooster et al. 2005; Roberts and Wooster 2008; Wooster et 51 

al. 2013) have coarse spatial resolution (3 km) but are well suited for regional-global scale 52 

studies of combusted biomass derived from estimates of total fire radiative energy (FRE) 53 

measured in joules (J), which are integrated over time from repeated measures of fire radiative 54 

power (FRP) measured in watts (J s
-1
). The polar-orbiting Terra and Aqua satellites bearing the 55 

MODIS sensor, on the other hand, have higher spatial resolution (1 km) yet provide FRP 56 

measures only twice daily at best (Roberts et al. 2011) and therefore require fusion with burn 57 

area maps or other approaches to estimate FRE (Boschetti and Roy 2009; Freeborn et al. 2010; 58 

Kumar et al. 2011). Dickinson et al. (this issue) provide more details on active fire detection and 59 

FRP estimation from MODIS as well as VIIRS imagery from which both 750-m and 375-m 60 

resolution active fire products are derived (Schroeder et al. 2014).  61 

Wooster et al. (2005) demonstrated in small-scale burning experiments that FRP is linearly 62 

related to biomass combustion rate, and that FRE is linearly related to biomass combusted (see 63 
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also Freeborn et al. 2010 and Kremens et al. 2012). The latter quantity represents a greater 64 

measurement challenge because it requires sufficient sampling over time to integrate FRE from 65 

instantaneous measures of FRP. Temporal sampling resolution of active fire by fixed-wing 66 

aircraft is limited to 2 to 3 minutes, the rate at which the same airspace can be revisited. Riggan 67 

et al. (2004) used airborne active fire imagery to estimate carbon and energy fluxes from 68 

individual fires in Brazil. However, integration of total FRE from airborne FRP image time 69 

series collected over the entire duration and spatial extent of a fire has not yet been achieved.  70 

Still also to be achieved is the prediction of surface fuel loads, including those beneath a 71 

forest canopy, using the canopy-penetrating and three-dimensional capability of airborne lidar. 72 

Canopy fuel parameters used in fire behavior modeling, namely crown bulk density, have been 73 

predicted from airborne lidar in coniferous forests (Riaño et al. 2003; Riaño and Chuvieco 2004; 74 

Andersen et al. 2005). Seielstad and Queen (2003) described the potential of airborne lidar for 75 

differentiating between surface fuel models in lodgepole pine forests. Terrestrial lidar has been 76 

used to classify surface fuel types within high-resolution fuel cells in fire-maintained longleaf 77 

pine forests (Hiers et al. 2009; Loudermilk et al. 2009, 2012), while Rowell and Seielstad (this 78 

issue) show that terrestrial lidar can be used in concert with an airborne lidar-derived digital 79 

terrain model (DTM) to characterize surface fuel heights at high resolution. However, surface 80 

fuel loads as exist beneath the longleaf pine forests occurring at Eglin Air Force Base in Florida, 81 

the site of these RxCADRE prescribed fires, have not been predicted as a continuous variable 82 

from airborne lidar.  83 

The primary objective in this paper was to predict fuel consumption from estimates of FRE 84 

replicated at the landscape level of entire burn blocks. Attaining this objective compelled us to 85 

pursue the preliminary objective of predicting surface fuel loads and fuel combusted across these 86 
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same burn blocks. Our chosen blocks were burned with prescribed fires at Eglin Air Force Base 87 

(AFB) in 2011 and 2012 as part of the RxCADRE project and imaged by both the Wildfire 88 

Airborne Sensor Platform (WASP) long-wave infrared (LWIR) sensor and a scanning lidar 89 

sensor mounted aboard the same aircraft. 90 

 91 

Methods 92 

Prescribed burn blocks 93 

This paper considers the prescribed RxCADRE fires conducted at Eglin Air Force Base in 2011 94 

and 2012. The two 2011 burns of forested blocks 703C and 608A were ignited by delayed aerial 95 

ignition devices dispensed from a helicopter. The nine blocks burned on the B70 range in 2012 96 

were lit with drip torches on the upwind side to produce a more natural fireline progression 97 

through the blocks. One large block (L2F) was forest dominated by longleaf pine (Pinus 98 

palustris Mill.), while the other two large blocks (L1G and L2G) and six small blocks (S3, S4, 99 

S5, S7, S8 and S9) were nonforest. Surface fuels were composed of variable proportions of 100 

grasses, forbs, and shrubs dominated by turkey oak (Quercus cerris L.). Further details regarding 101 

the prescribed fires may be found in the overview paper by Ottmar et al. (this issue).  102 

 103 

Ground measures 104 

Surface fuel loads were measured by destructive harvesting in 1-m x 1-m clip plots within all 105 

burn blocks except L2F, where clip plots were 0.5-m x 0.5-m. The pre- and postfire clip plot 106 

positions alternated across a given sample unit, hence consumption could not be estimated at the 107 

plot level (i.e. consumption estimates were limited in resolution to the sample unit level). A 108 

sample unit consisted of a set of clip plots arranged systematically in one of three configurations: 109 
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(1) surrounding a 40-m x 40-m (2011) or 20-m x 20-m (2012) highly-instrumented plot (HIP) 110 

that was randomly located within a representative fuel condition inside a large burn block (with 2 111 

to 3 HIPs per large burn block); (2) surrounding a 200-m x 100-m small burn block; or (3) along 112 

parallel transects from a random starting point within a large burn block. Details on the fuel 113 

sampling protocols can be found in Ottmar et al. (this issue).  114 

Various ground sensors were deployed to collect voltage data calibrated to fire radiative 115 

power flux density (FRFD) time series that were subsequently integrated over time to provide 116 

independent measures of fire radiative energy density (FRED) for this analysis. Radiometers and 117 

infrared (IR) cameras were usually deployed inside a HIP. O’Brien et al. (this issue) provide 118 

sensor specifications of IR cameras, which were either nadir-viewing deployed on a 8.2-m tripod 119 

within the large burn block HIPs in 2011 and 2012 and within the small burn blocks in 2012, or 120 

oblique-viewing and deployed on a 26-m boom lift parked outside the fire perimeter for a 121 

synoptic view of the six small burn blocks (O’Brien et al., this issue). Dickinson et al. (this 122 

issue) provide sensor specifications on dual-band “pocket” radiometers. Dual-band “pocket” 123 

radiometers deployed by Dickinson et al. differed from “orange box” radiometers used by 124 

O’Brien et al. in their field of view and bandpass, but both types of radiometers upon instrument-125 

specific calibrations provided FRFD outputs which, upon time integration, yielded estimates of 126 

average FRED over their fields of view.  127 

 128 

Airborne lidar 129 

Airborne discrete-return lidar data were collected by Kucera International using a Leica ALS60 130 

sensor on 5 February 2011 (703C), 6 February 2011 (608A), and 3 November 2012 (B70 burn 131 

blocks). Vertical uncertainty quantified with root mean squared error (RMSE), comparing the 132 
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laser-measured ground heights to independent ground control points (GCPs) geolocated with a 133 

resource-grade global positioning system (GPS, Trimble Pathfinder ProXT), was 0.600 m at 134 

703C (n = 9 GCPs) and 0.642 m at 608A (n = 12 GCPs) in 2011. In 2012, installation of survey-135 

grade GCPs (n=20) reduced the vertical uncertainty by almost an order of magnitude (RMSE = 136 

0.082 m). However, average vertical bias was comparable between all three lidar collections (-137 

0.010 m at 703C, 0.003 m at 608A, 0.007 m at B70), as were the flight and lidar sensor operation 138 

parameters (Table 1). Terrascan software was used to classify and edit the lidar data.  139 

A 1-meter DTM was interpolated from the vendor-classified ground returns using the 140 

GridSurfaceCreate function of FUSION (McGaughey 2014). The ‘minimum’ switch was used 141 

rather than the default ‘mean’, such that the DTM took the value of the minimum point height in 142 

each grid cell, as the intention was to minimize the number of near-ground returns with negative 143 

heights.  144 

The ClipData function of FUSION was used to clip points within a 3-m radius of clip plot 145 

center coordinates. The ‘height’ switch was used in conjunction with the DTM to normalize 146 

absolute point heights to relative heights above ground. Using the CloudMetrics function of 147 

FUSION, canopy height and density metrics were calculated from lidar returns between 0 and 2 148 

m above ground and within a 3-m radius of each prefire clip plot. The metrics included height 149 

distributional statistics calculated across the 0 to 2 m height range, as well as within vertical 150 

strata of 0–0.05, 0.05–0.15, 0.15–0.50, 0.50–1.0, and 1.0–2.0 m (Table 2).  151 

The plot-level lidar metrics were considered as candidate predictor variables in a multiple 152 

linear regression model. The response variable, prefire surface fuel load, was natural log-153 

transformed to produce a normal distribution. Best subsets regression was used to select the best 154 

predictors from the candidate predictor variables (Table 2), and minimizing the AIC statistic was 155 
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the criterion used to choose the best subset model, following the approach of Hudak et al. 156 

(2006). The FUSION GridMetrics function was used to create gridded rasters of selected metrics 157 

at 5-m resolution for mapping. Overstory canopy cover was calculated as the number of first 158 

returns above a height threshold of 1.37 m (breast height) divided by the total number of returns, 159 

providing a physical measure of canopy cover (Smith et al. 2010). The canopy cover metric was 160 

calculated across the full extent of the lidar collections with the same origin, extent, and 161 

resolution as the gridded surface fuel metrics. The canopy cover grids were used to correct 162 

mapped surface fuel predictions upwards in the three forested blocks (703C, 608a, L2F) in 163 

proportion to overstory canopy cover.  164 

 165 

Airborne LWIR imagery 166 

The airborne WASP LWIR sensor imaged the active fires within the five large burn blocks. 167 

WASP has a nominal 8- to 9.2-m bandwidth (for further details see Dickinson et al., this issue). 168 

Image frames were collected at 3- or 4-s intervals (Table 3). Using the ArcPy package in Python, 169 

raw WASP LWIR digital numbers were calibrated first to sensor-reaching radiance, LLWIR, in W 170 

m
-2
 sr

-1
 in the passband of the WASP LWIR detector (Eqn. 1), and then to ground-leaving 171 

excitance, or observed FRFD (FRFDobs) in W m
-2
 (Eqn. 2) as follows: 172 

����� = ��	
� = 2 × 10��	
� + 0.0176	
    (1) 173 

���	��� = �����	
��      (2) 174 

where DN is digital number, and b and M vary by WASP LWIR acquisition (Table 3) because of 175 

variable atmospheric absorption that was simulated with MODTRAN (Berk et al. 2003) based on 176 

temperature and humidity data recorded during the burns. These data along with further details 177 

regarding WASP LWIR image calibration are described in Accessory Publication 1 associated 178 
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with Dickinson et al. (this issue). Calibrated image frames were resampled (nearest neighbor) 179 

and assembled into a multi-layer stack with a common origin, extent, and resolution based on the 180 

nominal resolution of the image frames (Table 3). 181 

FRED in J m
-2
 was calculated from image time series of calibrated FRFD in W m

-2
. Fire 182 

pixels were separated from nonfire pixels using a threshold of 1070 W m
-2
 derived independently 183 

from pocket radiometer data. The threshold can be thought of as the postfire FRFD value 184 

asymptotically approached by a pixel as it cools after burnover, making it greater than the 185 

apparent FRFD of unburned (background) pixels masked from consideration. To estimate the 186 

threshold, the peak FRFD was determined from all pocket radiometer datasets from 2012. For 187 

each dataset, FRFD measurements from before the peak were removed and the time rescaled so 188 

that peak time was assigned a value of t = 0. Then, parameters of a negative exponential model 189 

with an offset (the threshold) were fit to the individual datasets and the average threshold and its 190 

confidence interval determined from the results. The threshold was determined to be 1070 W m
-

191 

2
, with no significant difference between radiometers in the forested versus nonforested blocks. 192 

Observed FRED (FREDobs) calculated in J m
-2
 at each fire pixel, defined as having a minimum of 193 

one FRFD observation >1070 W m
-2
, was calculated by Eqn. 3 as follows: 194 

��!	��� ="0.5����	$ + ���	$�%��&$ − &$�%�
(

$
																																											�3� 

where FRFDi is pixel-level FRFD from each image i in the time series, and t is time in seconds 195 

(s). If pixel vectors only contained one FRFD measurement, then FRED was calculated by 196 

multiplying the single FRFD measurement by the sampling interval of either three (2012) or four 197 

(2011) seconds, depending on which burn block (Table 3). 198 

 199 

Corrections for sampling biases 200 
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Back-transformation of the surface fuel model predictions from the natural log (ln) scale to the 201 

natural scale introduced bias. This bias was corrected based on the mean square error (MSE) of 202 

the model residuals by Eqn. 4, following Baskerville (1972):  203 

cb = exp
(0.5MSE) 

     (4) 204 

Therefore, predicted fuels after back-transformation were multiplied by cb. 205 

A source of bias in both observed and predicted fuel loads was the exclusion of duff at the 206 

L2F block. Duff load was not measured at any RxCADRE burns except L2F and was therefore 207 

excluded from the fuel loads reported by Ottmar et al. (this issue). However, duff load was 208 

measured at L2F because substantial duff was evident in the field given that it had not burned for 209 

three years, longer than the other 2012 or 2011 burn blocks. Therefore, the prefire fuel load was 210 

increased by dividing the measured postfire duff load by the percentage consumption observed 211 

across the other fuel types (herbaceous, shrub, litter, woody), then adding the quotient to the 212 

measured prefire fuel load. Duff consumption was similarly increased under the assumption that 213 

the same proportion of duff was consumed as was observed across the other fuel types. These 214 

duff corrections were applied to both observations (field-based) and predictions (lidar-based) of 215 

surface fuel load and consumption. 216 

Both the lidar-derived surface fuel maps and the WASP LWIR-derived FRED maps were 217 

affected by occlusion of the radiometric signal by the overstory canopy in the forested blocks. 218 

Canopy cover corrections were assumed to affect the airborne lidar signal and the LWIR 219 

radiation signal equally. Canopy-corrected fuel (Fuelcc) and FRED (FREDcc) were calculated at 220 

the pixel level by Eqns. 5 and 6, respectively: 221 

Fuelcc = Fuelpre(1 + cc)      (5) 222 

FREDcc = FREDobs(1 + cc)      (6) 223 
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where Fuelpre is predicted fuel and FREDobs is observed FRED (from Eqn. 3); cc is the mapped 224 

canopy cover proportion.  225 

The time that WASP LWIR was imaging the fire was much less than the time required for 226 

the aircraft to return to the airspace above the fire between passes. This temporal undersampling 227 

caused FRED to be underestimated. Therefore, the proportion of time that WASP LWIR was not 228 

actively imaging the burn block was calculated, as a correction for temporal undersampling bias. 229 

The spatial extent (and resolution) of the WASP LWIR image frames depended on the flying 230 

height of the aircraft. Usually, only part of a large burn block was imaged within each WASP 231 

LWIR frame. Such spatial undersampling missed fire activity outside the image frame, especially 232 

in the larger burn blocks such as 608A; this resulted in FRFD and FRED being underestimated 233 

upon aggregation to the extent of the entire burn block. Therefore, the proportion of the burn 234 

block not imaged in each WASP LWIR frame was calculated and averaged across all frames as a 235 

correction for spatial undersampling bias. 236 

The correction factors for temporal and spatial undersampling bias by WASP LWIR were 237 

assumed to be additive, as applied in Eqn. 7 to calculate a corrected FRED (FREDcor): 238 

FREDcor = FRED(1 + ct + cs)     (7) 239 

where FRED is observed FRED (FREDobs) averaged across the burn block either with canopy 240 

cover correction (FREDcc) by Eqn. 6 (forest blocks) or without (nonforest blocks); ct is temporal 241 

undersampling proportion, and cs is spatial undersampling proportion.  242 

 243 

Predicting fuel consumption from FRED 244 

Predicting fuel consumption from FRED estimates derived from the ground-based IR cameras 245 

and dual-band radiometers required estimates of fire radiated fraction and an assumption of 246 
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fuelbed heat of consumption. Kremens et al. (2012) estimated fire radiated fraction from 8-m x 247 

8-m experimental burn plots in mixed-oak fuelbeds; the experimental plot fuels included 248 

additions of milled woody fuels and resulted in a large range in fuel consumption (0.2–3.2 kg m
-

249 

2
). Predicted fuel consumption (FCpre) was calculated following Reid and Robertson (2012) by 250 

Eqn. 8 as follows: 251 

FCpre = FRED / rf / hc      (8) 252 

where FRED is either FRED derived from the various IR validation sensors deployed on the 253 

ground or FREDcor derived from WASP LWIR after applying corrections (Eqns. 6,7); rf is fire 254 

radiative fraction (0.13–0.22) as estimated by Kremens et al. (2012) in similar mixed-oak 255 

fuelbeds; and hc is heat of combustion, which is a constant of 17.552 MJ kg
-1
 and includes ash, 256 

as reported by Reid and Robertson (2012), working in natural longleaf pine savanna and old field 257 

fuelbeds, where the heat of combustion is of similar magnitude. 258 

 259 

Results 260 

Surface fuel load 261 

A prefire duff load of 1.94 Mg/ha at L2F was estimated by dividing the measured postfire duff 262 

load of 1.14 Mg/ha by the observed proportion consumed at L2F (0.5887) (Table 4). Estimating 263 

and adding duff load and consumption in L2F translated to a 21.9% increase above the prefire 264 

surface fuel load and a 26.3% increase above the consumption reported by Ottmar et al. (this 265 

issue) (Table 4).  266 

Nine lidar metrics were selected as significant predictors in the best subsets, multiple linear 267 

regression model used to predict surface fuel loads (Table 5). The model explained 45% of the 268 

variance in ln-transformed surface fuel load and was highly significant (Table 5). The MSE of 269 
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the residuals was 0.32, which when substituted into Eqn. 1, yielded a bias correction factor of 270 

1.17 that was multiplied with the back-transformed predictions. Fig. 1 illustrates the equivalence 271 

plot (Robinson et al. 2005) of a simple linear regression model of the observed fuel loads at the 272 

354 field plots regressed on the back-transformed, bias-corrected predictions; the model explains 273 

32% of variation (R
2
 = 0.32) and is highly significant (p<0.0001). Fig. 2 illustrates predicted 274 

surface fuel loads and fuel consumption (calculated from observed relative consumption, Table 275 

4), with the higher fuel loadings and consumption existing in the forested blocks, particularly 276 

L2F, as was observed in the field. Surface fuel loads in L2F had accumulated for three years, for 277 

2-3 years in L2G, for two years in 703C and 608A, and for one year in L1G.  278 

The range of fuel predictions was not as broad as the range of fuel observations made on the 279 

ground (Fig. 1). This is a consequence of the regression modeling approach, which tends to 280 

compress the distribution of predictions toward the mean. However, fuel load and consumption 281 

predictions when aggregated to the block level compare favorably with observations, especially 282 

after correcting for canopy cover occlusion in the three forested blocks (Figs. 2, 3) and including 283 

the duff component in the L2F block (Fig. 3). Percentage canopy cover calculated from the 284 

airborne lidar returns above breast height (mean = 44%, s.d. = 20%) compared well with field 285 

measures of overstory canopy closure (mean = 43%, s.d. = 22%) collected prefire at the L2F clip 286 

plots (n = 60) using a spherical densiometer held at breast height (Pearson correlation = 0.60, p-287 

value <0.0001). Since the gridded lidar measures of canopy cover (Table 4) were based on many 288 

orders of magnitude more data collected across the entire burn blocks, they were used to correct 289 

the surface fuel maps for canopy occlusion in a spatially-explicit manner (Fig. 2). 290 

 291 

Fire Radiative Energy Density (FRED) 292 
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Correcting the FRED maps for overstory occlusion in the forested blocks using canopy cover 293 

calculated from the overstory lidar returns within the mapped FRED pixels increased FRED by 294 

the same proportions in the forest blocks as it did the maps of surface fuels (Fig. 2). 295 

The parallel firelines apparent in the FRED images of the large burn blocks are an artifact of 296 

temporal undersampling (Fig. 4). The blue voids between the apparent firelines are typically not 297 

actual voids in surface fuel loads but “blind spots” where the aircraft was outside the airspace 298 

above the burn block when flame fronts spread through them (Fig. 4). They are most apparent in 299 

the L1G block where fuel loads were lightest (Ottmar et al. this issue) and the fire residence time 300 

and cooling period in a given pixel was least (O’Brien et al. this issue). The opposite extreme 301 

can be observed in the apparent lack of firelines throughout much of the L2F block, where 302 

surface fuel loads were heaviest and fire residence times and cooling periods were longest (Fig. 303 

4). In the 703C and 608A blocks, patterns of FRFD (not shown) and FRED (Fig. 4) reflect 304 

numerous, simultaneous aerial ignitions from a helicopter. 305 

Spatial undersampling was a smaller source of bias than temporal undersampling in the 2012 306 

burn blocks but was a larger source for the especially large 608A block burned in 2011 (Table 3). 307 

Because the aircraft pilot sought to maximize coverage of the fire with each pass, the center of 308 

the burn blocks was more frequently imaged than some of the edges parallel to the flight path. 309 

The more localized effect of the moving fireline on FRFD sampling intervals is illustrated in 310 

Fig. 5, comparing imagery between airborne WASP LWIR and nadir-viewing IR cameras 311 

deployed on the ground. The nadir IR cameras located within the HIPs imaged a restricted but 312 

fixed field of view continuously at 1- to 6-s intervals (depending on camera used). Thus, the data 313 

are not temporally undersampled like WASP LWIR. For instance, of the ten HIPs with 314 
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coincident nadir IR camera and WASP LWIR measures of FRFD, WASP LWIR captured peak 315 

FRFD only twice (608A HIP SE, L1G HIP 2) (Fig. 5).  316 

 317 

Relationship between fuel consumption and FRED 318 

Thermal radiation sensors on the ground provided a means to validate the estimates of FRED 319 

generated from WASP LWIR, but without temporal and spatial undersampling. Predictions of 320 

fuel consumption based on ground observations of FRED facilitated more direct comparison 321 

between sensor types by whether predictions and observations deviated from a 1:1 relationship 322 

(Fig. 6). The pocket radiometers yielded the least biased predictions, suggesting that the radiative 323 

fraction at the RxCADRE burns was well-balanced between the minimum and maximum 324 

radiative fractions estimated by Kremens et al. (2012) in similar type fuels, also using dual-band 325 

pocket radiometers. Compared to observed consumption, consumption was under-predicted 326 

based on FRED derived from the orange box radiometers and nadir and oblique IR cameras 327 

deployed on the ground, and most of all from the WASP LWIR imagery (Fig. 6).  328 

 329 

Discussion 330 

To our knowledge, this paper is the first to predict surface fuel loads from airborne lidar metrics, 331 

including under forest canopies (Figs. 1-3), although the 5-m resolution of these maps is likely 332 

coarser than optimal to drive fire behavior models. Terrestrial lidar has been used to characterize 333 

surface fuel cells beneath longleaf pine canopies at the finer (<1 m) scales that drive fire 334 

behavior (Hiers et al. 2009; Loudermilk et al. 2009, 2012). Attempts to predict fine fuel loads 335 

from terrestrial lidar also are challenged by occlusion problems, but may be feasible from 336 

terrestrial lidar scanned obliquely from a boom lift (Rowell and Seielstad, this issue), like the 337 
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oblique-viewing IR camera imagery of the small burn blocks (O’Brien et al., this issue) 338 

considered in this analysis.  339 

Local accuracy in both the maps of surface fuels predicted from lidar (Fig. 2) and maps of 340 

FRED observed by WASP LWIR (Fig. 4) was admittedly poor, as was indicated by messy 341 

scatterplots (not shown) between these response variables at the radiometer locations. This is not 342 

surprising, given the high heterogeneity in fuels within the 25-m
2
 cells within which the lidar 343 

metrics were calculated (Hiers et al. 2009; Loudermilk et al. 2009, 2012), overstory canopy 344 

occlusion of the lidar and LWIR signals from the ground, and temporal and spatial 345 

undersampling by WASP LWIR. As such, we focused on aggregated block-level instead of 346 

spatially-explicit comparisons.  347 

The relationships between observed fuel consumption and consumption predicted from 348 

FRED using Eqn. 8 approach linearity when compared across burn blocks and sensor types (Fig. 349 

6), and thus corroborate the 1:1 relationship between biomass combusted and FRE as found by 350 

Wooster et al. (2005) on small-scale experimental fires. Fuel consumption predicted from WASP 351 

LWIR was more biased than consumption predicted from all ground-deployed LWIR sensors, 352 

suggesting that FRED remains underpredicted despite our simplistic corrections for the 353 

cumulative biases caused by overstory canopy occlusion in the forest blocks and temporal and 354 

spatial undersampling in all large burn blocks (Eqns. 5–7).  355 

Undersampling of FRFD over time and space accumulates into a more noticeable 356 

discrepancy in estimates of FRED upon integration (Fig. 6). Peak FRFD emittance is brief in 357 

these fine surface fuel conditions (Fig. 5), yet is typically much higher than mean FRFD in a 358 

highly skewed distribution; this nonlinearity of the FRFD response may contribute more to our 359 
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apparent under-prediction of FRED than is accounted for by our simple corrections for temporal 360 

and spatial undersampling.  361 

The proportion of the burn block where FRFD values >1070 W m
-2
 were never observed was 362 

also calculated as a third way to quantify fire activity that may have been missed. We did not 363 

correct for this third potential source of undersampling bias because it would seem to 364 

overestimate FRED, as if the ground were wholly covered by a continuous surface fuelbed. A 365 

large proportion of the ground cover in the burn blocks was exposed mineral soil devoid of fuel. 366 

In fact, mineral soil was ocularly estimated in 2012 before the fires at 30 distributed postfire clip 367 

plots per large burn block, and averaged 57.6% at L1G, 35.7% at L2G, and 15.7% at L2F, in 368 

inverse proportion to prefire litter cover, which averaged 35.0% at L1G, 49.3% at L2G, and 369 

76.3% at L2F. These numbers reflect the time elapsed since previous burns: 1 year (L1G), 2-3 370 

years (L2G), and 3 years (L2F). However, the continuity of the fuelbed was most conducive to 371 

fire spread in L2G among the large burn blocks, while the distribution of fuels in L1G would be 372 

best described as sparse, and in L2F as very patchy. Given the complex distribution of surface 373 

fuels both between and within burn blocks, we made no attempt to account for fuel heterogeneity 374 

in this first analysis. Furthermore, we did not attempt to account for variation in fuelbed 375 

components, but note here that consumption was dominated by the herbaceous component in the 376 

nonforest burn blocks and by the litter component in the forest blocks (Ottmar et al. this issue).  377 

 378 

Conclusions 379 

This study is the first to predict fine surface fuel loads from airborne lidar metrics at the 380 

landscape level of prescribed fires. It is also the first to integrate landscape-level estimates of 381 

FRED from FRFD observations derived from airborne LWIR image time series. Furthermore, 382 
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fuel consumption predicted from FRED achieved near-linear relationships with observed 383 

consumption when compared across multiple sensor types and scales, as expected by theory. 384 

Future analyses will consider spatially-explicit corrections to these mapped variables. For 385 

instance, the fuels map might help to impute peak FRFD or FRED observations at the pixel level 386 

to fill in the sampling voids between apparent firelines, using either statistical or geostatistical 387 

interpolation methods. Such fuel maps may also serve as useful inputs into fire behavior models. 388 

Other datasets could also be integrated into future analyses, such as the terrestrial lidar data 389 

(Rowell and Seielstad, this issue) collected across the small burn blocks and at the large burn 390 

block HIPs. We intend to make the various raw, pre-processed and final field and map data 391 

products publicly available on the USFS Research Data Archive to facilitate new fire model 392 

development and further fundamental fire science research. 393 
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Table 1. Parameters of airborne lidar collections prior to the 2011 and 2012 RxCADRE 503 

prescribed burns 504 

 505 

Lidar collection parameter 2011 2012 

Flying height above ground level 1200 m 1200 m 

Sidelap 50% 50% 

Field of view 24° 20° 

Pulse rate 176.1 KHz 178.6 KHz 

Average point density 4.5 points m
-2
 5.5 points m

-2
 

 506 

  507 

Page 24 of 37

www.publish.csiro.au/journals/wf

International Journal of Wildland Fire



For Review
 O

nly

Surface fuel and fire radiative energy measures 
 

25 
 

Table 2.  Lidar height and density metrics calculated from all returns between 0 m and 2 m 508 

above ground, and in six vertical sub-strata, within 3 m of clip plot center locations 509 

These were the candidate lidar metrics considered for predicting surface fuel loads measured in 510 

prefire clip plots (n = 354). 511 

Strata Metrics 

>0.0 and 2.0 m height  mean, mode, stddev, CV, skewness, kurtosis 

>0.0 and <0.05 m height mean, mode, stddev, CV, proportion 

>0.05 and <0.15 m height mean, mode, stddev, CV, proportion 

>0.15 and <0.50 m height mean, mode, stddev, CV, proportion 

>0.50 and <1.0 m height mean, mode, stddev, CV, proportion 

>1.0 and <2.0 m height mean, mode, stddev, CV, proportion 

 512 

 513 
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Table 3. Burn block names, burn dates, WASP LWIR calibration coefficients (power fit; 514 

Eqn. 3), sampling characteristics, and other attributes of the 2011 and 2012 RxCADRE 515 

prescribed burns at Eglin AFB  516 

Temporal undersampling proportion is the proportion of time during which WASP was not 517 

imaging the burn block. Spatial undersampling proportion is the average proportion of the burn 518 

block not imaged in individual WASP frames.  519 

Burn 

block 

Burn date b M WASP 

LWIR 

spatial 

resolution 

(m) 

WASP 

LWIR 

sampling 

interval 

(s) 

Temporally 

undersampled 

proportion 

Spatially 

undersampled 

proportion 

703C 6 February 

2011 2.955 1.397 2.8 4 0.69 0.70 

608A 8 February 

2011 2.880 1.399 2 4 0.68 0.85 

L1G 4 November 

2012 4.158 1.412 3 3 0.76 0.63 

L2G 10 

November 

2012 3.947 1.403 3 3 0.85 0.35 

L2F 11 

November 

2012 3.753 1.409 1.5 3 0.85 0.68 

520 
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Table 4. Burn block names, areas, and number of prefire clip plots used to predict surface 521 

fuels from airborne lidar metrics 522 

Estimates of surface fuel load and consumption include estimates of duff load and consumption 523 

in the L2F burn block. The last column reports block-level means of the lidar-derived, overstory 524 

canopy cover grids used to correct maps of surface fuels (Fig. 2) and FRED (Fig. 4) in the 525 

forested blocks.  526 

Burn 

block 

Area 

(ha) 

Clip plots 

included in 

fuel model 

(number) 

Observed 

surface fuel 

load 

(Mg ha
-1
)
 

Observed 

absolute 

consumption 

(Mg ha
-1
) 

Observed 

relative 

consumption 

(%) 

Mean canopy 

cover 

proportion 

703C 668 60 5.35 3.03 56.58 0.250 

608A 828 40 5.97 4.68 79.12 0.227 

L1G 454 57 2.15 1.54 72.66 0 

L2G 127 57 3.57 3.09 85.33 0 

L2F 151 65 10.80
1 

6.36
2
 58.87

3
 0.373 

S3 2 0
4
 3.08 2.56 83.15 0 

S4 2 0
4
 2.45 2.04 83.30 0 

S5 2 0
4
 2.82 2.19 77.58 0 

S7 2 25 4.11 1.80 43.82 0 

S8 2 25 3.64 2.80 77.02 0 

S9 2 25 2.42 1.40 57.76 0 

1
Fuel load reported by Ottmar et al. (this issue) (8.86 Mg ha

-1
) was increased 21.9% to include 527 

duff. 528 
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2
Consumption reported by Ottmar et al. (this issue) (5.03 Mg ha

-1
) was increased 26.3% to 529 

include duff. 530 

3
Same percentage consumption as reported by Ottmar et al. (this issue); consistency was 531 

assumed when increasing the prefire fuel load and consumption to include duff. 532 

4
The S3, S4, and S5 blocks were burned on 1 November 2012, two days prior to the lidar survey; 533 

therefore, fuel measures at the 75 clip plots at these three blocks (see Fig. 2) were excluded from 534 

the predictive model, while the 75 clip plots at blocks S7, S8, and S9 (see Fig. 2) burned on 7 535 

November 2012 were included.  536 
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Table 5. Multiple linear regression model predicting surface fuel loads (ln-transformed) 537 

from nine selected lidar metrics  538 

Lidar predictor Estimate Std. Error t value Pr (>|t|) Significance 

(Intercept) 2.141 0.315 6.789 4.96e-11 *** 

Mean (0–2 m) -1.767 0.780 -2.266 0.024 * 

Kurtosis (0–2 m) 0.003 0.001 2.261 0.024 * 

Mode (0–0.05 m) -4.772 2.327 -2.051 0.041 * 

Proportion (0–0.05 m) -1.779 0.242 -7.355 1.41e-12 *** 

Proportion (0.05–0.15 m) -1.777 0.308 -5.763 1.84e-08 *** 

Std Dev (0.05–0.15 m) 23.838 8.616 2.767 0.006 ** 

CV (0.15–0.50 m) 0.575 0.210 2.743 0.006 ** 

Std Dev (0.5–1m) 1.507 0.677 2.225 0.027 * 

Std Dev (1–2m) 0.988 0.368 2.687 0.008 ** 

Model statistics:      

R
2
 = 0.456; Adj. R

2
 = 0.442 df = 344 RSE = 0.566 F = 32.07 p <0.0001 *** 

 539 

  540 
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 541 

Fig. 1. Equivalence plot of predicted versus observed surface fuel loads after back-542 

transformation to the natural scale and subsequent bias correction. The plot shows that the 543 

predictions are neither biased (error bars are within region of similarity defined by the gray 544 

shaded region) nor disproportional (regression line is within region of similarity defined by the 545 

diverging dotted lines) with respect to the observations.   546 
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 547 

Fig. 2. Prefire surface fuels predicted across the extent of the 2011 and 2012 lidar collections. 548 

See Fig. 1, Ottmar et al. overview (this issue) for the locations of these burn blocks within Eglin 549 

AFB. Correction for overstory canopy occlusion in the forested areas has been applied.  550 
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 551 

Fig. 3. Burn block-level comparisons between (A) surface fuels predicted from selected prefire 552 

lidar metrics versus prefire surface fuels observed, and (B) consumption predicted (by 553 

multiplying mean block-level surface fuels predicted in (A) by proportion consumed, Table 4) 554 

versus consumption observed. Correction for overstory canopy occlusion in the forested blocks 555 

has been applied to predictions in both graphs. Both observations and predictions have been 556 

corrected for duff present in the L2F block.  557 
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 558 

 559 

 560 

 561 

Fig. 4. FRED estimated from WASP LWIR-derived FRFD image time series collected across the 562 

extent of the 2011 and 2012 large burn blocks. See Fig. 1, Ottmar et al. overview (this issue) for 563 

the locations of these burn blocks within Eglin AFB. Correction for overstory canopy occlusion 564 

in the forested blocks has been applied.  565 
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 566 

 567 

 568 

Page 34 of 37

www.publish.csiro.au/journals/wf

International Journal of Wildland Fire



For Review
 O

nly

Surface fuel and fire radiative energy measures 
 

35 
 

Fig. 5. FRFD estimated at the scale of ten tripod-mounted, nadir-viewing IR cameras at the large 569 

burn block HIPs. The figure illustrates FRFD measured at two HIPs (columns) per each of the 570 

five large burn blocks (rows). Line graphs (on left of each pair) show the intermittent FRFD 571 

record obtained from WASP LWIR imagery compared to the FRFD recorded by the IR cameras 572 

as the flame front passed beneath. Heat images (on right of each pair) illustrate the closest 573 

position of the flame front to the IR camera field of view (tiny black box) as observed with 574 

WASP LWIR. The intention is to show temporal undersampling of WASP LWIR, which entirely 575 

missed the flame front in more cases than it captured peak FRFD at these fixed locations. (Note: 576 

Although the relative times recorded by the IR camera at L2F HIP 3 are accurate, the absolute 577 

times graphed are estimated because the start time failed to synchronize with UTC time.)  578 

 579 
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 580 

Fig. 6. Validation of fuel consumption predicted using Eqn. 8 (Reid and Robertson 2012) with 581 

FRED integrated from LWIR measures collected using five different sensor types: (A) tripod-582 

mounted, nadir-viewing IR cameras (n = 14); (B) orange box radiometers (n = 12); (C) boom-583 

mounted, oblique-viewing IR cameras (n = 6); (D) pocket radiometers (n = 60, aggregated to n = 584 

16 sample units); and (E) airborne WASP LWIR imagery (n = 5), with all bias corrections 585 

applied. Horizontal line segments show expected ranges in predicted consumption based on 586 
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estimated maximum or minimum  radiative fraction (Kremens et al. 2012), indicated respectively 587 

at the lower and upper ends of each segment. Observed consumption is derived from clip plot 588 

biomass samples. 589 
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