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  Wildfire is arguably one of the most important and widespread natural disturbance 

agents in western U.S. forests. It has a substantial impact on ecosystem structure and 

function by influencing soils, nutrients, carbon budgets, wildlife habitat, and vegetation. 

Wildfires also influence fuel amount, type, and structure, potentially influencing the 

severity and size of subsequent wildfires through site- and landscape-level feedback 

mechanisms. Until relatively recently, the ability to quantitatively evaluate how these 

feedback mechanisms operate has not been feasible because of data limitations (i.e. there 

has not been enough wildfire). However, due to increased fire activity over the last ~25 

years, there are a number of examples of wildfires “interacting” with subsequent fires, 

where a wildfire either burns within the perimeter of a previously burned area (i.e. it 

reburns) or burns up to (but not in to) a previously burned area. This recent surge in fire 

activity, along with increased availability of remotely sensed data, now makes it possible 

to evaluate how wildfires influence subsequent fire severity and size over large 

landscapes. Some studies have suggested that extreme weather conditions may decrease 

the strength of the feedback mechanisms associated with interacting fires, and 

consequently, evaluating the influence of weather on such relationships is increasingly 

important, especially given that climate change is expected to result in more extreme 

weather events. 

  This dissertation is composed of three chapters. The first chapter quantifies how 

previous wildfire influences the severity of subsequent fires. In my second chapter, I 

develop and evaluate several approaches to estimate day-of-burning for each point within 

a fire perimeter using coarse-resolution MODIS fire detection data. Knowing the day-of-

burning is essential in order to evaluate the influence of observed weather (e.g., from a 

nearby weather station) on observed fire-related effects, such as smoke production or the 

previously mentioned feedback mechanisms of fire. My third chapter evaluates the ability 

of wildfire to act as a fuel break by limiting the extent (i.e. size) of subsequent fire. Using 

the methods from Chapter Two to estimate day-of-burning, I was also able to evaluate the 

influence of weather in weakening the strength of this feedback.  

 

 

  



3 

 

Chapter 3: 

Ability of wildfires to limit the extent of subsequent fires 
 

 

Abstract 

Theory suggests that fire size can be limited by previous fires in landscapes with 

active fire regimes. However, empirical examples of this pattern-process feedback (also 

termed ‘self-regulation’) are surprisingly rare due to data limitations resulting from an 

overall lack of fires on the landscape due to fire exclusion policies. Given the increase in 

fire activity over the last ~25 years in the western US, there are now opportunities to 

evaluate these spatial feedbacks and explicitly quantify the ability of wildfire to limit the 

size, or extent, of subsequent fires. Understanding weather’s influence on the ability of 

wildfires to act as future fuel breaks is also necessary given that extreme fire-conducive 

weather may moderate this effect and may become more common in the future due to 

climate change. In this study, I evaluated the ability of wildfire to limit the extent of 

subsequent fires along a temporal gradient in four large study areas in the western US 

that have experienced substantial fire activity in recent decades. Using fire progression 

maps in conjunction with weather station data, I also evaluated the influence of daily 

weather in modifying the effectiveness of wildfire as a fuel break. Results indicate that 

wildfires do limit subsequent wildfire spread, but this effect decays over time; wildfires 

no longer act as fuel breaks ~6-17 years after a fire, depending on the study area. I also 

found that extreme weather substantially moderates this effect; the ability of wildfire to 

act as a fuel break is ~halved or more under extreme compared to more moderate weather 

conditions in three of the study areas. These results will be useful to fire managers who 

seek to restore natural fire regimes or to exploit recent burns when managing fire.  

 

Introduction 
Wildland fire is an important ecological process in many ecosystems (Agee 

1993); it alters vegetation composition and structure, consumes biomass, and influences 

landscape heterogeneity. Such fire-induced changes can influence subsequent fire 

behavior and effects via site- and landscape-level feedbacks (Agee 1999; Peterson 2002; 

McKenzie et al. 2011). For example, wildfires reduce fuel loads, and if fires recur before 

sufficient biomass has accumulated, the size and severity of subsequent fires may be 

limited (Collins et al. 2009; Parks et al. 2014). These feedback mechanisms are 

considered fundamental ecosystem properties of fire-adapted ecosystems of the western 

US (McKenzie et al. 2011) but have been largely disrupted in many ecosystems due to 

successful fire exclusion dating back to the 1930s (Heyerdahl et al. 2001; Taylor and 

Skinner 2003). Some areas of the western US, however, have experienced substantial fire 

over the last three decades, partially because some fires were not actively suppressed 

(termed “resource benefit fires”); these areas provide crucial natural laboratories to 

explicitly evaluate how these feedback mechanisms function. 

Land managers are increasingly recognizing that fire exclusion is problematic for 

a number of ecological and social reasons. For example, fire exclusion is often cited as 

the cause of increased tree density and homogenizations in several forest types (Hessburg 

et al. 2005; Naficy et al. 2010), which in turn has contributed to increases in area burned 

and fire severity (Stephens 2005; Mallek et al. 2013). Fire suppression activities are 
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expensive (Gebert et al. 2007) and have a number of adverse ecological consequences 

such as high-intensity backburns, fireline construction, and fire retardant pollution 

(Backer et al. 2004). Finally, there is an increasing awareness that wildland fire is a 

necessary component of healthy ecosystems (Kilgore 1973; Hutto 2008). These factors, 

combined with acknowledgement that climate change will likely lead to more frequent 

fire (Littell et al. 2010; Westerling et al. 2011), have increased interest in explicitly and 

quantitatively evaluating how feedbacks between wildfire and subsequent wildfire 

operate.  

Several recent studies have shown that fire severity is lower in areas that reburned 

within a previously recorded fire perimeter compared to those that did not (Arkle et al. 

2012; Miller et al. 2012; Parks et al. 2014), clearly indicating a strong feedback between 

wildfire and subsequent fire severity. However, barring those that are inferential (Price et 

al. 2012; Parisien et al. In press) or involve fire simulation modeling (e.g., Davis et al. 

2010), studies explicitly evaluating feedbacks between wildfires and subsequent wildfire 

size are extremely limited and inconsistent in their results. For example, Collins et al. 

(2009) found that wildfire indeed limited the size of subsequent fires in upper mixed-

conifer forest in the Sierra Nevada, California, whereas Teske et al. (2012) found this 

effect in only one of three study areas in central Idaho and northern Montana. The ability 

of wildfires to act as a fuel breaks depends upon underlying contingencies such as time 

between fires (Peterson 2002), but only a couple of studies have evaluated this factor 

(Collins et al. 2009; Price and Bradstock 2010). There is a clear need for more 

information on how wildfires serve as fuel breaks and how this may change as time 

between fires increases over a broad range of ecosystems and geographies of the western 

US. 

Another understudied aspect of feedbacks between wildfire and subsequent fire 

size is the influence of weather. Mortiz (2003) suggested that extreme fire weather may 

override or moderate the effect of a previously burned area in limiting the extent of 

subsequent fires; this was substantiated by Collins et al. (2009) and Price and Bradstock 

(2010), who showed that the ability of a wildfire to act as a fuel break decreased as fire 

weather became more extreme. Further investigation over a broader range of geography 

and ecosystem types is needed to develop a more comprehensive understanding of fire-

weather relationships, especially given the varying influence of bottom-up and top-down 

controls on fire regimes (e.g., fuels vs. weather) (Heyerdahl et al. 2001; Mermoz et al. 

2005; Parks et al. 2012). Such information would be useful in anticipating how the 

effectiveness of wildfire as a fuel break may weaken under future climatic conditions, 

which is important considering that extreme fire weather is expected to become more 

common in the future (Nitschke and Innes 2008).  

The first objective of this study was to determine if wildfires limit the extent of 

subsequent fires, and if so, how this effect changes as time between fires increases. I 

hypothesized that the effectiveness of wildfire as a fuel break will be greatest 

immediately after a fire and decay through time. Assuming a fuel break effect is found, 

my second objective was to determine if extreme fire-conducive weather conditions 

modify this effect. I hypothesized that the ability of wildfires to act as a fuel break will be 

weaker and decay faster with increasing fire weather conditions.  

 

Methods 
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Study area 

I conducted this study within four study areas composed entirely of protected 

areas (wilderness and national park) (Fig. 1), thereby limiting the confounding effects of 

mechanical fuel treatments that are common outside such areas. The FCW study area is 

composed of the Frank Church – River of No Return Wilderness in central Idaho. The 

adjacent SBW encompasses the Selway-Bitterroot Wilderness in western Montana and 

north-central Idaho. CCE (Crown of the Continent Ecosystem) is comprised of Glacier 

National Park and the Great Bear, Bob Marshall, and Scapegoat wilderness areas. Finally, 

GAL incorporates the Gila and Aldo Leopold Wilderness Areas in western New Mexico. 

These study areas were chosen because they have experienced substantial fire activity in 

recent decades and thus have enough data to evaluate the effectiveness of wildfire as a 

fuel break. Although a proportion of ignitions were managed as resource benefit fires in 

all study areas, some were also actively suppressed.  

 

FCW (Frank Church – River of No Return Wilderness) 

The FCW (9777 km
2
) is the second largest wilderness area in the lower 48 states. 

Mean annual precipitation is 871 mm and mean annual temperature is 2.7 °C (Daly et al. 

2002). However, there is substantial intra-area variation in both mean annual 

precipitation and temperature (Fig. 2). In this and all study areas, mean annual 

precipitation is generally lowest in the low elevation river bottoms and highest on the 

mountain peaks; temperature exhibits the opposite pattern. FCW is rugged; elevations 

range from 600 to 3136 m. Topographic features include river breaks, deep canyons, 

mountains, and glaciated basins (USDA Forest Service 2003). Park-like groves of 

ponderosa pine (Pinus ponderosa) exist below about 1500 m on south and west slopes 

(Barrett 1988). Denser ponderosa pine and Douglas-fir (Pseudotsuga menziesii) forests 

occupy north and east aspects, up to elevations of about 2100 m. Still higher, the 

vegetation transitions to grand fir (Abies grandis), lodgepole pine (P. contorta), and 

Englemann spruce (Picea engelmannii ). At the highest elevations, subalpine fir (A. 

lasiocarpa), whitebark pine (P. albicaulis), and alpine environments predominate (Barrett 

1988; Finklin 1988). The fire season runs from early-July to mid-September (USDA 

Forest Service 2013). Low-elevation, open ponderosa pine forests tend to experience 

frequent, low-intensity fires, and, generally, fire frequency decreases and severity 

increases with increasing elevation, moisture, and tree density (Crane and Fischer 1986). 

Fire suppression became effective in about 1935 (Finklin 1988) although sheep grazing 

may have excluded fire earlier (Steele et al. 1981). Resource benefit fires began to occur 

in ~1988 (Beckman 2008).  

 

SBW (Selway-Bitterroot Wilderness)  

The SBW (5471 km
2
) is the third-largest wilderness area in the lower 48 states. It 

includes the Bitterroot mountain range along the Montana and Idaho border and large 

portions of the Selway and Lochsa watersheds in Idaho. Mean annual precipitation in 

SBW is 1221 mm and mean annual temperature is 3.5 °C (Daly et al. 2002). Elevations 

range from 531 m in the Selway River drainage on the western edge to over 3000 m in 

the southeast portion of the study area. The vegetation of SBW is diverse. Lower 

elevations (up to ~1500 m) in the west and northwest portion of the study area are 

characterized by Pacific maritime forests composed of western hemlock (Tsuga 
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heterophylla), western red cedar (Thuja plicata), western white pine (P. monticola), and 

Douglas-fir (Rollins et al. 2002). Ponderosa pine is common at lower elevations in other 

portions of the study area, particularly on dry south-facing slopes (Brown et al. 1994). As 

elevation increases, Douglas-fir and grand fir are prominent on mesic sites and ponderosa 

pine, Douglas-fir, and western larch (Larix occidentalis) are common on drier sites. The 

subalpine forests of the higher elevations (> ~2500 m) are composed of a collection of 

Engelmann spruce, whitebark pine, lodgepole pine, subalpine fir, and alpine larch (L. 

lyallii ) (Rollins et al. 2002). At the highest elevations, alpine environments (i.e., barren 

or snow/ice) are common, especially along the Bitterroot divide. The fire season in SBW 

runs from late-June through mid-September (Brown et al. 1994). The fire regime is 

categorized as mixed: lower-severity surface fires are common in the lower elevations 

and patchy, stand-replacing fires become more common as elevation increases, although 

during extremely dry years, stand replacing fires can occur throughout the study area 

(Brown et al. 1994). Fires were actively suppressed until 1972; resource benefit fires 

were allowed to burn after this point (van Wagtendonk 2007). Cattle and sheep grazing 

was evident in the early 1900’s (USDA Forest Service 1924), which may have decreased 

fire frequency within portions of SBW. 

 

CCE (Crown of the Continent Ecosystem)  

The CCE is the largest (10,331 km
2
) of the four study areas. Mean annual 

precipitation in CCE is 1243 mm and mean annual temperature is 2.2 °C (Daly et al. 

2002) (Fig. 2). The CCE straddles both the east and west slopes of the continental divide. 

The northern portion of is composed of Glacier National Park (GNP), where alpine 

glacial canyons drain into major river valleys (Barrett et al. 1991). South of GNP lays the 

Great Bear, Bob Marshall, and Scapegoat Wilderness Areas. Elevations in CCE range 

from 950 m near Lake McDonald in GNP to over 3100 m on the highest mountain peak 

(also in GNP). Although dependent upon fire history and soil texture, ponderosa pine, 

lodgepole pine, Douglas fir, western larch are the dominant tree species in low-elevation 

areas (< ~1500 m) (Arno 1980; Keane et al. 1994; Keane et al. 2006). Western hemlock 

and western red cedar are present in low-elevation (< 1500 m) wet areas that have been 

free of fire for extended periods of time (> ~100 years). As elevation increases the 

dominant species become lodgepole pine, subalpine fir, and Engelmann spruce. 

Whitebark pine and alpine larch are present near treeline (1800-2300 m elevation, 

depending on latitude); alpine environments are common above this elevation. Areas of 

ponderosa pine and mixed-conifer in CCE were historically maintained by low- and 

mixed-severity regimes (Arno et al. 2000; Keane et al. 2006); the effects of fire exclusion 

(dense understory and duff accumulation) are evident in these areas. Most of the study 

area (excluding alpine environments), however, is characterized by a mixed- to high-

severity fire regime (Arno et al. 2000). The fire season runs from mid-July through 

September (USDA Forest Service 2013). Resource benefit fires began in the Bob 

Marshall wilderness in 1981 and in GNP in 1994. 

  

GAL (Gila and Aldo Leopold Wilderness) 

The GAL (3087 km
2
) is the driest and warmest of the four study areas; mean 

annual precipitation is 578 mm and mean annual temperature is 10.4 °C (Daly et al. 

2002) (Fig. 2). Elevations range from 1462 to 3314 m. The topography is diverse, 
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composed of mountains, broad valleys, steep canyons, and extensive mesas. At the lowest 

elevations, the vegetation is desert scrub and grasslands (Ceanothus, Artemisia, and 

Yucca spp.). As elevation increases, it transitions to piñon-oak-juniper woodland (P. 

edulis engelmannii, Juniperus deppeana, J. monosperma, and Quercus spp.), and then to 

ponderosa pine woodland and forest. The highest elevations are composed of Douglas-fir, 

Englemann spruce, white fir (A. concolor), subalpine fir, southwestern white pine (P. 

strobiformis), and aspen (Populus tremuloides) forests (Rollins et al. 2002). Although the 

fire season runs April through September, mid-summer fires are uncommon due to rains 

associated with monsoonal storms from the Gulf of Mexico (Rollins et al. 2002). Fires in 

GAL are generally frequent and low-severity surface fires, but fire severity tends to 

increase with elevation (Swetnam and Dieterich 1985) and varies with aspect, incident 

radiation and topographic position (Holden et al. 2009). Extensive cattle and sheep 

grazing began in the 1890’s, which substantially reduced fine fuel amount and continuity 

and caused a decrease in fire frequency (Swetnam and Dieterich 1985; Swetnam and 

Baisan 1996). Resource benefit fires began to occur in 1975 (Swetnam and Dieterich 

1985). 

 

Analyses 

Development of geospatial fire atlas 

Creating the geospatial fire atlas for each study area was a multi-step process. 

First, I obtained fire perimeters from the Monitoring Trends in Burn Severity (MTBS) 

project (Eidenshink et al. 2007), which has mapped the perimeter and severity of fires ≥ 

400 ha in the western US from 1984-2011. Next, I supplemented the MTBS fire 

perimeters by identifying and mapping all fires ≥ 20 ha from 1972-2012 using the entire 

record of Landsat data, including the multi-spectral sensor (MSS), thematic mapper 

(TM), enhanced thematic mapper plus (ETM+), and operational land imager (OLI) 

sensors. This was conducted by obtaining virtually all snow-free images for each study 

area from the US Geological Survey Center for Earth Resources Observation and Science 

(USGS-EROS) (available from http://earthexplorer.usgs.gov/) and identifying and 

mapping areas of change between image dates. Identifying and mapping fires with the 

MSS imagery (circa 1972-1984) relied primarily on evaluating differences between pre- 

and post-fire NDVI (normalized differenced vegetation index) (dNDVI). For the Landsat 

TM, ETM+, and OLI data (1984-2012), however, I delineated fire perimeters by 

evaluating differences between pre- and post-fire NBR (normalized burn ratio) (dNBR) 

(Key and Benson 2006). I converted the reflective and thermal bands of each Landsat 

scene into top-of-atmosphere reflectance and brightness temperature respectively, and 

produced multi-date comparisons of all NDVI/NBR scenes within each year. A linear 

grayscale was assigned to dNDVI and dNBR imagery typically in the range of -800 to 

+1100 for best contrast in delineating fire perimeters. To identify and map fires in GAL, I 

also used two relativized metrics of fire-induced change (RdNBR, Miller and Thode 

2007; RBR, Parks et al. 2014) since these severity indices provided higher contrast in the 

more sparsely vegetated study area. Supplementary spatial data were also used to confirm 

the presence of fire, including Moderate Resolution Imaging Spectroradiometer (MODIS) 

fire detections (USDA Forest Service 2013) (2001-2012), National Interagency Fire 

Management Integrated Database (https://fam.nwcg.gov/fam-

web/kcfast/html/ocmenu.htm) (1972-2012), Geospatial Multi-Agency Coordination 

http://earthexplorer.usgs.gov/
https://fam.nwcg.gov/fam-web/kcfast/html/ocmenu.htm
https://fam.nwcg.gov/fam-web/kcfast/html/ocmenu.htm
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Group fire perimeters (http://www.geomac.gov/index.shtml) (2001-2011), and various 

regional fire atlases for the Gila Wilderness (Rollins et al. 2001) (1972-1997), Northern 

Rocky mountains (Gibson 2006) (1972-2003), and the Flathead National Forest 

(http://www.fs.usda.gov/detailfull/flathead/landmanagement/gis) (1980-2012). All 

geospatial operations were conducted using either ArcMap 10.1 (ESRI Inc. 2012) or the 

“raster” package (Hijmans and van Etten 2011) within the R statistical program (R 

Development Core Team 2007). 

Numerous MTBS fire perimeters were modified because they incorrectly mapped 

two fires from different years as one fire or where multiple MTBS fires in a year actually 

represented one contiguous fire or fire complex. The final product is a geospatial fire 

atlas for all fires ≥ 20 ha from 1972-2012. All fire perimeters were converted to raster 

format with a 30 x 30 meter pixel size (matching the resolution of Landsat TM, ETM, 

and OLI data). 

 

Identifying limiting fire perimeters 

Previous wildfires interact with subsequent fire by either stopping the spread or 

getting reburned by a subsequent fire. As such, I developed an objective and consistently 

applied rule-set to identify wildfire perimeters, or portions thereof, that either limited or 

did not limit the spread of subsequent fires. First, each pixel of each fire perimeter was 

evaluated to determine if it interacted with a subsequent fire, defined by either 1) a fire 

perimeter pixel is within 375 m of a subsequent fire or 2) a fire perimeter pixel is 

reburned by a subsequent fire. The 375 m distance threshold allows for error in wildfire 

perimeter mapping due to the spatial and spectral diversity caused by variability in fire 

severity, vegetation type, and speed of vegetation recovery (Holden et al. 2005). Next, I 

determined whether interacting pixels did or did not limit the extent of subsequent fires. 

If a subsequent fire perimeter was ≤ 375 m as measured outwards from the initial fire 

perimeter and ≤ 750 m as measured inwards (i.e. the subsequent fire infiltrated the initial 

fire perimeter by ≤ 750 m), then I assumed that the pixel was limiting the extent of the 

subsequent fire (Fig. 3); hereafter, these proximal and interacting pixels are referred to as 

LIMITING. In this case, the 750 m threshold acknowledges that wildfires may limit 

subsequent fire size even though it may reburn along the perimeter of a previous fire. If a 

pixel from a subsequent fire perimeter infiltrated > 750 meters and reburned a previous 

fire, then I assumed that the subsequent fire was not limited in extent by the initial 

wildfire; hereafter, these interacting pixels are referred to as NOT LIMITING. If a pixel 

from a subsequent fire was > 375 m from a fire perimeter, I assumed that that there was 

no interaction and the pixel was excluded from further analyses (Fig. 3). Preliminary 

analyses indicated that many false-positives resulted from this rule-set (e.g. pixels were 

mislabeled as LIMITING, see Fig. 3d), prompting an additional step to minimize this 

occurrence: if greater than 35% of the area of the initial or subsequent wildfire 

overlapped, then all proximal pixels were identified as NOT LIMITING. All pixels from 

all fires were thus labeled as LIMITING, NOT LIMITING, or excluded from the 

analyses. To clarify, the analyses units are pixels along the perimeter boundary, or edge, 

of the initial wildfire; no pixels from the interior of the initial fire perimeter are analyzed. 

Exploratory analyses indicated there are individual cases where the thresholds 

described above failed and perimeter pixels were seemingly mislabeled as LIMITING or 

NOT LIMITING. I found that, although changing the thresholds may alleviate this issue 

http://www.geomac.gov/index.shtml
http://www.fs.usda.gov/detailfull/flathead/landmanagement/gis
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for individual cases, it seemingly mislabeled pixels of other fires. I evaluated alternative 

thresholds in these exploratory analyses (250 and 500 m vs. 375 and 750 m); the results 

were surprisingly similar to those reported here, which suggests that minor changes in 

threshold values do not substantially change the findings of this study. 

 

Statistical model  

To quantify the ability of wildfires to serve as fuel breaks, and how this ability 

may change as time between fires increases, I built logistic regression models (using the 

logit function) with LIMITING vs. NOT LIMITING as the binary response variable and 

time between fires (years) as the explanatory variable. I built these models with two sets 

of data for each study area, one with all fires (≥20 ha) and another with large fires (≥400 

ha). I built two models for two reasons. First, it is probable that some of the smaller fires 

in my study did not burn in a subsequent fire event although the fire perimeter data would 

indicate that it did (falsely labeling such pixels as NOT LIMITING). This is due to 

difficulty in identifying and mapping unburned islands within a fire perimeter. A model 

including only large fires reduces the chance of this occurring. Second, some have 

suggested that small fuel treatments are ineffective at limiting fire spread (e.g., Graham 

2003); excluding small fires (< 400 ha) acknowledges this notion. Although the fire 

perimeter data span 41 years, I removed all interactions older than25 years from the 

analysis. This was because initial data exploration indicated that there were only small 

amounts of data beyond 25 years between fires and there appeared to be no effect of 

wildfire as a fuel break beyond this time, although this could simply be due to the lack of 

data. Model fits are evaluated with the area under curve calculation for the receiver 

operating characteristic curve (ROC) as calculated with the ‘verification’ package in R 

(NCAR - Research Applications Laboratory 2013).  

To test for model significance while minimizing the effects of spatial 

autocorrelation, which tends to overfit models and inflate statistical significance 

(Legendre and Fortin 1989; Legendre 1993), I used a subsampling and multi-model 

approach similar to that described by Parisien et al. (2011). Specifically, for each logistic 

regression model described above and below, I generated a model ensemble using 2500 

random subsets of data; the subsampling frequency was 1% of the full dataset. The model 

ensemble p-value for each variable (which is the average p-value of each of the 2500 

models) was used to test whether or not the independent variables were statistically 

significant. I chose a 1% subsampling frequency based on Parks et al. (2014) who used 

~0.1% subsampling frequency for two-dimensional data; since fire perimeter edges are 

linear, one-dimensional features, I assumed that this sampling frequency was appropriate. 

A 1% sampling frequency indicates that, on average, one pixel is selected for every 3 km 

of interacting fire perimeter in each random subset of data. 

 

Incorporating weather into statistical models 

To evaluate how weather conditions may affect the ability of a wildfire to limit 

subsequent fire extent, I built a second set of logistic regression models for each study 

area that also included a fire weather index (in addition to time between fires) as an 

explanatory variable. I used the energy release component (ERC) to represent fire 

weather, which is commonly used in fire studies (e.g., Abatzoglou and Kolden 2013; 

Riley et al. 2013). ERC is related to the amount of heat released per unit area at the 
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flaming front of a fire (Bradshaw et al. 1983) but can also be considered a fuel moisture 

metric that represents long term drying (Andrews et al. 2003). Daily ERC was generated 

using Fire Family Plus software (Bradshaw and McCormick 2000) and remote automated 

weather station (RAWS) data for stations within or in close proximity to each study area 

(Lodgepole RAWS for FCW, Hells Half Acre for SBW, Spotted Bear Ranger Station for 

CCE, and Beaverhead for GAL). ERC was calculated using the NFDRS fuel model G for 

all study areas except GAL, in which I used fuel model K. 

I then assigned these daily ERC values to each 30 x 30 m pixel within each large 

fire that burned between 2001 and 2012 based on the estimated day of burning. Because 

agency generated fire progression maps were not available for a large number fires in my 

study, I estimated day-of-burning using the methods developed by Parks (2014), where 

day-of-burning for each 30 x 30 m pixel, and hence fire progression, was calculated by 

spatially interpolating Moderate Resolution Imaging Spectrometer (MODIS) fire 

detection data (NASA MCD14ML product, Collection 5, Version 1). Due to the coarse 

nature of the MODIS input data (1 km
2
), this process was limited to large fires and to 

fires burning after 2000 to coincide with the operational timeline of the MODIS sensors. 

MODIS fire detection data depict the date and location (i.e. pixel centroid) of actively 

burning MODIS pixels, and although the spatial resolution is relatively coarse (pixel size 

= 1km
2
), the fine temporal resolution (there are two MODIS sensors, each passing two 

times per day) allows day-of-burning to be mapped at finer spatial resolution via 

interpolation.  

The models that incorporate weather employ a subset of data; they include only 

large fires (≥400 ha), and further, those large fires must interact with fires that occurred 

between 2001 and 2012. For example, a 1000 ha fire from 1990 that interacts with a 1500 

ha fire from 1999 is excluded from the analysis because the 1999 fire occurred prior to 

MODIS; it is also excluded if it interacts with a 300 ha fire from 2003 because the 2003 

fire was too small to use day-of-burning interpolation. However, if the same fire interacts 

with a 1500 ha fire from 2003, then it is included in the analysis since MODIS data can 

be used to estimate day of burning for the subsequent 2003 fire. For each interacting fire 

perimeter pixel, I extracted the daily ERC value that was associated with the subsequent 

fire. In those cases when a wildfire did not technically overlap but was within 375 m 

from a subsequent fire, I used the day-of-burning estimate, and hence the ERC value, of 

the nearest pixel of the subsequent fire. I assessed significance of ERC using the 

subsampling and model ensemble approach described above. Interactions between time 

and ERC were not evaluated for simplicity. 

 

Results 
A total of 1038 fires and 437 large fires were identified between 1972 and 2012 

across all study areas. A majority of these (> 60%) interacted with a subsequent fire 

(Table 1). The FCW had the highest number of large fires and the greatest amount of 

total area burned. SBW had the most fires (≥ 20 ha) (n=373) during this time period, but 

on average, those fires were smaller compared to the other study areas (average fire size 

in SBW = 685 ha). GAL (the smallest study area), on the other hand, experienced the 

least number of fires (≥20 ha). Proportionally, CCE burned the least (0.30) over the 1972-

2012 time period whereas GAL burned the most (1.12) (Table 1). 
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In all study areas, the proportion of pixels defined as LIMITING generally 

decreased as time until subsequent fire increases (Fig. 4) for both sets of wildfires 

analyzed (all fires and large fires). Consequently, the logistic regression models indicate 

that the ability of wildfires to limit the extent of subsequent fires is strongest immediately 

after a fire but decays over time (Figs. 4 and 5). Wildland fires no longer act as an 

effective fuel break (defined here as a ≤ 0.30 probability of limiting extent of subsequent 

fire) after ~6 years in GAL and ~16 in the three northern study areas (Figs 4 and 5; Table 

2). Overall, the relationship between the effectiveness of fire as a fuel break and time 

between fires is distinctly different in GAL (i.e. it is weaker and decays faster) compared 

to the northern study areas of FCW, SBW, and CCE (Fig. 5). Large wildfires in FCW, 

SBW, and CCE are over 75% effective at limiting the extent of subsequent wildfires for 

up to four years, diminishing to ~50% 11 years after wildfire (Fig. 5). Model fits, as 

measured with the ROC statistic, range from 0.72 (FCW) to 0.82 (GAL) for the models 

including all fires and range from 0.77 (FCW and SBW) to 0.87 (CCE) for those 

including large fires. The model ensembles with randomly subset data indicate that all 

models are statistically significant (p ≤ 0.001).  

In all study areas, the ability of wildfire to act as a fuel break weakens with 

increasing fire-conducive weather conditions (Fig. 6). For example, ten years after 

wildfire in CCE, the ability of fire to act as a fuel break is very high under moderate 

conditions (probability = 0.97; 50
th

 percentile ERC) but is very weak and no longer acts 

as an effective fuel break under extreme conditions (probability < 0.30; 99
th

 percentile 

ERC). The length of time in which wildfire no longer acts as an effective fuel break 

(again defined as ≤ 0.30 probability of limiting extent of subsequent fire) is substantially 

shorter under extreme vs. moderate weather conditions (99
th

 vs. 50
th

 percentile ERC) 

(Fig. 6; Table 2). In GAL, for example, wildfire no longer acts as a fuel break after two 

years under extreme conditions compared to eight years under moderate conditions. The 

influence of ERC was statistically significant (p ≤ 0.03 in all study areas) according to the 

model ensembles. Delta ROC values (comparing a model with and without ERC) ranged 

from 0.00 (FCW) to 0.05 (CCE). 

 

Discussion 
Theory suggests that in landscapes with an active fire regime, landscape pattern is 

shaped by wildfire, but wildfire is also shaped by landscape pattern. This pattern-process 

feedback loop, also termed self-regulation, is a fundamental concept in disturbance 

ecology (Turner 1989; Agee 1999) and underscores the importance of wildfire in creating 

and maintaining resilient landscapes (McKenzie et al. 2011). The results of this study 

clearly indicate that wildfires act as fuel breaks and limit the extent of subsequent 

wildfires across my four western US study areas, supporting the notion of self-regulation 

in landscapes with active fire regimes. The strength of this feedback, however, decays 

over time and is completely diminished by ~6-16 years after a wildfire, depending on the 

study area. This suggests that the “ecological memory”, defined as the degree to which 

ecological processes are shaped by past disturbance events (Peterson 2002), at least in 

terms of wildfire’s ability to act as a fuel break, is relatively short. However, the pattern-

process feedback loop of wildfire not only limits subsequent fire extent, but limits 

subsequent fire severity (Parks et al. 2014), an effect that can last for decades (Miller et 

al. 2012), suggesting that the ecological memory of wildfire in terms of subsequent fire 
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severity is much longer. Since federal agencies spend millions of dollars each year on 

fuel treatments to reduce fire hazard and risk in fire prone landscapes (Allen et al. 2002), 

it is critical to understand how wildfires may also serve as fuel treatments, both in terms 

of how they limit subsequent fire extent and severity. As such, my study has the potential 

to help managers make more informed decisions about how to best manage a particular 

wildfire through assessing its potential longevity for constraining future fires and 

understanding the limitations under extreme weather conditions.  

In terms of time between fire events, my findings are broadly similar to those of 

Collins et al. (2009), who also found that the ability of fire to act as a fuel break decays 

over time. My findings, however, are less consistent with those of Teske et al. (2012), 

who found that wildfire limited the extent of subsequent wildfires in only one of the three 

study areas they examined. I evaluated the same three study areas (FCW, SBW, and 

CCE) as Teske et al. (2012) and found that wildfires definitively act as fuel breaks in all 

three areas, especially in the immediate years following a fire, so it is somewhat 

surprising that our findings are not in agreement. The likely explanation for the lack of 

agreement involves methodological differences; Teske et al. (2012) did not include a 

statistical evaluation of time between fires in their analyses, and in not doing so, may 

have muted the statistical signal of fire as a fuel break. Given my findings that wildfire’s 

ability to act as a fuel break decays relatively quickly and is completely diminished by 

~16 years after a fire in these study areas, investigations of this sort should explicitly 

address time between fires.  

In all study areas, the effectiveness of wildfire as a fuel break weakens with 

increasing fire weather, which was also noted Collins et al. (2009). In fact, my results 

indicate that, in three out of four study areas, the longevity of the ability of fire to act as a 

fuel break effect is at least ~halved or more under extreme (99
th

 percentile ERC) 

compared to more moderate fire-season weather conditions (50
th

 percentile), thereby 

supporting the assertion that the importance of fuels diminishes during extreme weather 

events (Bessie and Johnson 1995; Price and Bradstock 2011). Nevertheless, my results 

indicate that fuels, or lack thereof due to burning, strongly limit fire (probability of 

limiting subsequent fire ≥ 0.65) in the northern study areas for at least three years 

following fire even under extreme conditions. Conversely, in GAL, which is generally 

comprised of dry conifer forest, the ability of fire to act as a fuel break lasts for only two 

years (probability ≤ 0.3) under extreme fire weather conditions; a study by Price and 

Bradstock (2010) revealed similar findings in a dry forest in Australia. From a climate 

change perspective, extreme weather conditions are projected to become more common 

(Salinger 2005; Nitschke and Innes 2008), and in fact, there is evidence that such changes 

are already occurring (Collins 2014). As such, the strength and longevity of wildfire in 

limiting the extent of subsequent fires will be likely be reduced in future years, 

reinforcing the results from other studies suggesting that climate change will result in 

higher fire activity in many areas of the western US (Westerling and Bryant 2008; Littell 

et al. 2010; Moritz et al. 2012).  

Some studies have argued that the distribution of fire sizes is dictated by 

endogenous factors, implicitly implying that fuel availability solely drives fire sizes 

(Malamud et al. 1998; Turcotte and Malamud 2004). Others, however, have argued that 

exogenous factors such as weather are responsible for fire size distributions (Boer et al. 

2008). Our results suggest that both fuel availability and weather (endogenous and 
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exogenous factors) are responsible for fire sizes, supporting the assertion of Moritz et al. 

(2005) who posit that fire size is controlled by multiple factors. Our results further 

suggest that the influence of weather may vary among regions, being more influential in 

CCE and GAL (based on improved model fits and relative decreases in the longevity of 

wildfire to act as a fuel break under extreme contitions [Table 2]). These differences may 

be due to factors such as variability in vegetation and drought frequency (Wang et al. In 

press). However, these differences could also be because the fire weather data may 

imperfectly represent the conditions influencing some fires because the procedure I used 

to estimate day-of-burning, and therefore ERC, has a moderate degree of uncertainty 

(Parks 2014), meteorological conditions are highly spatially heterogeneous (Holden and 

Jolly 2011), and weather station siting may bias observations (Myrick and Horel 2008).  

Pyrogeographic differences among the study areas are evident and are likely due 

to differences in climate and ecosystem response to fire (Keeley et al. 2008; Freeman and 

Kobziar 2011). The southwest study area in particular, composed of the Gila and Aldo 

Leopold Wilderness areas (GAL), is strikingly different than the other three study areas 

in terms of the strength and longevity of wildfire to act as a fuel break. This difference is 

likely a reflection of differences in climate and fire regime characteristics in GAL. The 

fire regime in GAL is for the most part characterized by frequent surface fire dependent 

upon fine fuel availability and continuity (Schoennagel et al. 2004). As such, large fire 

years tend to occur one to three years after a wet (i.e. high precipitation) year (Swetnam 

and Baisan 1996); fine fuel growth and accumulation stimulated during wet years 

therefore erases the effects of the previous fire in terms of its ability to act as a fuel break 

and, consequently, wildfires are not likely to act as fuel breaks for periods of time 

exceeding ~6 years. In contrast, the other study areas generally experience less frequent 

but higher severity fires (Parks et al. 2014) that are more dependent upon ladder and 

canopy fuels (Schoennagel et al. 2004). Such ladder and canopy fuels take longer to 

recover after fire, hence the increased longevity of fire as a fuel break in FCW, SBW, and 

CCE. I suggest similar studies should be conducted in other study areas representing 

different ecosystems (e.g., chaparral and boreal systems) to gain a broader 

pyrogeographic perspective. Broader theoretical perspectives may also be necessary, 

because although fire may act as a fuel break if a subsequent fire occurs nearby, the 

probability of a subsequent fire interacting with a previous fire may be quite low (e.g., 

Price et al. 2012). 

Several aspects of my analyses likely influence the results of this study. First, I 

assumed that a wildfire limited the extent of a subsequent wildfire if pixels on the 

perimeters of both wildfires were proximal. Because other features such as mountain 

ridges or rivers may influence fire boundaries, this assumption may not always hold true. 

However, given the strong signal of time between fire events, I surmise this assumption 

has a negligible influence on my results. Second, it is possible that a wildfire limited the 

extent of a subsequent wildfire even if infiltrated it by more than 750 m (I labeled these 

pixels as NOT LIMITING). Due to the logistic regression framework utilized in this 

study, it was necessary to define perimeter pixels in a binary fashion. The implication of 

this second issue is that I potentially underestimate the strength and longevity of 

wildfire’s ability to limit the extent of subsequent fires. Third, when mapping the fire 

perimeters with satellite data, it is possible that I may have falsely identified other types 

of disturbance as fire. I assume, however, that the errors of this sort are negligible since 
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fuel treatments do not occur in my study areas (because they are inside wilderness or 

national parks) and vegetation changes due to insect and disease (e.g., bark beetle) are too 

subtle to be detected using my methods given that their full effects often take multiple 

years to manifest (Meigs et al. 2011). 

 

Conclusion 
My findings show that wildfires clearly limit subsequent fire size. This effect is 

strongest immediately after fire, decays over time, and lasts for ~6-16 years, depending 

on the study area. Furthermore, my findings show that increasing fire weather diminishes 

the ability of fire to act as a fuel break. As such, fire managers can potentially use my 

results to aid in assessing whether any particular fire scar will act as a fuel break based its 

age and the projected weather. However, managers should also consider that, even if a 

past fire scar does not stop the progression of a wildfire and it reburns within a past fire 

perimeter, the fire severity will likely be limited (Miller et al. 2012; Parks et al. 2014).  

More broadly, however, the numerous fires that have occurred over the last 

couple of decades in the western US potentially provide opportunities for managing fire 

in a different manner. That is, in forested landscapes that have experienced relatively 

recent fire (< ~25 years), there are now opportunities to reevaluate fire suppression 

policies and allow more fires to play their natural ecological role. Although this 

management strategy may not be advantageous in some landscapes, such as those at risk 

of invasion by non-native species (Keeley et al. 2011), it has several potential benefits. 

For example, allowing more fires to burn in certain situations will reduce landscape 

homogeneity and create more resilient landscapes in which the self-regulating feedback 

mechanisms of fire can be better realized (Keane et al. 2002), thereby reducing fire 

suppression costs and increasing firefighter safety. Furthermore, landscapes with active 

fire regimes may be more resilient to other types of disturbance (i.e. insect and disease 

outbreaks) (Bebi et al. 2003; Kulakowski et al. 2012). Lastly, ongoing fire disturbance 

offers the opportunity for establishment of species that are better aligned with the 

emerging climate, thereby acknowledging that vegetation communities and fire regime 

characteristics will change with shifts in climate (Westerling et al. 2011; Smith et al. 

2014).  
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Tables 
Table 1. Summary of fires in each study area from 1972-2012. 

 
 All fires Large fires 

Study 

area 

Number 

of fires 

Number that 

interact with 

subsequent fire
a 

Area burned 

(ha) [proportion 

of study area] 

Number 

of fires 

Number that 

interact with 

subsequent fire
a 

Area burned 

(ha) [percent of 

study area] 

FCW 297 234 862,373 [0.88] 147 123 843,574 [0.86] 

SBW 373 225 255,454 [0.47] 125 71 225,698 [0.41] 

CCE 189 78 307,228 [0.30] 77 33 297,678 [0.29] 

GAL 179 138 345,334 [1.12] 88 56 334,137 [1.08] 

Total 1038 675 1,770,389 437 283 1,701,087 
a
These values reflect only those fires that interact with a subsequent fire within 25 years (see Methods). 
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Table 2. Number of years until wildfires no longer serve as an effective fuel break 

(defined as having a ≤ 0.30 probability of limiting the extent of subsequent fire). Values 

reflect model fits (e.g., Figs. 5 and 6) with and without ERC as an explanatory variable. 

 
 Time only models Time plus ERC models 

Study area 
All 

fires
a Large fires

b
 

No ERC 

(n)
c
  

ERC 50
th

 ERC 75
th

 ERC 90
th

 ERC 99
th

 

FCW 16 16 16 (111) 18 17 15 13 

SBW 18 18 17 (66) 24 20 17 13 

CCE 15 14 14 (32) 24 19 16 10 

GAL 6 7 5 (54) 8 5 4 2 
a
These values reflect the model that include fires ≥20 ha (Fig. 5a). 

b
These values reflect the model that include fires ≥400 ha (Fig. 5b). 

c
These values reflect a model using the subset of fires used in the models that include elapsed time and 

ERC, but excludes ERC (see Methods); these values are more directly comparable to the values in the 

columns to the right that include both elapsed time and ERC. The number of fires evaluated in the models 

evaluating elapsed time and ERC is provided in parentheses. 

 

 

 

 

 

 

 

 

  



17 

 

Figures 

Figure 1. Locations of the four study areas in the western US. 
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Figure 2. The four study areas for which I evaluated the ability of previous wildfires to 

limit the extent of subsequent wildfires. The boxplots depict the variability in mean 

annual precipitation and mean annual temperature within each study area (Daly et al. 

2002); boxes represent the inter-quartile range, whiskers extend to the 5th and 95th 

percentiles, horizontal lines represent the median, and solid dots the mean. 
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Figure 3. Examples from SBW depicting how pixels were defined as LIMITING or NOT 

LIMITING. In all examples, the initial wildfire has a blue (LIMITING), red (NOT 

LIMITING), or brown (not analyzed) perimeter and the subsequent fire is solid gray. In 

panel (a), a 2007 wildfire that interacts with a subsequent 2008 wildfire. Blue pixels are 

those defined as LIMITING and are ≤ 375 m (as measured outwards) or ≤ 750 m (as 

measured inwards) from the subsequent fire perimeter. Those pixels that do not interact 

with a subsequent fire (brown line) are excluded from the analyses. In panel (b), all pixels 

from the 2000 wildfire are NOT LIMITING since the 2007 wildfire burned over the 

entire 2000 wildfire and are > 750 m from the 2007 fire perimeter boundary (as measured 

inwards). In panel (c), some portions of the 2008 wildfire infiltrate the 2007 wildfire 

beyond 750 m; such pixels are defined NOT LIMITING. In panel (d), a large proportion 

of the perimeter of the 2005 wildfire is proximal to the perimeter of the 2012 wildfire. 

However, since > 35% of the 2005 wildfire overlaps with the 2012 wildfire, all proximal 

pixels are labeled NOT LIMITING (see Methods). 
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Figure 4. Data depicting proportion of pixels defined as LIMITING (y-axis) along a 

gradient depicting time until subsequent fire (x-axis). Sizes of circles represent the 

relative number of pixels for each time until subsequent fire within each study area. Red 

lines show the predicted logistic regression fit. ROC values are provided in Fig 5. 
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Figure 5. Response curves depicting the probability of a wildfire limiting the extent of 

subsequent fire over time for each study area for small (a) and large fires (b). The 

receiver operating characteristic, area under the curve statistic (ROC) is shown for each 

fit. These models fits were generated using all pixels (the model ensembles were used to 

test for statistical significance). The horizontal dashed line represents the threshold (0.30 

probability) at which wildfires no longer act as an effective fuel break. 
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Figure 6. Response curves depicting how the probability of fire limiting the extent of 

subsequent fire varies by ERC. The contribution of ERC is statistically significant (p ≤ 

0.05) in all study areas according to each 2500 model ensemble. All ERC percentiles are 

study area specific and determined using ERC values occurring within the fire season; I 

defined the fire season as the beginning and ending date that encompassed 95% of the 

MODIS fire detections (USDA Forest Service 2013) for each study area. The horizontal 

dashed line represents the threshold (0.30 probability) at which wildfires no longer act as 

an effective fuel break. 
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