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Abstract 
Human population growth is driving the expansion of infrastructural development into 

the fire-prone Wildland-Urban Interface (WUI). Infrastructural development in the WUI 
alters fire processes, both by altering vegetation - which can be fuel for fire - and by 
introducing more ignitions. The proximity of human infrastructure to vegetation fuels is 
unique to the WUI. Fire activity, fire hazard risk and exposure is highly problematic in WUI 
systems, but is not exclusive to WUI systems. Across the Western US, WUI expansion is 
concurrent with shifting fire regimes, characterized by increasing size, frequency, severity, 
and season length, in addition to growing human ignitions. Yet both WUI and non-WUI 
communities must adapt to these changes as fire activity can be unpredictable, and fire 
hazards are not unique to the WUI. Adapting to changing fire activity and reducing human 
exposure to fire hazards in both WUI and non-WUI requires a more comprehensive 
understanding of the spatial-temporal dynamics between built infrastructure and fire 
processes. 

Addressing these issues requires infrastructure data that are well-mapped at an annual 
temporal resolution to track change over time. However, existing data omit critical 
information to capture trends accurately due to temporal, spatial, and thematic resolution 
limitations. The lack of finer-scale data inhibits our ability to develop targeted and effective 
tools and limits decision making and management strategies regarding human exposure, 
mitigation, and adaptation to wildfire in the WUI. Advancements in remote sensing imagery, 
open-source software and cloud computing offer opportunities to address these challenges. 

Using Google Earth Engine, we developed a novel built infrastructure detection 
method in semi-arid systems by applying a random forest classifier to a fusion of Sentinel-1 
and Sentinel-2 time series. Our classifier performed well, differentiating three built 
environment types: residential, infrastructure, and paved, with overall accuracies ranging 
from 90-96%. Sentinel-1 variables were important for differentiating built classes. We 
illustrated the utility of our mapped products by generating a time-series of change across 
southern Idaho spanning 2015 to 2024 and comparing this with publicly available products: 
National Land Cover Database (NLCD), Microsoft Building Footprints (MBF) and the global 
Dynamic World (DW). Our mapped built infrastructure (MBI) products offer enhancements 
over NLCD spatially and temporally, over DW thematically, and over MBF both temporally 
and thematically. We demonstrate the potential of fusing data sources to improve LULC 
mapping and present a case for regionally parameterized models that can more accurately 
capture built infrastructure and WUI change over time. In tandem with data analysis, our 
finer-scale data products will allow for better analysis of fire hazard risk and exposure and 
fuels management. 

1. Objectives 
The aim of this project was to demonstrate an open-source approach for mapping built 

infrastructure in a semi-arid system using remote sensing data and leveraging cloud 
computing through GEE, to inform WUI fire management, mitigation and adaptation 
strategies and address the question: How do finely resolved contemporary patterns of 
infrastructural development in the WUI influence human exposure to wildfire? 

We applied our methodology to the Snake River Plain (SRP) Level III Ecoregion in 
southern Idaho, as delineated by the US Environmental Protection Agency (Omernik and 
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Griffith, 2014). The SRP is an ideal study system for this work owing to the high rates of 
built infrastructure expansion in recent years, notably in the Boise area, and the associated 
widespread decline of imperiled sagebrush steppe. We integrated Sentinel-2 imagery with 
ground range detected (GRD) data collected from the C-band SAR satellite, Sentinel-1. To 
our knowledge, no workflows have been developed for extracting built infrastructure in 
semi-arid systems using a remote sensing data fusion. Integrating radar with multispectral 
imagery has been found to improve the accuracy and effectiveness of image classifiers, and 
thus demonstrates the potential of fusing numerous data sources to advantage LULC mapping 
broadly, including for built infrastructure mapping. Our final data products map 
landscape-scale built infrastructure at an annual temporal resolution for the time series 
2015-2024. We: (1) applied detection algorithms to publicly-available remote sensing data 
and generated annually-resolved mapped products of built infrastructure, (2) derived a time 
series of change across the SRP, with which we demonstrated product application by 
quantifying changes observed and exploring spatial patterns of built infrastructure within the 
SRP, and (3) spatially and visually compared our time series with publicly available products, 
namely NLCD, MBF and DW and discussed their broader utility. 

We utilized freely available and open source software to make our workflow and 
products more accessible for people not only in the scientific community, but those in policy, 
planning, management, and communities broadly, in addition to our community partner, the 
Idaho Department of Lands (IDL). Our project addresses the need for comprehensive, 
mapped data on human built infrastructure to meet the challenges of infrastructure 
encroaching into fire-prone wildland vegetation systems. Our work to fill this gap is a 
necessary contribution towards broader efforts to foster resilience for local communities and 
ecosystems and it is critical owing to shifting fire regimes concurrent with accelerating 
population growth and infrastructural development expansion. Our work will contribute to 
improved equity in response to fire hazards, ultimately building sustainable capacity across 
the Intermountain West and the US broadly. 

Accurate, timely built infrastructure maps that differentiate between residential and 
commercial infrastructure have wide-reaching applications. From the perspective of wildfire 
risk management and reducing community exposure to wildfire, it can be helpful to know 
whether a building is occupied or not. Through this research, it became apparent that, while 
human exposure to wildfire may be more likely in the WUI, it is not exclusive to the WUI. 
Through a thorough literature review, we found that there is a knowledge gap around 
understanding of how WUI delineations impact and inform wildfire risk management, which 
has implications for human community exposure to wildfire. Initially we set out to derive 
another WUI map from our MBI products. Instead, we chose to critically review how WUI 
delineations and conceptualizations are informing wildfire risk management and 
decision-making. Too often, wildfire risk management and decision-making around human 
community exposure to wildfire hazards is focused on WUI areas only. However, non-WUI 
areas may also have higher wildfire risk and higher wildfire hazard potential. Our MBI 
products cover both WUI and non-WUI areas, and could be used to better inform wildfire 
risk management across WUI and non-WUI areas for improved resource allocation and 
community prioritization Through our critical review of WUI conceptualizations in the 
context of wildfire risk management, we emphasize that both standardized and place-based 
WUI definitions have value, but for different purposes. In the context of wildfire-risk 
management, more specific, place-based definitions should be used to generate finer spatial 
resolution WUI maps. Such place-based WUI maps should be used in tandem with other 
remotely-sensed derived products, infrastructure products like MBI, or vegetation products, 
to collectively inform wildfire risk management across both WUI and non-WUI areas, rather 
than the sole focus on WUI delineations.  
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2. Materials and Methods 
2.1  Mapping Built Infrastructure 

With the support of the JFSP GRIN, we were able to expand our preliminary analysis 
from two regions of interest (ROI) subsets of the SRP to the entire SRP (Figure 1). Using 
QGIS, we manually digitized high resolution aerial imagery, available from the National 
Agricultural Imagery Program (NAIP) for the two ROIs, one in Owyhee County and one in 
Teton County (Figure 1b and c), comprising a total area of 3,577 km2. NAIP aerial imagery 
is acquired on a three year cycle at a 1 m resolution. The process of manually digitizing data 
is very time-consuming and therefore our two digitizing ROIs are relatively small in extent to 
accommodate for this; however, the spatial resolution of our digitized vector products is very 
high. The locations of our NAIP reference data collection, Owyhee and Teton, corresponded 
with two distinct patterns of development and undeveloped wildland vegetation. Teton is 
dominated by agriculture with dispersed clusters of high-density built infrastructure (Figure 
1c), whereas Owyhee is characterized by extensive shrubland, with low-density built 
infrastructure interspersed between agricultural land (Figure 1b). Residents in both areas have 
expressed concern over recent built infrastructure expansion and projected future expansion 
into the fire-prone sagebrush steppe (Netherton-Morrison et al., 2023). 
 

 
Figure 1. (a) Snake River Plain, Idaho, and the Region of Interest (ROI) reference data 
locations. (b-c) National Agriculture Imagery Program (NAIP) false color composites (Near 
Infrared (NIR), red, green) of ROIs (Owyhee (b), and Teton (c). Our classification was 
completed across the Snake River Plain. 
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We mentored and trained eleven research assistants in both QGIS and the digitizing 

process for training data generation, after which we completed the image classification, 
accuracy assessment, and time series analysis (Figure 2). Each research assistant was either 
paid or received academic credit for their time. We recognize that having a greater number of 
digitizers can be a key source of mis-estimation, which can impact the quality of the 
reference dataset (McRoberts et al., 2018). To reduce this bias, we trained each digitizer with 
an identical thorough digitizing protocol and workflow, and we required each trainee to 
practice the digitizing process before generating reference data for a given ROI and year of 
NAIP imagery. We checked in regularly with the research assistants to carefully monitor their 
progress and digitizing style and were available to clarify any uncertainties throughout the 
process. Before using these data for algorithm training, we spot-checked each students’ 
finished vector data in QGIS to see if their class assignments matched with our class 
assignments. We then used the dplyr and tidyverse packages in R to clean the class labels, 
remove any spelling errors, and assign each class an ID number for use in GEE (Figure 2) 
(Wickham et al., 2023, 2019). 
 

 
Figure 2. Open-source software workflow for mapping built infrastructure in semi-arid 
systems, including reference data generation, classification, accuracy assessment and 
validation. 
 

Our final digitized vector data have a thematic resolution of six classes: five 
representing land cover modified by human activity (residential, infrastructure, roadway, 
agriculture, and vegetation), and one representing natural land cover (range/scrub) (Table 1; 
Figure 3), for the years 2015, 2017, 2019 and 2021. To improve upon the broad definitions of 
built and urban environments used in existing products, we selected 3 classes representing 
built infrastructure types: residential, infrastructure and roadway. Our aim of including more 
nuanced urban environment definitions was to differentiate residential dwellings form other 
infrastructure types and result in more informed LULC and WUI maps.  
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Table 1. Land use land cover (LULC) product classes and definitions. Class definitions for 
NLCD (“National Land Cover Database Class Legend and Description | Multi-Resolution 
Land Characteristics (MRLC) Consortium,” n.d.) and DW (Brown et al., 2022) are taken 
directly from product descriptions. 
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Dataset Class (Class ID) Definition 
Mapped Built 
Infrastructure 
(MBI) 

Residential (1) A human-built structure that represents a place of 
residence or clear domicile, including mobile homes 

Infrastructure (2) A human-built structure or human-built object that is 
not a place of residence, i.e. buildings that are not 
considered house (barns, silos, sheds, storage units, etc.) 
and other infrastructure (such as electric power stations, 
wind turbines, oil well, railway tracks, highways, 
construction sites, natural resource extraction, and 
farming structures) 

Paved (3) An area that includes paved roads covered with asphalt 
or concrete (parking areas both commercial and 
residential, old foundations), can include some unpaved 
roads, including dirt and gravel roads, and dirt trails 

Agriculture (4) An area that has been cleared of natural vegetation for 
the cultivation of crops, identified by the presence of 
row crops, farming equipment, hay bales, irrigation 
equipment, and fallow land 

Vegetation (5) Planted vegetation, including grass/lawn/turf that is 
manicured (surrounding homes, etc.), as well as natural 
vegetation; riparian and trees 

Range/Scrub (6) Uncultivated grassland, shrubland, shrub-steppe, and 
desert scrub occupied by herbaceous vegetation and 
shrubby vegetation 

National Land 
Cover Database 
(NLCD) 

Developed, 
Open Space (21) 

Areas with a mixture of some constructed materials, but 
mostly vegetation in the form of lawn grasses. 
Impervious surfaces account for less than 20% of total 
cover. These areas most commonly include large-lot 
single-family housing units, parks, golf courses, and 
vegetation planted in developed settings for recreation, 
erosion control, or aesthetic purposes 

Developed, Low 
Intensity (22) 

Areas with a mixture of constructed materials and 
vegetation. Impervious surfaces account for 20% to 
49% percent of total cover. These areas most commonly 
include single-family housing units 

Developed, 
Medium 
Intensity (23) 

Areas with a mixture of constructed materials and 
vegetation. Impervious surfaces account for 50% to 
79% of the total cover. These areas most commonly 
include single-family housing units 

Developed, High 
Intensity (24) 

Highly developed areas where people reside or work  
in high numbers. Examples include apartment 
complexes, row houses and commercial/industrial. 
Impervious surfaces account for 80% to 100% of the 
total cover 

https://www.zotero.org/google-docs/?UmyWo5
https://www.zotero.org/google-docs/?UmyWo5
https://www.zotero.org/google-docs/?3An1Jc


 

 
Figure 3. Comparing NAIP aerial imagery to digitized polygons for each LULC class in our 
workflow ((a) Residential, (b) Infrastructure, (c) paved, (d) Agriculture, (e) Vegetation, (f) 
Range/Scrub). 

11 



 
From within our 10263 training polygons, we generated 15,000 random points for 

each class for the four years of training data (2015, 2017, 2019 and 2021), producing a total 
of 360,000 points. At each point, we sampled pixels from our image stacks to produce our 
final training pixel dataset, which consisted of 201,999 pixels in the sample pool. 
 

2.1.2 Satellite Imagery 
We initially proposed using multispectral high-resolution imagery from the Quickbird 

(2001-2015) and Sentinel-2 satellites (2015-present). We encountered challenges trying to 
acquire the Quickbird imagery, in part owing to the issues in extent, availability, and 
reliability of older satellite data. As an alternative to Quickbird, we chose to incorporate 
Sentinel-1 synthetic aperture radar (SAR) to improve the accuracy of our products. 

Using GEE, we acquired Sentinel-2 imagery, which we filtered, masked and used to 
calculate spectral indices. The atmospherically corrected Harmonized Sentinel-2 Level 2A 
surface reflectance (SR) accessible in GEE is only available from 2017 to 2024. As we 
required SR for the time series 2015 to 2024, we converted the Harmonized Sentinel-2 Level 
1C top of atmosphere (TOA) reflectance to SR using the Sensor Invariant Atmospheric 
Correction (SIAC) (Javed et al., 2021; Yin, 2024). To ensure that each image stack was 
treated identically, we performed these atmospheric corrections for every year, including 
those where SR was accessible through GEE. For each year we filtered for imagery collected 
between the months of June and September. These images include four bands delivered at 10 
m resolution (blue, green, red, near infrared (NIR)), and a further six bands delivered at 20 m 
resolution (three red edge bands, a narrow NIR band, and two short-wave infrared bands 
(SWIR)). We first restricted our analyses to images that contained less than 30% clouds, and 
then applied the Sentinel-2: Cloud Probability threshold, set at 20%, to mask clouds present 
in these images. 

A variety of spectral indices are increasingly employed in built infrastructure mapping 
to enhance feature separability between urban and non-urban areas in images. We chose to 
include eight spectral indices in our model (Table 2) (Javed et al., 2021; Lynch et al., 2020). 
While such indices can be beneficial for accurately extracting impervious surfaces in urban 
environments, (Kebede et al., 2022), the spectral signature of urban and built LULC presents 
challenges and confusion with other classes. As spectrally dark and light areas can be a 
source of confusion for some classifiers trying to extract built environments, we chose to 
minimize this issue and refine our classification accuracy by masking lava flows (Kolarik et 
al., 2023), and water/barren areas using existing NLCD products. Since NLCD data is not 
available annually, we used the 2013 NLCD to mask imagery for 2015, the 2016 NLCD for 
2016, 2017, and 2018, the 2019 NLCD for 2019 and 2020, the 2021 NLCD for 2021 and 
2022, and the latest 2023 NLCD for 2023 and 2024. 
 
Table 2. Spectral Indices. 
Index Acronym Band Calculation Reference 
Normalized 
Difference 
Vegetation Index 

NDVI  𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 𝐵8( )−𝑅𝐸𝐷(𝐵4)
𝑁𝐼𝑅 𝐵8( )+𝑅𝐸𝐷(𝐵4)

(Rouse et al., 
1973) 

Normalized 
Difference 
Built-Up Index 

NDBI  𝑁𝐷𝐵𝐼 = 𝑆𝑊𝐼𝑅(𝐵11) − 𝑁𝐼𝑅(𝐵8)
𝑆𝑊𝐼𝑅(𝐵11) + 𝑁𝐼𝑅(𝐵8)

(Zha et al., 2003) 

Built-Up Index BUI  𝐵𝑈 = 𝑁𝐷𝐵𝐼 − 𝑁𝐷𝑉𝐼 (Kaimaris and 
Patias, 2016) 
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Urban Index UI  𝑈𝐼 =  𝑆𝑊𝐼𝑅 𝐵12( )−𝑁𝐼𝑅(𝐵8)
𝑆𝑊𝐼𝑅 𝐵12( )+𝑁𝐼𝑅(𝐵8)

(Kawamura et al., 
1996) 

Normalized 
Built-up Area 
Index 

NBAI 
 𝑁𝐵𝐴𝐼 =  

𝑆𝑊𝐼𝑅 𝐵12( )−( 𝑆𝑊𝐼𝑅 𝐵11( )
𝐺𝑅𝐸𝐸𝑁 𝐵3( ) )

𝑆𝑊𝐼𝑅 𝐵12( )+( 𝑆𝑊𝐼𝑅 𝐵11( )
𝐺𝑅𝐸𝐸𝑁 𝐵3( ) )

(Waqar et al., 
2012) 

New Built-up 
Index 

NBI  𝑁𝐵𝐼 =  𝑅𝐸𝐷(𝐵4) × 𝑆𝑊𝐼𝑅(𝐵12)
𝑁𝐼𝑅(𝐵8)

(Jieli et al., 2010) 

Road Index RI  𝑅𝐼 = 1 −  3× 𝐵11, 𝐵8, 𝐵2( ) 
𝐵8+𝐵11+𝐵2

(Ahmed et al., 
2022; Reddy et 
al., 2019) 

Bare Soil Index BSI 𝐵𝑆𝐼 =  (𝑅𝐸𝐷 𝐵4( )+𝑆𝑊𝐼𝑅1 𝐵11( ))−(𝑁𝐼𝑅 𝐵8( )+
(𝑅𝐸𝐷 𝐵4( )+𝑆𝑊𝐼𝑅1 𝐵11( ))+(𝑁𝐼𝑅 𝐵8( )+

(Rikimaru et al., 
2002) 

 
Sentinel-1 GRD products are delivered as analysis-ready through GEE, having been 

corrected radiometrically and topographically. Sentinel-1 imagery is advantageous for 
detecting built infrastructure as it is unimpeded by cloud cover and hence can provide 
continuous, timely monitoring due to its all-weather imaging capabilities (Koppel et al., 
2017). Sentinel-1 transmits and receives reflected radio waves in either the vertical (V) or 
horizontal (H) polarizations, providing up to four bands at a 10 m spatial resolution in single 
polarization (VV and HH) and cross polarization (VH and HV). SAR accumulates 
backscattering signals from scenes and is structure sensitive, and therefore well-suited for 
built infrastructure detection as urban areas typically generate higher backscatter intensity 
(Koppel et al., 2017). Previously, backscatter characteristics and intensity have been used in 
building detection, estimating building height which is generally positively correlated with 
backscatter (Cho et al., 2023; Frantz et al., 2021; Koppel et al., 2017), and exploring building 
destruction post natural hazards, such as earthquakes (Cho et al., 2023; Pirrone et al., 2020). 
Using GEE, we acquired and filtered Sentinel-1 imagery. Sentinel-1 coverage across each 
year was highly varied with some years having very few images. To ensure Sentinel-1 
representation across the SRP for each year, we included SAR imagery collected between 
March to September, rather than June to September, as some years, notably the earlier years 
(2015-2018) had very few Sentinel-1 images. 

For our classes of interest representing the built infrastructure we determined which 
variables are most useful for each class through variable importance plots to ensure these 
would be used to train the classifier. We selected all high quality images within the growing 
season between June and September for every year and created a single composite image 
consisting of the median value for each pixel. The result was annual image stacks from 2015 
to 2024 with masked, median Sentinel-2 and Sentinel-1 composites with 22 covariates, 
including spectral bands and derived indices. Slope and aspect were included as additional 
topographic variables from the USGS National Elevation Dataset (NED), as both are critical 
factors in determining the suitability and sustainability of built environments. After 
performing an initial classification, we chose to also include distance to water using 
HydroSHEDS Free Flowing Rivers Network, distance to roads and distance to railways using 
US Census Bureau TIGER/Line Shapefiles for each year to improve confusion areas between 
the residential and vegetation classes. 
 

2.1.2 Classification 
Of the supervised classification techniques, RF is more commonly used for LULC 

classification over other classifiers as it is highly efficient, accurate, and readily scalable 
(Tassi and Vizzari, 2020). A recent comparison of the performance of SVM, CART, and RF 
in GEE to map LULC using Sentinel-2 revealed that RF outperformed the other ML models 
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(Zhao et al., 2024). RF is a non-parametric ML approach that combines multiple decision 
trees, and is suited to multi-class outputs (Nguyen et al., 2020). Available as a classifier in 
GEE, RF has been used successfully in previous studies focused on urban and built 
environment classification (Di Shi and Yang, 2017; Phan et al., 2020), and land use mapping 
in semi-arid areas (Abida et al., 2022). In GEE we applied our 100-tree RF classifier to each 
raster stack and produced annual maps across the SRP spanning 2015 to 2024. 

 
2.1.3 Accuracy Assessment and Validation 

Rigorous accuracy assessments are an essential component of developing any LULC 
product (Radeloff et al., 2024; Zhang and Li, 2022; Zhang and Roy, 2017), and should adhere 
to best practices (Olofsson et al., 2014). With supervised image classification, it is important 
that the training and validation datasets originate from separate samples to avoid biased 
accuracy assessments (Narducci et al., 2019). To that end, we evaluated our classification 
output using independent validation data generated through an equal allocation stratified 
random sampling design. Comparative to a simple random sampling design, an equal 
allocation stratification increases sampling rates for classes of interests that may be more rare 
in the study region, and also ensures that each pixel with data has a non-zero selection 
probability (Olofsson et al., 2014; Stehman and Foody, 2019). We selected three years - 2016, 
2020, and 2024 - for validation and to evaluate classifier performance as these years did not 
have associated training data. For each year, we randomly selected 100 pixels per class, 
resulting in a yearly sample size of 600, and a total sample size of 1800 across the three 
validation years. For each pixel, we created a reference label by visually inspecting the 
corresponding Sentinel-2 image composite for the validation year. Though instances were 
few, we addressed mixed pixel problems by visually comparing the Sentinel-2 composite to 
NAIP imagery and then labeling to the nearest identifiable pixel relative to the Sentinel-2 
imagery. 

To assess the accuracy of the RF classifier we used a confusion matrix. Confusion or 
error matrices provide the proportion of area that is correctly classified for each class and also 
the proportion of area that is incorrectly classified for each class (Stehman, 2014). From the 
confusion matrix, we present popular accuracy measures, including Overall Accuracy (OA), 
Producer’s Accuracy (PA), User’s Accuracy (UA), Omission error (OE) and Commission 
error (CE). To assess the accuracy of the RF classifier, we used area adjusted producer’s 
accuracies (PA) to estimate the omission bias of the classifiers for a given class (sensitivity), 
and user’s accuracies (UA) to estimate commission biases (specificity), as well as associate 
variance estimators to calculate 95% confidence intervals. To smooth the classified images, 
we removed small isolated regions consisting of two pixels or fewer of the same 
classification. 
 
2.1.4 Time Series Analysis and Product Comparison 

We used our mapped product to explore changes in built infrastructure over time 
across the SRP. We calculated area estimations for each class across the SRP to quantify how 
much change was observed over the time series. We isolated built infrastructure classes and 
explored area trends, spatial patterns and change across the SRP from 2015 to 2024. 

We compared our SRP time series with three publicly available LULC products: 
NLCD, MBF and DW using area estimate comparison and visual spatial comparison. Our 
mapped products have three classes representing built infrastructure: residential, 
infrastructure and paved (Table 1). In terms of thematic resolution, MBF does not have 
classes. NLCD has four ‘developed’ classes representing the built infrastructure with varying 
intensity of impervious surfaces and DW has one: ‘built’ (Table 1). Our mapped products 
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have the same spatial resolution as DW: 10 m, which is a finer spatial resolution than the 30 
m NLCD, but a coarser spatial resolution than MBF. MBF has the highest spatial resolution 
of all four products. Temporally, our mapped products are annual for the time series 2015 to 
2024 which also matches DW (Figure 4). Both our mapped products and DW have a finer 
temporal resolution than both NLCD and MBF, with the caveat that MBF has temporal 
uncertainty with being trained on Bing maps for the years 2014 to 2020 (Figure 4). 

 
Figure 4. Comparing spatial, temporal and thematic resolutions of existing LULC products to 
our mapped built infrastructure (MBI) products. Both DW and MBI have a spatial resolution 
of 10 m and thus have an identical pixel size, but these products differ in their thematic 
resolution. The higher thematic resolution of MBI is illustrated by the three hatched shapes 
within the black square; however, these do not represent sub-pixel features, but rather serve 
as a schematic to demonstrate the enhanced thematic detail of our product, compared to the 
single ‘built’ class in DW. Likewise, the four hatched shapes within the NLCD represent the 
four ‘developed’ classes. 
 

Using GEE, we processed existing LULC products before comparing them to our 
mapped products. We acquired NLCD for the available years: 2016, 2019, 2021, and 2023. 
We filtered DW by date to match our products, and created annual DW composites 2015 to 
2024. We filtered and clipped both datasets using the SRP boundary. We calculated the 
annual area estimates in km2 for each class representing the built environment in NLCD, DW 
and our mapped products and we explored the change in these classes over these different 
time series. We then compared area estimates and spatial distribution across these products to 
explore whether there was any correspondence. Using QGIS, we extracted a total of 625,997 
building footprints across the SRP ecoregion from the MBF data. As the MBF does not have 
a time series, we calculated the area in km2 of these footprints to get the total MBF coverage 
across the SRP. 
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3. Results and Discussion 
3.1 Mapping Built Infrastructure 

We applied our RF classifier to ten image stacks containing a fusion of Sentinel-2 and 
Sentinel-1 time series imagery and generated annual mapped products across the SRP for the 
time series 2015 to 2024. Our mapped product distinguished the six different classes well, 
with OAs of 90.5% (±7.5%) for 2016, 93.6% (±7.14%) for 2020, and 96.3% (±6.98%) for 
2024. Of the built infrastructure classes, the PA was consistently highest for the infrastructure 
class ranging from 97.94% (±16.26%) to 99.70 (±2.95%), followed by the residential class 
with PAs ranging from 90.98% (±11.46%) to 96.42% (±3.35%). PAs were lowest for the 
paved class. The UAs were consistently higher for the paved class compared with the other 
infrastructure classes, followed by the residential class and then the infrastructure class. Area 
estimations of both residential and infrastructure classes increased over time from 2016 to 
2024. Our product poorly captured the range/scrub class which had the lowest PA of 31.48% 
(±14.11%) in 2016, and a similarly low PA in 2024 of 31.53 (±16.09%). In addition, our 
product does not capture agriculture as well as built classes, with the lowest PA at 51.15% 
(±4.63%). The vegetation and range/scrub classes had the highest UAs, all above 99%, with 
the exception of the range/scrub class for the year 2020 which was 73.25% (±8.72%). 

For our classifier, Distance to Railways was the most important variable for 
distinguishing the three built infrastructure classes: residential, infrastructure and paved, from 
the other classes, with a variable importance score of 6.85%. Distance to Roads and Distance 
to Rivers were also valuable for this model, with variable importance scores of 5.61% and 
5.40%, respectively. Sentinel-1 variables, specifically VH and VV were also important for 
this model, more so than the derived spectral indices (5.05% and 4.57%, respectively). Of the 
spectral indices, RI was the most important (4.56%), followed by UI (4.03%), and NBAI 
(4.02%). 

Across the SRP, we found that the residential class increased by 8.62% between 2016 
(383 km2) and 2024 (416 km2), similarly the infrastructure class increased by 7.23% (318 km2 

to 341 km2) (Figure 5, Figure 6). Though built infrastructure change was heterogeneous 
across the SRP, exploring the time series at the ecoregion level reveals increases in all three 
built classes over time in our mapped product, a trend which is also reflected in the DW Built 
class and most NLCD classes (Figure 6). 
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Figure 5. Classification results for the year 2024 across the Snake River Plain (SRP), and 
comparisons between 2016 and 2024 classifications in (a) Boise (west SRP), (b) suburbs to 
the north of Twin Falls (south SRP), and (c) Ammon, a suburb city to the east of Idaho Falls 
(east SRP). 
 

 
Figure 6. Comparing class areas (km2) across the SRP as mapped by different LULC 
products, including our mapped built infrastructure (MBI) product, global Dynamic World 

17 



(DW), Microsoft Building Footprints (MBF), and National Land Cover Dataset (NLCD). 
2023 values for the NLCD Low Intensity class were surprisingly high, with a 161% increase 
in area for this particular class, from 697 km2 in 2021 to 1816 km2 in 2021. Released in 
October 2024, the 2023 NLCD data mostly compare well with previous years, however this 
increase seems questionable. As such, we have omitted the NLCD Low Intensity class and 
Built SUM for the year 2023. 

 
From the NLCD products for 2016, 2019, and 2021 the total extent of the four 

developed classes across the SRP was as follows: 2,170 km2, 2,208 km2, and 2,228 km2. For 
the same years, the extent of the DW Built class was: 1,972 km2, 2,145 km2 and 2,287 km2, 
respectively. In comparison, the sum of our three built classes for the same years was: 2,219 
km2, 2,132 km2, and 2,333 km2. Overall, there is congruence between the total built area in 
our MBI product (MBI Built Sum), NLCD (NLCD Built Sum), and the DW Built class 
(Figure 8). Visually comparing specific classes reveals that the MBI Residential class is most 
similar to the NLCD Medium Intensity class. Comparing across the years that NLCD is 
available, 2016 to 2021, the NLCD classes with the most growth during this period were 
Medium and High Intensity, 12.30% and 9.20%, respectively. The Low Intensity class only 
increased by 3.44%, while the Open Space class decreased in area by 1.35%. During this 
same period, all the MBI classes experienced increases in area extent, with the MBI 
Residential class experiencing the most growth (13.10%), followed by Infrastructure (4.40%), 
and Paved (3.29%). MBI Built classes combined grew by 5.1% between 2016 and 2021, 
while the DW Built class increased in extent by 6.69%. 

For the year 2024, our products estimate that 5.88% (3117 km2) of the SRP is 
classified as built-up land (residential, infrastructure and paved combined), compared to 6% 
estimated by the NLCD and 4.64% by DW. Visual comparisons of our classification 
compared to NLCD, DW and MBF are provided in Figure 7.  
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Figure 7. Spatial comparison of classes between (a) our mapped built infrastructure, (b) 
Microsoft Building Footprints (MBF) (c) National Land Cover Dataset (NLCD) and (d) 
Dynamic World (DW) for the year 2021. 
 

Our mapped products offer advantages for capturing built infrastructure over current 
LULC products. Our time series improves on existing products in terms of spatial, temporal 
and thematic resolutions. 

We found that the finer spatial and temporal resolution from the Sentinel fusion time 
series generate more accurate and detailed LULC maps compared to existing national 
pixel-based datasets produced solely from Landsat, and global pixel-based datasets produced 
solely from Sentinel-2. LULC classes in existing products are lacking detail for parsing out 
specific types of infrastructure accurately (Sleeter, 2012). Although NLCD has four built 
classes which is a thematic improvement on the global DW dataset, these classes are 
intensity-based. As such they do not allow for the identification and differentiation of 
residential properties, and single-family housing units commonly characterize three of these 
classes (Table 1). Like the DW dataset, our pixel-based product used Sentinel-2 but with the 
addition of Sentinel-1 SAR. Although the global DW is partially derived from the same 
imagery and has the same spatial resolution as our product, our time series has three built 
classes to the DW’s one; and thus offers improvements for differentiating between types of 
urban development, particularly for identifying residential properties. 

Created using deep learning and a polygonization algorithm for edge detection, the 
MBF has the highest spatial resolution of all existing products, including ours, however these 
data have some deficiencies. In alignment with previous reports (Carlson et al., 2022; Heris et 
al., 2020), building classification errors of commission and omission are present in the MBF 
dataset; we encountered errors of commission and omission. While MBF accurately captures 
most building footprints, these data do not allow for differentiation between building types, 
for example, separating homes from agricultural and resource extraction infrastructure.  

The high OAs of our classifier and spectral separability of the built classes, 
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particularly Residential and Infrastructure, in our semi-arid system gives hope that built 
infrastructure types can also be differentiated in other systems. Rather than global or even 
national products (Wyborn and Evans, 2021), our product gives support for regionally 
parameterized models that can more accurately capture built infrastructure change over time. 
Our work demonstrates the opportunities that improvements in remote sensing technologies 
offer for parsing residential homes from other types of built infrastructure, and supports 
existing literature demonstrating that classifying built infrastructure using remote sensing 
imagery can produce mapped products of development and urban intensity that are superior 
to those found in NLCD (Abida et al., 2022). Creating accurate, timely LULC maps with 
improved thematic resolution to delineate where people are residing may be more helpful for 
informing policy and decision-making both within and outside the WUI, land use planning, 
food security assessments and natural hazard and disaster responses than existing products 
with single or intensity-based built classes. 

4. Conclusions and Implications for Management/Policy 
and Future Research 
4.1 Key Findings and Implications for Management/Policy 
Accurate and timely built infrastructure maps have broad applicability and can be critically 
important for informing policy, decision-making, land use planning, food security 
assessments, natural hazard and disaster responses and evaluating conservation efforts. We 
employed a fusion of Sentinel products and generated annual maps of built infrastructure 
spanning 2015 to 2024 using a combination of open-source, freely available software, cloud 
computing, and imagery. Our time series improves on existing built infrastructure products in 
spatial, temporal and thematic resolution. Advances in remote sensing imagery, particularly 
increases in spatial resolution, offer promise for differentiating built infrastructure types and 
for detecting smaller features, such as low-density built infrastructure, that can improve upon 
existing LULC maps derived from more spatially coarse imagery. Image classification 
represents an opportunity to leverage open-source approaches and data, from using cloud 
computing and freely available remote sensing imagery, to generating products with 
accompanying detailed open-source workflows. 
 
Delineating the areas where built infrastructure is close to wildland vegetation, described as 
the wildland-urban interface (WUI), is important for numerous human-environmental land 
management challenges beyond wildfire, including habitat loss, ecosystem fragmentation, 
declining biodiversity, invasive species spread, disease transfer, and land cover conversion. 
Wildfire is a critical concern in the WUI, as infrastructure expansion increases both fire 
ignitions and the number of residential properties at risk. While the WUI alone does not 
directly define fire risk, its delineation influences fire risk management. However, the use of 
WUI maps to guide wildfire risk decisions is not well understood. We reviewed various WUI 
definitions and conceptualizations in the context of wildfire risk management. WUI 
operationalizations should consider spatial scale: standardized WUI definitions hold value for 
large spatial-scale WUI mapping, ensuring consistency and comparability at national or 
global levels, while region-specific WUI definitions offer more flexibility to capture local 
conditions and variability. We emphasize that WUI maps were not designed to represent fire 
risk, and should not be relied upon as the sole tool for guiding wildfire risk management. 
Once WUI and non-WUI areas are delineated, these maps should be combined with 
additional data sources for a more accurate assessment of fire risk prior decision-making. 
This integration should leverage recent advancements in remote sensing, geospatial 
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technologies, and center local knowledge and community collaboration, to capture the key 
factors influencing fire risk both within and outside the WUI. 
 
Ultimately, this research demonstrates the value of regionally parameterized LULC models 
and local-regional WUI maps to inform management and decision-making that is place-based 
and considers local conditions. We emphasize the importance of being able to identify 
residential versus other infrastructure types, and highlight that our MBI products have wide 
application, beyond WUI delineations.  
 
4.2 Future Research 

Open-source and freely available imagery and software enables a broader audience to use 
these workflows and products. We recommend that future research employ open-source and 
freely available imagery and software for reproducibility and transparency.  
 
We identified future research needs which include, but are not limited to: as including: 
i) tailoring other LULC maps to other less studied systems 
ii) utilizing finer-scale remote sensing imagery, such as with spatial resolutions finer than 5 
m, and considering combining lidar, to more accurately capture and parse between more built 
infrastructure types and vegetation. This could be especially relevant for built linear features, 
such as powerlines and fences. 
iii) producing mapped products at sub-annual resolution to track seasonal, monthly, or weekly 
change – such finer-temporally resolved maps would be particularly useful for natural hazard 
and disaster response, including mitigating human exposure to wildfire in both the WUI and 
non-WUI. 
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6. Appendix A: Contact Information for Key Project 
Personnel 
Megan Cattau (Principal Investigator) Assistant Professor, Human Environment Systems, 
Boise State University, 1910 University Dr, Boise, ID 83725, USA. Email: 
megancattau@boisestate.edu  
 
Megan Dolman (Student Investigator) PhD Candidate, Human Environment Systems, Boise 
State University, 1910 University Dr, Boise, ID 83725, USA. Email: 
megandolman@u.boisestate.edu  

7. Appendix B: List of Completed/Planned 
Scientific/Technical Publications/Science Delivery 
We have produced several products from this research, including manager-relevant 
deliverables, scientific manuscripts, and other products related to science delivery (Table 3). 
Our algorithm workflow and code are open source and available on Google Earth Engine and 
we will publish two manuscripts that will be related to this project, in addition to an ArcGIS 
StoryMaps to give a high-level overview of this project. 
 
Table 3. Deliverables and products with description and status 

Deliverable Type  Description  Delivery Dates 

JFSP Final Report  Final report of the project for the JFSP  Complete 

JFSP Progress 
Report 

A JFSP progress report was submitted in December 2024. Complete 

JFSP Progress 
Report 

A JFSP progress report was submitted in September 2023.  Complete 

JFSP Project 
Overview 

A modified version of the final report abstract within a 
one- to two-age format that communicates the key project 
outcomes and implications for management 

Complete 

Manager-Relevant 
Deliverable (a) 

Annually-resolved remotely-sensed data products of 
contemporary infrastructural development 

Complete 
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Dryad: https://doi.org/10.5061/dryad.mcvdnckb3  
Google Drive:

  Dolman.et.al.2025_AnnualClassifications

Manager-Relevant 
Deliverable (b) 

Summary guide to using the annually-resolved data 
products  

  Summary Guide

Complete 

Manager-Relevant 
Deliverable (c) 

StoryMaps, created using ArcGIS StoryMaps to display 
the mapped products interactively, available at: 
https://arcg.is/n9e8T  

Complete 

Manager-Relevant 
Deliverable (d) 

Community partner meeting to present deliverables  Complete 

Digitizing 
Definitions 

Definitions used for each of the six land use and land 
cover classes in the mapped built infrastructure (MBI) 
product. Available at: 
https://docs.google.com/document/d/1BjHnJ6LMfLvnarX
wRKMUKWE3bTCwq3gweGDfl8iHdNc/edit?tab=t.0  

Complete 

QGIS Digitizing 
Workflow 

Detailed workflow document that describes the process of 
manually digitizing imagery in QGIS and creating 
training data 

- Includes an area of interest shapefile 
(Tetonia_Driggs_AOI) 

Complete 

QGIS Digitizing 
Workflow Video 

Walk-through video detailing how to generate digitize in 
QGIS, created by Savannah Canova 

Complete 

QGIS Print Layout A walk-through video designed to demonstrate to use the 
print layout feature in QGIS to create a map 

Complete 

GEE Repository Open-source code for developing processing and 
detection Random Forest algorithms, classifying image 
stacks, and exploring change in land use and land cover 
over time. Available at: 
https://code.earthengine.google.com/?accept_repo=users/
megdolman/SIAC_BuiltInfrastructureMapping  

Complete 

Manuscript (1)  A peer-reviewed manuscript presenting the algorithm 
development methods using Google Earth Engine, that 
includes evaluation of built infrastructure patterns in the 
Snake River Plain over time and a comparison of the 
mapped built infrastructure (MBI) product with other 
existing land use and land cover products. Published in 
Remote Sensing Applications: Society and Environment in 
January 2025. Available at: 
https://doi.org/10.1016/j.rsase.2025.101472  

Complete 
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Manuscript (2)  A review manuscript discussing WUI conceptualizations 
and definitions in the context of wildfire risk 
management. Emphasizes the value that remote-sensing 
products like MBI have for informing decision-making 
around wildfire risk to communities regardless of WUI 
designation. Will be submitted to International Journal of 
Wildland Fire for peer-review. 

In progress 

Conference  
Presentation (a) 

Presented a poster at the Ecological Society of America 
annual meeting in Portland OR, August 2023 

Complete 

Conference 
Presentation (b) 

Presented an oral presentation at the 7th International Fire 
Behavior and Fuels Conference in Boise ID, April 2024 

Complete 

Conference  
Presentation (c) 

Presented a poster at the National Cohesive Wildland Fire 
Management Strategy Workshop in Atlantic City NJ, 
November 2024 

Complete 

Graphical 
Representation (a) 

An illustrated graphic outlining the algorithm 
development and image classification methods 

Complete 

Graphical 
Representation (b) 

An illustrated graphic comparing existing land use land 
cover products in comparison to our mapped built 
infrastructure product 

Complete 

Artistic 
Representation  

An original poem describing the JFSP funded project, 
presented at the National Cohesive Wildland Fire 
Management Strategy Workshop in Atlantic City NJ, 
November 2024 

Complete 

 

8. Appendix C: Metadata 
Google Earth Engine (GEE) repository for MBI products is available at: 
https://code.earthengine.google.com/?accept_repo=users/megdolman/SIAC_BuiltInfrastructu
reMapping  

 
 
MBI products are publicly available at:  
Dryad: https://doi.org/10.5061/dryad.mcvdnckb3  
Google Drive: 
https://drive.google.com/drive/folders/1faKaLfSwEiYhrunrSKAPdpGMEpogGR7V?usp=dri
ve_link  
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