Cheating Cheatgrass:
New Research to Combat a Wily Invasive Weed

Cheatgrass and its cousin, red brome, are exotic annual grasses that have invaded and altered ecosystem dynamics in more than 41 million acres of desert shrublands between the Rockies and the Cascade-Sierra chain. A fungus naturally associated with these Bromus species has been found lethal to the plants’ soil-banked dormant seeds. Supported by the Joint Fire Science Program (JFSP), researchers Susan Meyer, Phil Allen, and Julie Beckstead cultured this fungus, Pyrenophora semeniperda, in the laboratory and developed an experimental field application that, in some trials, killed all the dormant soil-banked Bromus seeds, leaving none to germinate the following year. The team’s work opens the way to a commercial biocontrol product that may be capable of safely eliminating the seed bank of persistent invasive grasses. Biocontrol could be used in conjunction with other weed control measures and conservation strategies to make sagebrush-steppe lands less susceptible to reinvansion.

A biocontrol tool effective against Bromus seeds would be a boon to managers working to restore the native bunchgrasses, forbs, and shrubs that characterize an intact shrub-steppe ecosystem.
In addition, most ranchers would prefer to graze their cattle on native perennial grasses, which are both more nutritious than cheatgrass and more consistent in their production from season to season.

More frequent fires bring more soil erosion. “We had a huge fire in 2007, the Milford Flat Fire,” says Susan Meyer, U.S. Forest Service research ecologist with the Rocky Mountain Research Station, “and we’re still getting dust storms all the way to the Wasatch Mountains.” The fires also release pulses of CO\textsubscript{2} into the atmosphere, carbon that might otherwise stay locked up in the leaves and roots of sagebrush and other plants.

Curbing cheatgrass would lessen the frequency of fires, reduce CO\textsubscript{2} emissions, and allow the sagebrush-steppe ecosystem to recover. That, says Meyer, might help the Great Basin become a carbon sink, absorbing more carbon than it gives off. “It will never sequester as much as a forest, of course,” she says, “but you’d be surprised how much carbon can be stored in root masses down there in the soil.”

Killer Fungus

None of these benefits will happen until range managers get a handle on cheatgrass. Cheatgrass is tough, fast spreading, and exceedingly difficult to dislodge. The main tools available for battling cheatgrass are fire, tillage, and herbicides. Each method has a role in combating cheatgrass, but each also has disadvantages. Burning early in the spring, before seeds form, may eliminate the current season’s foliage, but it doesn’t kill most of the seeds banked in the soil. Also, fires produce smoke that may bother nearby communities, and there’s always a risk that prescribed fire will escape its boundaries. Tilling disturbs the soil and can harm desirable plants and microorganisms, and it’s expensive to undertake across vast acreages. Herbicides are effective against annual weeds, but they can be expensive when used on a large scale and may harm native species. Even more notable, none of these remedies can eliminate the banked seeds. With its cache of seeds intact, cheatgrass will always have the upper hand.

That’s where *Pyrenophora semeniperda* shows promise, says Meyer. It’s a naturally occurring pathogen, found wherever cheatgrass is found, and it likes to kill and eat grass seeds. “If we can use this fungus to develop a biocontrol agent that’s really...
effective on seeds,” says Meyer, “we could create a window for restoring the native shrub-steppe plant community, even on sites that have burned repeatedly and are in persistent, annual brome monocultures.”

Black Fingers

Meyer has been studying the ecology of cheatgrass for 20 years. Ten years ago she formed a team that included her former graduate student Julie Beckstead and Brigham Young University colleague Phil Allen, and they set out to probe the mysteries of the cheatgrass seed bank. How many seeds did the plant store in the soil every year? How long were they viable? How many germinated the following year?

They started by collecting and sprouting cheatgrass seeds in the laboratory, and there they made a startling discovery: after a couple of weeks of exposure to moisture, some of the seeds started to grow stubby black protuberances from their slender sides. The infested seeds did not germinate—they were dead. “We knew it was a fungus, but we didn’t know what kind,” says Meyer. “Since we didn’t have a name for it, we dubbed it ‘Black Fingers of Death.’”

The researchers were also collecting samples of cheatgrass seed banks and counting the seeds in a given volume of soil. Many of the seeds in these samples, they discovered, were infested with BFOD, as they’d taken to calling it. “A large proportion of dormant seeds had this fungus growing out of them, and it was the same fungus we’d seen in the germination experiment,” says Meyer. “That was our ‘Aha’ moment. We saw that this fungus was killing lots of seeds, thousands and thousands per square meter.” The fungus appeared to affect only seeds—the plants themselves showed no symptoms.

They still didn’t know what to call the pathogen, so Meyer and Beckstead got in touch with a retired Canadian plant pathologist, Robert Shoemaker. Beckstead emailed Shoemaker a photo of dead seeds with the protruding black fingers. Shoemaker immediately identified the fungus as Pyrenophora semeniperda, whose species name means “lost seed.” (The fungus is also known in another form as Drechslera campanulata; fungi are tricky to classify because they can take many different forms in their life cycle.)

“Then when we had a name for it, we discovered literature on it,” says Meyer. Scientists in Australia had identified P. semeniperda on seeds of weedy Bromus grasses. They had been trying to develop it as a biocontrol for ripgut brome (B. diandrus), a weed that’s troublesome in cereal croplands there.

Australian scientist M.A. Campbell had developed a method to produce a fungal inoculum in the lab. Campbell and colleague R.W. Medd applied the inoculum to mature Bromus seeds but could not get it to kill them. One of the Meyer team’s early experiments, led by Julie Beckstead, revealed why: the germinating seeds were outracing the pathogen. Fast-germinating seeds usually escaped the pathogen’s clutches, while slow-germinating ones were often killed.

Natural Presence

P. semeniperda is a dry-sporulating fungus and a necrotroph, meaning it colonizes by killing tissues of its host. It invades dormant seeds by secreting toxins that eat into the seed’s endosperm tissue, which the fungus then consumes and metabolizes. In the process, it kills the seed’s embryo.

The researchers were also collecting samples of cheatgrass seed banks and counting the seeds in a given volume of soil. Many of the seeds in these samples, they discovered, were infested with BFOD, as they’d taken to calling it. “A large proportion of dormant seeds had this fungus growing out of them, and it was the same fungus we’d seen in the germination experiment,” says Meyer. “That was our ‘Aha’ moment. We saw that this fungus was killing lots of seeds, thousands and thousands per square meter.” The fungus appeared to affect only seeds—the plants themselves showed no symptoms.

They still didn’t know what to call the pathogen, so Meyer and Beckstead got in touch with a retired Canadian plant pathologist, Robert Shoemaker. Beckstead emailed Shoemaker a photo of dead seeds with the protruding black fingers. Shoemaker immediately identified the fungus as Pyrenophora semeniperda, whose species name means “lost seed.” (The fungus is also known in another form as Drechslera campanulata; fungi are tricky to classify because they can take many different forms in their life cycle.)

“Then when we had a name for it, we discovered literature on it,” says Meyer. Scientists in Australia had identified P. semeniperda on seeds of weedy Bromus grasses. They had been trying to develop it as a biocontrol for ripgut brome (B. diandrus), a weed that’s troublesome in cereal croplands there.

Australian scientist M.A. Campbell had developed a method to produce a fungal inoculum in the lab. Campbell and colleague R.W. Medd applied the inoculum to mature Bromus seeds but could not get it to kill them. One of the Meyer team’s early experiments, led by Julie Beckstead, revealed why: the germinating seeds were outracing the pathogen. Fast-germinating seeds usually escaped the pathogen’s clutches, while slow-germinating ones were often killed.

Natural Presence

P. semeniperda is a dry-sporulating fungus and a necrotroph, meaning it colonizes by killing tissues of its host. It invades dormant seeds by secreting toxins that eat into the seed’s endosperm tissue, which the fungus then consumes and metabolizes. In the process, it kills the seed’s embryo.

The Meyer team’s 3-year, JFSP-supported study (JFSP Project No. 07-1-3-10) became a multidimensional field and laboratory examination of P. semeniperda and its Bromus hosts. The researchers
wanted to know which other plants might be susceptible to the fungus, how virulent it could be, how many seeds it killed in its natural environment, and how long it persisted in a seed bank. They wanted to perfect techniques for culturing the fungus in the laboratory and for creating an inoculum that could be applied and tested in the field.

The team sampled the composition of seed banks at five study sites where cheatgrass or red brome was present, and they counted and incubated the seeds they found, including those of the native grass species. They found *Bromus* seed in densities ranging from 6,000 to 25,000 per square meter in August. Between 40 and 70 percent of these seeds germinated the following season; 3 to 35 percent carried over as viable dormant seeds; and 10 to 53 percent were killed by the fungus.

It seemed clear that *P. semeniperda* was an important natural presence in these seed banks. But obviously, many dormant seeds were escaping infection and remaining viable into the next season. By contrast, seed banks of native bunchgrasses had very few seeds killed by *P. semeniperda*, which suggested that *Bromus* species were probably the fungus’ main hosts.

To explore this question further, the researchers inoculated seeds of more than 50 plant species that live in semiarid western environments with high loads of the *P. semeniperda* fungus. They found that most of the grasses—including many of the natives that managers are working to restore—had some susceptibility; although a few, including Indian ricegrass (*Achnatherum hymenoides*) and needle and thread (*Hesperostipa* spp.), seemed to be quite resistant. But even highly susceptible species were usually able to escape through rapid germination, especially at the lower inoculum loads achievable in biocontrol treatments. “This means that the inoculum levels we’re likely to use [in a biocontrol product] will have low impact on native grasses,” Meyer says.

The researchers also wanted to identify the likeliest strains of *P. semeniperda* for development into a commercial seed-killing agent. After some experimentation, Suzette Clement, U.S. Forest Service microbiology technician, developed an efficient method for growing the fungus in culture.
and harvesting its spores, called conidia. Then they tested 92 fungal strains gathered from different sites to determine their virulence levels. They measured virulence in terms of how capable a strain was at killing not only dormant but nondormant seeds—a good way to flush out the most efficient killers. They found a wide variation; some strains of the fungus couldn’t kill any nondormant seeds, whereas one was able to kill more than 40 percent of seeds inoculated.

Slow and Mean

Clement and Brigham Young University graduate student Thomas Stewart tested the growth rate of the various strains by measuring how long it took for a single spore to grow into a colony of mycelia (a fungus’ vegetative part). To their surprise, they found that the most virulent strains were the slowest-growing ones. “We thought, this is a race between the fungus and the seed, and whichever races fastest, wins,” says Meyer. “But we found that the slowest-growing strains are the meanest, and the fastest-growing ones are the least mean.”

In fact, most of the fungal strains were at the faster-growing, lower-virulence end of the spectrum, which suggests that these qualities are evolutionarily better fitted to life in a *Bromus* seed bank. That may be because, as a necrotroph, the fungus has to produce toxins that kill its food. More-virulent fungal strains can produce more toxins, says Meyer, but they pay a price in growth. “The meaner poisons kill and disable more quickly,” she says, “but poisons are metabolically expensive to produce. So if you’re a *P. semeniperda* fungus, you can either grow fast or you can make lots of poison, but you can’t do both. That’s our hypothesis.”

The team is still working out the evolutionary implications of the variation in virulence. But Meyer says this slower/meaner–faster/milder correlation bodes well for the prospects of a commercial biocontrol product. “It creates the interesting possibility,” she says, “that if we can select or breed a highly virulent strain, that strain would grow so slowly that, once it does its job in eliminating the cheatgrass seed bank, it would fail to persist in competition with the less virulent but faster-growing wild strains.”

This would be an invaluable trait for a biocontrol agent: throw a heavyweight punch that knocks out the cheatgrass seed bank, and then die out, leaving the field open for desirable grasses and shrubs—whose fast-germinating seeds would be able to outgrow any less-virulent wild strains of the fungus that might remain.

Potato Soup

Clement led the team in producing the test biocontrol product. She made a broth of potato dextrose and seeded it with selected fungus strains. She set each batch to ferment for 2 or 3 days at room temperature, letting it develop a mycelial culture. The mixtures were spun in a centrifuge to concentrate the mycelial mass, moistened with fresh potato dextrose broth, mixed with sterile granulated clay, and set to dry slowly for 1 or 2 days, encouraging spores to form. Then the crumbly spore-laden clay was forced through a sieve.

The resulting granulated inoculum, in a range of virulence levels, was sprinkled by hand in varying quantities on field plots. All the treatments reduced the proportion of viable cheatgrass and red brome seeds in the seed bank beyond the approximately 54 percent that the endemic fungus killed naturally. Heavy applications of the most virulent inoculum killed an average of 89 percent of the seed bank, and in some treatments, the kill rate reached 100 percent.

“Complete eradication of the seed bank may not be absolutely necessary,” says Meyer, “but you need to get close to that, because cheatgrass is very plastic in its growth responses. That’s what makes it such a good weed.” A seed-carpeted square meter of ground will produce many small cheatgrass plants; a pinch of seeds in a square meter of ground will produce a few big cheatgrass plants. “And in either case, they make a gazillion seeds, and you’re right back where you started.”

This is why other tools, like burning and herbicides, will likely be used in conjunction with
The team’s finding that the most virulent strains of *P. semeniperda* are also the slowest growing presents an intriguing puzzle. Why shouldn’t the strongest also be the fastest? In a race where the prize is long-term availability of food, one might expect the winner to be just fast enough to get the resources to keep reproducing itself, just mean enough to disable some host seeds without keeping the host from reproducing—and just fast and mean enough to beat out its competitors.

Meyer’s team knew that *P. semeniperda* was most effective in killing dormant seeds—the ones already germinating were the ones that got away. So they hypothesized that the most virulent strains would have a competitive advantage on the moister sites, where there were more germinating seeds and fewer dormant ones. This did not prove to be the case. Instead, they found a range of virulence across all sites, and the most virulent strains so far have actually come from the drier sites, where more seeds were dormant.

Why should there be a range of virulence on a single site? The researchers got a glimpse at the answer when they discovered, using molecular genetics tools, that single seeds were often infected by multiple strains of the pathogen. This suggested that the strain that kills a seed is not necessarily the one that eats it. The slower-growing, more virulent strain may kill the seed only to have the faster-growing, less virulent strain jump in and scavenge the resources.

For *P. semeniperda*, the researchers speculate, high virulence is an advantage only when the prey is a fast-germinating seed. A dormant seed is not going anywhere, so a mean pathogen has little advantage over a mild one in killing it. And slow growth, even if it’s coupled with virulence, is no advantage on fast-germinating seeds if there are faster (albeit weaker) strains in the neighborhood that can gobble the seed’s resources once it’s dead.

This intraspecies competition may help explain why high virulence is rare. But why should it exist at all? The fact that virulence varies randomly across populations and habitats, the researchers say, suggests that highly virulent strains may result from mutations or recombination events that persist in a limited environment for a limited time, before their fitness advantage vanishes with changing conditions.

Cheatgrass seeds vary considerably in the timing of dormancy and germination, and this variability probably encourages a reciprocal variability in the *P. semeniperda* pathogen. Meyer and her team are continuing to delve into the environmental and genetic factors that govern virulence in *P. semeniperda*.

biocontrol. Burning before cheatgrass sets seed doesn’t eliminate the carryover seed bank, but it can reduce it considerably without killing off the natural fungus population. In addition, the team found that combining the test inoculum with herbicide applications gave essentially complete control of cheatgrass and red brome for a season—a generous window for reestablishing native vegetation.

Persistence

Could a highly virulent, laboratory-created fungus somehow mutate into a “Godzilla” strain that would escape and infect desirable plants? Based on findings thus far, says Meyer, that’s highly unlikely. “If we could somehow breed a strain that will kill germinating seeds very well, it should have a slow growth rate, which means that it’s maladapted to the real world.”

Once the carryover dormant seed bank is eliminated, the researchers say the pathogen is unlikely to persist on all but the driest sites. In the field trials, enough fungal inoculum was applied to significantly knock back the cheatgrass seed banks, and native grasses that were sown a year later showed minimal harmful effects.

Just in case, however, the team tested three common agricultural fungicides and found they were able to kill *P. semeniperda* in the field. Fungicides, applied either as a soil drench or a seed treatment, could be an effective line of defense in case a lab-created biocontrol product needed to be curtailed after it had done its work.

“In any event, most of the native grasses of the Great Basin are either resistant or fast germinating,” says Meyer, “and in the loads of inoculum that you see [naturally] in the field, they outpace the pathogen. If we find ourselves developing strains strong enough to take out the cheatgrass seed bank completely, then we’d recommend waiting a year to plant desirable grasses, because we have good evidence that the fungus doesn’t persist on most sites.”

The team also tested the herbicides glyphosate (Roundup®) and imazapic (Plateau®) and found that neither impaired the seed-killing ability of the pathogen. Thus, herbicide treatments could be
combined fruitfully with fungal inoculum to eliminate both vegetative cover and seed bank.

Breeding a Mean Strain

The next step, says Meyer, is to develop a method for breeding a super-mean strain in the laboratory. “We know this thing sometimes reproduces sexually, but its sexual stage is hard to produce in culture,” she says. “If we could get it to crossbreed in the lab, we’d be in a position to breed for a hypervirulent strain.”

The team’s ongoing genetic studies of *P. semeniperda* and its *Bromus* hosts are helping them understand the selection processes that produce the pathogen’s natural range of virulence.

In the meantime, Meyer, Beckstead, and Clement have applied for a patent to develop a commercial product using naturally occurring virulent strains. They’re continuing to refine their production technique, experimenting with more effective ways to concentrate the pathogen and put it in a form that’s easy to apply.

“We have a couple of nibbles from industry, companies that might be interested in helping us develop the product and bring it up to the operational scale,” Meyer says. She hopes to file the patent application soon and expects to see a fully operational biocontrol product within a couple of years. The “Black Fingers of Death” nickname won’t be part of the package, she adds, since it might not inspire the greatest public confidence in the product.

Improving Odds of Success

When it’s ready, a new biocontrol tool, after thorough field testing, might be used as part of an integrated strategy to restore native rangeland vegetation and maintain the community’s resiliency.

A possible process for a cheatgrass-infested parcel might go something like this: burn off the foliage in the spring, before it has a chance to make seed; then apply the new biocontrol product to kill the dormant seeds; spray herbicide as needed to kill any remaining plants; let the site lie fallow for a year, ensuring that the fungus has died out and the cheatgrass is gone; then in the fall, as the rains are beginning, seed or plant the area with the best suited natives—wheatgrass and ricegrass, needlegrass and bluegrass, fescue and squirreltail, globemallow, lomatium, lupine, penstemon, buckwheat, balsamroot, hawksbeard, sweetbush, and brittlebush; and use fungicide-treated seeds if necessary to dispel any lingering fungal effects.

Biocontrol in History

Biological control of weeds has a long and mostly successful history, according to the Australian biologist Rachel E. Cruttwell McFadyen. The predominant biocontrol method—what McFadyen calls classical biological control—has been the importation of exotic insects, mites, or pathogens to attack a problem weed. A widespread example of classical biocontrol in the western valleys of the Pacific Northwest is the release of cinnabar moths in pastures infested with tansy ragwort, an exotic weed of the Asteraceae family. The moths lay their eggs on the plant, and the larvae feed on the flowers and young foliage.

Meyer’s team is exploring an alternative biocontrol method, called the augmentative or inundative approach, in which the goal is to increase the abundance of a naturally occurring pathogen or pest to a level that achieves adequate control of the target weed. The use of fungi as bioherbicides has been much explored in theory. However, few fungal products have been brought to market, and none have been introduced that target weed seeds.

Developing a commercial biocontrol agent is expensive and time consuming. A new product must not only be effective, but it must satisfy a host of safety concerns. In particular, scientists have to be certain that the agent—especially if it’s imported from somewhere else—will not spread to unintended hosts and become an invasive problem of its own.

While the risks of biological control are real, they have often been overstated, McFadyen writes. Most agents are host specific or nearly so. Any damage that has been caused by currently approved biocontrol agents, she asserts, has been minor, and is far outweighed by their benefits in controlling problem weeds and reducing the need for chemical herbicides.

P. semeniperda is not an exotic species, but part of *Bromus*’ natural ecology, and high virulence seems to be an evanescent mutation that sooner or later fades, imposing a natural threshold. “This type of biocontrol doesn’t involve introducing an exotic enemy to attack cheatgrass,” says Meyer. “Rather, we’re giving a leg up to a pathogen that’s already there. And our studies suggest pretty clearly that the virulent strains we’d be using are the ones that would tend to naturally self-destruct after they complete their mission.”
At that point,” says Meyer, “if you’ve done it right—and especially if you’re blessed with a couple of good moisture years—you should have near-complete control.”

Any new commercial product, of course, will add expense to an already costly enterprise. “But if it works,” Meyer says, “it will be worth it. Seeding is expensive, and you can’t know in advance if it’s going to be successful. If this little fungus could improve our odds of success by, let’s say, a factor of 10, it could prove to be a very, very valuable tool.” The JFSP has funded additional research by Meyer and her team to further explore the use of *P. semeniperda* as a biocontrol for cheatgrass (JFSP Project No. 11-S-2-6).

Suggested Reading

Web Resources

Cheatgrass Biocontrol (the Meyer team’s website). www.cheatgrassbiocontrol.org/index.html

SageSTEP: Sagebrush Steppe Treatment Evaluation Project. www.sagestep.org
Related JFSP-Supported Research

Dislodging cheatgrass from its home on the range is a key part of restoring native plants and reducing fire risk, but this is not the only task. The JFSP is funding other research on elements of a successful range rehabilitation system: identifying the best native plants to restore, effectively establishing them in the Great Basin’s dry climate, managing them so they compete better with weeds, and monitoring projects so that managers and scientists can learn from them.

The flagship of the JFSP’s rangeland research efforts is a comprehensive project called SageSTEP (covered in detail in the June 2008 issue of Fire Science Digest). Launched in 2005, SageSTEP comprises several large (40- to 250-acre), long-term research sites on sage-steppe lands threatened with cheatgrass invasion and pinyon-juniper encroachment. More than 30 university and agency scientists are studying the ecological effects of management treatments designed to reverse these trends.

They are working on two fronts: determining the ecological thresholds that limit recovery of degraded lands and developing effective treatments for restoring resilient sage-steppe ecosystems. The treatments under study—including prescribed fire, cutting or mastication of encroaching trees, and herbicides and mechanical treatments to control cheatgrass—are directed at bringing back the vegetation communities and fire cycles that prevailed before cheatgrass and juniper became dominant.

SageSTEP’s ultimate goal is to decrease uncertainty on how various management options will work across more than 100 million acres of sage-steppe lands and to help managers choose the measures that will work best for their circumstances. JFSP funding for SageSTEP formally ended in May 2011; future monitoring of study plots will be funded by agencies, including the National Interagency Fire Center, the Bureau of Land Management, and the U.S. Fish and Wildlife Service.

To successfully revegetate burned land, a native plant must both establish readily and compete successfully against exotic weeds. In a multiphase project (JFSP Project No. 07-1-3-24), Scott Abella and Stanley Smith of the University of Nevada-Las Vegas are working with federal cooperator Alice Newton of Lake Mead National Recreation Area to test the suitability of certain native plants for rehabilitating burned lands in the Mojave Desert, where red brome and another exotic annual, Mediterranean grass (*Schismus* spp.), are bringing more frequent wildfires into an environment where they once were rare.

Abella and Smith introduced *Bromus* and *Schismus* seeds into native plantings in both field and greenhouse settings to identify which natives were most competitive and to explore links between competitive ability and functional traits (e.g., early vs. late successional and annual vs. perennial).

The best competitors across a range of study conditions were typically early successional forbs. In fact, the early successional forb globemallow (*Sphaeralcea ambigua*), when growing as a monoculture, was quite resistant to invasion, reducing the biomass of exotic grasses elevenfold over control plots. The competitive group also included California buckwheat (*Eriogonum fasciculatum*), sweetbush (*Bebbia juncea*), and brittlebush (*Encelia farinosa*).

This is important news for managers, says Abella. “It’s the first experimental evidence that some native vegetation types can reduce the establishment of exotic grasses in the Mojave Desert.”

Seedlings of the best-performing natives were outplanted on lands that had burned in a 2005 wildfire
northwest of Goodsprings, Nevada. Some plots were given irrigation and protection from herbivores and seed predators. The planted species included globemallow, California buckwheat, burrobush (*Ambrosia dumosa*), creosote bush (*Larrea tridentata*), and pinto beardtongue (*Penstemon bicolor*).

Not surprisingly, the plants given irrigation and protection from browsing and seed predation showed better survival, even though certain species, including globemallow, did pretty well without these inputs. This, says Abella, suggests that planting can be a feasible rehabilitation strategy if appropriate species are chosen and if plants are carefully tended.

Because cheatgrass is an early season seed producer and a fast colonizer of disturbed sites, it easily gets a jump on native perennials. The mid to late successional character of most native plants used in revegetation, says Mark Paschke, puts them at a disadvantage against cheatgrass.

Paschke, of Colorado State University, is experimenting with using early successional natives in revegetation efforts (JFSP Project No. 07-1-3-18), including early annuals like sunflower (*Helianthus annuus*), Rocky Mountain beeplant (*Cleome serrulata*), bigbract verbena (*Verbena bracteata*), small fescue (*Vulpia microstachys*), redroot amaranth (*Amaranthus retroflexus*), golden tickseed (*Coreopsis tinctoria*), purple threeawn (*Aristida purpurea*), and sixweeks fescue (*Vulpia octoflora*).

These annuals are more vigorous colonizers than native perennials, readily settling into burns and other disturbed sites. Some are able to get a toehold even where cheatgrass is present. If such species are seeded first, Paschke speculates, they might be competitive enough to establish a beachhead for a subsequent natural transition to native perennials.

“Based on our results to date,” says Paschke, “it seems that including native, early successional plants in postfire seeding mixtures may provide some early competition for cheatgrass.” However, he adds, seeds of native annuals are scarce on the market, and managers may have a hard time finding them.

Managers need information not only on appropriate species to use in revegetation, but also on effective seeding techniques. A team led by Nancy Shaw of the U.S. Forest Service is comparing the effectiveness of two seed drills, a modified rangeland drill and an experimental minimum-till drill, in planting seeds of different sizes and shapes (JFSP Project No. 07-1-3-12). They’re also looking at how well each system protects residual native plants and the soil biological crust and prevents germination of cheatgrass seeds on the site.

The rangeland drill is a durable machine and an efficient tool for sowing larger-seeded species such as grasses. However, it disturbs and roughens the soil surface, damaging the biological soil crust and sometimes burying small seeds too deeply for them to germinate.

Shaw and her team compared its performance with that of the minimum-till drill in sowing seed mixes tailored to specific sites. Species included Wyoming big sagebrush (*Artemisia tridentata*), a small-seeded plant with 1-million-plus seeds to the pound), rubber rabbitbrush (*Ericameria nauseosa*), bluebunch wheatgrass (*Pseudoroegneria spicata*), Indian ricegrass (*Achnatherum hymenoides*), bottlebrush squirreltail (*Elymus elymoides*), Sandberg bluegrass (*Poa secunda*), and such forbs as globemallow (*Sphaeralcea* spp.), penstemon (*Penstemon* spp.), buckwheat (*Eriogonum* spp.), and yarrow (*Achillea* spp.).

Each machine was used to drill-seed grasses and other large-seeded species and to broadcast small seeds onto the soil surface. The experimental drill has an imprinter foot that presses the seeds into the soil in a waffle-iron-like pattern, providing good seed-soil contact.

Revisiting two sites near Elko, Nevada, after 2 years, the team found that the machines worked about equally well on the drilled seeds; seeded grasses came up in nearly equal numbers in plots sowed by each machine. However, the experimental drill achieved better emergence of small-seeded species in the first year, although persistent dry weather had reduced this effect by the second year.
This finding is promising, because seed is expensive, and better emergence—especially of smaller-seeded plants that don’t lend themselves well to drill sowing—may help managers save money by using less seed. However, says Shaw, the rangeland drill is tougher than the experimental drill and works better in rugged country. “One concern we have is whether the minimum-till drill can be built to match its durability.”

Steven Link, of Native Plant Landscaping and Restoration LLC and the Confederated Tribes of the Umatilla Indian Reservation, is revisiting his 2003 seeding project, designed to test how long it takes a native bunchgrass, Snake River wheatgrass (Elymus wawawaiensis), to successfully dominate a cheatgrass-covered site (JFSP Project No. 07-2-2-06). The study involved burning in the fall, spraying the herbicide imazapic (Plateau®) at two levels, and drill seeding E. wawawaiensis on study plots on the Columbia National Wildlife Refuge in eastern Washington.

In past restoration actions on the site, E. wawawaiensis has reduced cheatgrass cover considerably over 18 years, says Link—from 40 percent to about 2.8 percent. “But there’s little information on how long it takes the bunchgrass to begin to dominate a site,” says Link, who is collaborating with Randal Hill of the U.S. Fish and Wildlife Service. “Our primary task was to test the hypothesis that bunchgrasses established in 2003 will show an increasing degree of cheatgrass control.”

Link went back a year after the bunchgrass was seeded and found no discernible effect on composition or cover of the vegetation community. In the following year, however, the plots that had received the higher herbicide dose with seeding were showing a decrease in exotic weed cover and a significant (58 percent) increase in richness of native species.

Now, 7 years later, both weed cover and native species richness are about the same in sprayed and unsprayed plots. However, plots treated with herbicide and seeded with E. wawawaiensis had significantly lower cheatgrass cover than control or herbicide-only plots. Where seeding was conducted, cover of E. wawawaiensis increased over time, and this increase was correlated with lower cheatgrass cover.

Managers and scientists agree on the need to monitor and adaptively manage rangeland rehabilitation projects. A team led by David Pyke of the U.S. Geological Survey is revisiting postfire seeding projects done over the past 10 years in Oregon, Idaho, Nevada, and Utah to see if they’ve met their long-term objectives (JFSP Project No. 09-S-02-1).

Pyke’s team is looking at samples of burned and seeded, burned and unseeded, and unburned and unseeded plots on moist, medium, and dry sites (from 12 inches to less than 8 inches of rainfall a year). They are measuring the plant cover and composition on each site, the amount and continuity of live and dead fuels, and the amount of bare ground. They are also considering the seeding method used, how much time has passed since the seeding was done, what the weather has been like, and whether the sites have been grazed by livestock.

The team will analyze and model these factors to tease out those that determine seeding effectiveness. This kind of information is vital for managers when making decisions about whether and how to conduct a seeding project.

“This is the first comprehensive study of multiple rehabilitation projects across many states and environments,” says Pyke. “We hope to distinguish conditions in which aerial and drill seedings are most effective.” He looks forward to the day when a decision support tool is developed that will help managers tailor treatments to specific site conditions and assess the probability of success. “In addition,” he says, “these sites are giving scientists excellent baseline information for future studies.”

Steven Link, of Native Plant Landscaping and Restoration LLC, looks over a cheatgrass stand on the Columbia National Wildlife Refuge in eastern Washington.
JFSP Fire Science Digest is published several times a year. Our goal is to help managers find and use the best available fire science information.

Credits

Writer – Gail Wells
Gail Wells Communications

Managing Editor – Tammie Adams
tmadams@blm.gov

Design and Layout – Jennifer Kapus
jkapus@blm.gov

Tim Swedberg
Communication Director
Timothy_Swedberg@nifc.blm.gov
(208) 387-5865

The mention of company names, trade names, or commercial products does not constitute endorsement or recommendation for use by the federal government.

AN INTERAGENCY RESEARCH, DEVELOPMENT, AND APPLICATIONS PARTNERSHIP

Learn more about the Joint Fire Science Program at www.firescience.gov

John Cissel, Program Manager
(208) 387-5349
National Interagency Fire Center
3833 S. Development Ave.
Boise, ID 83705-5354