Smoke Produced from Residual Combustion

Final Report (98-1-9-01)

То

The Joint Fire Science Program

Submitted by

Wei Min Hao and Ronald E. Babbitt US Forest Service, Rocky Mountain Research Station Fire Sciences Laboratory, Missoula, Montana

January 31, 2007

Executive Summary

Considerable research has been carried out to estimate the chemical composition and the amount of trace gases and particulate matter emitted during short-duration flaming and smoldering combustion of fuels in the fire-prone forest and grassland ecosystems. For other forest ecosystems, where long-duration residual smoldering combustion (RSC) significantly reduces forest fuels, errors in estimating total emissions have likely existed due to the lack of information, both on the extent and chemical compounds of these emissions. This research, funded by the Joint Fire Sciences Program (JFSP), investigates the smoke emissions produced by RSC, which may persist for hours or even days after the passage of the flame front. This project is the first large scale study to determine the emissions of important trace gases from common RSC prone fuel components such as logs, stumps, and duff. Studies were conducted in Alaska and the Southeastern and Western Regions of the US. Based on these measurements, combustion efficiencies and emission factors for the important carbon-containing trace gases have been calculated. Modified Combustion Efficiency (MCE) in this study was found to be significantly lower than those previously reported for flaming and short-duration smoldering phases of a wildland fire. The lower MCE is primarily the result of increased CO emissions. Emission factors for CH_4 were also found to be generally higher, but no empirical relationships were found between the emission factors of CH₄ and the emission factors of CO or MCE. Emissions of non-methane hydrocarbons (NMHC) were not correlated with CO and CH₄ emissions, and were found to be about equal or lower than NMHC emission factors for the flaming and short-duration smoldering phases. Since prior estimates of RSC emissions were based on short-duration smoldering data, this new information will provide a more accurate estimate of the total emissions released from a wildland fire.

The other project under this JFSP award includes a contract with Dr. Robert Yokelson of the University of Montana to study RSC emissions using Open Path-Fourier Transform Infrared Spectroscopy. This work provides emission factors for additional compounds, including PM2.5, during residual smoldering combustion. [Appendices 3, 4 and 5]

1. Introduction

Smoke from biomass burning has long been recognized as an important source of atmospheric pollutants, greenhouse gases, and particulate matter [Crutzen and Andreae, 1990]. About $6 \ge 10^{15}$ g of biomass were burned annually from forest, savanna and agricultural fires worldwide [*Hao and Ward*, 1993; *Hao and Liu*, 1994]. Since the 1970s, there have been numerous studies to quantify the emissions of trace gases and aerosol particles from biomass fires in tropical, subtropical, temperate, and boreal ecosystems. Most of the emission measurements were carried out during flaming and short-duration smoldering combustion. For the fuel types that contain a high percentage of fine, flash fuels, the majority of emissions are produced during these two phases of combustion. However, if there is a significant amount of large diameter woody debris, old stumps, and/or duff, the emissions produced from the long-duration smoldering combustion of these fuels, or residual smoldering combustion (RSC), can be a significant part of the total emissions. In some forest ecosystems, such as in the boreal zone, residual

smoldering combustion can account for more than 50% of the total fuel consumption [*Sandburg*, 1983; *Kasischke et al.*, 1999] due to the deep moss/duff layer. In pastures in the Amazon basin, *Kauffman et al.*, [1998] found that long-duration smoldering of large diameter logs remaining after initial deforestation fires can account for 38% - 44% of the total fuel consumed.

Wade and Lunsford [1989] defined residual smoldering combustion to be the smoldering combustion process that is no longer influenced by strong convection associated with a flame front. Since RSC occasionally includes flaming combustion at a fixed location, we define RSC to be the long-duration process of smoldering and/or flaming combustion that may persist for several hours or several days following the passage of the flame front. During RSC, smoldering usually accounts for the majority of the biomass burned; however under certain conditions, such as high winds, the amount of biomass burned during flaming combustion can be significant.

In addition to potentially being a major source of atmospheric trace gases and particulate matter, RSC emissions can have a significant impact on the public health of the local communities as the drift smoke produced during RSC often remains close to the ground, instead of being lofted from the fire front during flaming combustion to the upper atmosphere. Firefighters are also exposed to high levels of RSC emissions during the mop-up stage of fire suppression.

The two primary objectives of this project were to determine (1) the modified combustion efficiencies and (2) the emission factors of major atmospheric pollutants during the period of residual smoldering combustion for different types of RSC prone fuels. The modified combustion Efficiency (MCE) is defined to be the ratio of emitted CO_2 concentrations to emitted CO_2 and CO concentrations. The flaming combustion of a fire is more efficient than the smoldering combustion. Hence, the MCE are in a range of 95% - 98% for most of the flaming combustion and in a range of 86% - 94% for the short-duration smoldering combustion. The emission factor (EF) (g kg⁻¹) is defined as the amount of a particular compound emitted per kg of dry biomass burned.

2. Methods

2.1 Field Sites

The experimental sites covered a variety of common smoldering fuels in the Southeast and West in the continental US and Alaska. Table 1 summarizes the locations, dominant vegetation and smoldering fuel types, and the experimental dates. The Southeastern sites included the Eglin Air Force Base (eg) in Florida, Francis Marion National Forest (fm) in South Carolina, the Hitciti National Forest (hi) in Georgia, and the Piedmont National Wildlife Refuge (pi) in Georgia. The Western sites included the Baker City Watershed (bc) in Oregon and three other sites within 100 km of Missoula, Montana: the late Dr. Keeling's Ranch (ke), the University of Montana's Lubrecht Experimental Forest (lu), and Seeley Lake (se). The two sites of Erickson wildfire (ek, ek2) and Chena Lakes (clf) were located within 200 km of Fairbanks, Alaska. In Southern and Western US, measurements were carried out primarily on smoldering logs, stumps, and basal duff following understory prescribed fires in pine forests. In Alaska, measurements focused on emissions of residual smoldering combustion from moss and duff following a wildfire and a prescribed fire in Black Spruce boreal forests. Prescribed burning to forested land has been widely practiced in the Southeast. Hence, the amount of above ground biomass of RSC prone fuels in the Southeast are usually lower than that found in the West or Alaska.

Location	Vegetation - Smoldering Fuel Types	Burn Date
Eglin Air Force Base, FL	Sandhill Pine- logs, stumps, duff	04/24/2002
Francis Marion National Forest, SC	Mixed Pine - Hurricane blowdown large logs	05/09/2000
Hitchiti Forest, GA	Oak and Pine - small logs, duff	05/03/2000
Piedmont Wildlife Refuge, GA	Oak, Pine, Grass- small logs, stumps, duff	05/02/2000
Baker City, OR	Large mature Ponderosa Pine, Douglas Fir – downed woody materials, stumps, and duff	05/31/2002
Keeling Ranch, MT	Lodgepole Pine – stumps, logs, branches, duff	09/14/1998
University of Montana, Lubrecht Experimental Forest, MT	Mixed Ponderosa Pine and Douglas Fir - downed woody materials, stumps, and duff	05/02/2002
Seeley Lake, MT	Ponderosa Pine, Douglas Fir - duff, stumps, logs, branches	09/29/2003
Erickson wildfires, AK	Black Spruce - Smoldering Feather Moss, wildfire conditions	06/22/2003
Chena Lakes, AK	Black Spruce - Smoldering Feather Moss, prescribed fire conditions	06/25/2003

Table 1. Experimental Locations, Vegetation and Smoldering Fuel Types, and Dates

2.2 Sampling

To derive the modified combustion efficiency and the emission factors of trace gases, it is necessary to measure the primary carbon-containing trace gases released at a certain time interval during the entire period of the residual smoldering combustion process.

We have developed an open-bottom sample chamber that was tightly placed over a smoldering fuel, such as a stump, to capture the emitted trace gases. This portable system consisted of two main components: a sample chamber and a backpack containing gas sampling instruments to capture the emissions from the smoldering fuel. The sample chamber was a 1 m x 1 m x 1m aluminum frame made of $\frac{1}{2}$ " (O.D.) conduit, in which the top and three sides were covered with a fire shelter material. A small aluminum plate with two gas sampling ports and a thermocouple port were attached to the top of the chamber. A small battery powered muffin fan was housed on the top inside of the chamber to improve mixing gases in the chamber. Two Teflon sampling lines connected the chamber to the CO₂ instrument and grab sample pumps. The aluminum frame

backpack held a non-dispersive infrared (NDIR) CO₂ analyzer [Li-Cor, Model LI-800], a 2 LPM sampling pump, a data logger [Campbell Scientific, Model CR10X], and another 2 LPM pump to collect grab samples into 250 ml glass bottles. The backpack could hold up to 12 sample bottles. The data logger recorded site identification information, time, battery voltage, temperature from a type K thermocouple, CO₂ sample pressure, and the real-time CO₂ level. The sample chamber was briefly placed over the smoldering fuel once every two hours during the duration of residual smoldering combustion. The sampling period lasted about 1-3 minutes each time, depending on the rate of increase of CO₂ concentrations in the chamber. In addition to monitoring the CO₂ increase, grab bottle samples were taken periodically, ranging from several seconds to several minutes, in the sample chamber. The higher the rate of CO₂ concentration increases, the shorter the sampling time. Also, the rate of CO₂ increase is substantially higher during the early phase of combustion than the rate of increase in the later phase of combustion.

2.3 Analytical techniques

Sample bottles and canisters collected in the field were analyzed at the Analytical Chemistry Laboratory of the Fire Sciences Laboratory. The samples were analyzed for CO_2 , CO, CH₄, and C₂- C₃ aliphatic compounds with a Hewlett Packard model 5890 Series II gas chromatograph. The CO₂ and CO analysis used a 1-mL sample loop to inject the sample, a 1/8" (O.D) x 6 ft. Carbosphere (Alltech) column to separate CO₂, CO, and air, with helium carrier gas at a flow rate of 16 ml min⁻¹. After separation in the column, the sample entered a methanizer (375°C) that converted CO₂ and CO to methane, which was detected by the flame ionization detector at 350° C. The oven temperature was held isothermal at 100°C. The C₁-C₃ hydrocarbon analyses were performed using a 0.25-mL sample loop, a 0.53 mm x 30 m GS-Q column (J&W Scientific), with helium carrier gas at a flow rate of 6 mL min⁻¹ and a makeup helium gas at a flow rate of 14 mL min⁻¹, and the FID at 300°C. The oven temperature program for this analysis was 30°C for 6 min, increasing by 10°C min⁻¹ to reach the final temperature of 90°C.

Chromatogram data was collected from the gas chromatograph and processed by Hewlett Packard ChemStation II software. A set of trace gas concentration standards bracketing the sample concentrations were analyzed with each set of samples to construct a standard curve for each compound. Based on the integrated peak areas, the sample concentrations were calculated from the standard curves and written into an Excel spreadsheet.

Figure 1 shows the increase of CO_2 concentrations with time in the sample chamber of burning duff at the Hitchiti National Forest, Georgia, on 12:55 PM, 3:10 PM, and 8:05 PM, May 3rd, 2000. Carbon dioxide concentrations were measured continuously every second by the Li-Cor instrument during the sampling period, while grab bottle samples were taken every 30, 60, or 120 seconds.

Figure 1. Real-time (\blacklozenge) and grab sample (\blacklozenge) CO₂ concentrations in the sample chamber for smoldering duff, at Hitchiti National Forest, Georgia, May 3rd, 2000.

The CO_2 concentrations measured by two different methods are quite consistent. The CO_2 levels would initially increase at a constant rate and then reach a maximum level in the sample chamber.

3. Results and Discussion

3.1 Emission Factors and Modified Combustion Efficiency

Emission Factors for CO₂, CO, CH₄, and NMHC were calculated for most of the residual smoldering combustion of various fuels using the carbon mass balance method [*Ward and Radke*, 1993]. Table 2 summarizes the emission factors and the modified combustion efficiency in the Southeast, West, and Alaska. Emission factors of residual smoldering combustion for different fuel types at each site in each region are given in Appendix 1. The Southeastern Region had the lowest MCE and the highest emission factors of CO of the three regions, probably because of the high fuel moisture content in the Southeast.

Site	Number of Samples	EFCO ₂ (g kg ⁻¹)	EFCO (g kg ⁻¹)	EFCH ₄ (g kg ⁻¹)	EFC ₂ H ₄ (g kg ⁻¹)	EFC ₃ H ₆ (g kg ⁻¹)	EFNMHC (g kg ⁻¹)	MCE
Southeast								
Eglin Air Force Base, FL	12	1305	314	10.6	1.06	0.74	1.80	0.73
Francis Marion	9	1366	287	6.3				0.75
Hitchiti Forest, GA	7	1337	298	10.4				0.74
Piedmont, GA	7	1348	286	13.3				0.75
Average		1339	296	10.1	1.06	0.74	1.80	0.74
West								
Baker City, OR	12	1446	226	14.7	1.65	1.41	3.06	0.80
Keeling Ranch, MT	11	1524	205					0.83
Lubrecht, MT	12	1431	229	15.5				0.80
Seeley Lake, MT	9	1428	229	13.5	1.44	1.24	2.68	0.80
Average		1457	222	14.6	1.55	1.32	2.87	0.81
<u>Alaska</u>								
Erickson wildfire	5	1425	244	6.3	1.35	1.04	1.35	0.79
Erickson2 wildfire	6	1463	247	8.5	0.88	0.69	0.88	0.81
Chena Lake	6	1419	240	10.1	1.49	1.24	1.86	0.79
Average		1436	244	8.4	1.23	0.99	1.37	0.80

Table 2. Average Emission Factors and MCE of RSC by Region

To compare the RSC emission factors with previous results, we compiled and grouped regional flaming and short-duration smoldering emissions data from prescribed fires and wildfires. The Southeastern and Western data have been collected from the ground-based experiments using the Fire Atmosphere Sampling System (FASS) in the past 15 years by the Fire Sciences Laboratory [*Susott et al.*, 1991; Hao et al., 1996]. For Alaska data, samples were collected with an aircraft and represent a mixture of flaming and smoldering combustion, although it is most likely weighted heavily by flaming emissions [*Goode et al.*, 2000]. Table 3 shows the average emission factors of flaming and short-duration smoldering combustion and MCE for fires in the Southeast, West, and Alaska. The major vegetation and fuel types in each region in the previous studies are very similar to the ones for the residual smoldering combustion experiments.

Region						
Phase	EFCO ₂	EFCO	$EFCH_4$	EFNMHC	EFPM2.5	MCE
	(g kg ⁻¹)	(g kg ⁻¹)	(g kg ⁻¹)	$(g kg^{-1})$	(g kg ⁻¹)	
Southeast						
Flaming	1681	73	2.0	2.4	11.7	0.94
Short-duration Smoldering	1618	108	3.1	4.0	11.6	0.90
West						
Flaming	1648	91	3.5	2.9	13.4	0.92
Short-duration Smoldering	1563	133	5.8	3.9	15.6	0.88
Alaska						
Mixed (aircraft)	1660	89	2.8	2.3		0.92

Table 3. Emission Factors of Flaming and Short-duration Smoldering Combustion by

 Region

For all regions, the RSC MCE is significantly lower than the average flaming and shortduration smoldering MCE. The average short-duration smoldering EFCO of 108 g kg⁻¹ and 133 g kg⁻¹ are much lower than the RSC values of 296 g kg⁻¹ and 222 g kg⁻¹ for the Southeast and West, respectively. Similarly, the emission factors of CH₄ for the RSC are higher than the CH₄ emissions from prescribed fires and wildfires in the three regions. However, the emission factors of non-methane hydrocarbons for RSC do not follow the same trend, and are either lower or similar to the non-methane hydrocarbon emissions for the flaming and short-duration smoldering combustion.

Figure 2 shows the negative linear relationship between EFCH₄ and MCE for flaming and short-duration smoldering combustion in all Western and Southeastern Regions. Almost all of the previous work has reported a strong linear correlation between MCE and EFCH₄ for flaming and short-duration smoldering phases [e.g., Hao and Ward, 1993; Hao et al., 1996; Yokelson et al., 2003]. However, there is no linear correlation between the CH₄ emission factors and MCE for residual smoldering combustion in the Southeast, West, and Alaska [Fig. 3], because the CH₄ emissions for RSC vary in a narrow range with MCE in comparison to the flaming or short-duration smoldering phases. Therefore, the modified combustion efficiency cannot be used to estimate CH₄ emissions from residual smoldering combustion. Smoldering combustion is a different process from flaming combustion, which occurs at a much higher temperature. For most fires there is a transition phase as combustion temperatures decrease from flaming to smoldering combustion, which ultimately affects the emissions of trace gases and particulate matter [*Yokelson et al.*, 1996, 1997; *Bertschi et al.*, 2003].

Figure 2. EFCH₄ v MCE for Flaming and Short-duration Smoldering Combustion in the Southeast and West

Figure 3. EFCH₄ vs. MCE fore Residual Smoldering Combustion in the Southeast, West, and Alaska

The emissions of C_2H_4 and CH_4 for residual smoldering combustion are strongly correlated linearly in the Southeast and West [Figure 4]. The linear correlation would be more significant in Alaska, if the outlier point of C_2H_4 emission factor of about 4.2 g kg⁻¹ is removed from the calculation.

Figure 4. Relationship between C₂H₄ and CH₄ Emissions in Different Regions

In a similar way, the emissions of C_3H_6 and CH_4 are also strongly correlated in the Southeast and West, but not in Alaska because of the same outlier point [Figure 5]. As with the EFCH₄, both EFC₂H₄ and EFC₃H₆ are weakly correlated with the modified combustion efficiency in all regions.

Figure 5. Relationship between C₃H₆ and CH₄ Emissions in Different Regions

3.2 Emission Factors by Fuel Component

Table 4 summarizes the emission factors and modified combustion efficiency by fuel component. Emission factors and modified combustion efficiency by fuel component for each site are given in Appendix 2. There are no emission factors data for C_2H_4 or C_3H_6 for rotten wood as not all samples were analyzed for non-methane hydrocarbons, and only one rotten stump sample was analyzed for C-2 and C-3 alkanes and alkenes.

Fuel Component	Number of Samples	EFCO ₂ (g kg ⁻¹)	EFCO (g kg ⁻¹)	EFCH ₄ (g kg ⁻¹)	EFC ₂ H ₄ (g kg ⁻¹)	EFC ₃ H ₆ (g kg ⁻¹)	EFNMHC (g kg ⁻¹)	MCE
Woody Materials	19	1378	255	17.8	2.17	1.81	3.99	0.77
Stump	26	1415	248	14.1	1.41	1.06	2.47	0.78
Duff	15	1446	234	11.0	1.40	1.21	2.61	0.80
Basil duff	9	1348	299	5.1	0.52	0.37	0.89	0.74
Alaska Moss	18	1436	244	8.4	1.23	0.99	1.37	0.80
Rotten Wood	7	1352	295	6.6				0.74
Rotten Stump	3	1397	254	12.4	1.68	1.15	2.83	0.78
Average		1396	261	10.8	1.40	1.10	2.36	0.77

Table 4. Average Emission Factors and Modified Combustion Efficiency by Fuel

 Component

The modified combustion efficiency of residual smoldering combustion ranged from 0.74 for basal duff and rotten wood to 0.8 for duff and Alaska moss with an average of 0.77 for burning 96 residual fuel samples. The MCE values are similar to those used in the FOFEM (41) program (0.76) for smoldering combustion of duff and wood larger than 7.6 cm in diameter. The MCE was reported to be 0.79 for smoldering Ponderosa Pine wood in a laboratory experiment [McKenzie *et al.*, 1995]. *Bertschi et al.* [2003] reported the MCE of 0.85 - 0.90 for residual smoldering combustion of duff/organic soil, softwood debris, and large diameter (> 30 cm) hardwood logs in laboratory fires.

The average emission factor of CO was 261 g kg⁻¹ for these experiments, which is significantly higher than the CO emission factors for flaming combustion or shortduration smoldering phases of wildland fires. There are no significant differences in the CO emission factors for burning different types of residual fuels. The CO emission factors in the EPA AP-42 are 166 g kg⁻¹ for short-duration smoldering of long needles in the conifer forest and 226 g kg⁻¹ for smoldering of short needles. The CO emission factors used in FOFEM for fuels > 7.6 cm range from 87 g kg⁻¹ for dry fuel to 103 g kg⁻¹ for wet fuel [*Reinhardt et al.*, 1997]. The CONSUME [*Ottmar et al.*, 2000] program uses 183 g kg⁻¹ as the CO emission factor for smoldering combustion following a broadcast burn of Ponderosa pine forest. *Bertschi et al.* [2003] reported an average CO emission factor of 146 g kg⁻¹ from smoldering combustion of residual fuels in the northwestern U.S., Canada, and Zambia in western Africa.

There is considerable variability in the CH₄ emission factors for various fuel components, with the woody fuels and stumps having higher values than duff, basal buff, or dead moss. *Bertschi et al.*, [2003] reported CH₄ emission factors ranging between 2.4 g kg⁻¹ for softwood debris and 23.2 g kg⁻¹ for large diameter logs with an average of 12 g kg⁻¹. There is no apparent correlation between the CH₄ emission factors and modified combustion efficiency for residual smoldering combustion [Fig. 6]. The results are contradictory to all the published results, in which the CH₄ emission factors are linearly correlated negatively with the modified combustion efficiency.

Figures 7 and 8 show the relationship between the emission factors of C_2H_4 and C_3H_6 versus the emission factors of CH_4 , respectively, by fuel category. Emissions of C_2H_4 and C_3H_6 and emissions of CH_4 are strongly correlated linearly with for woody fuels and stumps, moderately correlated linearly for the duff and basal duff, and weakly correlated for the Alaska moss. There were insufficient data to determine if a correlation exists between non-methane hydrocarbons and methane emission factors for rotten wood and stumps.

Figure 6. Emissions of CH_4 vs. MCE by Fuel Component

Figure 7. Relationship between C₂H₄ and CH₄ Emissions by Fuel Component

Figure 8. Relationship between C₃H₆ and CH₄ Emissions by Fuel Component

Although the linear relationships between the C_2H_4 and C_3H_6 emissions and the CH_4 emissions may vary for different fuel components, there are reasonably strong linear correlations between the emissions of C_2H_4 and C_3H_6 and the emissions of CH_4 when the results of residual smoldering combustion of all the fuel samples were combined in Figure 9.

Figure 9. Relationship between C_2H_4 and C_3H_6 emissions and CH_4 emissions for all fuel samples

4. Conclusions

Information collected during this study will be useful in updating models currently used by land managers to determine the modified combustion efficiency and the emission factors of atmospheric pollutants emitted during residual smoldering combustion for a variety of fuel types in the Southeast, West, and Alaska.

The CO emissions relative to the CO_2 were significantly higher than had been previously measured for the short-duration smoldering phase that follows the passage of the flame front. The result of this higher CO to CO_2 ratio is a lower MCE. This finding has a significant impact on calculations of emission factors of other compounds which are based on the MCE.

The CH_4 emissions did not show any strong correlation to the CO emissions or MCE for any of the RSC fuel components measured. The emission factors for C_2H_4 and C_3H_6 were both lower than for the flaming and short-duration phases, and both emissions were correlated linearly with the CH_4 emissions.

5. References

Bertschi, I., R. Yokelson, D. E. Ward, R.E. Babbitt, R. A. Susott, J. G. Goode, and W. M. Hao, Trace gas and particle emissions from fires in large diameter and belowground fuels, *J. Geophys. Res.*, *108*(D13), 8472, doi:10.1029/2002JD002100, 2003.

Crutzen, P. J., and M. O. Andreae (1990), Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, *Science*, *250*(4988), 1669-1677.

Goode, J. G., R. J. Yokelson, D. E. Ward, R. A. Susott, R. E. Babbitt, M. A. Davies, and W. M. Hao, Measurements of excess O₃, CO₂, CO, CH₄, C₂H₄, C₂H₂, HCN, NO, NH₃, HCOOH, CH₃OOH, HCHO, and CH₃OH, in 1997 Alaskan biomass burning plumes by airborne Fourier transform infrared spectroscopy (AFTIR), *J. Geophys. Res.*, *105*, 22,147-22,166, 2000.

Hao, W.M., and D.E. Ward, Methane production from global biomass burning, J Geophys. Res., 98, 20657-20661, 1993.

Hao, W.M., and M.-H. Liu, Spatial and temporal distribution of tropical biomass burning, *Global Biogeochem. Cycles*, *8*, 495-503, 1994.

Hao, W.M., D.E. Ward, G. Olbu, and S.P. Baker, Emissions of CO₂, CO, and hydrocarbons from fires in diverse African savanna ecosystems, *J Geophys. Res.*, 101, 23577-23584, 1996

Kasischke, E.S., K. Bergen, R. Fennimore, F. Sotelo, G Stephens, A. Janetos, and H. H. Shugart, Satellite imagery gives clear pictures of Russia's boreal forest fires, *Eos Trans. AGU*, *80*, 141-147, 1999.

Kauffman, J. B., D. L. Cummings, and D. E. Ward, Fire in the Brazilian Amazon, 2, Biomass, nutrient pools and losses in cattle pastures, *Oecologia*, *113*, 415-427, 1998.

McKenzie, Lisa M., W. M. Hao, G. N. Richards, and D. E. Ward, Measurements and modeling of air toxins from smoldering combustion of biomass, *Envir. Sci. and Tech.*, 29, 2047-2054, 1995.

Ottmar, Roger D., G. K. Anderson, P. J. DeHerrera, and T. Reinhardt, *Consume User's Guide, Version 2.1*, Fire and Environmental Research Applications Group, USDA For. Serv., Pacific. Northwest Res. Sta., Seattle Wash., 2000.

Reinhardt, E. D., R. E. Keane, and J. Brown, *First order fire effects model: FOFEM 4.0, user's guide*. INT-GTR-344. USDA For. Serv., Intermountain Res. Sta., Missoula, Mont. 1997.

Sandberg, D. V., Research leads to less smoke from prescribed fires, in *Proceedings*, *1983 Northwest Fire Council Annual Meeting 1983 November 21-22, Olympia, Wash*, 27 pp. Western For. and Conserv. Assoc., Portland, Oreg., 1983.

Susott, R. A., D. E. Ward, R. E. Babbitt, and D. L. Latham, Measurement of trace gas emissions and combustion characteristics for a mass fire, in *Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications*, edited by J. S. Levine, pp. 245-257, MIT Press, Cambridge, Mass., 1991.

Wade, D. D. and J. D. Lunsford, A guide for prescribed fire in southern forests, R8-TP-11, USDA For. Serv. Tech. Publ., Washington, D. C., 1989.

Ward, D. E. and L. F. Radke, Emissions measurements from vegetation fires: A comparative evaluation of methods and results, in *Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of Vegetation Fires*, edited by P. J. Crutzen and J. G. Goldhammer, pp. 53-76, John Wiley, New York, 1993.

Yokelson, R. J., and D. W. T. Griffith, and D. E. Ward, Open-path Fourier transform infrared studies of large-scale laboratory biomass fires, *J. Geophys. Res.*, 101, 21,067-21,080, 1996.

Yokelson, R. J., D. E. Ward, R. A. Susott, J Reardon, and D. W. T. Griffith, Emissions from smoldering combustion of biomass measured by spectroscopy, *J. Geophys. Res.*, *102*, 18,865-18,877, 1997.

Yokelson, R.J., I.T. Bertschi, T.J. Christian, P.V. Hobbs, D.E. Ward, and W.M. Hao, Trace gas measurements in nascent, aged, and cloud-processed smoke from African savanna fires by airborne Fourier transform infrared spectroscopy (AFTIR), *J. Geophys. Res.*, 108, 8478, doi:10.1029/2002JD002322, 2003.

6. Deliverables

Proposed	Accomplished/ Status
Annual progress reports	Annual progress reports completed
Develop the technology to measure residual smoldering emissions in the field.	The construction and deployment of a portable sampling system for residual smoldering emissions completed. This system includes an instrument package and a field chamber for sampling RSC.
Produce emission factors for inputs into models such as the EPM.	RSC emission factors developed for individual smoldering fuel components in Southeast, West, and Alaska.
Linkage to other projects	Roger D. Ottmar, 2004. Forest Floor Consumption and Smoke Characterization in Boreal Forested Fuelbed Types of Alaska. The objective of this project is to provide a fuel consumption module for implementation into fuel consumption and fire effects software tools such as Consume 3.0, EPM, and FOFEM 5.0. We characterized the smoke emissions from RSC in Alaska in 2003 and 2004 using our sampling methodology and produced RSC emission factors for Alaska fuels.
Publication	 Smoldering Limits of Alaska Duff. James Reardon, Fires Sciences Laboratory (in progress). A laboratory investigation of the relationship of moisture and mineral content to the ignition probability and consumption characteristics of Alaskan duff. The samples were collected in 2003. Appendices 3, 4 and 5
Publication	Mafoko, G. Jomo. 2003. Variation of specific gravity (bulk density) in conifer stumps with reference to sampling technique and decay class. Masters thesis, University of Montana,
Presentation	Babbit, R. 2004. Residual Smoldering Fire Emissions and Fuel Consumption Overview. National Fire Emissions Technical Workshop. New Orleans

Proposed	Accomplished/ Status
Data Base	RSC emission factors for smoldering components including stumps, downed wood, and duff for the Southeast, West and Alaska.
Workshop	Residual Smoldering Combustion Workshop, University of Montana. May 2001. This workshop included 20 participants from the fields of air quality management, fire emissions research, and local land managers.

7. Appendices

- Appendix 1 Emission Factors and MCE for Each Fuel Component at Each Site
- Appendix 2 Emission Factors and MCE by Fuel Component
- Appendix 3 Bertschi, I.T., R.J. Yokelson, J. G. Goode, D.E. Ward, R.E. Babbitt, R. A. Susott, J.G. Goode, and W.M. Hao, Trace gas and particle emissions from fires in large-diameter and belowground biomass fuels, *J. Geophys. Res.*, 108, 8472, doi:10.1029/2002JD002100, 2003.
- Appendix 4 Christian, T.J., B. Kleiss, R.J. Yokelson, R. Holzinger, P.J. Crutzen, W.M. Hao, B.H. Saharjo, and D. E. Ward, Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels, *J. Geophys. Res.*, 108, 4719, doi:10.1029/2003JD003704, 2003.
- Appendix 5 Christian, T.J., B. Kleiss, R.J. Yokelson, R. Holzinger, P.J. Crutzen, W.M. Hao, T. Shirai, and D.R. Blake, Comprehensive laboratory measurements of biomass-burning emissions: 2, First intercomparison of open-path FTIR, PTR-MS, GC-MS/FID/ECD, J. Geophys. Res., 109, D02311, doi:10.1029/2003JD003874, 2004.

Appendix 1. Emission Factors and MCE for Each Fuel Component at Each Site

Site	Fuel type	Fuel	FFCO	FFCO	FECH	FFCaH	FFCall	FENMHC	MCF
Site	i dei type	Code	$(g kg^{-1})$	(g/kg^{-1})	MCL				
eg1	basal duff	4	1294.3	336.7	2.79	0.44	0.30	0.73	0.71
eg2	log	1	1441.8	201.3	23.04	2.06	1.70	3.76	0.82
eg3	stump	2	1192.9	357.2	24.35	2.54	1.32	3.86	0.67
eg4	basal duff	4	1238.9	366.5	5.44	0.68	0.42	1.10	0.68
eg5	stump	2	1265.4	342.1	9.55	0.78	0.53	1.31	0.70
eg6	basal duff	4	1280.7	344.1	3.49	0.44	0.32	0.75	0.70
eg7	stump&log	1	1474.0	186.6	19.92	2.07	1.56	3.63	0.83
eg8	basal duff	4	1259.4	358.5	2.74	0.57	0.38	0.95	0.69
eg9	basal duff	4	1275.3	349.3	2.55	0.39	0.31	0.70	0.70
eg10	stump	2	1177.3	395.0	11.37	0.77	0.51	1.29	0.65
eg11	12" stump	2	1314.9	310.9	8.88	1.02	0.71	1.74	0.73
eg12	9" stump	2	1447.4	219.2	12.98	1.00	0.81	1.82	0.81
fm1	11 in stump	2	1453	235	3.8				0.80
fm3	80% rotten 7 in log	6	1404	263	5.8				0.77
fm5	90% rotten 5 in log	6	1344	303	4.4				0.74
fm6	rotten (70%) log	6	1243	367	4.7				0.68
fm7	large chunk-rotten (80%) wood	6	1341	306	4.4				0.74
fm8	90% rotten 5 in log	6	1238	367	7.0				0.68
fm9	chunk rotten 9 in wood	6	1350	289	10.6				0.75
fm10	stump (50% rotten)	7	1375	280	6.5				0.76
fm11	90% rotten 5 in log	6	1542	169	9.1				0.85
hi1	duff	3	1343	305	3.8				0.74
hi2	duff	3	1387	277	3.9				0.76
hi3	log end	1	1375	263	16.4				0.77
hi4	stump	2	1352	295	6.6				0.74
hi5	log	1	1263	343	11.8				0.70
hi6	log	1	1302	304	19.7				0.73
hi7	log	1	1218	351	23.4				0.69
pi1	stump	2	1388	271	7.1				0.77
pi2	6 in log	1	1239	363	8.6				0.68
pi3	basal duff	4	1401	271	2.3				0.77
pi4	log	1	1252	352	10.1				0.69
pi5	log	1	1487	184	21.0				0.84
pi6	stump	2	1380	247	23.9				0.78
pi7	log	1	1482	176	27.0				0.84
Averag	ge		1338	296	10.5	1.06	0.74	1.80	0.74
Standa	rd Deviation		93	63	7.6	0.74	0.51	1.23	0.05

	Table A1-1. RSC	Emission	Factors	and]	MCE ii	n the	Sout	heast
--	-----------------	----------	---------	-------	--------	-------	------	-------

Table A1-2. RSC Emission Factors and MCE in the West

Site	Fuel Type	Fuel	EFCO ₂	EFCO	EFCH ₄	EFC ₂ H ₄	EFC ₃ H ₆	EFNMHC	MCE	Fuel
		Code	(g kg ⁻¹)	(g kg ⁻¹)	(g kg ⁻¹)		Consumed (kg m ⁻²)			
										(8)
bc-1	large log	1	1289	224	55.5	6.8	5.9	12.7	0.78	
bc-2	large log	1	1462	200	15.9	2.4	1.9	4.3	0.82	
bc-3	10"X24" wood	1	1322	287	18.1	1.8	1.7	3.5	0.74	41.7
bc-4	duff tree	4	1448	236	3.7	0.6	0.5	1.1	0.80	5.4
bc-5	stump	2	1403	238	16.5	1.9	1.8	3.7	0.79	17.4
bc-6	woody end	1	1431	245	4.8	0.6	0.4	1.0	0.79	18.6
bc-7	9" rotten wood	7	1430	229	12.3	1.7	1.1	2.8	0.80	17.7
bc-8	wood piece	1	1356	283	9.7	1.1	0.8	1.8	0.75	10.7
bc-9	duff	3	1442	235	6.0	0.8	0.7	1.4	0.80	9.8
bc-10	duff	3	1545	163	8.5	1.3	1.3	2.6	0.86	4.8
bc-11	huge stump	2	1287	310	16.8	2.2	1.8	4.0	0.73	
bc-12	woody pieces	1	1426	242	8.7	0.6	0.5	1.2	0.79	10.6
ke2	Stump fragment	2	1506	208					0.82	3.4
ke3	Stump	2	1473	229					0.80	3.0
ke4	Stumphole	2	1628	131					0.89	7.8
ke5	Small stump	2	1638	124					0.89	10.9
ke6	Double stump	2	1477	227					0.81	3.6
ke7	DF Duff	3	1557	176					0.85	7.6
ke8	DF Duff	3	1525	196					0.83	4.5
ke9	DF Duff	3	1572	257					0.86	3.9
ke10	Stumphole	2	1504	209					0.82	23.0
ke11	Stumphole	2	1420	263					0.77	6.1
ke12	Stumphole	2	1469	232					0.80	12.3
lu1	18" stump	2	1471	211	11.0				0.82	7.6
lu2	log & small stump	1	1535	174	8.8				0.85	22.8
lu3	basal duff	4	1454	216	14.4				0.81	10.8
lu4	1.5 ft. log	1	1343	274	21.8				0.76	0.7
lu5	stump	2	1343	273	22.0				0.76	39.0
lu6	large stump	2	1375	254	21.5				0.77	49.2
lu7	2.5 ft. log	1	1491	194	13.8				0.83	1.5
lu8	basal duff	4	1479	211	8.4				0.82	2.6
lu9	rotten low stump	7	1387	252	18.5				0.78	23.7
lu10	28" stump	2	1316	305	13.8				0.73	4.1
lu11	28" stump	2	1336	270	26.5				0.76	13.8
lu12	stump	2	1642	111	5.8				0.90	5.1
sll	Larch duff	3	1452	224	8.4	1.1	1.0	2.0	0.80	10.7
sl2	Larch duff	3	1390	250	15.5	1.6	0.8	2.4	0.78	10.9
sl3	Larch duff	3	1393	248	14.7	1.5	1.6	3.2	0.78	3.4
sl4	Larch duff	3	1395	255	11.9	0.8	0.6	1.4	0.78	11.9
s15	Larch duff	3	1407	258	6.0	0.7	0.5	1.2	0.78	5.0
sl6	Larch duff	3	1415	238	14.0	1.0	0.8	1.8	0.79	6.9
sl7	Larch duff	3	1433	221	16.0	1.7	1.3	3.0	0.81	2.4
s18	Larch duff	3	1433	201	22.9	3.6	3.5	7.1	0.82	1.4
s19	Stump	2	1530	168	11.9	1.1	1.0	2.1	0.85	16.9
Average	•		1446	226	14.7	1.6	1.4	3.1	0.80	11.5
Standard	d Deviation		87	44	9.3	1.4	1.3	2.6	0.04	11.0

Table A1-3. RSC Emission Factors and MCE in Alaska

Site	Fuel Type	Fuel Code	$EFCO_2$	EFCO	EFCH ₄ (g/kg)	EFC_2H_4	EFC ₃ H6	EFNMHC	MCE
			(88)	(8,8)	(8:8)	(8,8)	(88/	(88)	
ek1	duff/dead moss	5							
ek2	duff/dead moss	5	1385	251	10.6	4.36	3.31	4.36	0.78
ek3	duff/dead moss	5	1442	240	4.00	0.54	0.52	0.54	0.79
ek4	duff/dead moss	5	1464	225	4.37	0.41	0.35	0.41	0.81
ek5	duff/dead moss	5	1412	256	5.71	0.67	0.49	0.67	0.78
ek6	duff/dead moss	5	1424	246	7.04	0.78	0.55	0.78	0.79
ek21	duff/dead moss	5	1507	204	1.59	0.31	0.27	0.31	0.82
ek22	duff/dead moss	5	1443	225	11.0	1.09	0.90	1.09	0.80
ek23	duff/dead moss	5	1474	207	10.8	0.91	0.60	0.91	0.82
ek24	duff/dead moss	5	1478	206	9.92	0.82	0.65	0.82	0.82
ek25	duff/dead moss	5	1449	397	11.1	1.41	1.14	1.41	0.80
ek26	duff/dead moss	5	1425	246	6.62	0.75	0.55	0.75	0.79
clf1	duff/dead moss	5	1433	238	7.38	1.02	0.88	1.02	0.79
clf2	duff/dead moss	5	1431	238	7.48	1.20	1.16	1.20	0.79
clf3	duff/dead moss	5	1402	247	12.0	1.87	1.44	1.87	0.78
clf4	duff/dead moss	5	1404	252	9.39	1.40	1.19	2.59	0.78
clf5	duff/dead moss	5	1457	219	9.27	1.33	1.02	2.36	0.81
clf6	duff/dead moss	5	1390	248	14.93	2.11	1.75	2.11	0.78
Averag	e		1436	244	8.4	1.23	0.99	1.37	0.80
Standar	d Deviation		33	43	3.4	0.94	0.72	1.03	0.02

Table	e A2-1. RSC	Emiss	ion Fac	ctors a	nd MC	E for W	/oody F	uels	
Site	Fuel Type	Fuel Code	EFCO ₂ (g kg ⁻¹)	EFCO (g kg ⁻¹)	EFCH ₄ (g kg ⁻¹)	EFC ₂ H ₄ (g kg ⁻¹)	EFC ₃ H ₆ (g kg ⁻¹)	EFNMHC (g kg ⁻¹)	MCE
bc-1	large log	1	1289	224	55.5	6.77	5.90	12.67	0.78
bc-12	woody pieces	1	1426	242	8.7	0.64	0.52	1.16	0.79
bc-2	large log	1	1462	200	15.9	2.44	1.90	4.34	0.82
bc-3	10"X24" wood	1	1322	287	18.1	1.75	1.73	3.48	0.74
bc-6	woody end	1	1431	245	4.8	0.58	0.43	1.01	0.79
bc-8	wood piece	1	1356	283	9.7	1.07	0.78	1.85	0.75
eg2	log	1	1442	201	23.0	2.06	1.70	3.76	0.82
eg7	stump&log	1	1474	187	19.9	2.07	1.56	3.63	0.83
hi3	log end	1	1375	263	16.4				0.77
hi5	log	1	1263	343	11.8				0.70
hi6	log	1	1302	304	19.7				0.73
hi7	log	1	1218	351	23.4				0.69
lu2	log & small stump	1	1535	174	8.8				0.85
lu4	1.5 ft. log	1	1343	274	21.8				0.76
lu7	2.5 ft. log	1	1491	194	13.8				0.83
pi2	6 in log	1	1239	363	8.6				0.68
pi4	log	1	1252	352	10.1				0.69
pi5	log	1	1487	184	21.0				0.84
pi7	log	1	1482	176	27.0				0.84
Average	e		1378	255	17.8	2.17	1.81	3.99	0.77
Standard	d Deviation		100	65	11.1	1.98	1.75	3.73	0.06

Appendix 2. Emission Factors and MCE by Fuel Component

Site	Fuel Type	Fuel Code	$EFCO_2 (g kg^{-1})$	EFCO (g kg ⁻¹)	EFCH ₄ (g kg ⁻¹)	EFC ₂ H ₄ (g kg ⁻¹)	$\frac{\text{EFC}_3\text{H}_6}{(\text{g kg}^{-1})}$	EFNMHC (g kg ⁻¹)	MCE
bc-11	huge stump	2	1287	310	16.8	2.17	1.84	4.00	0.73
bc-5	stump	2	1403	238	16.5	1.92	1.78	3.70	0.79
eg10	stump	2	1177	395	11.4	0.77	0.51	1.29	0.65
eg11	12" stump	2	1315	311	8.9	1.02	0.71	1.74	0.73
eg12	9" stump	2	1447	219	13.0	1.00	0.81	1.82	0.81
eg3	stump	2	1193	357	24.3	2.54	1.32	3.86	0.67
eg5	stump	2	1265	342	9.5	0.78	0.53	1.31	0.70
fm1	11 in stump	2	1453	235	3.8				0.80
hi4	stump	2	1352	295	6.6				0.74
ke10	Stumphole	2	1504	209					0.82
ke11	Stumphole	2	1420	263					0.77
ke12	Stumphole	2	1469	232					0.80
ke2	Stump fragment	2	1506	208					0.82
ke3	Stump	2	1473	229					0.80
ke4	Stumphole	2	1628	131					0.89
ke5	Small stump	2	1638	124					0.89
ke6	Double stump	2	1477	227					0.81
lu 1	18" stump	2	1471	211	11.0				0.82
lu10	28" stump	2	1316	305	13.8				0.73
lu11	28" stump	2	1336	270	26.5				0.76
lu12	stump	2	1642	111	5.8				0.90
lu5	stump	2	1343	273	22.0				0.76
lu6	large stump	2	1375	254	21.5				0.77
pi1	stump	2	1388	271	7.1				0.77
pi6	stump	2	1380	247	23.9				0.78
s19	Stump	2	1530	168	11.9	1.08	0.99	2.08	0.85
Average			1415	248	14.1	1.41	1.06	2.47	0.78
Standard	Deviation		123	69	7.0	0.69	0.53	1.17	0.06

Table A2-2. RSC Emission Factors and MCE for Stump

Table A2-3. RSC Emission Factors and MCE for Duff

Site	Fuel Type	Fuel	EFCO ₂	EFCO	EFCH ₄	EFC_2H_4	EFC ₃ H ₆	EFNMHC	MCE
		Code	(g/kg)	(g/kg)	(g/kg)	(g/kg)	(g/kg)	(g/kg)	
bc-10	duff	3	1545	163	8.5	1.29	1.34	2.63	0.86
bc-9	duff	3	1442	235	6.0	0.79	0.65	1.44	0.80
hi1	duff	3	1343	305	3.8				0.74
hi2	duff	3	1387	277	3.9				0.76
ke7	DF Duff	3	1557	176					0.85
ke8	DF Duff	3	1525	196					0.83
ke9	DF Duff	3	1572	257					0.86
sl1	Larch duff	3	1452	224	8.4	1.07	0.97	2.04	0.80
sl2	Larch duff	3	1390	250	15.5	1.56	0.80	2.36	0.78
s13	Larch duff	3	1393	248	14.7	1.54	1.63	3.17	0.78
sl4	Larch duff	3	1395	255	11.9	0.80	0.61	1.40	0.78
s15	Larch duff	3	1407	258	6.0	0.70	0.54	1.24	0.78
sl6	Larch duff	3	1415	238	14.0	1.00	0.79	1.79	0.79
sl7	Larch duff	3	1433	221	16.0	1.66	1.33	2.98	0.81
s18	Larch duff	3	1433	201	22.9	3.58	3.49	7.07	0.82
Average			1446	234	11.0	1.40	1.21	2.61	0.80
Standard Deviation			70	38	5.8	0.84	0.88	1.70	0.04

Table A2-4. RSC Emission Factors and MCE for Basal Duff

Site	Fuel Type	Fuel Code	EFCO ₂ (g kg ⁻¹)	EFCO (g kg ⁻¹)	EFCH ₄ (g kg ⁻¹)	EFC ₂ H ₄ (g kg ⁻¹)	EFC ₃ H ₆ (g kg ⁻¹)	EFNMHC (g kg ⁻¹)	MCE
bc-4	duff tree	4	1448	236	3.7	0.57	0.52	1.09	0.80
eg1	basal duff	4	1294	337	2.8	0.44	0.30	0.73	0.71
eg4	basal duff	4	1239	367	5.4	0.68	0.42	1.10	0.68
eg6	basal duff	4	1281	344	3.5	0.44	0.32	0.75	0.70
eg8	basal duff	4	1259	359	2.7	0.57	0.38	0.95	0.69
eg9	basal duff	4	1275	349	2.5	0.39	0.31	0.70	0.70
lu3	basal duff	4	1454	216	14.4				0.81
lu8	basal duff	4	1479	211	8.4				0.82
pi3	basal duff	4	1401	271	2.3				0.77
Average		1348	299	5.1	0.52	0.37	0.89	0.74	
Standard Deviation		96	65	4.0	0.11	0.09	0.18	0.06	

Table A2-5. RSC Emission Factors and MCE for Duff and Dead Moss in Alaska

Site	Fuel Type	Fuel	EFCO ₂	EFCO	$EFCH_4$	EFC ₂ H ₄	EFC ₃ H ₆	EFNMHC	MCE
		Code	(g kg-1)	(g kg ⁻¹)	(g kg ⁻¹)	(g kg ⁻¹)	(g kg ⁻¹)	(g kg ⁻¹)	
clf1	duff/dead moss	5	1433	238	7.4	1.02	0.88	1.02	0.79
clf2	duff/dead moss	5	1431	238	7.5	1.20	1.16	1.20	0.79
clf3	duff/dead moss	5	1402	247	12.0	1.87	1.44	1.87	0.78
clf4	duff/dead moss	5	1404	252	9.4	1.40	1.19	2.59	0.78
clf5	duff/dead moss	5	1457	219	9.3	1.33	1.02	2.36	0.81
clf6	duff/dead moss	5	1390	248	14.9	2.11	1.75	2.11	0.78
ek1	duff/dead moss	5							
ek2	duff/dead moss	5	1385	251	10.6	4.36	3.31	4.36	0.78
ek21	duff/dead moss	5	1507	204	1.6	0.31	0.27	0.31	0.82
ek22	duff/dead moss	5	1443	225	11.0	1.09	0.90	1.09	0.80
ek23	duff/dead moss	5	1474	207	10.8	0.91	0.60	0.91	0.82
ek24	duff/dead moss	5	1478	206	9.9	0.82	0.65	0.82	0.82
ek25	duff/dead moss	5	1449	397	11.1	1.41	1.14	1.41	0.80
ek26	duff/dead moss	5	1425	246	6.6	0.75	0.55	0.75	0.79
ek3	duff/dead moss	5	1442	240	4.0	0.54	0.52	0.54	0.79
ek4	duff/dead moss	5	1464	225	4.4	0.41	0.35	0.41	0.81
ek5	duff/dead moss	5	1412	256	5.7	0.67	0.49	0.67	0.78
ek6	duff/dead moss	5	1424	246	7.0	0.78	0.55	0.78	0.79
Average			1436	244	8.4	1.23	0.99	1.37	0.80
Standard Deviation			33	43	3.4	0.94	0.72	1.03	0.02

Table A2-6. RSC Emission Factors and MCE for Rotten Wood

Site	Fuel Type	Fuel Code	EFCO ₂ (g kg ⁻¹)	EFCO (g kg ⁻¹)	EFCH ₄ (g kg ⁻¹)	$\frac{\text{EFC}_2\text{H}_4}{(\text{g kg}^{-1})}$	$\frac{\text{EFC}_3\text{H}_6}{(\text{g kg}^{-1})}$	EFNMHC (g kg ⁻¹)	MCE
fm11	90% rotten 5 in log	6	1542	169	91				0.85
fm3	80% rotten 7 in log	6	1404	263	5.8				0.77
fm5	90% rotten 5 in log	6	1344	303	4.4				0.74
fm6	rotten (70%) log	6	1243	367	4.7				0.68
fm7	large chunk-rotten (80%) wood	6	1341	306	4.4				0.74
fm8	90% rotten 5 in log	6	1238	367	7.0				0.68
fm9	chunk rotten 9 in wood	6	1350	289	10.6				0.75
Average			1352	295	6.6				0.74
Standard Deviation		103	68	2.5				0.06	

Site	Fuel Type	Fuel Code	EFCO ₂ (g kg ⁻¹)	EFCO (g kg ⁻¹)	EFCH ₄ (g kg ⁻¹)	$\frac{\text{EFC}_2\text{H}_4}{(\text{g kg}^{-1})}$	EFC ₃ H ₆ (g kg ⁻¹)	EFNMHC (g kg ⁻¹)	MCE
bc-7	9" rotten wood	7	1430	229	12.3	1.68	1.15	2.83	0.80
fm10	stump (50% rotten)	7	1375	280	6.5				0.76
lu9	rotten low stump	7	1387	252	18.5				0.78
Averag	je		1397	254	12.4	1.68	1.15	2.83	0.78
Standard Deviation		29	26	6.0				0.02	

Table A2-7. RSC Emission Factors and MCE for Rotten Stump