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ABSTRACT: Estimating population exposure to particulate matter during wildfires can be
difficult because of insufficient monitoring data to capture the spatiotemporal variability of smoke
plumes. Chemical transport models (CTMs) and satellite retrievals provide spatiotemporal data
that may be useful in predicting PM2.5 during wildfires. We estimated PM2.5 concentrations during
the 2008 northern California wildfires using 10-fold cross-validation (CV) to select an optimal
prediction model from a set of 11 statistical algorithms and 29 predictor variables. The variables
included CTM output, three measures of satellite aerosol optical depth, distance to the nearest
fires, meteorological data, and land use, traffic, spatial location, and temporal characteristics. The
generalized boosting model (GBM) with 29 predictor variables had the lowest CV root mean
squared error and a CV-R2 of 0.803. The most important predictor variable was the Geostationary
Operational Environmental Satellite Aerosol/Smoke Product (GASP) Aerosol Optical Depth
(AOD), followed by the CTM output and distance to the nearest fire cluster. Parsimonious
models with various combinations of fewer variables also predicted PM2.5 well. Using machine
learning algorithms to combine spatiotemporal data from satellites and CTMs can reliably predict PM2.5 concentrations during a
major wildfire event.

■ INTRODUCTION

The frequency and severity of wildfires are projected to increase
in many parts of the world due to alterations of temperature
and precipitation patterns related to climate change.1 Although
numerous studies have investigated the acute health effects of
exposure to urban particulate matter (PM), few have
investigated the health impacts of exposure to wildfire PM on
the general population.2 Increasing evidence suggests that
wildfire PM causes adverse respiratory health effects,3−6 with
some evidence of increased mortality.7,8 The research shows
conflicting evidence for cardiovascular health effects,9,10 despite
coherent evidence of such effects from exposure to other
sources of PM.11

The lack of consistency in findings could be due to
difficulties in population exposure assessment to wildfire
smoke. Many PM2.5 (PM with aerodynamic diameter ≤2.5
μm) monitors measure only every 3 or 6 days, which requires
either averaging over time or imputing values on missing days.
Most health effect studies also assign all individuals to the same

exposure, either from one monitor,12−15 or from an average of
all monitors in the proximate area.7,16 Even in locations with
dense monitoring networks, smoke plumes vary on spatial
scales smaller than monitors can capture. Thus, assigning one
value to all exposed individuals likely leads to oversmoothing of
exposure estimates, which can bias results, often toward the
null, can increase variance, or both, depending on the type of
error,17 thereby making it harder to discern a true causal health
effect. Improved modeling of air pollution exposures is also
important for risk assessment that relies on exposure-response
estimates from epidemiological studies.18

Recent studies of the health effects of wildfires have begun to
include information on air pollution from satellites, dispersion
models, and chemical transport models (CTMs) to estimate
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population exposure. Some studies have used visible satellite
imagery to classify regions as exposed or unexposed,10 classify
days as wildfire-affected,19 and assign monitors to areas without
monitoring data by similarity in smokiness.20 Others have used
quantitative satellite data on atmospheric aerosol loading9,21 or
fire radiative power estimates22 to classify regions as smoke-
exposed. These dichotomizations simplify exposure and could
miss gradation in effects associated with concentrations of
smoke exposure in a population during a wildfire event.
A few wildfire health studies have used air pollution

dispersion models10,23−25 or CTMs26,27 to estimate air
pollution levels in space and time. Interestingly, both studies
that used CTM output combined it with satellite aerosol optical
depth (AOD) data,26,27 but neither included other variables in
their analyses despite evidence that meteorological parameters
can help to scale vertically full-column AOD measures to
ground-level PM2.5 estimates.28−30

Satellite AOD and CTMs provide quantitative, spatially
continuous information about air pollution; however, currently
they have spatial resolutions too coarse for estimating human
exposures that may vary on small spatial scales during wildfires.
Additionally, the relationships between AOD and PM2.5 are
spatially and temporally heterogeneous.31−33 Horizontal scaling
to smaller spatial resolution can be achieved by using air
pollution measurements at monitoring stations as the response
variable and AOD, CTM output, and other data as predictors.
Coefficients from the fitted statistical model can be applied to
predict exposures at unknown locations.34 Often called land-use
regression, this method is used traditionally to create spatial
models to estimate long-term average air pollution exposures.35

Recently, researchers have shown that satellite-based AOD
observations can improve the predictive power of PM2.5 land-
use regression models while also contributing temporal
information that is lacking when only considering temporally
invariant land-use variables.36−40

One limitation of these regression-based exposure models is
that they assume a priori a specific type of statistical model for
their data, such as a linear model,41−43 a generalized additive
model (GAM),38 or mixed models.36,37 Choosing one statistical
model may limit the ability to find the best predictive model for
the data. In data-adaptive methods, the data inform the choice
of model rather than imposing a specific model a priori. V-fold
cross-validation provides one data-adaptive method for
choosing between candidate estimators while avoiding over-
fitting to the data.44

Within the air quality literature, researchers have begun to
use nonlinear models to predict PM concentrations,45,46

although few studies have employed robust machine learning
techniques such as cross-validation to select among optimal
models based on performance metrics.47−49 We aim to improve
exposure assessment to PM during wildfires by using a data-
adaptive method that selects among a wider group of statistical
algorithms than previous studies to combine an optimal set of
variables to best approximate concentrations of total PM2.5
during the 2008 northern California wildfires. The optimal
model will then be used to estimate spatiotemporal exposures
to these wildfires for use in subsequent epidemiological
analyses.

■ MATERIALS AND METHODS
Setting. During the weekend of June 20−21, 2008, over

6000 lightning strikes ignited thousands of fires in 26 counties
in northern California.50 Meteorological conditions and

difficulty with fire suppression contributed to very high air
pollution levels throughout the state.51 Our study period is June
20 to July 31, 2008 (N = 42 days), the period when air
pollution levels were elevated. These fires contributed to
numerous monitor-days that exceeded the U.S. Environmental
Protection Agency (USEPA) 24 h average PM2.5 standard (35
μg/m3).

Data Sources. We collected ground-based monitoring data
for PM2.5 from the US EPA, the California Air Resources Board
(CARB), and the AirNow (http://www.airnow.gov/) and
AirFire (http://www.airfire.org/) databases. We used 37
Federal Reference Monitors (FRM), 12 other gravimetric
monitors, and 63 beta-attenuation monitors (31 used for
regular monitoring by CARB, 9 from the US Forest Service,
and 20 that were deployed during these fires to regions without
continuously operating monitors). We used FRM monitors,
which are deployed for compliance with the USEPA National
Ambient Air Quality Standards, and Federal Equivalent Method
(FEM) monitors which provide measurements on days when
the FRMs are not recording (most FRM monitors collect
samples only every six or three days) and at 42 locations
without FRMs. Data from colocated FRM and FEM monitors
were highly correlated (r = 0.94 to 1) with a mean difference in
values of −1.964 μg/m3 (range: −19.830, 35.880). We
performed sensitivity analyses to compare results using just
the FRM monitoring data and all but the FRM monitoring data
to our main results.
After first cleaning the data of monitoring data values that

had quality control flags demonstrating machine errors, two
values were removed from the analysis because they were
outliers; one was a value of zero that was surrounded by values
close to 20 μg/m3 and the other was over 400 μg/m3, which
was determined to be too high to be accurately measured by a
beta-attenuation monitor (BAM).52

The National Center for Atmospheric Research (NCAR)
provided PM2.5 concentration estimates from the Weather
Research and Forecasting with Chemistry (WRF-Chem) 3.2
model. WRF-Chem 3.2 is a regional CTM based on the
chemical, spatial, and temporal boundary conditions from the
Model for OZone And Related chemical Tracers (MOZART)-
4, a global CTM (see Pfister et al.53). Inputs included
meteorology, physical and chemical atmospheric processes,
emissions from a California-specific emissions inventory for
2008, online biogenic emissions, and fire emissions estimated
with the Fire Inventory from NCAR (FINN) V1, (see
Wiedinmyer et al.54). We used 24 h averages of the hourly
output of PM2.5 at the lowest vertical level of the model, where
population exposure occurs.
We obtained AOD measurements from the Geostationary

Operational Environmental Satellite (GOES) West Aerosol
Smoke Product (GASP) from the National Oceanic and
Atmospheric Administration (NOAA) using their January 7,
2009 revised algorithm. The GASP product has a spatial
resolution of 4 km pixels at nadir and has daily retrievals every
30 min during daylight; approximately 24 retrievals per day. We
assessed all GASP retrievals for data quality and removed any
null values and scenes with too few pixel values. NOAA’s
quality control process removed some pixels from the center of
dense smoke plumes either because these were assumed to be
clouds or the signal was too low or negative.55 We estimated
these missing values by fitting an optimal radial basis function
(RBF) because: (i) an optimal RBF would be selected by
minimizing the root mean squared error (RMSE) of the
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interpolated surface, (ii) RBF allows interpolation of values
greater than the input values which is important given that the
missing values had higher reflectance from smoke than
surrounding values that were not removed by NOAA, and
(iii) RBF is an exact interpolator and thus all observed data
points are retained. Cloud cover in the summer in California is
not a major impediment to retrieval except along the Pacific
coast, where we did not interpolate missing values. We
calculated daily average surface values for all days during
which there were at least 12 successful GASP retrievals.
The MODIS (MOderate Resolution Imaging Spectroradi-

ometer) AOD product has a spatial resolution of 10 km and
temporal resolution of at most two retrievals per day. All
MODIS data were processed with the same data cleaning, RBF
interpolation, and daily averaging as the GASP data. The
average RMSE from the RBF functions were 0.086 for GASP
and 0.054 for MODIS (AOD values are unitless but tend to
range from 0 to 1 over the U.S.).
Sonoma Technology Inc. and the University of Southern

California created a high-resolution (500 m) kernel-smoothed
AOD for northern California during these wildfires using raw
MODIS data. They used a local estimate of surface brightness, a

local AOD algorithm for fresh smoke plumes, and a less
restrictive cloud filter that does not screen out pixels that are
part of smoke plumes56 to create AOD estimates more refined
to local conditions than the standard MODIS AOD product.
We downloaded temperature, relative humidity, sea level

pressure, surface pressure, planetary boundary layer height, dew
point temperature, and the U and V components of wind speed
from the National Climatic Data Center’s Rapid Update Cycle
(RUC) Model (http://ruc.noaa.gov/) and calculated 24 h
averages from hourly data.
Researchers at NCAR provided cumulative daily sums of fire

points from MODIS Fire Detection points from the Remote
Sensing Applications Center of the US Forest Service (http://
activefiremaps.fs.fed.us/gisdata.php). From these data, we
calculated two daily metrics: the distance from each monitoring
site to the nearest cluster of fire points (those within 5 km of
each other) and the number of fire points within each cluster
divided by the distance.
To account for other sources of PM2.5 during the wildfires

that would contribute to monitored PM2.5 values during the
fires, we included traffic and land use information. We
calculated the sum of all traffic counts within 1 km of a

Table 1. Variables Used To Predict PM2.5 during the 2008 Northern California Wildfires

variables data source
temporal
resolution

spatial
resolution

Dependent Variable
PM2.5 from monitoring stations (N = 112) USEPA, California Air daily or

hourly37 Federal Reference monitors Resources Board, Air Districts, and U.S. Forest
Service12 other gravimetric monitors

43 BAM monitors
20 eBAMs (just for fire)
Spatiotemporal Variables
GASP AOD National Oceanic and Atmospheric

Administration
half-hourly,
daylight

4 km

MODIS AOD NASA twice daily 10 km
Local AOD Sonoma Technology, Inc. (derived from raw

MODIS retrievals)
daily 0.5 km

WRF-Chem PM2.5 (μg/m
3) National Center for Atmospheric Research hourly 12 km

distance to nearest cluster of active fires (m) Derived from USDA Forest Service Remote
Sensing Applications Center

daily
counts of fires in nearest cluster/distance
relative humidity (%) rapid update cycle daily 13 km
sea level pressure (Pa)
surface pressure (Pa)
Planetary boundary layer height (m)
U-component of wind speed (m/s)
V-component of wind speed (m/s)
dew point temperature (K)
Temperature at 2 m (K)
Spatial Variables
x-coordinate (m) U.S. Environmental Protection
y-coordinate (m) Agency Air Quality System
counts of traffic within 1 km Dynamap 2000, TeleAtlas annual 1 km
% of urban land use within 1km 2006 National Land Cover Database 1 km
% of agricultural land use within 1km
% of vegetation land use within 1km
any high intensity land use within 1 km
elevation (m) National Elevation Data set 2010
binary indicator variables for air basin (San Francisco Bay Area, Sacramento Valley,
San Joaquin Valley, and Mountain Counties)

California Air Resources Board air basin

population density U.S. Census 2000 block
group

Temporal Variables
Julian date and weekend daily
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PM2.5 monitor from Dynamap 2000.57 We used the National
Land Cover Database for 200658 to calculate within 1 km of
each monitor the percentage of urban development (codes 22,
23, and 24), agriculture (codes 81 and 82), other vegetated area
(codes 21, 41, 42, 43, 52, and 71), and to create a binary
indicator of whether any Developed High Intensity land use
(code 24) occurred.
We used the National Elevation Data set for California from

2010 and population density estimates by block group from the
2000 U.S. census. We extracted the x- and y-coordinates for
each monitor in the California Teale Albers projection, and
created indicator variables for each of the following air basins:
San Francisco Bay, Sacramento Valley, San Joaquin Valley, and
Mountain Counties. We also created a continuous variable of
Julian date and a binary variable denoting if the day was a
weekend.
Statistical Analysis. We used 10-fold cross-validation to

determine which of the following 11 algorithms, chosen to
reflect a diversity of statistical algorithm types, resulted in the
best predictor of PM2.5 in these data: generalized linear models
(GLM),59 random forest (RF),60 bagged trees,61 generalized
boosting models (GBM),62 generalized additive models
(GAM),63 multivariate adaptive regression splines,64 elastic
nets,65 support vector machines with a radial basis kernel,66

Gaussian processes with a radial basis kernel,66 k nearest
neighbors regression,61 and lasso regression.67 Nested within
this 10-fold cross-validation was another level of 10-fold cross-
validation for each of 29 subsets of predictor variables (e.g., all
29, the 28 best, the 27 best,...) from the list of 29 independent
variables in Table 1, thus running 10-fold cross-validation 319
(29 × 11) times. The log of PM2.5 for all monitor-days (N =
1540) was the dependent variable. Within this nested 10-fold
cross-validation, parameters for the models that required them
(i.e., interaction depth and shrinkage for GBM) were estimated
using an additional layer of 10-fold cross-validation (see Kuhn68

for details).
In 10-fold cross-validation, each model is trained on 90% of

the data and then evaluated on the 10% the data that is left out
(the validation set), in our case a random sample of our data.
This process is repeated 10 times and the resulting performance
metric (i.e., the cross-validation root mean square error (CV-
RMSE)) is averaged across the 10 exhaustive and mutually
exclusive validation sets. As a result, performance is always
evaluated based on data not used to train the model, with each
observation contributing exactly once to validation. For each
algorithm, we selected two “best” models: (1) the model with

the smallest CV-RMSE and (2) a more parsimonious model
whose CV-RMSE was within 1.5% of the smallest CV-RMSE.
We then compared the smallest CV-RMSE from each
algorithm to choose which algorithm best fit our data.
To further analyze fit of the models with the lowest CV-

RMSE, we inspected residual plots for lack of heteroskedasticity
and assessed agreement between monitoring data and predicted
values at the monitoring sites with Bland-Altman plots. We
assessed bias by the slope of a linear regression with zero
intercept on the predicted compared to the observed data.
Further, we examined spatial autocorrelation in the residuals
using Moran’s I, compared the range and distribution of
predicted and observed values, and visualized predicted values
across the study area to determine if the model predictions
captured the spatial characteristics of the smoke plume as seen
in visible imagery from the MODIS satellite.
When variables are correlated, the subset of variables chosen

is dependent on how the folds are created, which is determined
by a random seed. The optimal model should still have similar
performance even with a different set of predictor variables. If
certain variables were better predictors regardless of the
composition of the folds, these variables would be repeatedly
selected under different internal data splits. We therefore ran
our data-adaptive method five times with different seeds for
sorting the observations and assessed the average relative
importance of each variable in the model with the lowest CV-
RMSE across these five runs. We used the GBM’s calculation of
relative importance, which is essentially the empirical improve-
ment of the model for splitting on that variable summed over
all nodes within a tree and averaged over all trees within the
boosted model. Additionally, we investigated if fewer variables
could predict PM2.5 concentrations well during the wildfires by
only allowing the algorithm to select among smaller subsets of
variables.
We used R v.2.15.359 for all statistical analyses, GeoDa

v.1.2.069 for Moran’s I and ArcGIS 10.170 for spatial data
processing and map creation.

■ RESULTS

The variable most correlated with the outcome was the GASP
AOD, followed by the distance to the nearest active fire cluster
(negatively), and then equally by the WRF-Chem model’s
PM2.5 estimate and the local AOD product (Supporting
Information (SI) Table S1). Many of the predictor variables
were correlated with each other (SI Table S2). Because we were

Table 2. CV-RMSE and CV-R2 Values for the Best Model Across the 11 Algorithms

model with smallest CV-RMSE for subsets of variables
model with fewer variables whose CV-RMSE was within

1.5% of the smallest CV-RMSE

CV-RMSE (μg/m3) CV-R2 no. of variables selected CV-RMSE (μg/m3) CV-R2 no. of variables selected

random forest 1.513 0.796 20 1.521 0.790 14
bagged trees 1.687 0.672 27 1.696 0.665 15
generalized boosting model 1.489 0.803 29 1.495 0.799 13
elastic net regression 1.848 0.538 28 1.852 0.535 27
multivariate adaptive regression splines 1.642 0.701 28 1.648 0.696 26
lasso regression 1.821 0.558 28 1.834 0.548 23
support vector machines 1.556 0.761 16 1.561 0.758 15
gaussian processes 1.580 0.746 16 1.591 0.739 14
generalized linear model 1.821 0.558 29 1.834 0.549 23
K-nearest neighbors 2.030 0.387 2 2.044 0.374 1
generalized additive model 1.607 0.725 26 1.609 0.724 25
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interested in prediction not inference, collinearity was not a
primary concern.
Table 2 shows the CV-RMSE, CV-R2, and number of

variables chosen for the prediction model with the lowest CV-
RMSE and for the more parsimonious model. Across
algorithms, GBM fit the data the best, but the RF model was
a close second; for both methods, the model with the optimal
set of variables had a CV-R2 that rounds to 0.80. The
parameters chosen for GBM by another layer of nested 10-fold
cross-validation were interaction depth = 9, number of trees =
500 and shrinkage = 0.1.
We compared the out-of-sample predicted values with the

observed values of the RF and GBM models. The GBM’s
predicted-observed plot shows the values more evenly
distributed across the line of unity (y = x) at the low and
high values where the RF model overpredicts and under-
predicts, respectively. The Bland-Altman plots, however,
demonstrate slightly tighter agreement for the RF model than
the GBM with fewer large negative residuals (Figure 1). We
found little evidence of bias in either model with a slope of
1.005 (SE = 0.003) for the RF model and 0.999 (SE = 0.003)

for the GBM. Moran’s I based on a queen’s contiguity matrix of
the first-order nearest neighbors revealed no evidence of spatial
autocorrelation in the residuals for either algorithm (SI Table
S3).
Figure 2 shows the satellite images and the predicted grids (5

km) for RF and GBM models on June 29, a day with minimal
smoke, and July 11, a day with smoke covering most areas. This
comparison is limited in two main ways: (1) the visible imagery
are from one time point, whereas the model predictions
represent 24 h days, and (2) the satellite images shows total
atmospheric column smoke and our model predicts at ground
level. With these limitations in mind, each model appears to
capture some of the spatial variability in the smoke plume
evident in the visible imagery.
A comparison of the predicted values for the 5 km grid over

the study area demonstrated that the RF model predicted
values across a smaller range (min = 3.4 μg/m3, max = 188.4
μg/m3) than the GBM model (min = 2.0 μg/m3, max = 337.4
μg/m3). The latter was closer to the full range of the observed
monitoring data (min = 1.5 μg/m3, max = 364.8 μg/m3) (SI
Figure S1).
SI Figure S2 shows the CV-RMSE for every subset of

variables run for GBM. The first few variables had the most
impact on the CV-RMSE, and although the model with all 29
variables had the smallest CV-RMSE, the model with only 13
variables has a CV-RMSE less than 1.5% greater. These 13
variables were, in order of importance: GASP AOD, distance to
the nearest fire cluster, WRF-Chem, Julian date, surface
pressure, local AOD, sea level pressure, relative humidity, v-
component of wind speed, u-component of wind speed, x-
coordinate, MODIS AOD, and temperature. This more
parsimonious model fit the observed data well (SI Figure S3)
and was comparable to the model with all 29 variables with the
greatest difference occurring for the extremely high values (SI
Figure S4).
When we ran the GBM five times allowing different random

seeds, the CV-R2 values for the best models rounded to 0.80 or
0.81. In each run, the model with the smallest CV-RMSE
selected between 20 and 29 variables with 19 chosen by all five;
the parsimonious models selected between 14 and 28 variables.
The average relative importance of each variable across the five
runs (SI Table S4) demonstrated that GASP AOD was the
most influential variable in creating our optimal exposure
model. The rank ordering of the variables was fairly consistent;
GASP AOD, Julian date, and WRF-Chem were chosen as the
first, second, and third variables, respectively, for each of the
five runs.
Although the run that allowed selection among all 29

variables had the lowest CV-RMSE and highest CV-R2, many of
the other subsets with important variables removed approxi-
mated the fit of the optimal model (Table 3), possibly due to
high collinearity among the spatiotemporal variables. Pearson
correlations between MODIS AOD, local AOD, and WRF-
Chem with GASP AOD were 0.712, 0.705, and 0.483,
respectively. The CV-R2 for the model with only universally
available variables (i.e., those not specific to our study domain
such as x- and y-coordinates, dummies for air basin, and Julian
date) was 0.77, only slightly lower than that of the model with
all of the variables.
Our results from analyses with just FRM monitors and all but

the FRM monitors showed that the model using only FRM
data had the smallest CV-RMSE (SI Table S5). The FRM
monitoring data did not have as large a variance, likely due to

Figure 1. Model diagnostic plots for the optimal model based on 10-
fold cross-validation using RF and GBM, respectively.
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the fewer monitor-days (N = 277), compared to all of the data
(N = 1540), and the limited locations of the FRM data farther
from the fires. Inclusion of other monitors including eBAMs
that were deployed to areas closer to the fires and more daily
monitors supplied better data support for concentration
prediction by increasing spatial and temporal coverage, and in
the case of eBAMs, also information on concentrations closer
to the fires. By including all monitoring data, estimated
concentrations more likely matched the true exposures.

■ DISCUSSION

Our analyses demonstrate the utility of using data-adaptive
approaches (i.e., machine learning algorithms) to combine
spatial, temporal, and spatiotemporal data to improve
concentration estimates for PM2.5 from satellite data and
CTMs. Our best model had a CV-R2 of 0.803 with little
heteroskedasticity or autocorrelation in the residuals, good

agreement with the observed data, and predicted values that
captured the variability evident in visible satellite imagery of the
smoke plume on high and low smoke days.
Had we assumed one statistical algorithm a priori, it likely

would have yielded inferior results. The best CV-R2 value from
a GLM model was 0.558 compared to 0.803 from GBM. Even
GAM, which performed better (CV-R2 = 0.725) than a linear
model, still did not perform as well as GBM or RF.
GBM is a generalization of tree boosting that provides an

accurate and effective model for data mining.71 Boosting
combines many weak tree-based models into a powerful
committee of models. The method requires each iterative
model to better predict previously poorly predicted observa-
tions by up-weighting those observations and down-weighting
well-predicted observations. By combining all of the weak
models together, the boosted model predicts well over the
range of observations.71

Figure 2. (a) Satellite image, predicted grid from RF and from GBM on June 29, 2008. (b) Satellite image and predicted grids from RF and GBM on
July 11, 2008.

Table 3. CV-R2 and CV-RMSE for GBM Models with Different Subsets of Variables

all variables
GASP AOD

plusa
WRF-Chem

plusa
emissionsb

plusa just plusa
MODIS AOD

plusa
local AOD

plusa
universal
variablesc

CV-RMSE 1.489 1.495 1.531 1.556 1.542 1.548 1.520 1.542
CV-R2 0.803 0.800 0.774 0.757 0.768 0.764 0.784 0.770
no. of variables
chosen

29 out of 29 25 out of 26 25 out of 26 18 out of 26 19 out of 25 22 out of 26 16 out of 26 19 out of 20

aPlus means the following variables: temperature, relative humidity, sea level pressure, surface pressure, planetary boundary layer height, dew point
temperature, and the U and V components of wind speed, distance to the nearest fire cluster, counts of fires in nearest cluster/distance, x-coordinate,
y-coordinate, counts of traffic within 1 km, % of urban land use within 1 km, % of agricultural land use within 1 km, % of vegetation land use within 1
km, any high intensity land use within 1 km, elevation, indicator variables for air basin, population density, Julian date, and an indicator variable for
weekend. bThe emissions plus model allowed selection from the plus variables and the estimated total emissions per day from the FINN model.
cThe universal variables include: GASP AOD, WRF-Chem, MODIS AOD, temperature, relative humidity, sea level pressure, surface pressure,
planetary boundary layer height, dew point temperature, and the U and V components of wind speed, distance to the nearest fire cluster, counts of
fires in nearest cluster/distance, counts of traffic within 1 km, % of urban land use within 1 km, % of agricultural land use within 1km, % of vegetation
land use within 1 km, any high intensity land use within 1 km, elevation, and population density.
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GASP AOD was the most predictive variable of surface-level
PM2.5 concentration. Its variable importance factor in the GBM
was three times that of the next most important variable
(distance to the nearest fire cluster). GASP AOD has
corresponded well to a ground-based measure of AOD
(AERONET)72 and predicted in situ PM2.5 concentrations
well in the eastern U.S., but correlations were weaker in the
West.33 GASP AOD had the finest temporal resolution, every
half hour during daylight hours compared to twice daily for the
other two AOD sources, but intermediate spatial resolution (4
km compared to 10 km for MODIS and 0.5 km for local AOD),
suggesting that temporal rather than spatial resolution of AOD
is important for predicting PM2.5 during wildfires. Although
research has shown that MODIS AOD corresponds better to
ground-based AOD measurements than GASP AOD,72,73

statistical models that incorporate meteorological and land-
use data with GASP have yielded good results.38

Previous research demonstrates that PM2.5 and AOD are
more correlated when more particles are in the fine mode,73

and when PM concentrations are higher, particularly during
wildfires.74 Our results corroborate these findings, but also
demonstrate improved performance when other spatial,
temporal, and spatiotemporal data are combined with AOD
to predict PM2.5.
WRF-Chem, a CTM, also predicted ground-level PM2.5

concentrations well during the fires. Our model run with just
WRF-Chem and other variables had a CV-R2 value of 0.774 and
WRF-Chem had the third highest variable importance across
GBM runs. CTMs have been used to assess the impacts of
wildfires on air quality,75−77 and have been combined with
satellite data in health risk assessments of fires,26,27 but have not
yet been used for exposure assessment in epidemiological
analyses, although dispersion models have.10,25 Dispersion
models, however, may lack chemical reactions and thus
underestimate total particulate matter during wildfires.
Although some satellite data products have recently been

released with finer spatial resolution,78 most CTMs and satellite
data are too spatially coarse for exposure estimation for
epidemiological analyses. Our method of incorporating local
land use and traffic information provides one framework for
how to spatially downscale coarse spatiotemporal data sets to
increase relevance for epidemiological analyses. Our results also
add to the growing literature that combines satellite retrievals
with other data to estimate air pollution exposures;26,27,79,80

such analyses combine the observational strengths of the
satellite data with the ground-level estimates of CTMs to better
predict population air pollution exposures.
To approximate the true data-generating process that created

PM2.5 concentrations during these wildfires, we would want to
select from the largest library of algorithms possible. The 11
algorithms we used represent a large range of statistical models
and our list of predictor variables is more extensive than those
previously used to estimate wildfire PM2.5 exposure. Although
land use and traffic variables are important predictors of PM2.5
during normal conditions, these variables were not strong
predictors during these wildfires compared to AOD measures
and the WRF-Chem output. Interestingly, when we excluded all
AOD and CTM data, the resulting model of just meteoro-
logical, spatial, and temporal variables predicted our observed
data well (Table 3, “Just plus” model).
An important finding from our work is that models with

variables that are not specific to these fires but could be
obtained for any location, those included in our “universal

model”, performed almost as well as the best performing model.
In follow-up research, we are now investigating whether the
models generated for these fires predict monitored PM2.5 levels
well when applied to other fires with different characteristics.
Results from these ongoing analyses could yield a prediction
model that could be used to estimate PM2.5 concentrations
during wildfires in places with little to no monitoring data.
Two recent studies have demonstrated the ability of remotely

sensed fire information, prior day air quality, and meteoro-
logical data to predict air quality the next day.82,83 These
models had lower performance than our model, which could be
due to the diversity of modeling algorithms or input variables
used, the fact that we were predicting same day rather than next
day PM2.5, or due to differences in location or fire character-
istics. Further research into the use of our method to forecast
PM2.5 could inform public health efforts during wildfire events.
Our model performed very well compared to out-of-sample

PM2.5 measurements. It provides estimates of daily PM2.5
concentrations during a significant wildfire smoke episode. By
combining data with broad coverage, such as that from satellites
and CTMs, with local small-area spatial and temporal
information, this method could be applied in other regions
that experience regular wildfires but have fewer monitoring
stations.
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