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Fine Scale Fuel Distributions

Characterizing fuels is important
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Fine Scale Fuel Distributions

There is often a scale mismatch between our fuel
measurements and the response variables of interest

CU Burning Issues http://www.colorado.edu/geography/boulderfires/



Fine Scale Fuel Distributions

Characterizing fuels is important, and we’re bad at it.

30

Keane et al. 2012



Fine Scale Fuel Distributions

How We Model Fuels VS. How Fire Behaves

Hiers et al 2009



Treatment responses matter, too

Accurate inventories before and after fuel treatments are
essential to assessing effectiveness

* Change in loading

* Change in predicted rate of spread, crowning index, etc.

Are we measuring treatment results at the appropriate scale?




Treatment responses

What are the effects of overstory treatment on understory
fuels?




What do we know?

Not much, but we think the scales are small.
* Hiers et al. 2009
* Keane 2012
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Spatial distributions and treatment
effects

We expanded on results of Keane 2012 to focus on ponderosa
pine forest types and how they were affected by treatments
* Thin only
* Restoration minded, groupy-clumpy prescriptions
* Thin-and burn
* 6-8 year old burns




Hypotheses

We expected range values to be positively correlated with fuel
particle diameters

We expected patch size to decrease and between-patch
variability to increase with thin treatments

We expected variability in thin-and-burn stands to more
closely resemble the unmanaged stands
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Study design

Trees per acre decreased between 60% and 81%, with an
average decrease of 68%

Basal area decreased up to 68% but at one site was actually

8% higher in the untreated plot. The average decrease was
39%




Study Design
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Study Design

* Variable radius plots for

tree species, height,
SRS
T * 1,000 hour fuels
' measured for end
. diameters and length in
200m? fixed plots
» Separation distances
from 25m to 425m
* 41 sample locations per

site
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Study Design

Fine woody debris (1-hour, 10-hour, and 100-hr fuels) sampled
using photoload technique
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Study Design

O ' O Shrubs and herbaceous plants were

, clipped, dried, and weighed meter by
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Study Design

Each site produced 1541 point measurements of surface fuels,
plus overstory descriptive data. Over all sites this adds up to
over 18,000 data points.

Across all 12 sites we collected a total of 9,000 samples with a
combined dry weight of over 1,600 pounds.




Semivariance

Analysis- Semivariograms
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Results

Results are preliminary
Herbaceous, shrub, duff data not analyzed yet




Results

High variation in sill
values
* 0.002 to 0.4 (kg/m?)?

* This equates to
standard deviations
between 0.2 and 2.8
tons/acre

Ranges almost all
under 4 meters
No consistent treatment

responses on burned
sites

Sills tended to increase in
thin-only treatments
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Results

Range (m)

Range vs. Particle Diameter
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Results

Sill vs. Average Loading
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Semivariance (kg/m?2)2
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Semivariance (kg/im2)2
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Results: 1-Hour Fuels
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Semivariance (kg/m2)2
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Results: 10-hr Fuels
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Semivariance (kg/im2)2
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Results: 100-hr Fuels
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Semivariance (kg/m2)2
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Results- the good news

Larger fuels vary at larger scales
Sills are closely related to average loadings

Patch sizes in untreated and thinned stands are similar in
absolute terms— between 1 and 4 meters
* The photoload technique is well-suited to this scale

Sills of fine fuels are consistently increasing with thinning
treatments




Results- the not-so-good news

The magnitude of increase in variability is not consistent on
thinned sites

No consistent treatment responses on burned sites between
fuel types

Variability between patches is huge compared to average
loading




Results- the not-so-good news

Finding average loadings might not be so easy

Thinned sites require more samples for the same level of
accuracy

Higher loadings require more samples for the same level of
accuracy




So What?

Current fuel assessment and mapping practices don’t
correspond to the spatial scale of fuels variability.

* Therefore, they cannot capture all fuelbed variability

Variability is so high that standard practices likely don’t even
capture the average fuel loading accurately




What's next?

These results can be used to create more accurate fuel maps
* Kriging
* Pixel size in more advanced fire models

3-D modeling can determine how much difference this
variability actually makes to fire dynamics
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