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Summary

 Smoke from wildfires has adverse biological and social consequences, and various lines 
of evidence suggest that smoke concentrations in the future may be more intense, more frequent, 
more widespread, or all of the above. In this document, we review the essential ingredients of a 
modeling system for projecting smoke consequences in a rapidly warming climate that is 
expected to change wildfire regimes significantly. We present relevant details of each component 
of the system, offer suggestions for the elements of a modeling agenda, and give some general 
guidelines for making choices among potential components. We address a prospective audience 
of researchers who we expect to be fluent already in building some or many of these 
components, so our guidelines are not prescriptive nor do they advocate particular models or 
software. Instead, our intent is to highlight fruitful ways of thinking about the task as a whole 
and its components, while providing substantial, if not exhaustive, documentation from the 
primary literature as reference.
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Introduction

 Smoke from wildfires has adverse biological and social consequences. Smoke inhalation 

can be lethal, and sub-lethal concentrations have adverse effects on both short-term and long-

term human health, particularly in sensitive populations, such as the very young, the very old, 

those with respiratory or heart problems, and the occupationally exposed, such as firefighters, 

who inhale smoke during highly aerobic physical activity (EPA -- http://www.epa.gov/airquality/

particlepollution/). On December 14, 2012, the EPA revised the National Ambient Air Quality 

Standards (NAAQS) for the annual average concentration of fine particulate-matter (PM) from 

15 µg/m3 to 12 µg/m3, based on a recent integrated science assessment (US EPA 2009) that 

pointed to the adverse health impacts of particulate black carbon (BC). The chemical speciation 

of PM emitted in wildfires may be as significant a factor in these health outcomes as its ambient 

concentrations. In a California wildfire study, Wegesser et al. (2009) showed that the alveolar 

macrophages have a different and inherently more toxic response to an equivalent concentration 

of both fine and coarse particulate matter (PM) emitted from wildfires than from other sources. 

Oxidative stress, leading to multiple and often severe health problems, occurs from the aromatic 

chemical compounds emitted in wildfires (Laks et al. 2008), or from inhalation of carbon-

centered free radicals from reactive metals (Leonard et al. 2007).

 Of primary concern for human health are smoke concentrations in local airsheds, but 

what is effectively local may cover many square kilometers (e.g., the Russian fires of July 2010) 

in the case of large fires (“megafires”) or clusters of fires fanned by extreme fire weather. 

Prevailing winds or convective winds generated by fires themselves transport smoke downwind 

in sufficient concentrations to be the principal source of air pollution over large areas (Strada et 

al. 2012). Particulate matter under 2.5 µm in aerodynamic diameter (PM2.5) is especially toxic 

because it can penetrate deeply into lung tissue, and can have lasting effects from a single 

exposure (Dockery et al. 1993, Pope et al. 2002). Furthermore, highly toxic dioxins and furans 

are an oft-neglected product of biomass combustion (Gullett et al. 2008).

 In the days and weeks following wildfire ignitions, smoke may be transported hundreds 

of kilometers downwind, exacerbating regional haze, especially in National Parks and wilderness 

areas that have been designated as “Class I” areas because of their pristine air quality. Across the 
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American West, for example, days with the worst air quality in these protected areas (http://

vista.cira.colostate.edu/improve/) are nearly always associated with wildfires upwind, 

particularly in the West and Southeast (US EPA 1999 -- Figure 1).

Figure 1. Examples, from IMPROVE website, of pristine (or nearly so) vs. degraded air quality in 
National Parks, reflecting haze from wildland fire, other pollutants, or both. Upper panels: Yosemite 
National Park. Lower panels: Great Smoky Mountains National Park. Photos courtesy of IMPROVE 
(http://vista.cira.colostate.edu/improve/).

 Climate change will exacerbate air-quality problems if projections of future fire regimes 

in a warming world are even reasonably accurate. Historical and contemporary studies of fire 

climatology suggest that annual area burned will increase through the coming decades, 

dramatically in some regions (McKenzie et al. 2004, Flannigan et al. 2009 and references 

therein, Littell et al. 2010, Pechony and Shindell 2010, Liu et al. 2012). In some ecosystems, fire 

severity may also increase, but even if it does not, burned-area increases alone would add to the 

cumulative effects of smoke from wildfires. More extreme events are also expected (Diffenbaugh 
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and Ashfaq 2010, Coumou and Rahmstorf 2012, Hansen et al. 2012), both directly (e.g., 

droughts, heat waves) and indirectly (fires) driven by a warming climate. 

 The straightforward view of warming climate affecting fire regimes, which in turn affect 

air quality, is compelling and is supported by both empirical evidence and process-based models. 

Flannigan et al. (2009) reviewed the climate-fire literature and found wide agreement on 

increased area burned in a warmer climate, but acknowledged that this linear view hides much 

complexity in the form of interactions, feedbacks, and spatial variability. For example, Littell et 

al. (2009) found that the simple paradigm “hotter and drier = more fire” was appropriate for most 

of the northwestern U.S., where fuels are always present and fuel moisture is the principal 

limiting factor (Figure 2). In contrast, fuel availability is often limiting in the arid Southwest and 

much of the Great Basin, such that abundant precipitation in the previous year “sets up” current-

year fire seasons. Holz et al. (2012) found similar contrasts, forced by oceanic teleconnections, 

along a latitudinal gradient in Chile, as did Pausas and Paula (2012), at finer scales, in 

Mediterranean ecosystems of the Iberian Peninsula. Krawchuk and Moritz (2011) reinforced and 

generalized such contrasts in an overview of global fire regimes, and these authors (2011) and 

McKenzie and Littell (2011, 2013) theorize that the fire-climate coupling shows a unimodal 

response along a wet-dry gradient of fire-season weather, such that a warming climate will 

produce both positive and negative feedbacks in fire climatology. This non-linear response 

reflects the significant interactions of both climate and fire with vegetation, which can be as 

strong a driver of fire regimes as climate itself (Higuera et al. 2009).

 Further fire feedbacks to climate include (1) the direct effects of biomass burning on 

radiation budgets (Randerson et al. 2006, Balshi et al. 2009, Amiro et al. 2010), (2) albedo 

changes associated with disturbances and other vegetation dynamics (Randerson et al. 2006, Lee 

et al. 2011, O’Halloran et al. 2012, Anderegg et al. 2013), and (3) more subtle feedbacks of air-

chemistry changes to atmospheric boundary-layer dynamics, potentially affecting the short-term 

variability of climate, such as convective precipitation (Bollasina et al. 2011, Jiang et al. 2012), 

which affects fire weather. Emission of greenhouse gases (GHGs), principally CO2, is clearly a 

positive feedback to area burned and smoke via its associated climate forcing (Simmonds et al. 

2005, Langmann et al. 2009). The effect of aerosols on the global radiation budget is less well 
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understood and could be positive or negative, depending on chemical composition and thus its 

optical properties (i.e., absorbing vs. scattering aerosol content) and the presence of clouds, so 

the sign of the feedback from this component of fire emissions is unclear. A similar uncertainty is 

the potential for burned areas, particularly forests, to regenerate fast enough to continue to be a 

carbon sink (Liu et al. 2011, Ghimire et al. 2012, Hayes et al. 2012, Huntzinger et al. 2012, King 

et al. 2012, Raymond and McKenzie 2012).

Figure 2. Correlations between annual area burned (1977-2006) and summer water-balance deficit (DEF 
= PET-AET: Potential - Actual EvapoTranspiration) in Bailey’s ecosections across the western United 
States. Work extended from Littell et al. (2009) by McKenzie and Littell (2013). Darker colors suggest 
“hotter and drier = more fire” applies, because the correlation with DEF is stronger. ET was calculated by 
the Penman-Monteith method within the VIC hydrological model (Wigmosta et al. 1994).

 A systems approach is needed to evaluate the relative importance of forcings, 

interactions, and feedbacks among climate, wildfire, vegetation (fuels), and air quality (in 
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general), or pollutants emitted in smoke plumes (in particular) (Stavros et al. 2013). The 

knowledge base for this evaluation draws on research at widely different spatial and temporal 

scales. For example, regional-scale climatology and synoptic and mesoscale weather are 

important for understanding fire-atmosphere interactions, but equally important are fine-scale 

couplings that determine fire intensity and plume dynamics (Heilman and Bian 2010, Potter 

2012). Similarly, fire-vegetation interactions can be modeled at regional scales, giving 

comprehensive spatial coverage (Quillet et al. 2010), but key landscape processes that influence 

the fuel dynamics that determine fire spread, and therefore fire sizes, can be captured only over 

smaller domains (Keane et al. 2004).

 Fire managers will be faced with a changing climate that affects prescribed burning, 

mechanical fuel treatments, and controlled and uncontrolled wildfires, compromising efforts to 

create more resilient landscapes in the future (Millar et al. 2007, Joyce et al. 2009, Peterson et 

al. 2011, Sommers et al. 2011). Of particular concern, if wildfires increase in size and frequency 

(Running 2006), are the ecological and economic tradeoffs between wildfire suppression and 

fuel treatments to reduce potential wildfire intensity and severity (Hurteau et al. 2008, 2011; 

Galik and Jackson 2009). Many fire-regime characteristics, such as fire intensity, severity, and 

size, are used to evaluate these tradeoffs, but perhaps the most important to society is how much 

smoke will be released during a fire (Bowman and Johnston 2005). Future projections must 

therefore provide enough detail to be of use to local management of smoke, besides having the 

scope to inform larger-scale decisions.

 Projections are needed to inform the global-change research community, strategic 

planning for adaptation and mitigation at scales from local to national, and tactical and 

operational decision-making to deal with changing fire regimes and their smoke consequences in 

real time. In this paper, we identify the components of a modeling system to produce such 

projections, and review research to date on the feasibility of different approaches, the global 

uncertainties associated with each, and the sources of error propagation within models and in the 

linking of models. We then offer guidelines for constructing and using the elements of a system 

to maximize both its physical, chemical, and biological reality and its robustness and to minimize 

its potential biases. As with geographic route planning, when navigating a path of even modest 
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complexity, no single set of directions is likely to be optimal for all the important criteria. We 

offer several perspectives on how to choose component models, identify weaknesses, and 

distinguish intrinsic limitations from those that can be overcome. Lastly, we present three major 

research challenges that we believe are particularly significant for advancing the science of 

modeling future smoke consequences, realizing that many other research needs associated with 

the modeling system as a whole, or with parts of it, could be enumerated. 

 The geographic scope of this paper is the conterminous USA (CONUS), in that we focus 

on methods that can be applied over a generally recognized modeling domain (Figure 3, Mearns 

et al. 2012). Within that domain, we consider a range of spatial scales from those associated with 

landscape fire and succession models (e.g., Keane et al. 2004) to those associated with regional 

climate models and air-quality models (i.e., the entire CONUS domain). A goal of this review 

and the research that it will inform is to be particularly relevant for application across the 

CONUS, but also to inform questions at finer (urban and exurban) or coarser (hemispheric or 

global) scales.

The modeling system

Figure 4 shows the essential elements of the modeling system we are proposing. Climate, 

weather, vegetation, fire, and smoke interact, with each feeding back to the system at one or 

more points, such that as conceptualized here, there are no independent drivers. In the sections 

that follow we outline the tasks that elements of the system should perform, with extensive 

reference to how these tasks have been addressed in the literature to date. Feedbacks among 

elements are important, as are scale mismatches and cross-scale interactions; these are addressed 

explicitly at the end of this section.
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Figure 3. The NARCCAP (see text, p. 14) modeling domain (Mearns et al. 2012), typical of that used in 
regional climate modeling. The regional climate models in NARCCAP are dynamically downscaled over 
this domain from a group of global climate models at ~ 50 km horizontal resolution.

Downscaled climate and weather

 Climate is, of course, the overarching driver of our system, given projections of 

continued warming and associated changes in variability and extremes (Diffenbaugh and Ashfaq 

2010, Coumou and Rahmstorf 2012, Hansen et al. 2012). For future projections, key inputs to 

global climate models (GCMs)1 are the components of radiative forcing, the amount by which 

the Earth’s total energy budget is out of equilibrium (Hansen et al. 2011). The principal forcings 

are greenhouse gases (GHGs), including CO2, methane (CH4) and O3 among others, and aerosols 

(Forster et al. 2007). 

 The sign of GHG forcings (positive) is well established, although the variability around 

mean estimates is still substantial (note though that even 99% confidence intervals exclude zero). 

For example, climate sensitivity, by consensus definition the equilibrium response of Earth’s 

annual temperature to a doubling of atmospheric CO2, has been the subject of dozens of papers, 

theoretical or statistical (Aldrin et al. 2012 and references therein), using paleoclimatic 
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reconstructions (Hansen and Sato 2012), or output from global climate models (Forest et al. 

2006). A good review is at http://www.realclimate.org/index.php/archives/2011/11/ice-age-

constraints-on-climate-sensitivity/.

Figure 4. Master flowchart for a modeling system to predict smoke consequences of changing fire 
regimes in a warming climate. Items in boxes are the elements of the modeling system. Italicized terms 
are processes that should be represented explicitly by model(s). LSFs = land-surface feedbacks. GHGs = 
greenhouse gases. Note that explicit methodology for representing elements and processes is not 
specified. Some feedbacks associated with coupled modeling are not included (see text). Components 
inside the highlighted area need to be accounted for but are not modeled explicitly within the system. For 
our purposes, radiative forcing at the global scale is fixed (e.g., RCPs = representative concentration 
pathways), without modeling feedbacks to global climate, but radiative feedback from aerosols, clouds, 
and GHGs is dynamic at the scale of regional climate.

 The sign of aerosol forcings is generally assumed to be negative (Forster et al. 2007), i.e., 

cooling the Earth, although the numbers are less well constrained than those for GHGs, and are 

different for different aerosol species. Figure 5 shows the relative contributions to the global 

forcing estimates from the major anthropogenic atmospheric constituents, along with the 
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uncertainty in each (Forster et al. 2007). A key part of near-future research will be to estimate 

aerosol forcing better, because it contributes to Earth’s energy balance significantly, and may 

also confound estimates of climate sensitivity (Hansen et al. 2011).

Figure 5. (a) Radiative forcing of the Earth’s climate, from the IPCC 4th Assessment Report (AR4) 
(Forster et al. 2007). Error bars represent 90% confidence intervals. LOSU = level of scientific 
understanding. (b) Probabilistic representation of the total net anthropogenic forcing in (a). See Bond et 
al. (2013), however, for possible modification to the aerosol component.
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 Recognizing the importance of this variability in radiative forcing, the IPCC has, over the 

years, built and refined socio-economic scenarios (SRES -- Nakicénovic and Swart 2000), to 

supply bottom-up estimates of radiative forcing to global climate models. The names of 

commonly used scenarios, such as A1, A1B, A2, B1, and F1, are familiar not only to climate 

scientists but also to other modelers who project the effects of climate change on ecosystems into 

the future. Indeed, in ecosystem simulation experiments in which both multiple global climate 

models and multiple SRES scenarios are used, outcomes can be sensitive to both choices. For 

example, Hawkins and Sutton (2009) discuss the relative importance of uncertainty in 

projections of climate change for time horizons of 30 to 40 years, the timeline of concern for 

studying climate-related changes in fire regimes, and show that at these timescales the emissions-

scenario uncertainty is nearly as large as that of the global climate model.

 In its Fifth Assessment Report (AR5), whose working-group reports will be completed 

between September 2013 and October 2014, the IPCC has replaced the SRES approach with a 

top-down approach that specifies a set of radiative-forcing outcomes. These Representative 

Concentration Pathways (RCPs) essentially retrofit socio-economic patterns over time such as to 

specify four levels of net positive radiative forcing (2.6, 4.5, 6.0, and 8.5 W m-2) in 2100 (Moss 

et al. 2010, van Vuuren et al. 2011). Climate simulation experiments associated with the AR5, 

such as CMIP5 (5th Climate Model Intercomparison Project -- Taylor et al. 2012), will 

implement factorial designs using ensembles of global climate models and RCPs. Given this new 

currency for future projections, those who use the output of global climate models will need to 

consider tradeoffs between the applicability of the new (RCP) vs. the old (SRES) scenarios and 

the availability of data streams from the AR5 vs. those from previous assessments.

 To project smoke consequences of climate change across the CONUS, we require climate 

inputs at resolutions fine enough to capture, at least crudely, the spatial variability of both 

climate and landforms. Global climate models typically run at horizontal resolutions of > 100 

km2, with many being much coarser than that, although modeled spatial resolution has increased 

steadily since the first IPCC reports in the 1990s. Resolutions of 4-36 km2 provide order-of-

magnitude gains in capturing spatial variability, although local phenomena important for fire are 

not resolved even at these scales. Regional climate models (RCMs), of which there are many, 
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provide this increased horizontal resolution, though at computational costs significant enough to 

limit their domain size. RCMs provide blanket coverage of the CONUS domain (e.g., Figure 3) 

when run at 36 km2, and detailed regional modeling when run at resolutions down to 4 km2 

(Salathé et al. 2008). 

 RCM domains are not closed systems (with respect to atmospheric, oceanic, and land-

surface processes and interactions), as is the Earth as a whole. RCMs therefore must be “forced” 

at the boundaries of their domains by output from a global climate model. These boundary 

conditions both initialize and update RCM simulations such that ideally, RCM output 

downscales global climate without introducing biases (i.e., departures from global-model 

averages) within the regional domain. The effects of boundary conditions may be extended 

explicitly into the regional domain to limit such departures (Rockel et al. 2008). Spectral 

nudging (van Storch et al. 2000), which adjusts simulation trajectories some distance into the 

regional domain using high-frequency components of the global-model signal, has been shown 

to be an effective way to constrain the large-scale circulation to the driving global fields without 

limiting the development of the mesoscale atmospheric circulations predicted by the RCM.  It 

also improves the mean and extreme statistics of near-surface meteorological fields, which drive 

air quality predictions (Bowden et al. 2012a,b; Otte et al. 2012). Even with such adjustments, 

however, RCMs can still propagate biases from global model outputs (Plummer et al. 2006, 

Abatzoglou and Brown 2012).

 Spatial variability within global climate models is of course still important, and 

substantial departures from future global means are likely in regional-scale changes. There is 

also considerable within-region uncertainty in different realizations of global models. For 

example, Deser et al. (2012a, 2012b) found that internal variability among runs of just one global 

model (CCM3) under just one SRES scenario (A1B) produced non-zero probabilities of opposite 

changes in seasonal temperature and precipitation, enough, for example, to force opposite 

projections of wildfire area burned predicted by current models.

 An alternative to RCM simulations for some meteorological applications is statistical 

downscaling (Wilby and Wigley 1997, Salathé 2005), in which sub-regional heterogeneity across 

the domain (e.g., temperature gradients based on lapse rates or orographic influences on 
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precipitation) is applied to the global-model outputs of interest. Such a procedure can be more 

time-efficient than running an RCM, particularly for calculating variables of interest for fire 

weather (Abatzoglou and Brown 2012). Statistical downscaling can “learn” from the temporal 

properties of global climate models, by incorporating non-stationarity in output time series to 

refine what is otherwise a temporally static product (Abatzoglou and Brown 2012). It can also 

correct for biases known to be associated with particular global climate models, but future 

projections still assume stationarity of the empirical relationships that drive the downscaling. For 

our purposes, a particularly significant drawback is that statistically downscaled fields do not 

capture mesoscale circulations dynamically, and those are critical for modeling smoke transport 

and its effects on air quality.

 In both global and regional simulations, ensembles are a heuristic way of establishing 

ranges of variability and distributions of key outputs (Tebaldi and Knutti 2007). Ensembles can 

be parallel runs of different models, replicates of the same model (because there are stochastic 

elements of most models, outputs will vary), or both. Ensembles of global models can also 

incorporate the different RCPs (Taylor et al. 2012), as they have previously incorporated 

different SRES scenarios. With the computational burdens of global climate models, 

combinatorial explosion is a real danger, so bounds must always be set on the number of 

combinations used. In general, quantitative evaluation of ensemble methods is still at an early 

stage, with limitations including the use of equal-weighted averages (but see Mote and Salathé 

2010), the necessarily small numbers of models used, the absence of extreme behavior emerging 

from averages, and lack of agreement on what even is a good metric for evaluation (Knutti et al. 

2010).

 The question of which RCMs to link to which global climate models may be as important 

as the choice of a “best” model in either category. For example, Pierce et al. (2009) argue that for 

providing boundary conditions for an RCM, multi-model ensembles at the global scale are better 

than single runs or replicates of one model, because the ensembles tend to correct rather than 

amplify biases. This “cancellation of offsetting errors” (Pierce et al. 2009) is convenient, when 

demonstrated by comparing model output to observations, but does not in itself ensure that the 

correction is not coincidental and may disappear in future projections. Nevertheless, the 
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complexity of current models likely precludes the more robust analysis of simultaneous outputs 

and model structures that is possible for ecosystem models (Kennedy and Ford 2011).

 A continental- and regional-scale assessment particularly germane to predicting 

vegetation, fire, and smoke in the CONUS is the North American Regional Climate Change 

Assessment Program (NARCCAP -- Mearns et al. 2009, 2012). Figure 3 shows the domain of 

this effort, which applied reanalysis-based boundary conditions to drive six RCMs, across North 

America and for four smaller domains, followed by future projections using four coupled 

atmosphere-ocean general circulation models (AOGCMs). NARCCAP focused on the 

uncertainties associated with dynamic downscaling, complementing global-scale efforts to 

distinguish natural variability in the climate system from the effects of anthropogenic radiative 

forcing. NARCCAP represents state-of-the-art regional outputs except that (1) it is tied to the 

now retired SRES scenarios; specifically they used only A2, in order to achieve adequate 

replication in global and regional model ensembles, and (2) most of the downscaling did not 

include spectral nudging. 

Climate-vegetation models

 At regional to continental scales, climate is the key driver of spatial patterns in 

vegetation, but responses may lag in ecosystems with long-lived species, even in a rapidly 

changing climate, because mature trees are resilient to modest temperature changes. Severe 

disturbances change the dynamic, however, by killing mature trees and confronting seedlings, a 

more vulnerable life stage, with a new climate. Disturbances are therefore perhaps the principal 

driver of vegetation change, more than the direct effects of climate change, in many temperate 

and boreal ecosystems (Littell et al. 2010, Barrett et al. 2011). Consequently, models that project 

future vegetation must not only be “climate-smart” but also incorporate the major disturbances 

associated with the domain in question. For the CONUS, this means wildfire.

 Climate-smart vegetation models come in two flavors: empirical models (involving 

inverse modeling or “inversions” in modeler jargon) that fit predictor variables (climate) to 

response (vegetation) via statistical estimation or machine-learning algorithms, and process-

based simulations (involving forward modeling) that simulate carbon dynamics and other 
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element cycles informed by physiological models of photosynthesis, respiration, and 

decomposition. These two approaches have been compared exhaustively, and the strengths and 

weaknesses of both enumerated in many ways. For two overviews of the comparison see 

Cushman et al. (2007) and Littell et al. (2011). A clear advantage of the process-based approach 

is that it is dynamic and connects more easily to other dynamic models (e.g., RCMs). We 

therefore focus on process-based models in what follows, while allowing that empirical models 

might also be coerced into a dynamic modeling system.

 Process-based vegetation models predict plant responses to climate at many spatial scales 

(Neilson et al. 2005), from the individual stand to global (matching that of global climate 

models). Dynamic global vegetation models (DGVMs) simulate vegetation response to climate, 

and can be adapted across a continuum of scales (resolutions) more easily than the climate 

models themselves, which are more constrained to intrinsic scales of atmospheric processes, 

although the range of scales they simulate is broader than that of DGVMs. Recent DGVMs 

incorporate land-surface feedbacks to atmospheric processes, modifying, at a minimum, the 

radiation budgets of RCMs (Krinner et al. 2005, Bonan 2008, Quillet et al. 2010, Bonan et al. 

2011, Li et al. 2012). This argues for coupled modeling of climate and vegetation for future 

projections, with its concomitant increase in complexity, rather than running climate models 

independently.

 A significant challenge in climate-vegetation modeling is rectifying the scales of weather 

in a changed climate with the scales of vegetation dynamics relevant to smoke production. 

Smaller-scale phenomena associated with the atmospheric boundary layer, such as cold-air 

ponding, frost pockets, and atmospheric inversions, are important drivers of vegetation and 

difficult to extract from even RCMs. Topography and land-water variations also contribute to 

small-scale atmospheric boundary-layer processes (e.g. land-sea breezes, drainage flows, local 

precipitation) that affect vegetation. Even with the higher resolutions of RCMs, many of these 

small-scale atmospheric processes that impact vegetation are not captured. Conversely, it is 

difficult to upscale effects of vegetation processes, such as evapotranspiration, radiative shading, 

and wind modification, cogently to produce radiation budgets suitable for feedbacks to climate 
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dynamics. The significance of these scaling issues for the vegetation dynamics per se has not, to 

our knowledge, been resolved in the literature.

 A disadvantage of DGVMs, as opposed to empirical climate-vegetation models, is that 

they generally do not distinguish individual plant species, but rather resolve taxonomy only to 

life forms or plant functional types. Typically these number 5-12 (Quillet et al. 2010), although 

some, e.g., MC1 (Bachelet et al. 2001, 2003), use as many as 24. Individual species distributions 

overlap (e.g., sometimes two species overlap over a majority of both of their ranges) and are 

spatially discontiguous at multiple scales, and so resolving vegetation to individual species at a 

global scale constitutes false precision. Within regions of the CONUS, however, species are 

known to establish and survive in response to abiotic (e.g., soils) and biotic (e.g., competition for 

light and nutrients) factors besides climate (Iverson et al. 2008, Franklin 2010). The fire ecology 

of plants also differs greatly among species within life forms (Wright and Bailey 1982, Agee 

1993, Bond and van Wilgen 1996); fire effects models in particular depend on parameters that 

are specific to plant species. Furthermore, species are the “currency” for many land managers 

charged with predicting and controlling smoke from wildfires. For all these reasons, crosswalks 

are needed between the functional types in DGVM output and the species central to fire-effects 

models.

 An additional problem with vegetation that is not resolved to species is that further 

assumptions and uncertainties come with deriving fuel composition and loadings from 

vegetation. Much of the fuel that contributes to smoke production comes from dead surface fuels, 

particularly duff and coarse wood, whose consumption mainly occurs in the smoldering phase 

(Reinhardt and Brown 1997, Prichard et al. 2007). Typically loadings of these fuels cannot be 

inferred from live vegetation (Keane et al. 2012b) (this problem is magnified when species are 

not known, as in DGVMs); attempts to establish predictive relationships have largely failed 

(Brown and Bevins 1986, Raymond et al. 2006, Keane et al. 2012a). Moreover, different classes 

of dead fuel loadings are rarely correlated because each has unique decomposition and 

deposition rates, meaning that each class must be modeled, or derived heuristically, 

independently from the others (Keane et al. 2012b). The compounding of uncertainties in this 
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process further argues for modeling fine-scale interactions between fire and vegetation explicitly 

(see discussion of landscape fire models below).

Predicting fire

 Fire climatology and the triggers for individual wildfires are both well understood 

intuitively. Retrospective analyses of fires rarely miss the necessary and sufficient conditions, 

and fire seasons, in hindsight, are rarely surprising. Nevertheless, quantitative predictive models 

for fire are limited by drivers’ operating over a range of spatial and temporal scales (Littell et al. 

2009), and by the stochastic nature of fire, such that models that predict annual or seasonal area 

burned at fairly broad scales are the most successful (Flannigan et al. 2009 and references 

therein, Liu et al. 2012). In general, estimating aggregate properties of fire regimes, such as 

annual area burned, is more tractable than predicting the timing, exact locations, or perimeters of 

individual fires (Kennedy and McKenzie 2010).

 A tractable subtask of fire prediction is generating metrics of fire weather. Both the U.S. 

and Canada have developed fire-danger prediction systems that incorporate variables related to 

fire weather; in the U.S. the National Fire Danger Rating System (NFDRS -- Cohen and 

Deeming 1985), and in Canada the Canadian Forest Fire Danger Rating System (CFFDRS -- 

http://cwfis.cfs.nrcan.gc.ca/en_CA/background/summary/fwi). Composite indices calculated 

therein are deterministic products of the data streams from weather and climate models, and are 

fundamentally easier to predict confidently than actual fires (see examples in Flannigan et al. 

2009). There is a strong tradition of this in operational fire forecasting (Lawson and Armitage 

2008, Liu et al. 2012, NWCG 2012), but it is also relevant to predicting responses to climate 

change. For example, Chen et al. (2009) used NFDRS indices to simulate future fires at a daily 

time step across the CONUS. We emphasize that fire weather is a useful concept that is broader 

than the specific weather variables used by the fire danger rating systems. There are other fire-

weather variables derived from climate models that could potentially be used as indicators of 

future atmospheric conditions conducive to large or erratic fires; for example, the Haines Index 

(Winkler et al. 2007), the Haines index coupled with a measure of turbulent kinetic energy 

(Heilman and Bian 2010, 2012), and the FWI (composite) from the CFFDRS.
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 Given the limitations associated with projecting empirical fire predictions into the future, 

a promising recent trend is the development of fire modules within DGVMs (Arora and Boer 

2005, Lenihan et al. 2008, Kloster et al. 2010, Thornicke et al. 2010, Prentice et al. 2011, Li et al. 

2012). With their relatively coarse time steps and spatial resolution, DGVM-based fire modules 

are compelled to do enough “averaging” to avoid the pitfalls of trying to pin down a stochastic 

process too precisely. Fire modules in DGVMs can be quite complex, even to the point of 

including fire-behavior and fire-spread algorithms, albeit at coarse scales (Arora and Boer 2005, 

Lenihan et al. 2008, Pfeiffer and Kaplan 2012), or constrained to intermediate complexity (Li et 

al. 2012) to facilitate efficiency and increase the number of replicates. Modules also vary in the 

degree to which fire-regime properties are emergent (McKenzie and Kennedy 2011), i.e., they 

arise directly from drivers (e.g., climate, fuels) simulated within the DGVM, or prescribed, e.g., 

specifying fire-return intervals or fire cycles a priori. The latter type draws on historical fire 

regimes dating back to the middle Holocene, providing an implicit calibration to centuries of 

fire-climate observations (Marlon et al. 2009, 2012; Hessl 2011). The former type may still 

require careful parameter choices, even if fire is predominantly emergent, but avoids the no 

analog problem: projected climate, even in the near term (decades), is outside of the Holocene 

range (Williams and Jackson 2007).

 Fire is a contagious spatial process (Peterson 2002, McKenzie and Kennedy 2011) in that 

ensuing landscape patterns and associated fire effects (e.g., smoke generation and dispersion) are 

the product of interactions through space of fire-generated energy and flammable fuels. A further 

consideration, rarely considered in landscape fire models, is the “meteorology” generated by the 

fire and its interactions with the atmosphere in spreading fire and transporting smoke away from 

the fire. Estimates of variation in fire severity, in particular, at the “landscape” scale are critical 

both for quantifying the timing and amount of smoke produced by combustion of both surface 

and canopy fuels (Keane et al. 2012a, 2012b) and for estimating the fire-produced energy that 

lofts smoke into the atmosphere where it can be transported downwind. In forests in particular, 

species composition introduces further variability because tree-species adaptations to fire vary 

widely (Agee 1993). Consequently, even though both empirical models and process-based 

DGVMs are reasonably successful in predicting area burned at broad scales, some further 
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specification of within-cell heterogeneity, both taxonomic (functional types to species) and 

spatial (variability in fuel type and amount), is desirable. Landscape fire succession models 

(LFSMs -- Keane and Finney 2003, Keane et al. 2004) provide this level of detail, creating 

complex patterns across the landscape that influence smoke delivery and dispersal, and dictating 

trajectories of successional development that will govern future smoke production. There is a 

computational cost, however, such that they are intractable for regional-scale modeling, and even 

if this limit were overcome, the cost, in person-hours and dollars, of assembling the required 

spatially explicit databases to run LFSMs across the CONUS will probably always be 

prohibitive. LFSMs may, however, prove invaluable for identifying the weaknesses in DGVMs 

associated with their insufficient resolution for landscape processes that are critical for predicting 

smoke (Keane et al. 2011, McKenzie et al. 2011). For example, Cary et al. (2006, 2009) used 

LFSMs to evaluate potential designs of coarse-scale vegetation models and found that it is 

critical that DGVMs include a simulation of burned area and vegetation development but need 

not incorporate fine-scale weather or topography interactions explicitly. LFSMs can also nudge 

and calibrate DGVMs, and perhaps eventually can be used to scale down DGVMs. See 

“Research needs” (below).

 Other disturbances interact with each other and with fire to produce novel landscape 

behaviors that ultimately influence combustion and smoke dynamics (Bigler et al. 2005, Allen 

2007). For example, tree mortality from the mountain pine beetle across much of the inland 

Northwest is expected to increase with global warming (Bentz et al. 2010), and interacts in 

complex ways with fire (Hicke et al. 2012), introducing additional spatial and temporal 

heterogeneity in fire severity, with implications for smoke production. Grazing, logging, and 

pathogens also modify surface and canopy fuels. Implicit acknowledgment of these influences is 

warranted, as they may change unidirectionally or synergistically in a warming climate.

Predicting smoke

 Fire effects such as smoke production reflect the relative strengths of multiple drivers, 

interacting at variable scales of space and time (McKenzie et al. 2011). At fine scales (10-1–

10m2), fire spread and intensity are conditioned by properties of fuel (mass, availability, spatial 
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arrangement, and moisture), ignition (type, intensity, frequency, and spatial distribution), and 

ambient weather (air temperature, wind speed, atmospheric turbulence, and humidity) and its 

interactions with the fire-induced meteorology. Smoke characteristics therefore depend on both 

environmental conditions and fuels, which determine total emissions, and the type of combustion 

(flaming, smoldering), which determines the chemical composition of smoke. Flaming 

combustion, associated with greater fire intensity, produces proportionally more CO2 than 

smoldering, whose output has proportionately more CO and particulate matter (PM). Other 

emitted organic gases transform in the atmosphere (secondary organic aerosols -- SOAs), which 

add to PM to increase the atmospheric aerosol loading (Hennigan et al. 2011, Bond et al. 2013). 

 Smoke emissions from a wildfire needed for modeling inputs depend on area burned, 

biomass consumed (what proportion of available fuels actually burns), biomass composition 

(fuel type and size), and the proportion of emissions in chemical species, typically but not 

restricted to CO2, CO, methane (CH4), volatile organic compounds (VOCs), and PM. The 

emission rate of PM with aerodynamic diameter smaller than 2.5 µm (PM2.5) is calculated 

separately because PM is especially harmful to lung tissue in this size range. These proportions 

are codified as emission factors (Andreae and Merlet 2001).

 The long history of on-the-ground management of fire and smoke in the U.S. has 

produced a wealth of models, estimators, and conceptual frameworks. The Smoke Emissions 

Model Intercomparison Project (SEMIP -- Larkin et al. 2012), an analogue of the CMIPs and 

funded by the Joint Fire Science Program, compared the performance and sensitivity of many of 

the available models. An exhaustive enumeration of the models is beyond our scope here; 

instead, we provide some examples of products germane to projections of smoke across the 

CONUS. Larkin et al. (2012) provide much more detail.

 Fuels are spatially heterogeneous at multiple scales; these scales differ among fuel types 

such as canopy fuels vs. dead wood (Keane et al. 2012a,b), but all are much finer than the spatial 

scales associated with RCMs or with smoke dispersion models that provide the back end of our 

proposed modeling system (Figure 4). Consequently, an aggregated spatial data layer, 1-km 

resolution or coarser, is needed. There are three CONUS-wide classifications in current use: (1) 

Fuel Loading Models (FLMs -- Lutes et al. 2009), with 27 distinct models, (2) Fuel 

JFSP 12-S-01-2
 Final report

20



Characteristic Classification System (FCCS -- McKenzie et al. 2007), with 250 fuelbeds mapped 

across the CONUS and Alaska, and (3) Forest Type Groups (FTGs -- Ruefenacht et al. 2008), 

with 141 initial vegetation types aggregated to 20. Each of these spatial layers has strengths and 

weaknesses. Keane et al. (2013) provide a detailed analysis. All share an overarching limitation, 

however, in that as coarse-scale data layers they cannot be expected to replicate fuels exactly, 

either their amount or configuration, for particular points on a landscape, because of the scaling 

issue noted above (Keane et al. 2012a,b). For example, the FTGs, even though scaled up to 250-

m resolution from FIA (Forest Inventory and Analysis -- http://www.fia.fs.fed.us/) field data, are 

poorly correlated with FIA validation plots that were used to build them (Keane et al. 2013). This 

scale mismatch needs to be acknowledged in coarse-scale future projections of smoke. 

 A further concern for fuels is that there is nothing like a dynamic global fuel model. 

Future fuel loadings for fire modeling need to come from a dynamic crosswalk from vegetation 

types predicted by DGVMs or their analogues. For the FCCS and FTG, this is relatively 

straightforward in theory, because classes are directly linked to vegetation types a priori, but can 

be difficult to apply because of the weak empirical relationships between vegetation classes and 

fuel characteristics (Shankar 2006, Ran et al. 2007, Zhang et al. 2010, Keane et al. 2012a). The 

FLMs may be more problematic because they are identified by an iterative process that includes 

a fire-effects model (Lutes et al. 2009), but very possibly no more difficult to implement in the 

end.

 First-order fire-effects models estimate consumption and emissions based on fuel 

loadings, fuel types, and fuel condition (chiefly moisture of live and dead fuels). There are two 

approaches in common use. Process-based models (e.g., BURNUP -- Albini and Reinhardt 1997) 

use physics-based heat-transfer equations to calculate combustion and then apply emissions 

factors to estimate smoke production. Emiprical models (e.g., CONSUME -- Prichard et al. 

2007) fit regressions to field-based estimates of consumption and use fitted values from these 

with the same emissions factors. French et al. (2011) compared estimates from six models of 

carbon emissions from wildfires in North America, and the aforementioned SEMIP project 

(Larkin et al. 2012) compared five models for consumption and emission factors. Details are in 

those publications, and there was substantial variability among models for different fuel types 
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under different conditions, but the spatial scaling issues associated with fuel characterization 

(above) do not obtain, so overall uncertainty associated with consumption and emissions 

calculations is less problematic.

 The consequences of smoke are felt in local airsheds and downwind. Projections of 

smoke emissions need to quantify them at their source and track their concentrations and 

locations over time. Smoke-transport models (Goodrick et al. 2012) track gases and particulates, 

from local to regional and continental scales, carried by modeled meteorology. What follows 

draws on Goodrick et al. (2012), who provide much more detail on the state of the art in smoke-

transport modeling per se. 

 Eulerian (grid-based) models focus on observing the passage of parcels (jargon for 

whatever is being tracked, e.g., PM) past points in a fixed grid representing 3D space (i.e., the 

atmosphere), whereas Lagrangian models follow the 3D trajectories of individual parcels 

through time. Lagrangian models follow either air parcels (puffs) or particles. The former 

represent volumes of air that carry a specific amount of some pollutant (e.g., PM2.5), whereas the 

latter represent infinitesimal volumes, requiring more computation because there will be far more 

particles than puffs within a given volume. 


 Although they are increasing in sophistication, puff dispersion models (Langrangian 

models that follow puffs) are typically not designed to represent atmospheric chemistry, but 

rather to provide a fast screening tool, often used in regulatory air-quality assessments to 

characterize the atmospheric dispersion of plumes and estimate their maximum impacts at 

receptor locations. Thus they typically lack the detailed process representations (e.g., cloud 

dynamics and chemistry) to consider the atmospheric chemical transformations and interactions 

of plumes from various emission sources and source sectors that are needed to simulate the 

atmospheric composition over large regions. Their typical usage is in performing near-source 

impact estimates, often using worst-case assumptions on emission rates to assess the incremental 

impacts of individual sources such as power plants and industrial stacks on areas within a certain 

impact radius of the source. For example, the CALPUFF modeling system (Scire et al., 2000) is 

used in the development of EPA’s Federal implementation Plans to quantify the incremental 

impacts of point and area emission sources and assess the visibility benefits of control 
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technologies at national parks within a 300-km radius of each source. In these bounding 

estimates, in addition to holding the emissions from the source at the highest value over the 

period of interest, numerous simplifying assumptions are made on atmospheric composition. For 

example, species such as NH3 that are not being evaluated for control measures may be set to 

constant background values throughout the study period, or use monthly or longer-term average 

values, under the assumption that changes will not propagate into significant differences in 

regional haze.

 In theory, Lagrangian models are more dynamic than grid-based (Eulerian) models, and 

in that sense better able to track individual pollutant species, often PM2.5 (e.g., Scire et al. 2000). 

On the other hand, state-of-science grid-based models are structured more efficiently to invoke 

submodels of relevant atmospheric chemistry and physics that evolve pollutant-species 

composition and secondary aerosol formation. The Community Multiscale Air Quality (CMAQ 

-- http://www.cmaq-model.org/) model (Byun and Schere, 2006) is a grid-based model with a 

long record of usage (Appel et al. 2012), and is the product of an open-source development 

project sponsored by the EPA since 1993 (the so-called “Models-3”). CMAQ not only tracks the 

primary emissions products from fire, but like other photochemical models, it also simulates 

other significant atmospheric compositional changes from wildfires, such as changes in ozone 

and secondary PM concentrations (Chen et al. 2009) at as fine a time scale as computational 

resources will allow. The finest spatial resolution of the model used to date (specifically in urban-

scale assessments) is 1 km. WRF-CHEM (Grell et al. 2011) is another variation on this theme, in 

that it couples atmospheric chemistry directly with meteorology from a limited area model (an 

RCM explicitly nested within a global climate model).


 Chemistry transport models (CTMs) such as CMAQ and the Comprehensive Air Quality 

Model with extensions (CAMx; Environ 2011 and references therein), used to study urban-to-

regional scale fire impacts on air quality, represent the spatial heterogeneity and temporal 

variability of primary and precursor species: elemental carbon, particulate organic matter, SOAs, 

CO, NOx and VOCs. These models are used with prescribed meteorology to simulate the long-

range transport, vertical mixing, entrainment, mixing, and chemical processing in clouds; wet 

and dry removal; and the detailed gas-phase, aqueous, and particulate chemical transformations 
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of pollutants over a few days to several months. Process algorithms for the evolution of reactive 

plumes, and treatment of the oxidation pathways and phase partitioning of secondary organic 

aerosol, simulate plume dynamics and chemistry following the onset of a fire event (Carlton et 

al. 2008, Karamchandani et al. 2012). CMAQ and CAMx have a long history of continuous 

refinement, review, and usage, and have been evaluated against observations around the globe, 

showing reliability in their predictions of criteria pollutants (Hanna et al. 2005, Itahashi et al. 

2012, Rao et al. 2012). Tools such as the Decoupled Direct Method (Dunker et al. 2002, Cohan 

et al. 2006), developed specifically to quantify the model sensitivities, enable a process-level 

understanding of emission uncertainties and their sources, and are coming into greater usage for 

this purpose (Napelenok et al. 2006). The meteorological simulation data used to drive these 

models are generated a priori without dynamic coupling to atmospheric chemical processes, 

however, so these models do not model the effects of the feedbacks of aerosols on the radiation 

budget (see Feedbacks, below).


 The spatial resolution of smoke-transport models is typically ≥ 4 km2, too coarse to 

resolve the dynamics of key physical processes involved in smoke transport, especially initially 

(i.e., plume rise). Full-physics models (sensu Goodrick et al. 2012) invoke computational fluid 

dynamics (CFD) to model processes involved in plume development explicitly. As with full-

physics fire-behavior models (Linn et al. 2002, Mell et al. 2007, Finney et al. 2012), and 

analogous to explicit cloud microphysics in RCMs, CFD-based models are currently impractical 

for simulations over the domains we are considering here (regional or CONUS-wide), and have 

yet to incorporate chemistry, although they show promise for some local applications (Valente et 

al. 2007).

 With the multiple components of the proposed modeling system, establishing and 

maintaining model linkages can be a substantial task. Researchers are building integrated 

frameworks for smoke modeling and linkage modules that range from automated creation of 

comma-delimited output files to complex processors that involve both non-linear computations 

and re-scaling of data. Here we describe briefly two modeling frameworks and one such 

processor (of the latter type) that are currently available and widely used, while recognizing that 

there are many other examples.
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 The BlueSky smoke modeling framework (Larkin et al. 2009 -- http://

www.blueskyframework.org/) simulates smoke emissions and dispersion from both real-time fire 

observations and simulated fires. Users have choices among spatial data layers for fuels, 

consumption and emissions models, plume-rise algorithms (i.e., how smoke is lofted into the 

atmosphere), and dispersion models. BlueSky has both operational and research (development) 

versions, with the former having undergone extensive testing and sensitivity analysis on its 

individual components (Larkin et al. 2012, Raffuse et al. 2012). 

 The Wildland Fire Emissions Information System (WFEIS; http://wfeis.mtri.org/) is a 

publicly available Web-based tool for computing emissions from wildland fires anywhere in the 

continental United States or Alaska (McKenzie et al. 2012). A principal use of WFEIS outputs is 

spatially explicit estimates, at regional scales, of the effects of fire on the carbon cycle (French et 

al. 2011), but in the process it calculates smoke emissions with Consume (http://www.fs.fed.us/

pnw/fera/products/consume.html), one of the fuel-consumption modules in BlueSky that is 

widely used by fire managers. Like BlueSky, WFEIS has a development version and will be 

enhanced to incorporate simulated fires (e.g., future fires) and update spatial fuels data.


 The Sparse Matrix Operator Kernel Emissions (SMOKE) processor (http://www.smoke-

model.org/index.cfm) uses numerically efficient sparse-matrix operations to process large 

volumes of emissions data by emissions sector, including smoke emissions from wild and 

prescribed fires, for use with air-quality models. SMOKE achieves efficiency in throughput by 

separating the steps of chemical speciation, temporal allocation, and spatial disaggregation and 

gridding of inventoried sectoral emissions into sequential matrix multiplications. Air-quality 

models are coarsely gridded spatially in comparison to the areal extents of fires, partly for 

computational reasons but also because they are limited by the underlying spatial resolution of 

the meteorology. They use short model time steps (10-15 minutes) and aggregation time steps 

(hourly), however, compared to the reporting period of regional emissions inventories, typically 

annual for most emission sectors, including fires. Emissions data come in many forms, but there 

are usually scale mismatches with the air-quality models in space, time, or both. SMOKE 

developers have provided guidelines for creating “SMOKE-ready” data, such that it is now 

feasible, for example, to automate partially the integration of simulated fire emissions with 

JFSP 12-S-01-2
 Final report

25



models like CMAQ. Plume rise for point-source wildfires is calculated online in CMAQ, as for 

other point sources, e.g., from power plants.

Feedbacks

 Changes in atmospheric composition and the land surface due to wildfires have feedbacks 

to the climate, which may exacerbate fire frequency and intensity in the future. In this section we 

focus on the atmospheric compositional changes due to smoke emissions, and their (mostly) 

positive feedbacks to radiative forcing. Bond et al. (2013) estimated this forcing to be the most 

important after GHG forcing, with black carbon and other short-lived climate forcers 

contributing up to 75% of the total aerosol forcing, even when integrated over 100 years after 

emission.

  Feedback of aerosols from wildfires contributes to the surface energy budget, with 

consequences for planetary boundary layer height (PBLH) and photolysis rates. In a modeling 

study of the August 2007 wildfires in the Western U.S., Jiang et al. (2012) found that the direct 

aerosol feedback to the radiation budget reduced photolysis rates for NO2 by up to 75%, thereby 

decreasing ozone. Further reductions in ozone occurred due to a decrease in surface solar heating 

that reduced the surface temperature by 2 deg. K, and due to associated changes in tropospheric 

chemistry. These reductions counteracted the increases in ozone mixing ratios that come from 

two sources: lowering of PBLH from the aerosol direct radiative feedback, and large NOx and 

VOC emission fluxes from the wildfires. Inclusion of the aerosol direct radiative feedback in 

simulations corrects the overestimates typically seen of ozone in the vicinity of fire plumes if this 

feedback is ignored.  

 Cloud-aerosol interactions give rise to significant aerosol radiative feedbacks, which 

constitute the greatest uncertainty in radiative-forcing estimates (Forster et al. 2007). The aerosol 

(indirect) radiative feedback has at least two forms: (1) enhancement of cloud reflectance 

(albedo) due to an increase in the number of cloud condensation nuclei (CCN) activating on 

aerosols, thus reducing the cloud droplet diameter for a given cloud liquid water content 

(Twomey 1974), and (2) longer cloud lifetime, due to the suppression of drizzle as a result of the 

decrease in cloud droplet diameter, and the longer time taken for cloud droplets to grow into rain 
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drops through collision and coalescence (Albrecht 1989). This latter feedback also increases 

cloud thickness (Pincus and Baker 1994). The increases in cloud albedo and cloud lifetime 

reduce the surface temperature by intercepting solar radiation, but warm the atmosphere by 

absorbing upwelling radiation from the surface. The magnitude of the albedo effect is difficult to 

quantify on the global scale, because cloud albedo varies in response to the highly variable 

nature of cloud types and liquid water path. The cloud lifetime effect is also difficult to quantify 

because of the high degree of natural variability in cloud cover and cloud liquid water content, 

and the uncertainties in measuring the collection efficiency of cloud droplets (Haywood and 

Boucher 2000). As a result, the global mean uncertainty in the aerosol indirect forcing is 

estimated to be as large in magnitude but opposite in sign as the radiative forcing estimate for 

greenhouse gases (Forster et al. 2007). Because smoke from fires enhances the indirect forcing of 

aerosols through the addition of CCN, the uncertainty in future fire estimates magnifies the 

overall uncertainty associated with aerosols. 

 Uncertainty in the indirect radiative forcing estimate is further complicated by the weak 

correlation in models of climate change between the short-term and long-term feedbacks of 

clouds (Dessler 2010). As observational studies allow only a short-term evaluation of these 

models, establishing such a correlation is necessary to be able to extrapolate to the long-term 

behavior of climate. Fasullo and Trenberth (2012) found that seasonal variability in relative 

humidity (RH) correlates well with cloud cover, and that in the Northern Hemisphere the 

summertime average RH over the subtropical oceans from 1989-1999 is well correlated with the 

equilibrium climate sensitivity of climate models. This provides a possible observational 

constraint on the models, although several other factors that may or may not correlate with the 

subtropical RH variability also need to be considered, e.g., feedbacks from high-altitude clouds, 

snow and ice, and water vapor (Dessler 2010).

 Another feedback of significance for wildfire emissions is the semi-direct effect of 

absorbing aerosols on clouds. A modeling study by Hansen et al. (1997) on low clouds showed a 

warming of the cloud base due to an increase in static stability from the scattering of radiation by 

aerosols below the cloud. Ackerman et al. (2000) found similar results in Large Eddy 

Simulations, where a black-carbon layer heated the lower troposphere, evaporating the cumulus 
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clouds due to reduced convection in the boundary layer and lower relative humidity. The signs of 

the direct and indirect radiative forcing are negative, but the forcing from absorbing aerosols is 

positive, taking into account only the reduction in cloud cover. The semi-direct effect is defined 

differently in different studies, however, some of which include the longwave radiation response 

to changes in land surface and tropospheric temperature. This had led some authors (Penner and 

Zhang 2003) to conclude that biomass combustion aerosol may not produce a climate warming, 

but recently Bond et al. (2013) showed that the direct radiative forcing of black carbon is 

approximately +0.71 W m-2. If correct, this is a huge radiative impact, with significant 

contributions from biomass burning to the total.

 Vegetation and the land surface as a whole also produce important feedbacks to climate. 

Forests in particular affect radiation budgets, the hydrologic cycle, and atmospheric composition, 

providing both negative (in tropical forests) and positive (in boreal forests) feedbacks to climate 

warming (Bonan 2008, Swann et al. 2010). Vegetation affects the exchange of heat, moisture, 

momentum, and chemical fluxes between land surface and atmosphere, and is also a natural 

source of VOCs that are precursor species for ozone and aerosols. Vegetation feedbacks to the 

atmosphere are therefore a crucial component in modeling meteorology, climate, and smoke 

chemistry and transport. For example, the Community Land Model Version 4 (CLM4) couples 

dynamic vegetation with carbon and nitrogen dynamics from a terrestrial biogeochemistry model 

(Thornton et al. 2009, Bonan et al. 2011, Lawrence et al. 2011). Land surface models such as 

included in CLM4 establish boundary conditions (from below) for the atmospheric-physics 

equations that are solved numerically in RCMs (Bonan 2008), analogously, though at much finer 

scales, to boundary conditions (at the lateral boundaries and from above) provided by global 

climate models to RCMs. Because land-surface models are terrestrially rather than 

atmospherically based, their boundary conditions can be validated realistically with satellite 

observations (Lawrence and Chase 2007).

 All of these feedbacks are also important for regulatory concerns. Wildfires increase 

tropospheric ozone production due to the large amounts of NOx and VOC emitted in fire plumes 

(McKeen et al. 2002). Long-range transport of boreal fire plumes in Canada during June 1995 

elevated CO levels as far south as 35ºN in the eastern and mid-western U.S. (Wotawa and Trainer 
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2000). A concern raised by these increases from the perspective of air-quality management is that 

urban ozone mixing ratios, especially in NOx-limited areas, would be more sensitive than rural 

areas due to the in situ oxidation of CO transported into the airshed in wildfires by local NOx 

emissions (McKeen et al. 2002). Areas marginally in attainment of the NAAQS for 8-hour ozone 

could become non-compliant during fire events.

Further scaling issues 

 We have alluded earlier to the challenge to comprehensive simulation models for climate, 

fire, and air quality presented by the disparate scales, both temporal and spatial, at which the 

processes of relevance for these interactions occur. We introduced scaling problems associated 

with vegetation, fuels, and fire; here we provide examples of scale disparities associated mainly 

with the atmospheric domain.

 Regional assessments of wildfire impacts on the ecosystem under a changing climate 

require reliable predictions of of meteorological variables, not only over time periods and spatial 

extents of large enough magnitudes to represent changes in synoptic circulations, but also at a 

sufficiently fine spatial resolution to characterize regional or even finer-scale variability in fuel 

loads and fire weather. As these vary across differing scales in different parts of the country 

(Keane et al. 2012b), region-specific modeling of fuels, fire weather, and atmospheric chemistry 

and transport is needed to quantify future air-quality responses to wildfires and their potential 

health impacts. For example, Kreidenweis et al. (2001) used observed concentrations in Big 

Bend National Park during May 1998 wildfires in Mexico to improve information on aerosol 

physical and chemical properties, and found significant differences in the aerosol composition in 

these plumes from those found in Africa and South America. They also demonstrated the role of 

aerosol aging along the plume transport path in determining the final composition observed at the 

receptor location, showing that procsses must be captured at multiple scales of space and time to 

characterize regional-scale spatial variation properly.

 A cost-effective way to address some of these scale disparities is through downscaled 

modeling at urban to regional scales, using RCMs forced by the synoptic circulations projected 

by a global climate model. Four-dimensional data assimilation (Stauffer and Seaman 1990, 
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Stauffer et al. 1991), including analysis grid-point nudging and spectral nudging, ensures 

consistency in the large-scale circulation between the input data and the RCM (Bowden et al. 

2012a,b). Analysis nudging tends to suppress the variability at wavelengths resolved by the 

RCM, however, which may limit the usefulness of this method (Rockel et al. 2008, Bowden et al. 

2012a). Despite this issue, Otte et al. (2012) showed that within the Weather Research and 

Forecasting (WRF -- Skamarock et al. 2008) model, the extremes are predicted better when 

applying either form of nudging than with no interior grid nudging. Many RCM simulations use 

spectral nudging because it focuses on nudging only to wavelengths that can be resolved by the 

input data.

 It is important in these downscaled studies to understand the limitations of using explicit 

models for some of the fine-scale processes such as aerosol-cloud interactions that typically 

occur at 1-10 km spatial extent, and the parameterized (implicit) treatment of these processes at 

the sub-grid scale when the model resolution is coarse, e.g., ~ 100-300 km in the case of climate 

models. Provision must be made in multiscale studies to switch from implicit to explicit 

representations, for example, of cloud physical and chemical processes and precipitation when 

the grid resolution is refined. Similar considerations apply to the use of reactive plume models to 

simulate fire-plume dynamics and dispersion of pollutants into the ambient air. Models currently 

in use (e.g., CMAQ and CAMx) automate this switching, or can be configured at run time to 

compile and build the appropriate process sub-model when running multiple nested simulations. 

A modular modeling structure is very useful in this regard, and also provides a platform in which 

algorithms can be easily replaced when improved process formulations become available, or 

when alternative algorithms need evaluation against existing ones.

 Scale disparities can be starkly evident in coupled modeling, because cross-scale 

translations are needed that are both robust and efficient. One example is the treatment of the 

meteorological fields when using RCMs coupled to an atmospheric chemistry and transport 

model. Data assimilation techniques in the RCMs need to be tested to ensure that the finer-scale 

feedback of atmospheric trace constituents to the meteorology is not suppressed while capturing 

the effects of the large-scale circulation.
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Building models

 We are proposing a modeling system whose conception, construction, and use require 

expertise in multiple disciplines and diverse technical skills. Process formulations in climatology, 

meteorology (including cloud and radiation interactions), atmospheric chemistry, vegetation and 

landscape ecology, fuel and combustion science, and reconciliation of their differing spatial and 

temporal scales inform the model content; numerical methods, large-database management, and 

software architecture inform its implementation. Consequently, we expect that collaborative 

efforts will be the norm, with each individual PI or group bringing a set of tools to the effort. 

Logistical constraints will operate, in that not all combinations of system components will be 

possible for a particular collaborative effort. Nevertheless, we focus here on identifying the 

optimal combinations of model components, to maintain the most general perspective, and 

eschew consideration of the feasibility of specific combinations, which is the task of particular 

collaborations. Not all modeling-system constructions will follow the same path. In what follows 

we provide a modeling agenda advocating the most detailed representations of all processes (see 

Table 1, pp. 62-65), then a set of general criteria for evaluating modeling systems, and then four 

example modeling pathways that exemplify the variety of plausible choices one might make for 

specific applications.

 Figure 6 gives four example pathways to building an integrated system, based on the 

“master” flowchart in Figure 4. These combinations are by no means exhaustive, but they present 

variations on a theme for meeting the following four criteria that we believe are essential for 

moving the science and software forward to understand future smoke consequences of changing 

fire regimes.

1. Minimizing cumulative effects of errors, uncertainties, and biases. These all accumulate in 

translation across scales and across disciplines. For example, fire algorithms originally 

developed at fine spatial scales are applied at regional scales in DGVMs (Arora and Boer 

2005, Lenihan et al. 2008), and error propagation can be complex and nonlinear (Rastetter et 

al. 1992, McKenzie et al. 1996). Alternatively, coupling models at the same scale but from 

different disciplines can lead to errors that are “idiomatic” (as in translating human 

languages). For example, RCMs that are well validated with respect to meteorological outputs 
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can have very different outcomes when used for air-quality assessment (Hogrefe et al. 2004, 

Leung and Gustafson 2005, Gustafson and Leung 2007, Menut et al. 2012). 

Figure 6. Example pathways for realizing models abstracted by the flowchart in Figure 4. Criteria for 
choices include 1) minimizing cumulative error, 2) algorithmic and computational feasibility, 3) 
transparency of outcomes, 4) robustness to future projections. GHG = greenhouse gases. RCPs = 
representative concentration pathways. RCM = regional climate model. DGVM = dynamic global 
vegetation model. LFSM = landscape fire succession model. (A) Fire is incorporated in a DGVM and 
fire effects are computed at coarse scales. (B) Fire is modeled at a finer scale in a model that combines 
fire occurrence with fire effects. (C) Regional climate and air chemistry are coupled with fire 
occurrence external. (D) Global and regional climate are not dynamic, but represented statistically.
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2. Algorithmic and computational feasibility. Clearly whatever modeling system is being used 

must be able to run in a reasonable time. For example, even if there were sufficient input data, 

a landscape fire model at 30-m resolution cannot be run across the CONUS (Keane et al. 

2002). More challenging is optimizing the tradeoff between model rigor and complexity and 

sufficient replication to capture a distribution of outcomes. This replication may be parsed 

further into ensemble modeling at some stage (probably regional climate modeling) vs. 

replication of one model (Pierce et al. 2009, Knutti et al. 2010). 

3. Transparency of outcomes. This is analogous to the “black box” issue, but focuses on 

understanding why realizations of one model, or of different combinations of models, produce 

different results. Did you get the right answer for the wrong reasons (Dennis et al. 2010)? 

Sensitivity analysis leads to quantitative transparency, and is globally recommended in 

modeling, though not always implemented. Just as important, however, is semantic or logical 

transparency. Can you explain, in words or perhaps symbols, why your model produced a 

certain outcome? For example, an outcome may be counter-intuitive, and be the one 

stochastic realization that produced an outlier to expectations (Deser et al. 2012b). 

Transparency could mean the difference between (a) discarding a good theory or casting out 

the outlier(s) or (b) refining or extending the range of inference. 

4. Robustness to future projections. There is the classic problem of pattern matching (also 

sometimes called “wiggle matching”) (Cushman et al. 2007), seen as over-fitting2  in empirical 

models and over-calibration in simulation models. Whether adding explanatory variables, or 

tuning parameters, or both, there can be tradeoffs between matching observations and 

maintaining flexibility to operate in a changing domain. For example, McKenzie et al. (2004) 

fit linear regressions of log (area burned) to temperature and summer precipitation for 11 

western states, then projected models onto future climates from two global climate models.  

The cooler and wetter climate model realization produced unrealistically high burned-area 

projections for most states (although these are often cited); the more extreme climate model 

projected physically impossible values for annual area burned, and was not reported. More 
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subtly, Mote and Salathé (2010), in projecting future climate for the Pacific Northwest, used 

weighted means of output from 20 climate models, with the weights being a function of the 

accuracy of the models in matching observations within the region. Intuitively, this is an 

improvement on unweighted ensembles, which have their own issues (Knutti et al. 2010), but 

makes the assumption of stationarity in the observation-model crosswalk. 

 Pathway A in Figure 6 is perhaps the simplest in that scaling issues (see above) are 

restricted to the initial downscaling of global climate output to an RCM. The DGVM includes 

fire algorithms, including fire-effects calculations, at its native scale (sensu Arora and Boer 2005, 

Lenihan et al. 2008). Information flows mostly in one direction; no coupling (see above) is used 

except for static land-surface feedbacks to the RCM. Key sources of error are mismatches 

between the native scales of vegetation processes and fire effects, and the feedbacks between 

them, and omission errors (of key spatial processes driving fire and fuels [Keane et al. 2012b]). 

Algorithmic and computational feasibility is likely moderate-to-good. Transparency depends on 

the individual components and their history with the modelers. Robustness to future projections 

is likely compromised because without coupling, model states will “wander” into plausible but 

vanilla futures that do not reflect feedbacks.

 Pathway B replaces the DGVM with an LFSM such as FireBGCv2 (Keane et al. 2011), 

which combines mechanistic algorithms from DGVMs with spatial processes and disturbances at 

multiple fine scales (compared to DGVMs). Once again information flows in one direction, even 

more so than in “A” because LFSMs as currently implemented do not feed back to RCMs. 

Scaling error of one type (mismatch of process and scale) will be reduced, although there will 

still be cross-scale error propagation (McKenzie et al. 1996). Algorithmic and computational 

feasibility is possible only if detailed processes are restricted to representative sample landscapes 

and extrapolated across the rest of the domain (CONUS). Transparency once again depends on 

the individual components, but is likely inversely related to the complexity of the LFSM (Keane 

et al. 2004). Robustness to future projections of fire and smoke may be higher, at least at fine 

scales, than for systems using DGVMs, for one because landscape memory (Peterson 2002, 
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McKenzie et al. 2011), in its simplest form the legacy of past disturbances, i.e. fires, is 

meaningful only at the finer scales at which LFSMs operate.

 Pathway C involves fully coupled modeling of all regional processes. WRF-CHEM 

(Grell et al. 2011) and WRF-CMAQ (http://www.epa.gov/amad/Research/Air/twoway.html) are 

examples of ongoing efforts in that direction, which is an objective of numerous modeling 

groups (Grell and Baklanov 2011). Currently, we know of no fully coupled implementation of all 

the model components. As with Pathway A, a key part of error propagation will be associated 

with downscaling and coarse-graining. Algorithmic and computational feasibility will surely be a 

limiting factor, leading to fewer replicates than with systems whose models run more 

independently. Transparency may be questionable, but will be improved by specifying interim 

outputs judiciously, so as to avoid an end product that was produced in too many stages to 

comprehend. Logical transparency may indeed be greater, however, than for uncoupled models 

with their associated “loose threads”. Robustness to future projections should ideally be high, 

under the assumption that capturing dynamic processes is important, and that feedbacks really 

matter. 

 Pathway D is the opposite of Pathway C, in that the simplest methods are proposed for 

each step except the fire modeling per se. Both global and regional climate are statistically 

downscaled, leaving the computational space mostly open for an LFSM, which could be 

replicated enough times to ensure coverage of the range space of all the landscape processes 

simulated mechanistically (Loehman and Keane 2012). Errors will come from the absence of 

dynamic interactions, to the degree that this Pathway would probably be difficult to move past 

peer review. Computations will be feasible, and transparency fairly high. Robustness for the 

future might be acceptable for average predictions, but capture variance poorly, and extremes 

probably not at all (NOTE: the latter is a problem for all models).

 It is easy to say, and not particularly helpful, that no one system will produce the best 

answers for every question regarding smoke consequences, and that choices of models and 

linkages should depend on the specific question at hand. Conversely, it would be misleading to 

be too prescriptive, given the uncertainties at each step in the process, and the variety of 
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objectives within the overarching goal of future projections. Consequently we present some 

guidelines that could serve as a checklist for aspiring modelers of future fire and smoke. 

1. Coupled is better than disconnected (dynamic is better than static)

 We have described some of the many feedbacks in the Earth system. One complication of 

forward modeling is that not all influences or causes are unidirectional. We re-emphasize that 

feedbacks in the system are significant, whether the simple (conceptually) feedback of fire to 

vegetation structure or the complex interactions between land-surface processes, aerosols, and 

clouds that modify climate. Models that ignore feedbacks by not coupling key components will 

be structurally wrong from the start (see #5 below). Similarly, both states and rates change. Static 

fields (e.g., statistical downscaling) or assumptions of stationarity in processes (e.g., “hotter and 

drier = more fire”) reflect assumptions about which system changes can be discounted (effects of 

circulation on atmospheric chemistry in the former, climate-vegetation-fire interactions in the 

latter). We believe that these assumptions are largely untenable.

2. Distributions are better than points (but don’t regress away extremes)

 Almost all measured (or simulated) outcomes in the Earth sciences have ranges of 

variation, even if the processes underlying them are deterministic. Models that produce a single 

outcome will be wrong (Silver 2012), and fragile. Ensembles, whether one or more runs of a 

group of models, as in the CMIP5 (Taylor et al. 2012), or replicates of a single model that has 

stochastic elements, provide a plausible range of outcomes. With enough replication, a 

distribution of outcomes might be estimated, and compared to theoretical predictions. For 

example, frequency distributions of fire sizes appear to follow power laws in some regions 

(Moritz et al. 2011), while deviating from them in others (Reed and McKelvey 2002). Multiple 

realizations of a simulated fire regime could be compared to these predictions, which of course 

are unlikely to be stationary themselves in a changing climate. 

 One must, of course, control the number of combinations needed to generate 

distributions. Models that are completely deterministic, such as the fire-effects modules 

Consume (Prichard et al. 2007) and the First-Order Fire Effects Model (Reinhardt and Brown 
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1997), may have only one replicate each when used in ensembles (Larkin et al. 2012). 

Conversely, stochastic distributions of fuels at the regional scales associated with modeling 

might be more realistic (Keane 2012).

 A final concern is where to use means from ensembles, and at what level in the modeling, 

as opposed to preserving the variability within them for use at the next stage. For example, air-

quality models such as CMAQ are time-consuming to run, but simulated fires that provide their 

inputs are often generated stochastically (McKenzie et al. 2006). How small a sample size of 

CMAQ outputs can be afforded and still project future variability with some confidence? What 

level of decadal sampling is required in the input synoptic circulations for the driving RCM, and 

what is the minimum number of air-quality simulation years to capture intra-annual (seasonal), 

interannual, and inter-decadal variability? To date, regional-scale air-quality models have not had 

wide usage in the ensemble sense, although ensemble methods have been established (Lewellen 

et al. 1985) and applied for some time in meteorological modeling. 

3. Watch out for scale mismatches

 Some scale mismatches are intrinsic to the modeling system we are proposing (Figure 4). 

Perhaps the largest is between fire-behavior and fire-effects algorithms and the models that drive 

them (RCMs and DGVMs), and that they inform (smoke-dispersion models). In particular, the 

spatial scales at which fuel abundance varies across a landscape may be the most obvious (Keane 

et al. 2012b). We have suggested above that some error propagation is unavoidable, but a further 

concern is that in attempting to “scale up” fire occurrence and fire effects, algorithms are used, of 

necessity, outside their proper domain of application. For example, the classic fire-behavior 

algorithm (Rothermel 1972) built from laboratory experiments has been used in DGVMs to 

predict fire area and fire effects at regional scales and monthly time steps (Lenihan et al. 2008), 

albeit with some success due to careful evaluation and calibration by the modelers. In contrast, 

Arora and Boer (2005) apply a heuristic representation of fire probability and fire spread. Their 

model solves one scaling problem by operating at a daily time step, but is opaque to validation 

with measurements, unlike a model that simulates processes at their native scales.
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4. As simple as possible, but no simpler (Einstein)

 As all models are simplifications of reality, how much detail can be ignored or subsumed 

into thoughtful parameter choices? The classic case is understanding radiative forcing: one does 

not need coupled AOGCMs to conclude that there is an energy imbalance from the greenhouse 

effect. This is based on 100+ year-old science (Arrhenius 1896). But how much, where, how 

quickly, and which feedbacks are positive or negative? Will simplification or omission of 

interactions and feedbacks produce robust projections? What about phenomenological or 

stochastic representation of fire at broad spatial scales? This may be better than risking the error 

propagation across scales associated with using mechanistic algorithms (McKenzie et al. 1996), 

but basic elements of fire science, such as arrangement, abundance, and condition (moisture) of 

fuels and the effects of wind and slope, should not be ignored.

 Two further considerations affect the optimal threshold of simplicity: (1) tradeoffs 

between model complexity and replication, which are generally inversely related, and (2) limits 

on information available for evaluating increased complexity. Concerning the latter, for example, 

our best measurements are for the contemporary period. For the historical period (roughly 

pre-1900), we have no fuels data, no fire-start dates, and usually only a rough idea of fire 

perimeters, especially for low-severity fire (but see Swetnam et al. 2011). Historical fire spread 

must be reconstructed indirectly, and with necessarily simpler models (Kennedy and McKenzie 

2010). There are no measurements for the future, other than the range of possibilities starting at 

the present, which we can simulate, but many complexities therein, though manageable for the 

present for which we have observations, constitute false precision when applied to the future, 

especially for fire (Kennedy and McKenzie 2012).

5. Give yourself a chance to be wrong (also give yourself a chance to be right)

 This one applies particularly to model developers, and is related to the problems of over-

fitting and over-calibration, and to the robustness of future projections. Observations, and 

verification or “validation”, are important for simulation modeling, but bringing them in too soon 

and adjusting will be counter-productive, because it may camouflage basic errors in model 
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content (Ford 2000). Being “wildly wrong” at some stage may be the most informative thing that 

can happen. 

 Different models confront these issues in different ways. For example, RCMs solve 

equations for conservation of mass and energy, based on a clear understanding of the physics. 

Approximations, or adjustments, occur for physics that are too complex to resolve at the scale of 

the models. Informed choices of parameters based on first principles are weighed against 

matching outcomes to observations such as instrumental climate records. In contrast, vegetation 

and fire models usually involve empirical relationships and parameters that are fit statistically. 

Maximizing the explanatory power of a model by uncritically adding predictor variables and 

statistical interactions makes a model less robust to predictions outside its domain, i.e., for the 

future (Cushman et al. 2007).

 On the other hand, it is possible to start out with faulty assumptions that ensure the 

inevitability, rather than the chance, of being wrong. For example, we encountered more than one 

paper attempting to project emissions into the middle 21st century that assumed that fuels would 

be the same (both abundance and spatial arrangement) as for the current period. Such a model is 

wrong from the start, and correspondence with the real future will be coincidental. A similar, 

though less obvious, omission is the outcome of using statistical downscaling to represent 

regional climate. Although this may be more efficient for some meteorological applications, it 

precludes the explicit simulation of mesoscale circulations that are necessary for transport 

models. A third potential pitfall is that global climate models and RCMs use land-cover data that 

may very well deviate from the real future state, which calls into question the driving 

meteorology for coupled models. This issue can take subtler forms; for example, assuming that 

the natural fire regimes for particular vegetation types are stationary. Instead, modeled fire 

regimes should be emergent rather than prescribed (Keane et al. 2011, Kennedy and McKenzie 

2012). 

6. Decide which uncertainties you can live with

 This is partly about avoiding “show-stoppers”, such as in #5 above, but also about the 

issue of resolving trade-offs. For example, some models seem to “get right” certain regions, 
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while having poorer skill more generally (Mote and Salathé 2010). If this is an RCM, one might 

sacrifice the global skill to have the best possible inputs for estimating smoke emissions at a finer 

scale of interest. Conversely, for CONUS-wide modeling one might eschew a finer-scale 

landscape fire model, out of concern for efficiency or wall-to-wall coverage, and assume that 

there are no consistent biases associated with ignoring landscape features such as topography and 

spatial patterns of fuels. Alternatively, one could invent a way to scale up LFSMs to DGVMs 

(McKenzie et al. 1996).

 Some choices and tradeoffs may not be purely scientific, but relate to available data and 

resources and wider socio-political concerns. For example, the “tried-and-true” SRES pathways 

have seen much use not only in climate modeling but also for ecosystem models of many kinds 

(Littell et al. 2011). In contrast, the RCPs are expected to be the paradigm for the future, but have 

a much shorter history, although experiments are now underway (Taylor et al. 2012). Similarly, 

more historical observations and model outcomes are associated with the NARCCAP projections 

than if making a fresh start with RCMs and the AR5 global model output, but with the former 

approach one risks having an anachronistic product.

Research needs

 An integrated Earth-science model of the one we envision will of course have 

components at various stages of development, with each being subject to improvement with 

ongoing and new research. Instead of trying to enumerate these possibilities, we focus on three 

that we believe address important needs for the modeling system as a whole: two mainly 

technical and the third of wider societal import. For each, we propose specific research 

objectives, while recognizing that many others would be possible and fruitful.

Trade-offs: uncertainty, feasibility, and optimizing ensembles and coupled models

 We alluded earlier to the unanswered questions about ensembles of global climate models 

(see Knutti et al. 2010). The evaluation of ensembles of chemistry-transport models, coupled and 

decoupled from RCMs, is at an even earlier stage, but the uncertainties associated with single 

realizations are analogous to those of global climate models. 
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 Dennis et al. (2010) reviewed the probabilistic evaluation of air-quality models, which 

involves Monte Carlo methods to quantify the uncertainties in model inputs and those associated 

with stochastic variation within ensembles. Such evaluation usually invokes a Bayesian 

framework. For example, inverse modeling with Bayesian hierarchical methods provides a 

nuanced approach to evaluating the agreement of models with observations (Riccio et al. 2006). 

Bayesian model averaging is an ensemble technique that approximates an optimal classification 

(in our case weighted output from model realizations), or hypothesis, based on Bayes theorem 

(Hoeting et al. 1999). Pinder et al. (2009) used Bayesian model averaging in a 200-member 

ensemble of CMAQ simulations to interpret the comparisons of model results with observations 

of 8-hr ozone concentrations. Such techniques can be used to diagnose structural errors in 

ensemble members, and to understand the effectiveness of control strategies probabilistically. 

 A next step in the use of these well established probabilistic methods would be to extend 

ensembles to the coupled modeling that we have proposed, while specifically varying levels of 

complexity, for example in the specification of fires via the choice of DGVM. In other words, a 

rigorous probabilistic comparison would supersede a qualitative evaluation of alternatives such 

as those in Figure 6. The computational burden of generating the requisite multi-year input data, 

for example from RCM(s) of choice and from relevant emission inventories, could be 

prohibitive, but efforts to consolidate input data for a common basis of comparison are already 

underway; for example, in an international initiative to evaluate process representations in air-

quality models in different airsheds (Rao et al. 2012). Such an effort would inform the question 

of how much complexity is needed to provide useful projections of smoke consequences.

Scaling, landscape complexity, and model evaluation

 What are the biases, errors, and scaling factors associated with representing fire regimes 

and smoke production at coarse enough spatial scales for CONUS-wide modeling to be feasible, 

with respect to both computational limits and data availability? In some ecosystems whose 

spatial heterogeneity is minimal or varies at coarse scales (e.g., gentle or simple topography), fire 

and smoke modeling at the spatial scale of the typical DGVM may be adequate. In others, such 
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as the mountains of both the West and East, there is much within-(DGVM)cell heterogeneity in 

the fine-scale controls on fire, topography, and fuels. 

 In those cases, LFSMs might provide a surrogate for the ground-based observations that 

are unavailable for future projections. Of course no model is error-free, but then neither is a 

raster-based data layer extrapolated directly from observations (Keane et al. 2013). LFSMs run 

over select “validation” domains could effect a cross-scale sensitivity analysis of a DGVM, 

holding global settings (RCP, global climate model, downscaling method, etc.) constant. What 

landscape process matters most among those that are missing at the scale of DGVMs? Something 

as direct as fire spread controlled by topography and patchy fuels, or as complex as the effects of 

large high-severity patches on seed sources (Turner et al. 1999)? At a minimum, cross-scale 

comparisons could lead to accounting for within-cell variation in a DGVM, but there also might 

be a potential for developing more quantitative scaling laws (Falk et al. 2007, McKenzie and 

Kennedy 2011). Such a project would be collaborative along the lines of CMIP5, NARCCAP, or 

SEMIP. “Validation” sites, i.e., landscapes within the DGVM domain that would be simulated 

with the LFSM, could be selected along environmental gradients thought to be associated with 

the importance of fine-scale processes for informing broader-scale projections. 

Abrupt changes and extreme events, thresholds and tipping points

 The first two of these are closely related, as are the second two, and all are similar in that 

they can be costly in both the short and long term. Abrupt climate changes are documented for 

the Holocene and before, and are an evolving concern for scientists and policy-makers world-

wide (CCSP 2008). Extreme climate events in recent years are linked statistically to ongoing 

climate change (Coumou and Rahmstorf 2012, Hansen et al. 2012), which is considered abrupt 

in the context of paleoclimatology. Wildfires can be extreme in their peak intensity (Cunningham 

and Reeder 2009), their extent and homogeneity of severity (e.g., recent New Mexico fires, C.D. 

Allen, pers. comm.), or their smoke consequences (the Russian fires of July 2010 and the 2012 

fires in the American West). 

 In our proposed modeling system, thresholds and tipping points are ecological boundaries 

that are crossed by some climatic or other environmental forcing, from which return may be 
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impossible or unlikely, or at best hysteretic. For example, drought stress driven by increasing 

temperatures, and ensuing tree mortality, can have multiple adverse consequences for forests 

(Anderegg et al. 2013), including exceeding the evolutionary plasticity of many species (Choat et 

al. 2012). On landscapes of the West, forests with mature trees that are relatively complacent to 

temperature increases, at least for the near future, could fail to regenerate after high-severity fires 

because seedlings will not survive in a new climate (i.e., warmer than the Little Ice Age climate 

in which their predecessors established) (Littell et al. 2010 and references therein). More subtly, 

but with significant human consequences, smoke pollution in local airsheds and background 

concentrations across broader areas could exceed tolerance thresholds, both regulatory and more 

basically physiological.

 Some recent literature suggests that there are detectable quantitative indicators of 

upcoming abrupt changes, or “regime shifts” (Biggs et al. 2009, Scheffer et al. 2009, 2012; Wang 

et al. 2012), which with careful monitoring might be used to mitigate or even forestall or prevent 

change. Other work, both ecological (Doak et al. 2009, Hastings and Wysham 2010) and more 

interdisciplinary (Taleb 2007, Casti 2012), suggests that extreme events and threshold-crossings 

may, like earthquakes, be impossible to predict more precisely than specifying return times or 

probabilities for events of certain magnitudes (Ditlevsen and Johnson 2010, Parmesan et al. 

2011, Loehman and Keane 2012). At best, the indicators may be present in only a subset of 

circumstances. For example, Hastings and Wysham (2010) show that properties proposed as 

indicators, such as changing variance (Carpenter and Brock 2006) or skewness (Guttal and 

Jayaprakash 2008), or slowing down of dynamics (Chisholm and Filotas 2009), are present in 

only a small subset of dynamical systems approaching regime shifts. Systems with pervasive 

non-linearities or strong positive feedbacks will change with no warning. Given the inherent non-

linearity and uncertainties in the climate system (Rial et al. 2004), looking for advance indicators 

of regime shifts in our climate-fire-smoke system may be a fool’s errand.

 A more tractable research goal, in a simulation framework such as we are proposing, is to 

leave the system dynamics “free” to follow unexpected extreme trajectories, albeit with low 

probability, so as to identify the broadest range possible of consequences. Following the second 

part of our guideline #3 (above), we need to ensure that we not “regress away extremes” when 
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using ensembles and concentrating on mean responses. For example, a DGVM that uses static 

plant functional types, a fire module that specifies fire frequency or limits maximum fire extent 

or severity, or a combustion module that limits plume height restrict outcomes to the “known 

unknowns”. It will be more illuminating, following our guideline #6, for modelers to allow 

themselves to be wildly wrong (or extreme), to experience the (simulated) consequences. With 

this wider perspective, resilient strategies in response to regime shifts will be more transparent, 

and more feasible (Peterson et al. 2011, Taleb 2012).

Conclusions

 The complex issues involving projections of wildfire and smoke consequences in a 

rapidly changing climate can be addressed best by modelers with diverse skills and resources. 

Realizing this (something the authors came to early on though not immediately), we have 

eschewed exact prescriptions or presenting any prototype systems. Rather than suggesting a 

“corporate” approach, something often favored by agencies and in many ways easier to track, we 

suggest that researchers take advantage of their own specific expertise, and that of their 

collaborators, even if it means different model structures and outcomes that are less easily 

compared with other projects. There is fruitful material for designing creative comparisons in the 

literature we cite (e.g., French et al. 2011, Larkin et al. 2012, Taylor et al. 2012, Keane et al. 

2013), and no lack of potential metrics and criteria (some better than others) for evaluation. A 

final caveat is that projections will be the outcome of many stochastic processes, of which “what 

actually happens”, whether in the future or in historical observations, is just one realization. 

Expectations should be scaled accordingly. For example, we cannot answer whether haze in 

Glacier National Park will be worse on July 4, 2050 than it was on July 4, 2000, but we should 

have a reasonable idea whether it will be worse, on average, in midsummer of the 2040s than it 

was in midsummer of the 1990s. Projections will be most relevant when uncertainties, from both 

knowledge gaps and intrinsic stochastic variation, are understood and quantified.
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Table 1. Agenda for a modeling system, classified by system component, spatial and temporal scale of operation, and specific 
problem(s) addressed. “Scale” is represented by practical (perhaps only quasi-practical) ranges. The disparity in scales is clear and 
is a problem in itself (see text) (GCM – general circulation model; RCM - regional climate model, DGVM - dynamic global 
vegetation model, LSFM - landscape fire succession model, CTM - chemistry transport model, BC - black carbon, VOC - volatile 
organic carbon).
 

Component Spatial and  
temporal

Scale

Problem addressed Solution

Regional 
climate

4-36 km2

Hourly to 
daily

Meso- and finer-scale processes 
need representation at those 
scales.

Spatial processes (e.g., 
mesoscale circulations) needed 
for smoke transport.

Downscaled climate using suitable boundary conditions (would need 
implicit schemes except at resolvable scales for some processes, e.g., 
sub-grid modeling of clouds). Nudging approaches capture region-
specific synoptic circulations consistent with the driving GCM.

Dynamic downscaling (from GCM) suitable for linkage to 
atmospheric CTMs, nested down to spatial resolutions of interest.

Vegetation <1-36 km2

Monthly to  
decadal

Dynamically changing 
vegetation in response to 
climate, disturbance, and biotic 
interactions.

Scaling

Species differences in vegetation represented; fuel components 
simulated independently; succession included in live biomass 
predictions; mixed species and multiple strata simulated explicitly. 

Temporal scale of inputs to the model may need aggregation from 
the RCM time scale to one-month intervals.
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Component Spatial and  
temporal

Scale

Problem addressed Solution

Fire 30 m2 -1km2

Daily to 
annual

Fire is stochastic

Fire is contagious

Scaling

Fire regimes are an emergent outcome of fire weather, ignitions, and 
fuels. Fire-regime properties (frequency, severity, extent) are not pre-
specified.

Fire is represented as a spatial process, at least implicitly.

A coarse-scale surrogates for fire ignition, spread and termination; 
fuel characterization suitable for fire simulation

Smoke 
emissions

30 m2 - 1 
km2

Daily to 
annual

Emissions are specific to fuel 
type and combustion phase.

Fuels vary at fine spatial scales.

Different pollution species 
interact differently with 
atmosphere.

Other emissions (e.g., biogenic) 
interact with smoke constituents 
in atmosphere.

Scaling

A translation of plant biomass and necromass to fuel loads, 
partitioned into live and dead (woody) fuels, then to size classes, and 
fuel type.

Explicit accounting for fuel variation across space.

Speciation profiles for pollutants and their precursors emitted in 
smoke, consistent with chemical mechanisms for speciated PM, 
ozone, and toxics used in the air-quality model.

Speciated emissions of major anthropogenic and natural emission 
source sectors other than wildfires.

Spatial allocation and temporal disaggregation of emissions for use in 
CTMs.
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Component Spatial and  
temporal

Scale

Problem addressed Solution

Smoke 
transport

0 - 1000s of 
km

Biomass combustion plumes are 
transported (and sensed by air 
quality monitors) 1000s of km 
from point of origin.

Plumes themselves are emitted 
at ~ 10s of m in extent and 
dilute into ambient air.

Need a multi-scale modeling approach for consistent science in 
representing processes from regional (continental and beyond) down 
to local scale. At least capture rise of the smoke plume vertically to 
calculate emissions in the vertical model layers, and dispersion into 
the atmosphere of the most important constituent emissions (BC, 
VOCs, NO3, etc.) prior to atmospheric chemistry calculations.

Plume-in-grid models that are coupled to the CTM capture details of 
plume dispersion and dilution into the ambient air over several hours; 
keep track of chemical budgets, mass conservation.

Atmospheric 
chemistry

1 km2 - ~30 
km2

Some chemical transformations 
occur in the smoke plume.

Volatile organic species emitted 
in smoke have a wide range of 
physical, chemical and optical 
properties.

Troposphere-stratosphere 
exchanges, especially affecting 
stratospheric ozone.

Interactions among smoke 
emissions and atmospheric 
constituents from other 
emission sources.

Scaling

Advanced plume treatment model tracks chemical transformation 
that occurs in reactive plumes as plume dilutes.

Secondary organic aerosol models are increasingly more detailed in 
treatment of varying volatility of “families” of species. 

Represent other emission sectors within a regional-to-urban scale 
chemistry transport model that includes a detailed chemical 
mechanism for multi-phase multi-pollutant interactions, in addition 
to horizontal and vertical transport algorithms (dispersion).

Atmospheric CTMs that extend into the lower stratosphere to 
account for exchange; at least specify upper chemical boundary 
condition from output of a global CTM.

Reconcile scales of transport and meteorology with scales of 
chemistry.
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Component Spatial and  
temporal

Scale

Problem addressed Solution

Feedbacks All relevant 
scales

Feedbacks of atmospheric 
constituents (CO2, CH4, O3, 
water vapor, and aerosol 
species). Black and brown 
carbon vary in optical properties 
due to the mixing state.

Feedbacks of clouds to radiation 
budget, uncertain in presence of 
black carbon.

Feedbacks of vegetation to the 
atmosphere.

Fire feedbacks to vegetation 
(mortality and fuels).

Scaling

A radiative transfer model that treats wavelength-dependent 
scattering and absorption of solar radiation by gases and aerosols, 
and models the impacts on the radiation budget, and the resulting 
meteorological fields (two-way coupling of meteorology and 
chemistry). Detailed treatment of black carbon in internal and 
external mixtures and of optical properties of brown carbon species 
(organic carbon).

A cloud scheme appropriate to the scale of the atmospheric CTM, 
with radiative impacts of cloud droplets; represent size-dependent 
aerosol scavenging by clouds; ideally use a cloud microphysical 
model for droplet growth and activation to calculate radiative 
impacts.

A land-surface and vegetation model with two-way coupling to the 
meteorology, capturing feedbacks of vegetation to the surface energy 
budgets, moisture fields, and convective motions in the boundary 
layer.

DGVM that includes fire or LFSM, where fire effects (loss of 
biomass, change in fuel type, shift in species) are explicitly modeled.

Minimize errors in feedbacks between components modeled at 
different scales; reliable sub-grid schemes, switching to explicit 
representations at the appropriate scales (e.g., clouds).
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Table A1. Acronyms used more than once in the text or figure captions. 

Acronym Meaning 
AET Actual evapotranspiration 
AOGCM (coupled) atmospheric-ocean general circulation model 
BC black carbon 
CAMx Comprehensive Air Quality Model with Extensions 
CCN cloud condensation nuclei 
CFD computational fluid dynamics 
CFFDRS Canadian Forest Fire Danger Rating System 
CLM Community Land Model 
CMAQ Community Multiscale Air Quality (model) 
CMIP Climate Model Intercomparison Project 
CONUS conterminous United States 
DEF water-balance deficit 
DGVM dynamic global vegetation model 
FCCS Fuel Characteristic Classification System 
FIA Forest Inventory and Analysis 
FLM Fuel Loading Model 
FTG Forest Type Group 
FWI Fire Weather Index 
GCM global climate model OR general circulation model 
GHGs greenhouse gases 
IMPROVE Interagency Monitoring of Protected Visual Environments 
IPCC Intergovernmental Panel on Climate Change 
LFSM landscape fire succession model 
LSFs land-surface feedbacks 
NAAQS National Ambient Air Quality Standards 
NARCCAP North American Regional Climate Change Assessment Program 
NFDRS National Fire Danger Rating System 
NOx oxides of nitrogen 
PBLH planetary boundary layer height 
PET Potential evapotranspiration 
PM particulate matter 
RCM regional climate model 
RCPs Representative Concentration Pathways 
RH relative humidity 
SEMIP Smoke Emissions Model Intercomparison Project 
SMOKE Sparse Matrix Operator Kernel Emissions 
SOA secondary organic aerosol 
SRES Special Report on Emissions Scenarios 
VOC volatile organic compound 
WFEIS Wildland Fire Emissions Information System 
WRF-CHEM Weather Research and Forecasting (model) with Chemistry 
 



Table A2. This is a sampling of models, frameworks, and projects useful for coupling climate, vegetation, wildfire, and air quality in 
North America. This list is not exhaustive. Models given more than cursory treatment in the text are noted. RCM - regional climate 
model.  DGM - dynamic global vegetation model. LFSM - landscape fire succession model.  FCS - fuel classification system. FE - fire 
effects. FB - fire behavior. FD - fire danger. SE - smoke emissions. ST - smoke transport.

Type Model URL or citation Description

ClimateClimateClimateClimate

RCM

Fifth 
Generation 
NCAR/
Pennsylvania 
State 
Mesoscale 
Model (MM5)

Grell et al. 1994, 
Gustafson and 
Leung 2007

MM5 is a non-hydrostatic, mesoscale atmospheric model that simulates the hydro-
climate dominated by orographic effects and cold-season processes. Note that MM5 is 
no longer actively supported as an operational model by NCAR, having been 
superseded by WRF.

RCM
Canadian 
RCM (CRCM)

Caya and Laprise 
1999, Plummer et 
al. 2006

CRCM is a mesoscale non-hydrostatic community model that uses an efficient semi-
implicit, semi-lagrangian numerical scheme, which allows for relatively fine spatial 
(45km) and temporal resolution (15 minutes). The regional model nests a high-
resolution limited-area model with a coarser-resolution global driving model.

RCM

Weather 
Research and 
Forecasting 
(WRF)

Skamarock et al. 
2008

WRF is a mesoscale weather-forecasting model for research and operational purposes 
that operates at a broad range of spatial scales (meters to thousands of kilometers). The 
modeling framework is designed to be flexible and efficient at incorporating physics 
into a dynamic solver. 

JFSP 12-S-01-2   Final report

67



Type Model URL or citation Description

RCM
Regional 
Spectral 
Model (RSM)

Juang and 
Kanamitsu 1994, 
Han and Roads 
2004

RSM is a hydrostatic spectral model that uses primitive equations in two nested 
components: (1) high-resolution regional spectral models (different by region), and (2) 
a low-resolution global spectral model. Spectral models have been shown to produce 
better forecasts than grid-point models especially at large scales or near the surface and 
are computationally efficient.

Vegetation (Quillet et al. (2010) has a more exhaustive review)Vegetation (Quillet et al. (2010) has a more exhaustive review)Vegetation (Quillet et al. (2010) has a more exhaustive review)Vegetation (Quillet et al. (2010) has a more exhaustive review)

DGVM MC1
Bachelet 2001, 
Bachelet et al. 
2003

MC1 represents the effects of climate on ecosystem structure and function for a wide 
range of spatial scales from landscape to global. MC1 links three modules that 
simulate biogeography, biogeochemistry and fire disturbance. The fire component, 
MC-FIRE, is a complex process-based module that simulates the occurrence, behavior, 
and effects of severe fires that then feeds back into the model to represent carbon and 
nutrient pools as well as vegetation structure.

DGVM

Canadian 
Terrestrial 
Ecosystem 
model 
(CTEM)

Arora and Boer 
2005

Coupled with the Canadian Land Surface Scheme (CLASS), CTEM is a mechanistic 
model that simulates three live vegetation pools and two dead carbon pools to produce 
estimates of water, energy and CO2 flux at the land-atmosphere boundary. CTEM 
includes a process-based fire component (FIRE) that incorporates fuel availability, 
flammability and ignition source into area burned estimates based on fire spread and 
fire duration.

DGVM

Community 
Land Model 
Vertion 4 
(CLM4)

Oleson et al. 
2010, Kluzek 
2012

CLM4 is a coupled dynamic vegetation model with a carbon and nitrogen component 
(CN). CN includes a fully prognostic treatment of the terrestrial carbon and nitrogen 
cycles as mediated by biological mechanisms of plants and soil dynamics. Fire is 
included in this component as a modified LPJ-Glob-FIRM that translates the original 
annual time step to the sub-daily time step of CLM.
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Type Model URL or citation Description

DGVM
Lund-
Potsdam-Jena 
(LPJ-DGVM)

Thonicke et al. 
2001, Sitch et al. 
2003, Thonicke 
et al. 2010, 
Prentice et al. 
2011

LPJ-DGVM is a process-based model representing large-scale terrestrial vegetation 
dynamics and land-atmosphere carbon and water exchanges. There are three 
commonly used fire modules: Global FIRe Model (Glob-FIRM), SPread and InTensity  
of FIRE (SPITFIRE), and Land surface Process and eXchanges (LPX). Glob-FIRM 
links statistical relationships based on the historical record for fire season length with 
process-based algorithms for estimating fuel conditions on moisture to determine area 
burned and fire effects such as fire spread. It does not account for human-altered fire 
regimes. SPITFIRE is processed based and simulates fire occurrence (distinguishing 
between human and naturally ignited fires), spread, and the amount of fuel consumed 
with intermediate complexity to represent the consequences for mortality and 
regeneration of plant functional types. LPX is very similar to SPITFIRE except that it 
only accounts for: lightning ignited fire regimes, geographic patterns of seasonality 
with only one parameter, variability of drying in different components of the fuel, and 
decomposition of litter, which improves seasonal fire timing.

Landscape Fire Succession (Keane et al. (2004) has a more exhaustive review)Landscape Fire Succession (Keane et al. (2004) has a more exhaustive review)Landscape Fire Succession (Keane et al. (2004) has a more exhaustive review)Landscape Fire Succession (Keane et al. (2004) has a more exhaustive review)

LFSM FireBGCv2 Keane et al. 2011

FireBGCv2 is a complex, mechanistic, individual-tree, spatially explicit, gap model 
that operates across and within spatial and temporal scales. The model incorporates 
empirically derived deterministic functions that represent well understood ecological 
processes, such as autotrophic respiration, and stochastic functions for highly variable, 
less studied, and difficult to quantify processes, such as fire ignition, tree mortality, and 
snag fall. FireBGCv2 simulates fire behavior, fuel consumption, smoke, and carbon 
and nitrogen pools across the landscape.

LFSM EMBYR
Gardner et al. 
1996, Hargrove 
et al. 2000

EMBYR is an event-driven, grid-based model that uses probabilities to simulate 
wildfires and landscape pattern stochastically in heterogeneous areas. It simulates fire 
ignition, spread, and a qualitative index for fire severity calculated as a linear function 
of fuel type, fuel moisture, wind speed, and spread rate for a given cell.
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Type Model URL or citation Description

LFSM

LANDscape 
SUccession 
Model 
(LANDSUM)

Keane et al. 2002

LANDSUM is a spatially explicit, rather simple, vegetation dynamics model that 
simulates succession as a deterministic process and disturbance, like fire, as a 
stochastic process. This model assumes that all successional pathways will eventually 
converge to a stable or climax plant community (i.e. potential vegetation type). Fire is 
represented by three phases in the model: initiation, spread and effects, all of which are 
stochastically simulated.

LFSM LANDIS
Mladenoff and 
He 1999, 
Mladenoff 2004

LANDIS is a spatially explicit model for studying species-level forest succession with 
changes in large (hundreds to thousands of hectares), heterogeneous forest landscape 
pattern from windthrow, fire, and management such as harvesting. It is designed to 
operate stochastically at a range of spatial resolutions over an extended period of time.

LFSM LandClim Schumacher et al. 
2006

LandClim is a model modified from LANDIS as a landscape-level model that 
simulates climate-fire-vegetation dynamics. Modifications include quantitative 
descriptions of forest structure, explicit incorporation of competition, climatic, and 
edaphic influences on population dynamics, and inclusion of fire regime as an 
emergent ecosystem property based on climate and fuel load. LandClim simulates 
vegetational succession cell-by-cell, while representing fire, windthrow, harvesting, 
and dispersal in a landscape model. 

LFSM LANDSIM Roberts and Betz 
1999

LANDSIM uses autecological characteristics of specific species to predict species' 
behavior under recurrent disturbance, like fire, by aggregating spatially explicit sites, 
each representing unique locations on the landscape. LANDSIM distinguishes between 
physical indicators (e.g. disturbance intensity and severity) and biological indicators  
(e.g. survival), both of which are used in concurrence with the species-assigned fire 
tolerance to determine species recovery after disturbance. LANDSIM has been applied 
at a variety of scales from stand to landscape.
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Type Model URL or citation Description

FuelsFuelsFuelsFuels

FCS Fuel Loading 
Models (FLM)

Lutes et al. 2009

FLM is a fuel classification of fuel loadings (e.g. duff, litter, fine woody debris, and 
logs) that produce significantly different emissions and maximum fuel surface 
temperature. FLM used classification tree analysis to estimate critical fuel loadings 
associated with ten different fire-effects groups, defined by classifying soil temperature 
and emissions from the First Order Fire Effects Model (FOFEM). (SEE TEXT)

FCS

Landscape 
Fire and 
Resource 
Management 
Planning Tools 
Prototype 
Project 
(LANDFIRE)

Rollins 2009

LANDFIRE provides consistent and comprehensive geospatial maps of vegetation, 
wildland fuel, fire regimes and ecological departure from historical conditions. 
LANDFIRE was developed for landscape-level fire management operations. It 
incorporates a variety of geospatial technologies including biophysical gradient 
analysis, remote sensing, vegetation modeling, ecological simulation, and landscape 
disturbance and successional modeling (using LANDSUM). 

FCS

Fuel 
Characteristic 
Classification 
System 
(FCCS)

Ottmar et al. 
2007

FCCS catalogues fuelbeds and classifies them based on their capacity to support fire 
and consume fuels at a variety of spatial scales for each existing fuelbed stratum 
including canopy, shrubs, non-woody, woody, litter-lichen-moss, and duff. The system 
then classifies each fuel bed based on fire potentials, which provides and index for the 
capacity of the fuelbed to support fire behavior. (SEE TEXT)

Fire Effects, fire behavior, fire dangerFire Effects, fire behavior, fire dangerFire Effects, fire behavior, fire dangerFire Effects, fire behavior, fire danger

FE

First-order 
Fire Effects 
Model 
(FOFEM)

Reinhardt et al. 
1997

FOFEM is a national model for first-order fire effects that concern the direct and 
immediate consequences (e.g. tree mortality, fuel consumption, mineral soil exposure, 
and smoke) of fire. The model is broken into four regional models that are further 
divided into forest cover types.
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Type Model URL or citation Description

FD

National Fire 
Danger Rating 
System 
(NFDRS)

Cohen and 
Deeming 1985

NFDRS provides empirically derived indices for measuring wildland fire potential 
using local weather and fuel classifications as defined by fuel models within the 
system. 

FD

Canadian 
Forest Fire 
Danger Rating 
System 
(CFFDRS)

Stocks et al. 
1989, Lawson 
and Armitage 
2008

CFFDRS, an empirically developed fire danger classification system, has two major 
components: (1) Fire Weather Index (FWI), which provides numerical indices of 
relative fire potential based solely on weather observations, and (2) Fire Behavior 
Prediction (FBP), which accounts for variability in fire behavior among fuel types. 

FB FIRETEC
Linn 1997, Linn 
et al. 2002

FIRETEC is a physics-based wildfire model that uses a transport approach to represent 
average behavior of gases and fuels in regions with nonhomogeneous vegetation and 
terrain. The model is divided into parts that account for microscopic details with 
macroscopic resolution of fire behavior by simulating an evolving set of coupled 
physical processes.

FB BehavePlus Andrews 1986, 
Andrews 2009

BehavePlus, an extension of the BEHAVE fire behavior prediction model, has as 
primary outputs surface fire spread and intensity, safety zone size, point source of fire, 
fire containment, spotting distance, crown scorch height, tree mortality, and probability 
of ignition. BehavePlus incorporates fire modeling from the original BEHAVE but also 
includes new fire models.

FB
FARSITE fire 
area simulator

Finney 1998 -- 
www.fire.org 

FARSITE uses many of the same fire models as BEHAVE, but it is more designed to 
model fire growth across variable fuel and terrain under changing weather, i.e. when 
more detailed spatial and temporal information is required for a simulated fire.

FE CONSUME
Prichard et al. 
2007

CONSUME predicts the amount of fuel consumption, emissions, and heat release from 
burning based on weather data, the amount of fuel, and fuel moisture. The model is 
useful for determining when and where to prescribe a burn or plan for a wildland fire. 
Consume can be used for most forests, shrub lands, and grasslands in North America.
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Type Model URL or citation Description

FB

Wildland 
urban interface 
Fire Dynamics 
Simulator 
(WFDS)

Mell et al. 2007

WFDS is a physics-based, two- or three-dimensional model with separate but coupled 
models for thermal degradation of soil and gas-phase combustion. It operates best over 
hundreds of meters because of the heavy computational resources required. The model 
simulates fire spread through trees (crown fuels) and shrubs (surface or crown fuels, 
depending on the height of the shrub) using computational fluid dynamics.

SmokeSmokeSmokeSmoke

SE

Sparse Matrix 
Operator 
Kernel 
Emissions 
(SMOKE)

http:www.smoke-
model.org/
index.cfm

SMOKE is an emissions processing system that creates gridded and speciated, hourly 
emissions for input into air quality models using a sparse matrix approach, which 
allows rapid and flexible processing of inventoried sectoral emissions. SMOKE can 
process emissions from area, biogenic, mobile, and point sources, using global, 
regional and local inventories. It has been linked to the BlueSky smoke emissions 
model, to process wildfire emissions inputs to the CMAQ model (see below).

ST

Comprehensive 
Air quality 
Model with 
eXtensions 
(CAMx)

ENVIRON 2011

CAMx is a photochemical dispersion model that simulates the emission, dispersion, 
chemical reaction, and deposition of particulate air pollution in the troposphere over a 
range of scales from sub-urban to continental on a system of nested, three-dimensional 
grids. A major benefit of CAMx is that it can be configured to match the horizontal and 
vertical grid structures of any meteorological model used to provide input.

ST VSMOKE Lavdas 1996

VSMOKE is a Gaussian-plume smoke-dispersion model that estimates smoke impacts 
from prescribed burning (but can also be applied to agricultural fires or wildfires) on 
air quality and visibility. VSMOKE is designed for use by atmospheric dispersion 
modeling specialists.
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Type Model URL or citation Description

ST 

Simple 
Approach 
Smoke 
Estimation 
Model 
(SASEM)

Riebau et al. 
1988

SASEM is a Gaussian-plume smoke-dispersion model that has minimal data and 
computational requirements and is easily applied by fire-management field personnel. 
The model estimates plume rise, emissions concentration, and a distance range of 
violated air-quality standards using fireline intensity, wind speed, atmospheric stability, 
average fuel loading, and fuel type.

ST CALPUFF Scire et al. 2000

CALPUFF is a general non-steady state, air-quality modeling system with three main 
components to (a) simulate meteorology within a user-defined modeling domain 
(CALMET), (b) calculate pollutant concentrations due to puffs of emissions dispersed 
from user-defined emission sources and chemically transformed during transport to 
user-specified receptor sites within the domain (CALPUFF), and (c) post-process the 
results into visibility impairment estimates at those sites (CALPOST).

ST

HYbrid Single 
Particle 
Lagrangian 
Integrated 
Trajectory 
(HYSPLIT)

http://
ready.arl.noaa.go
v/HYSPLIT.php

HYSPLIT is a simple air parcel trajectory model (i.e. it computes the trajectory of a 
single pollutant particle) used to simulate complex dispersion and deposition of air 
pollutants. HYSPLIT assumes either puff or particle dispersion on a three-dimensional 
grid. 

ST FLEXPART Stohl et al. 1998

FLEXPART is a Lagrangian particle dispersion model that simulates long-range 
transport, diffusion, deposition, gravitational settling, and radioactive decay of tracers 
from point, line, area or volume sources. The model performs best under undisturbed 
meteorology (i.e. in the absence of fronts).

ST DaySmoke Liu et al. 2010
DaySmoke is a particle dispersion model that consists of four sub-models that 
simulate: (1) plume rise, (2) particle trajectory, (3) large eddy parameterization, and (4) 
hourly emissions estimates.
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Type Model URL or citation Description

ST 

Community 
Multi-scale Air 
Quality 
(CMAQ)

Foley et al. 2009, 
Wong et al. 2012 
-- http://
www.cmaq-
model.org/

CMAQ is a multi-scale model that simulates various chemical and physical processes 
important for determining the concentration, composition, transformations and 
distribution of gas- and particulate-phase pollutants and their precursors in the 
atmosphere. CMAQ can be run with meteorological inputs generated offline, or in 
online mode as WRF-CMAQ through a two-way coupling to the mesoscale 
meteorological fields of the WRF model. This coupled system captures radiative 
feedbacks of aerosols and clouds to the radiation budget and photolysis rates. (SEE 
TEXT)

RCM/
ST

WRF/Chem Grell et al. 2005, 
Grell et al. 2011

WRF/Chem is a coupled meteorology--chemistry model. WRF/Chem couples physical 
and chemical processes (e.g. transport, deposition, emission, chemical transformation, 
aerosol interactions and their feedbacks to photolysis and the radiation budget)  to 
simulate dynamically the chemical evolution of atmospheric trace gases and particulate 
matter and their interactions with meteorological fields.

RCM/
ST MM5/Chem Grell et al. 2000

Similar to WRF/Chem (above), MM5/Chem couples physical and chemical processes 
to simulate aerosol interactions with atmospheric dynamics simulated by MM5. Both 
WRF/Chem and MM5/Chem use the same mechanisms to simulate gas-phase and 
particulate chemistry and microphysics. 

Physics 
plume 
model

Active Tracer 
High-
Resolution 
Atmospheric 
(ATHAM)

Herzog et al. 
1998, Oberhuber 
et al. 1998, 
Trentmann et al. 
2002

ATHAM is a non-hydrostatic, full-physics, three-dimensional, plume model originally 
designed for volcanic emissions, but has since be adapted and used for wildfire 
emission estimates for turbulence, transport, cloud microphysics, gas scavenging, and 
radiation. ATHAM uses the Cartesian grid with an implicit time-stepping scheme.
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Modeling FrameworksModeling FrameworksModeling FrameworksModeling Frameworks

Bluesky

Larkin et al. 2009 
-- http://
www.blueskyfra
mework.org/

Bluesky is a smoke emissions modeling framework that links together state-of-the-art 
models of meteorology, fuels, consumption, emissions, and air quality. Because the 
framework offers multiple choices of model in each modeling step, it allows for direct 
comparison between similar components. (SEE TEXT)

Wildland Fire 
Emissions 
Information 
System 
(WFEIS)

McKenzie et al. 
2012 -- http://
wfeis.mtri.org/ 

WFEIS is a publicly available tool for estimating wildland fire emissions. WFEIS 
overlays recent and past fire perimeters on FCCS fuel maps at one-kilometer spatial 
resolution to calculate fuel consumption and daily emissions using CONSUME. (SEE 
TEXT)

Model ComparisonsModel ComparisonsModel ComparisonsModel Comparisons

Coupled 
Model Inter-
comparison 
Project Phase 
5 (CMIP5)

Taylor et al. 2012 
-- http://cmip-
pcmdi.llnl.gov/
cmip5/

CMIP5 is a coordinated climate model experiment designed to highlight major gaps in 
understanding of past and future climate changes by providing a multi-model 
comparison that assesses the mechanisms responsible for model differences, 
examining climate predictability, and understanding why similarly forced models 
produce a range of responses. (SEE TEXT)

Smoke and 
Emissions 
Model Inter-
comparison 
Project 
(SEMIP)

http://
www.airfire.org/
projects/semip/

SEMIP is a project to compare modeling approaches from fire activity through 
emissions and dispersion. Several models and datasets are available for each modeling 
step: fire information, fuel loading, total consumption, and time-profiles of 
consumption, emissions, plume rise, and dispersion. (SEE TEXT)
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Air Quality 
Model 
Evaluation 
International 
Initiative 
(AQMEII)

Rao et al. 2010

AQMEII is a permanent forum that constantly monitors the advancement of regional-
scale air quality models and model evaluation strategies in North America and the 
European Union. The primary goals are to exchange expert knowledge, identify 
knowledge gaps, evaluate uncertainties, initiate coordinated research projects, and 
develop a common strategy for model development, evaluation, and research priorities.

NARCCAP
Mearns et al. 
2012

NARCCAP is a systematic examination of separate and combined uncertainties in 
future climate projections of RCMs across the North American continent using 
different atmosphere-ocean general circulation models to provide boundary conditions. 
(SEE TEXT)
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