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Using Terrestrial LiDAR to Model Shrubs for Fire Behavior Simulation 

 

Chairperson: Dr. Carl Seielstad 

 

The purpose of this study was to spatially represent shrub fuel matrices accurately and at 

fine resolution for use in physics-based fire behavior simulations. Terrestrial Light 

Detection and Ranging (T-LiDAR) was used to measure shrub fuel beds in laboratory 

settings before and after fire burned through them. The primary goals of this research 

were to produce highly descriptive data-sets that correctly identified the locations of 

biomass within 3-D space without destructive sampling, and to derive attributes for fuel 

elements within the shrubs.  This research was completed in two phases. First, a series of 

experiments was conducted to test the capacity of a commercially available LiDAR 

instrument for making detailed measurements of diffuse shrubs. Second, model shrub 

fuel beds were produced and evaluated for accuracy.  The research tested the T-LiDAR’s 

ability to characterize physical traits of shrubs within volumes, identified issues 

associated with misrepresenting the true geometry of scanned samples, developed 

sampling protocols for scanning shrubs prior to and following combustion 

experimentation, and built descriptive models of actual shrubs. The findings of this study 

show that T-LiDAR can be used effectively to estimate volume, structure, and biomass 

for individual shrubs.  T-LiDAR derived models were shown to accurately predict mass 

of scanned shrubs (Adj. R2: 0.598, P-Value: 0.0012). The models produced show vast 

improvements from past estimations of physiological characteristics in fuels and fire 

behavior. 
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I. INTRODUCTION 

A. MOTIVATION 
 

The motivation for this research stems from the need to improve characterization of 

fuel bed models for physics-based fire behavior simulations and to develop shrub fire 

models that consider spatial heterogeneity of fuel elements. Precise 3-D models of fuels 

form the basis for accurate, replicable inputs to a variety of models, yet the state of science 

for fuel models remains semi-statistical distributions of fuel elements within simple 

volumes such as cubes and spheres. Terrestrial Light Detection and Ranging (T-LiDAR) 

provides a new source of data for spatially representing fuel structures more accurately, yet 

application of the technology to this problem is limited. Confounding the issue of limited 

application, the absence of discrete fuel elements presents additional complications for fire 

and fuel modelers. Shrub species such as chamise and sagebrush present a highly diffuse 

fuel bed structure that has proven difficult to characterize for fire behavior simulations. 

This thesis is part of a larger project involving fuels researchers and fire behavior 

modelers. The intent of the larger project is to produce and validate a leaf-scale fire 

behavior model in chamise and sagebrush. That project is five-fold: 1) to make many leaf-

scale measurements of fire behavior; 2) to map ‘leaves’ (fuel elements) in 3-D using T-

LiDAR; 3) to simulate fire behavior in T-LiDAR-derived shrubs; 4) to combust T-LiDAR 

imaged fuel beds in a wind-tunnel under controlled conditions; and 5) to compare and 

refine fire behavior simulations with actual measurements of fire from the laboratory 

combustion experiments. The research in this thesis is confined to elements 2 and 4, above. 

B. BACKGROUND 

1. FIRE BEHAVIOR 
 
Two shrub species have been identified as the primary subjects of study for this 

research. Chamise (Adenostoma fasciculatum) and sagebrush (Artemisia tridentata) are both 

prevalent species in areas where wildfires commonly occur. Current fire behavior models 

infer that during critical fire weather conditions, both shrub types can produce flame 
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lengths of greater than 20 feet, thereby placing fire activity above the threshold of standard 

suppression efforts (NWCG, 2006; Missoula Fire Sciences Laboratory, 2011). The 

widespread occurrence of shrub fuels in populated areas such as southern California, where 

chamise is common, and the Great Basin, where sagebrush is dominant, make important to 

the fire modeling community. 

Fire behavior models have been developed for ease of use and rapid application and 

are used operationally across the western US (Agee, 1993). A semi-empirical model 

providing the base equation for surface fire spread was originally developed to evaluate fire 

behavior quantitatively in the field, based on measurements taken from the field 

(Rothermel, 1972). Subsequently, suites of models based on the equations produced by 

Rothermel have been applied to a variety of problems (Finney, 2004; Heinsch & Andrews, 

2010). While the intended use for these models was field application of fire prediction 

during fire events, they have proven useful in research applications as well (Hoffman, et al., 

2012).  

In addition to semi-empirical fire behavior models, several newer models have also 

been developed without empiricism. Researchers have applied the fundamental laws of 

heat transfer to create fire progression models (Albini, 1985; Weber, 1991; Mell, et al., 

2007). These physics-based models incorporate physical and heat transfer properties in 

lieu of experimentally derived rates of spread. In fire environments that include interacting 

fire lines and combustion above the surface fire (e.g., crown fire), it is important to 

understand heat transfer and how it affects or is influenced by wind flow not accounted for 

in steady-state models.  

 Physics-based computer modeling has begun to prove useful in studying ignition of 

vegetation or structures in critically important environments, such as the wildland-urban 

interface and bark beetle attacked timber stands (Mell, et al., 2009; Hoffman, et al., 2012). 

The characteristics of these models that make them different from previous models is their 

spatial complexity on a landscape and their ability to predict combustion dynamics in three 

dimensions. In other models, the spatial heterogeneity of fuels within a single plant can 

strongly influences fire behavior in computational fluid dynamics models (Parsons, et al., 

2011), and lack of knowledge about fuels variability is now limiting advancement of the 

models. Further, the inherent limitation of a fully physical model is the vast amount of 

computational time and power needed to model a fire environment, making it useful in 

research or pre-planning, but rarely beneficial for timely, on-the-ground model projections 
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(Mell, 2013). Consequently, fire modelers are attempting to validate the models on smaller 

domains (sub-grids) such as individual shrubs with the goal of developing computational 

short-cuts intended to speed up modeling on larger grids.  

Considerable time and effort has been spent identifying combustion characteristics 

of individual fuel elements that make up a plant structure (Fletcher, et al., 2007; Pickett, et 

al., 2009). By collecting empirical measurements from individual fuel elements, researchers 

have been able to develop hybrid empirical and physics based models that combine and 

transfer flaming combustion from one fuel element to another at leaf scale (Pickett, et al., 

2010). To date, these modelers have described the spatial characteristics of fuel elements by 

randomly distributing leaves within volumetric arrays (voxels) roughly the size of an 

individual plant (Andersen, et al., In Progress). This method of describing an entire plant 

from statistical distributions of leaves requires each fuel element to have combustion 

characteristics derived from an empirical collection of data from individual fuel element 

combustion experiments (Andersen, et al., In Progress). While current multi-leaf 

combustion models are beneficial for understanding combustion interaction and heat 

transfer, the generation of whole shrubs in a model environment currently lacks a basis in 

the actual geometry of real shrubs.   

 

2. FUELS MEASUREMENTS 
Whether physical or empirical, the ability to accurately model fire behavior has been 

dependent upon fuels inputs that are related to fire characteristics. The location, amount, 

and arrangement of fuels have been recognized as important factors in modeling on the 

scale of an individual plant and subsequently on a landscape. Efforts have been made to 

translate a three-dimensional description of fuel particles into one-dimensional indicators 

of fire behavior (Anderson, 1982; Ottmar, et al., 2007). Descriptions of fuel characteristics in 

operational fire behavior models have been limited to estimations such as: tons per acre, 

surface area to volume ratio, bulk density, height, depth, and heat content (Rothermel, 

1983). Fuel models designed for use in Rothermel’s mathematical spread equation are 

described as steady-state, homogenous fuel beds with quantitative values specific to each 

fuel model (Albini, 1976). The fuel models designed for this use have been expanded to 

incorporate more variability from site to site; however, they still operate with the same 

assumption of uniform distribution of fuels within a particular fuel bed (Scott & Burgan, 

2005; Ottmar, et al., 2007). 
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 Earlier work describes the physical characteristics of chamise and sagebrush as a 

fuel in wildland fire, and characteristic inputs for fire behavior modeling are based on 

destructively sampled and measured vegetation (Frandsen, 1983). Fire behavior in chamise 

was found to be highly dependent upon the loose arrangement of material and a 

comparatively high fuel surface area (Countryman & Philpot, 1970). The experimentally 

derived measurements from both of these studies were tiered towards the creation of 

inputs for fire behavior modeling using Rothermel’s surface fire spread equation. 

 Describing the location of biomass and branching structure within individual shrubs 

has not been widely discussed in the literature, particularly in chamise. The amount of 

biomass within a sagebrush plant has been shown to be related to the external dimensions 

of the shrub, which is easily measureable (Murray & Jacobson, 1982), and allometric 

relationships have been developed to produce reliable estimates of biomass on a landscape 

(Vora, 1988; Cleary, et al., 2008). However, little work has been conducted to understand 

the location of biomass, or burnable fuel elements within an individual shrub structure. It is 

the loose arrangement and high surface area to volume ratio that makes both chamise and 

sagebrush shrubs particularly susceptible to rapid release of energy during combustion 

(Countryman & Philpot, 1970; Frandsen, 1983).  

Understanding the structural changes that occur in chamise plants is of particular 

importance as the above-ground biomass is highly influential on the characteristic inputs 

for fire behavior modeling (Rundel & Parsons, 1979). In addition to year-to-year changes in 

structure, chamise plants exhibit structural changes and leaf turnover rates seasonally (Jow, 

et al., 1980). On a landscape scale, there has been limited research describing the factors 

that contribute to the distribution chamise and chaparral in a Mediterranean environment 

(Odion & Davis, 2000). Like sagebrush, general biomass estimations can be made for 

chamise at plot-to-landscape scale using height and width measurements, but no work has 

been published examining the location and distribution of biomass within the shrub 

structure. 

The branching structure and distribution of material in sagebrush and chamise is 

highly variable and difficult to measure or replicate. Recreating the branching structure for 

trees developed in a modeled environment has been approached through the use of fractal 

modeling (van Noordwijk & Mulia, 2002; Boudon, et al., 2006). Fractals have the potential to 

create a highly diffuse, highly variable structure for the purposes of fire behavior modeling, 

but again, have not been applied to shrub species for that specific purpose.  
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3. LIDAR  
In the last three decades, light detection and ranging (LiDAR) has been increasingly 

applied to wide scale sampling of vegetation distribution in the natural environment (Akay, 

et al., 2009). Airborne LiDAR data have been used in a variety of environmental applications 

including, but not limited to, measuring forest height, structure and biomass, estimating fuel 

characteristics, and providing wildlife habitat assessments (Means, et al., 1999; Andersen, et 

al., 2005; Martinuzzi, et al., 2009). LiDAR is an active remote sensing technique in which 

ranges from an instrument to a target are determined precisely by measuring the round-

trip propagation time of laser pulses. Similar to radar, LIDAR uses recorded energy from 

many pulses to determine range to and shape of objects. The spatial fidelity of a laser, 

coupled with time-of-flight referencing allows LiDAR instruments to produce highly 

descriptive maps of targets in three dimensions. The resulting data from a LiDAR scan are 

typically described in a Cartesian coordinate system (x, y, and z) that allows the information 

to be applied in a digital environment where it can be manipulated and examined in a 

variety of computer modeling systems.   In addition to the three-dimensional description, 

many LiDAR instruments also produce a reflectance value called intensity. The intensity 

measured by a LiDAR instrument is a scaled measurement of the amount of energy returned 

to the instrument detector from an emitted and reflected laser pulse (Optech Inc. , 2009). 

The ability to scan and describe a structure in 3-D makes LiDAR particularly 

intriguing for the purposes of plant structure modeling. This is because creating accurate 

descriptions of plant elements in 3-D space using manual measurements has proven to be 

impractical and difficult to replicate. Terrestrial laser scanners (TLS) that employ LiDAR 

technology have shown an ability to provide more precise descriptions of plant structures 

in a 3-D space (Loudermilk, et al., 2009; Cȏté, et al., 2009; van Leeuwen & Niewenhuis, 

2010). Applications of terrestrial LiDAR (T-LiDAR) in the field of forestry have proven to be 

diverse, robust, and useful (Dassot, et al., 2011).  

T-LiDAR is a useful alternative to time-consuming manual sampling methods 

(Dassot, et al., 2011). Within a timber stand, T-LiDAR has been used to provide several 

mensuration metrics such as: stem location, tree height, stem diameter, stem density, and 

timber volume (Hopkinson, et al., 2004). Even in laboratory settings, T-LiDAR has shown 

potential to derive robust structural information associated with canopy characteristics and 

allows for the derivation of attributes such as leaf area index and clumping indices, making 

radiative transfer modeling possible (Moorthy, et al., 2008). In addition to mensuration and 
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canopy metrics, the data sets produced from scanning forest canopies have been used to 

model realistic architectures of individual trees and to describe the location and 

distribution of wood and foliage (Cȏté, et al., 2009). State-of-the-art T-LiDAR scanners are 

increasingly being applied in a variety of ways to measure characteristics of forests and 

rangelands in lieu of using more traditional estimation methods. The amount of detail that a 

T-LiDAR point cloud can provide is not only highly descriptive, but it also allows for non-

destructive, repeatable sampling. 

While the measurements returned from a T-LiDAR unit can be highly precise, they 

are subject to many problems due to the nature of the instrument, as well as the set up and 

direction of the scan (Van der Zande, et al., 2006). One of the most obvious issues in using 

laser scanning to describe any natural object is that in three dimensions, the scanner often 

only ‘sees’ the first object that the laser hits and returns. Because of this, geometry behind 

the first object encountered is not generally captured by the TLS. This problem has been 

addressed to some extent by scanning objects from multiple perspectives and through the 

application of a probabilistic estimation of shadowed material (Watt & Donoghue, 2005; 

Van der Zande, et al., 2006). While scanning an object from multiple angles can increase the 

time taken to sample, it is the most accurate method to describe the complete geometry of 

an object. 

The application of LiDAR in sampling natural fuel beds returns a highly descriptive 

data set that can describe the location of plant elements relative to each other (Hiers, et al., 

2009).  Unfortunately, the low stature and low density of shrubs within an ecosystem can 

cause inaccuracies in describing the fuel bed from an aerial platform (Streutker & Glenn, 

2006). However, T-LiDAR can be used to map leaf area distributions in three-dimensions 

across a forest ecosystem, using the returned information to create a highly descriptive 

representation of the location and type of biomass material in a tree canopy (Béland, et al., 

2014). The ability to scan at sub-cm scales lends T-LiDAR to the application of providing a 

fine-scale, accurate description of the location of plant material (Seielstad, et al., 2010). T-

LiDAR is a promising tool for describing diffuse-form shrub geometry in three dimensions. 

C. PROJECT GOAL AND OBJECTIVES 
This project is intended to advance fuel characterization and modeling for two 

diffuse form shrubs: chamise and sagebrush. These species are primary carriers of fire in 

fuel types that are actively managed by public agencies in the United States. Both species 

can burn at very high intensities and their diffuse form contributes to sporadic fire behavior 
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that can be difficult to predict. Improving characterization of these fuel types will increase 

understanding of both fuel structure and fire spread. By using T-LiDAR to image diffuse 

shrubs, the spatial distribution of fuel elements can be accurately mapped in three 

dimensions for input into sub-grid fire models. By assessing the distribution of fuel 

elements in a number of plant structures, a realistic description of the geometry and 

interrelation of fuel elements within a plant could be produced for more accurate modeling. 

Our intent is to replace uniform or random distributions of burnable elements in a fuel bed 

description with an accurate, depictive model without the need to destroy the sample in the 

process. We accomplished this goal through two different phases of research that helped us 

to better understand how the TLS instrument operates in short ranges and how to best use 

the data produced when scanning a shrub fuel bed. 

The first phase of research; “Developing a Methodology for the Application of T-

LiDAR for Shrub Fuel Mapping and Modeling”, was completed to identify limitations of the 

TLS instrument in short range environments and to correct for those limitations in a 

methodology. Four objectives made up the first phase of research: 

 Experiment 1: Assessing the occurrence of positional error in TLS point 

clouds and describe its causes 

 Experiment 2: Quantifying the range effect on laser intensity at short scan 

distances 

 Experiment 3: Relating discrete samples (fuel elements) to laser response 

 Experiment 4: Testing the effects of rotational geometry on laser intensity 

and density 

Phase II, Modeling Shrubs Using T-LiDAR, consisted of four objectives associated 

with the data produced from scanning shrub fuel beds: 

 Build a shrub model from TLS 

 Evaluate constructed model for descriptive capabilities 

 Evaluate model capability for tracking change in fuel bed  

 Attribute fuel elements with characteristic bulk densities 

 

D. THESIS STRUCTURE 
The research done for this project was completed in two phases and as a result, this 

thesis is structured to represent the two separate portions of study. Phase I is presented as 
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four independent experiments that each incorporate specific methodologies, results, and 

discussion. Each experiment was done to analyze the error structure inherent in using the 

ILRIS 3-D instrument in a laboratory setting and the phase concludes with a discussion of 

the findings and how they influence the methodology of Phase II. Phase II is presented in a 

more linear, traditional fashion that is founded in the overarching goal of the research. The 

four objectives in this phase represent independent analyses that inform the discussion of 

methodology and findings of applying T-LiDAR in shrub fuel beds. The final portions of this 

thesis are sections of discussion and concluding remarks that analyze what was learned, 

implications for TLS use in broader context, and future research and application in the field 

of fuels modeling. The attached appendices include a work flow for model construction, 

descriptive statistic spreadsheets for each analysis, and associated statistical code with 

output.  
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I. PHASE I: DEVELOPING A METHODOLOGY FOR THE 

APPLICATION OF T-LIDAR FOR SHRUB FUEL MAPPING AND 

MODELING 
 

The four experiments that follow attempt to improve understanding of the data 

collected by the ILRIS 3-D instrument when scanning diffuse targets in areas where the 

range to target is limited due to available space in laboratory environments. The fine-grain 

nature of the sampling process necessitated a series of experiments to develop corrective 

actions and produce reliable methodologies for the collection of TLS data. Each individual 

experiment shows a strength, limitation, or need for correction regarding the data collected 

for diffuse-form shrubs at fine grain. Collectively, they inform the methodology and analysis 

of whole-shrub models which are developed and described in Phase II. 

Experiment 1 was completed to determine the accuracy of point cloud locations 

when scanning diffuse shrub structures. This research involved scanning diffuse shrub 

samples containing material substantially smaller than the instrument’s laser spot size. 

When scanning materials smaller than the spot size, discrepancies in data location can 

occur. Experiment 1 attempts to discern the causes of these discrepancies and to identify 

solutions to ensure accurate representation when scanning chamise and sagebrush plants. 

Experiment 2 was conducted to quantify the relationship between T-LiDAR 

intensity data and the range. The relationship between range and intensity is well 

understood beyond 15 meters, but is not the same within 15 meters.  Experiment 2 was 

performed to determine how range affects intensity data and to develop a correction to be 

applied to point clouds created while scanning in confined spaces. 

Experiment 3 was used to determine how physical characteristics of chamise 

samples are interpreted by the instrument. This experiment was done for the purposes of 

attributing fuel elements with biophysical estimates. In order to assign descriptive values to 

shrub models information was gathered on how the TLS data depicts biophysical 

differences of chamise samples. The data from this experiment were used to create a 

statistical distribution of fuel densities associated with chamise branches. 

Experiment 4 was performed to identify sample orientation bias. Shrub samples 

were scanned at multiple angles to identify discrepancies associated with sample 

orientation. 
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Together, these four experiments were completed to arrive at a reliable and 

repeatable methodology for scanning diffuse shrub structures in controlled environments 

prior to and after burning in a wind tunnel. Each experiment shared a common set of 

methods in regards to sample collection, the instrument and user specifications for each 

scan, and data parsing and processing for analysis. There were also experimental methods 

specific to each experiment. The common methods are described below and the 

experimentally specific methods are discussed within each experiment. 

Common Methodologies 

Samples of chamise were collected near the Pacific Southwest Research Station in 

Riverside, California and shipped to Missoula, Montana for study. Samples collected were 

typical of the plants with small leaves, 4-10 mm long by 1 mm wide, clustered along thin, 

woody branches (FIGURE I-A).  Chamise plants are evergreen shrubs that grow to about 4 m in 

height and are found in Mediterranean climates in Southern California. The collection site 

was located on the San Bernardino National Forest at 33.84° N by 116.88° W, elevation 

ranging from 3600-3900 feet ASL. Neighboring species found on the collection site were 

typical of a chaparral fuel type, with manzanita (Arctostaphylos manzanita), scrub oak 

(Quercus berberidifolia) and wedgeleaf ceanothus (Ceanothus cuneatus) making up the over 

story with California poppy (Eschscholzia californica) and annual grasses the primary 

components of the ground species. Samples were collected throughout the year and subject 

to a typical Mediterranean climate pattern of cool, wet winters with hot and dry summers. 

Upon arrival in Missoula, Montana samples were placed in water and kept at room 

temperature until sampling occurred. Approximately two weeks after harvest, samples 

became difficult to use due to increasing fragility and brittleness. Each experiment occurred 

within one week of samples arriving in Missoula. 
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FIGURE I-A. CHAMISE SAMPLE USED IN EXPERIMENTATION. 

The instrument used was an Optech Intelligent Laser Ranging and Imaging System 

(ILRIS™) 36D-HD Terrestrial Laser Scanner (TLS). This scanner uses a class I laser (1535 nm 

wavelength) and has a range of 3 to 1500 m with 0.17-mrad divergence (17.6 mm spot 

spacing at 100 m). This instrument allows the user to specify the spot spacing and focus 

distance for each scan. For each scan throughout this research, spot spacing was held at 

1.0mm with a focus distance specified as the range from the instrument head to the target 

of the scan. Data collected from the scanner is saved on an external USB drive that is placed 

in the instrument. The data can also be saved on the hard drive of any PC being used to 

control the TLS. 

Raw data from the instrument is output in a binary format with notes and a .jpeg 

image of the scan region of interest attached. The binary files were parsed into different 

formats using Optech ILRIS Parser™ version 5.0.2.7. The data for this research were parsed 

into two different formats, both serving a unique purpose. The format used for visualization 

and rotation was a .pif file. Each .pif file output from the processing software describes a 

point cloud, with an intensity value relative to the data collected in the scan. The second 

format, used to a greater extent for analysis and manipulation, was a .xyz (ASCII text) file. 

These files describe each point within a point cloud in a Cartesian coordinate system 

(easting, northing, elevation; or, x, y, z). Attached to each point is an intensity value 

measured in 16-bit format. 
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A. E1. (EXPERIMENT 1): ASSESSING TLS POINT CLOUD ERROR AND 

CHARACTERIZING ITS CAUSES 
The laser scanner produces two effects that influence geometric characterization of 

materials. The first, termed ‘halo’ effect, occurs when the laser footprint partially intersects 

the edge of an object. The result is the filling in of gaps smaller than the diameter of the 

laser footprint and the creation of halos around objects (FIGURE I-B). Although the laser 

scanner correctly identifies the occurrence of matter within its footprints, it translates that 

occurrence to the center of each footprint and thus represents objects as slightly larger than 

they actually are. The halo phenomenon is very consistent, occurring in every scan. It can be 

mitigated by removing low intensity values from the data sets, but at the cost of also 

removing returns from small branches. 

 

FIGURE I-B. COMPARISON OF PICTURE TO TLS DATA RETURNS AND ASSOCIATED MEASUREMENTS. 

The second issue is ‘ghosting.’  When reflective material occurs at different depths 

within a footprint, the laser scanner can produce a range error in which target location is 

erroneously placed in the space between the reflective materials. In a sense, the instrument 

appears to occasionally ‘average’ the range and intensity of the two reflective surfaces. 

Given uncertainties regarding when and how ghosting occurs, an experiment was 

performed to quantify the relationship between the occurrence of ghosting and the 

proximity of diffuse targets to discrete backgrounds. 

 

a) E1. Methods 
An arrangement of chamise branches was mounted and held immobile on a stand. 

(Figure I-C). A common U.S. quarter dollar and a playing card were placed next to the 

chamise samples to provide easily recognizable discrete targets. White poster-board was 

used for a bright, discrete background behind the targets. The poster-board was mounted, 
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perpendicular to the scanning direction and moved backward step-wise from the target 

between each laser scan. The distance from target to background was increased from 0.3 m 

to 1 m by 0 .1 m increments and from 1 m to 5 m by 0.5m increments. The closest the 

background was to the target in any scan was 0.3 meters due to the chamise branches 

extending towards the background. A scan was taken each time the background was moved, 

in addition to a control scan with no background. The arrangement of target with the 

background at 0.3 m is pictured in Figure I-C.  

 

FIGURE I-C. ARRANGEMENT OF CHAMISE, U.S. QUARTER, AND ACE OF SPACES AS TARGET FOR SCAN. 

The range from laser head to the chamise/coin/card structure was 5 meters and 

held constant throughout the experiment to maintain constant geometry between the target 

and laser. Spot spacing for each scan was held constant at 1 millimeter and focus distance 

was 5 m, in accordance with the range to the target. 

Each scan was projected in the y and z plane, so as to view the data in profile. The 

control scan with no background was used to create a shapefile to represent the extent of 

the target’s geometry in the y, z plane. This shapefile was overlain on each scan along with a 

shapefile of the background poster-board, and manually clipped from the data set. The 

result was an array of points located between the target and the background (ghost points) 

for each scan (FIGURE I-D). Ghost point counts were recorded for each scan and a statistical 

analysis was conducted relating ghosting to distance between target and background (n=9). 

Statistical analysis performed on the count of ghost points was a logarithmic regression of 

ghost point counts. The numbers of ghost points were reported as log base 10 values and a 

linear regression applied using the R statistical package. The logistic regression was chosen 
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to illustrate a simple relationship between the independent variable, distance between 

background and target, to the dependent variable, number of ghost points in the point 

cloud. 

 

FIGURE I-D. PROFILE VIEW OF CHAMISE STRUCTURE WITH THE POSTERBOARD BACKGROUND 60 CM 

AWAY. RED OUTLINE INDICATES AREA IN WHICH GHOST POINTS OCCURRED. 

b) E1. Results 
Ghost points comprise a large proportion of total returns when a discrete 

background is positioned close to the target. Beyond a distance of 2.5 meters between the 

target and the background, the number of ghost points becomes negligible. A logarithmic 

regression applied to the number of ghost points in each scan was significantly related to 

the range of background to the target (F-statistic: 93.2 on 1 and 7 DF; p-value: <0.001) 

(FIGURE I-E). The model produced showed a decreasing number of ghost points with 

increasing range from target to background: 

                            . 

Where GPC is the Log of ghost point counts and BGR is the range in centimeters 

between the target and the background. The goodness of fit measurement showed strong 

correlation (Adj. R2: 0.92). 
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FIGURE I-E. GHOST POINTS AND RANGE FROM TARGET TO BACKGROUND. 

 

c) E1. Discussion 
 If there is a background near the target, points are trans-located behind the target 

producing inaccurate geometry that misrepresents the target of interest. As the distance to 

a background increases, the number of erroneous points decreases. Understanding this 

phenomenon is important for developing a methodology of scanning shrubs in confined 

areas. In order to accurately represent the geometry of a diffuse target, scans must be taken 

from perspectives that eliminate backgrounds within 2.5 meters of the target. This means 

that for scanning whole shrubs in Phase II, our methodology needs to ensure that there is 

no background coincident with the target within 2.5 meters. 

B. E2. (EXPERIMENT 2): QUANTIFYING THE RANGE EFFECT ON LASER 

INTENSITY AT SHORT SCAN DISTANCES 
At ranges beyond 15 meters, return intensity decays predictably. Range correction 

of intensity is achieved using 1/distance2 (Seielstad, et al., 2010). The relationship between 

range and intensity changes inside 15 m due to the inability of the receiver to collect full 

returns. In short, the geometry of the laser, target, and receiver result in incomplete 
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reflections at close range. Inside 15 m, intensity actually increases with distance although it 

is unknown whether it does so consistently. The intent of Experiment 2 was to derive a 

range correction for close-range targets because the shrub fuels would be scanned at 3-6 m 

range.  An experiment was designed and conducted to determine if changing the distance 

between the scan head and a diffuse shrub target produced a predictable change in 

intensity. 

a) E2. Methods 
In creating a full-shrub model (Phase II), fuel elements are represented by 2 cm 

voxels. The size of individual fuel elements was determined by fire modelers through 

extensive combustion experiments in BYU’s flat-flame burner facility. Consequently, for this 

experiment chamise samples were cut to 2 cm lengths across a range of foliar and branch 

wood combinations and stem diameters. Ten samples were harvested from a single branch 

in order to ensure no repetition of branch location and to represent a continuum from 

branch stem to terminus. The largest sample (12 mm diameter) came from the bottom of 

the shrub and the smallest sample (1 mm diameter with no needles) came from the top. 

Samples were suspended using monofilament 6-pound test nylon fishing line. Each sample 

was hung in a strand of fishing line using single or double wraps in order to prevent the 

detection of knots on the sample. Strands of line were weighted on the bottom using 5 g 

fishing sinker weights. Each strand was mounted 5 cm away from the next, on a meter ruler, 

to prevent any overlap of samples in the scan (FIGURE I-F). 

 
FIGURE I-F. SAMPLES 4-6 HELD IMMOBILE USING FISHING LINE. 

 

 The samples were scanned at the same height as the scan head. Progression of the 

scans started at 3 meters distance and ended at 7 m distance in increments of 0.5 m. The 

scan head was moved between each scan; the samples remained in constant position.   The 

focal distance of each scan corresponded to the distance to the samples, and the spot 
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spacing was 1.0 mm for all. This process was repeated on the reverse side of the samples, 

scanning once from the North and once from the South, giving two opposing reflection 

angles for the array of samples. Each sample was scanned from nine different ranges and 

two different angles to produce 180 observations. 

 Processing of the TLS point cloud from each scan was completed using ArcMap10. 

Each scan was projected in the x, z plane. In order to remove the returns associated with the 

fishing line, all points with intensity of less than 15 were removed from the data set. After 

the fishing line was removed, each sample was manually selected from the point cloud of 

each scan and statistics reported on a per-sample, per-scan basis. 

 A mixed effect, linear regression model was applied to the data for analysis. The 

mixed effect was applied to account for the difference in data returns associated with the 

variability of each sample and direction. The dependent variable was mean intensity of each 

point within the area of the sample and the independent variable was range from the 

instrument to the sample. Mixed effects variables were sample number and direction. The 

model was produced using the Linear mixed-effect models using Eigen and S4 (lme4) 

package in R statistical package. 

b) E2. Results 
 Statistical results for the mixed effect, linear regression showed that average 

intensity was correlated with range, when held independent of sample and direction (slope 

t-value: 11.9, p-value: <0.001; intercept t-value: 20.1, p-value: <0.001). The model produced 

in R was: 

                

Where I is mean intensity and r is range from instrument to sample in meters. This model 

was constructed with 100 observations within 20 groups. Standard errors for the value of 

slope were 0.651 and 5.856 for the intercept. The values for each sample are shown in 

figure I-G. 

c) E2. Discussion 
 The mixed effect, linear model took into account variation between samples and 

tested the relationship between range and intensity. The correlation between range and 

intensity is statistically significant (p-value: <0.001) (FIGURE I-G). The relationship between 

intensity and range was consistent for all sample types, shapes, and sizes. The majority of 

variability in the model came from the intercept, which is anticipated due to the nature of a 

mixed effects model. The intercept of the equation is a mean of all samples; however, the 
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variable of interest, slope, is what is interesting and useful. A mixed effect model combines 

all samples into a common mean, allowing for the creation of a single regression line 

representing the pattern of change along the independent variable. Using the mean slope 

for each sample, a linear correction can be applied to the average intensity for samples 

ranging from 3.5 and 5.5 meters.  

 Predictably, the smallest, most-diffuse samples exhibit the lowest intensities while 

the larger branches produce brighter reflections. The direction of correlation between 

range and intensity within 5.5 meters is consistent and different from the relationship 

between range and intensity beyond 15 meters.  Beyond 15 meters, average intensity 

decreases predictably with increasing range. However, the relationship predicted in this 

experiment shows increasing intensity with increasing range between 3.5 and 5.5 meters 

(Slope: 7.7). While it is counter to the long-range relationship, understanding how intensity 

behaves within a short range allows for more accurate interpretation of LiDAR scans taken 

in situations where space is limited and scan ranges greater than 15 meters are not feasible. 
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FIGURE I-G. SCATTERPLOT OF AVERAGE INTENSITY FOR EACH 2 CM SAMPLE BY RANGE. SYMBOLS INDICATE 

DIFFERENT SAMPLES AND WHICH DIRECTION THE SCAN WAS TAKEN FROM. 

When processing .xyz files for intensity, the 16-bit intensity data format of the 

instrument produces a non-linear scale of output. Intensity output is written across a range 

of 16-bits (range from 0-65,355), but is split across two gain settings. Dim targets are scaled 

across the first eight bits (0-255), and brighter targets are binned from 256-65,355. 

However, in the latter case, brightness values are binned at steps of 100 (e.g., 256, 300, 400, 

500, etc.) rather than steps of one. In order to account for this, intensity values were 

converted to 9-bit data using an algorithm written in Interactive Data Language (IDL). The 

result replaces a disjointed scale that ranges from 0-255 by one and from 256-65,355 by 

100 with a linear intensity scale that ranges from 0-512.
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C. E3. (EXPERIMENT 3): RELATING DISCRETE SAMPLES (FUEL ELEMENTS) TO 

LASER RESPONSE 
The goal of this experiment was to identify and test relationships between TLS 

measurements and biophysical data for discrete samples of chamise with the intent of 

producing models to predict fuel attributes from TLS data. The scale of analysis of was 8 

cm3 (2x2x2cm), as in previous experiments (Experiment 2). This scale allows for fine-scale 

description of fuel element locations, while projecting the data in voxel format allows for a 

continuous description of fuel elements in three dimensions. 

a) E3. Methods 
 Samples of chamise were clipped from the branches to span the observed range of 

variability. Samples were selected systematically from the bottom to the top of the branch, 

including larger branches (bottom), forks (middle), and terminal ends (top). Each sample 

was cut to a length of 2 cm so that TLS point clouds would be contained within 2 cm voxels 

after data collection. On each sample the following measurements were taken: main stem 

diameter, categorical location on branch (branch-wood, terminal, or fork), wet weight, and 

oven-dried weight. Samples were dried at a temperature of 75° C (167° F) for a period of 24 

hours. All drying and weighing was completed after scan information had been collected. 

 Scanning was done at a range of 4 meters with 1.0mm spot spacing and a focus 

distance equal to the range. Samples were held stationary using monofilament, 6 pound-

test, nylon-fishing line (Error! Reference source not found.). Each sample was held from a 

ingle strand and placed 5 cm from the next strand in order to prevent sample overlap. Each 

strand was weighted below the sample to hold the line straight and provide stability during 

the scans. 10 samples were scanned at a time and scans were replicated 10 times, providing 

information on 100 samples. During the scan process, information was lost for one 

replication, and one sample was omitted due to its size being inconsistent with sample 

protocol. For statistical analysis, n=89.  

 The proximity of background and the resultant ghost points made it necessary to 

use a constructed background for this study. An aluminum foil background was placed 1 m 

behind the samples and angled at 45 degrees from perpendicular to the scan direction. 

Preliminary experimentation showed that the presence of a highly reflective, angled 

background eliminates ghost points when it is not possible to scan with >2.5 m of empty 

space behind the targets in question. Aluminum proved to be effective in reflecting the laser 
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pulse away from the laser and target, ensuring that ghost points were not an issue 

(Experiment 1).   

 Scan data were collected and parsed into an x, y, z, i format and converted to a .csv 

file. Intensity correction was applied per the results from Experiment 2, above. The files 

were projected using ArcMap 10 for visualization in the x, z plane. Removing the 

background involved applying a query that omitted any points with a y-value greater than 

4.3 m. Additionally, the holding mechanism of tripods, ruler, and fishing line weights were 

removed by applying similar constraints on x and z values. All range gates for x and z values 

were selected manually for each scan. Following the removal of the background and 

surrounding surfaces, the fishing line was removed from the data set by removing any point 

with an intensity value of less than 15. The threshold of 15 was arrived at by incrementally 

removing points based on intensity until the fishing line was omitted completely enough to 

make manual selection of samples possible. Following the manual selection of point clouds 

for each sample, descriptive statistics of point count, average intensity, and sum of intensity 

values were reported for each sample. 

 
FIGURE I-H. POINT CLOUD FOR SAMPLES 4-6 PROJECTED ON X-Z PLANE IN ARCMAP 10. 

Statistical analysis performed on the data was the creation of a number of linear 

regression models to analyze the ability of laser metrics to predict a biophysical trait of the 

scanned samples. Independent variables were the laser-derived metrics (point count, 

average intensity, and sum of intensities). Dependent variables were physical traits of the 

scanned samples thought to be best interpreted by the laser metrics based on surface area 
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exposed to the laser energy. Those variables were dry weight, diameter of the sample, and 

diameter factored by branch type.   

 

b) E3. Results 
The results from the multiple linear regression models show that the laser metrics 

are all statistically capable of discerning change in the biophysical traits (P-Values: <2.2 e-

16 to 2.63 e-08). The predictive capability of each model varied greatly (Adj. R2: 0.29 to 

0.67), but all showed a general positive association between the selected laser metric and 

associated biophysical trait (Slope: 2.20 e-05 to 0.238). The best relationship identified was 

between average intensity and the natural log of the dry weight (P-value: <2.2 e-16, Adj. R2: 

0.6716) (TABLE I-1, FIGURE I-I).      

 
TABLE I-1. DESCRIPTIVE STATISTICS AND LINEAR REGRESSION MODELS CREATED FROM COMPARING TLS DATA 

METRICS TO BIOPHYSICAL TRAITS. 

Dependent Variable 
Independent 

Variable Intercept Slope RSE Adj. R
2
 P-value 

Natural Log of Dry 
Weight Point Count -4.05 ± 0.240 4.17 e-03 ±4.261 e-04 0.872 0.5189 1.07 e-15 

Natural Log of Dry 
Weight 

Average 
Intensity -9.86 ± 0.598 0.0498 ± 3.70 e-03 0.720 0.6716 <2.2 e-16 

Natural Log of Dry 
Weight 

Sum of 
Intensities -3.79 ± 1.90 e-06 2.20 e-05 ± 1.96 e-06 0.807 0.588 <2.2 e-16 

Diameter Point Count 0.0447 ± 0.615 6.67 e-03 ± 1.09 e-03 2.23 0.2928 2.63 e-08 

Diameter 
Average 
Intensity -8.70 ± 1.78 0.076 ± 0.011 2.14 0.3483 6.929 e-10 

Diameter 
Sum of 

Intensities 0.446 ± 0.508 3.55 e-05 ± 5.24 e-06 2.16 0.3378 1.412 e-09 

Diameter, Factored 
by Type Point Count -3.51 ± 1.51 0.0236 ± 2.69 e-03 5.51 0.4627 1.374 e-13 

Diameter, Factored 
by Type 

Average 
Intensity -29.4 ± 4.74 0.238 ± .0.293 5.70 0.4243 2.882 e-12 

Diameter, Factored 
by Type 

Sum of 
Intensities -1.86 ± 1.24 1.23 e-04 ± 1.28 e-05 5.26 0.5104 2.314 e-15 
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FIGURE I-I. LASER METRICS PLOTTED AGAINST BIOPHYSICAL TRAITS. 
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c) E3. Discussion 
The intent of this research was to create a highly descriptive fuel bed model and that 

included attributing descriptive traits to the model based upon the laser data produced 

from scanning. By relating the laser point cloud metrics to biophysical attributes we show 

the potential to use TLS data as not only a geometric description, but also a physical 

description of the target. The relationships between TLS point cloud measurements and 

biophysical traits show that the instrument is capable of discerning fine-scale differences 

among samples of chamise. Understanding the relationships between the two could allow 

for the application of descriptive traits to fuel elements within a three-dimensional fuel bed 

model. 

Diameter was significantly related to each laser point cloud metric, substantial 

variability was not accounted for with any one of the laser metrics (FIGURE I-I). Diameter was 

only one of the distinctive biophysical traits of the samples in this experiment that could 

have been interpreted by the laser data. Diameter of the sample was considered to be 

related to the laser metrics because with increasing diameter there would be increased 

occupation of the laser footprint. This singular measurement did not account for the 

variability of the sample regarding the branching structure and also the number and 

arrangement of needles on the sample. Only the width of the branch wood is accounted for 

and this leaves much of the variability undescribed in the laser metric regression models 

(TABLE I-1).    

In an attempt to account for more of the variability of the samples, the diameter of 

each sample was multiplied by a factor according to the branch type. Diameter was 

multiplied by a factor of one, two, or three if the sample was a terminal ends, larger 

branches, or forks, accordingly. This was meant to increase the independent variable when 

the sample type was indicative of occupying more of the laser footprint. The laser would be 

more apt to detect greater energy from a forked branch, then a piece of branch wood, 

followed by a terminal end because of the general size of each sample. Using this factoring, 

the predictive capability of the laser metrics was improved to account for more of the 

variability in the samples (TABLE I-1). While there is still variability unaccounted for in the 

regression models, the predictive capability is vastly improved for laser metrics when 

diameter is factored by sample type.  

Mass was a highly significant predictor of all three laser data metrics (FIGURE I-I). 

Unlike diameter, mass is a biophysical measurement that accounts for the entire sample, not 
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just the thickness and type. As biomass increases, whether it is a needle or branch wood, the 

visible size of the sample is typically increased. When the size of the sample increases, it 

occupies more of the laser footprint when scanned and more energy is returned to the 

instrument head. When more of the footprint is occupied, more pulses will return to the 

instrument which would cause the point count to increase as well as the amount of energy, 

increasing intensity values for the sample. Describing mass using the point cloud 

information is promising, but difficult to scale up to an entire fuel bed. The samples in this 

experiment were held stationary and isolated, meaning the halo point values also 

contributed to the average intensities. When scanning an entire fuel bed, halo values from a 

single 2 cm voxel will contribute to the averages of surrounding voxels, thereby increasing 

the average intensity for all voxels. While this problem is difficult to overcome, there is still 

potential to use laser intensity information to predict mass of a particular element within a 

fuel bed.  

 

D. E4. (EXPERIMENT 4): TESTING THE EFFECTS OF ROTATIONAL GEOMETRY ON 

LASER INTENSITY AND DENSITY 
In Experiment 3, as biomass increased, the average intensity of reflectance values 

increased for each sample. This relationship was statistically robust, but the reflectance 

values for a sample have potential to change with simple rotation, and thus, models relating 

intensity to biophysical variables may be sensitive to orientation of the shrub material. In 

Experiment 4, the effects of rotational geometry were tested by scanning samples from 

many angles and comparing their characteristics. 

a) E4. Methods 
The samples and design for this experiment were the same as for Experiment 3. 

Following scanning of the E3 samples, the suspended shrub specimens were rotated 

horizontally at random angles and scanned a second time (n=59). Angles between 0° and 

180° were achieved throughout this process and no changes were made to the structure or 

composition of each sample. Statistical analysis performed on the data was to compare the 

sum of intensity for each sample to its corresponding twisted value using a linear 

regression. The sum of intensity was used to account for the entire value of the sample, 

rather than classifying by point count or intensity alone. 
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b) E4. Results 
The linear regression for sum of intensity values showed strong correlation from 

one sample scan to the corresponding rotated sample scan. The relationship was highly 

significant (F-statistic: 737.6 on 1 and 57 DF, P-value: <0.001). Some variance is not 

explained due to randomness of the planar depiction of the sample from the laser 

perspective, but values of the sum of intensity described the majority of variability (Adj. R2: 

0.927). The slope of the regression line was 1.027, very near to a 1:1 relationship. The 

intercept for the line was -0.002, very close to zero, however it was not statistically 

significant in the regression model (P-value: 0.485). 

 
FIGURE I-J. VALUES FOR SUM OF INTENSITY FOR ROTATED AND NON-ROTATED SAMPLES. PLOTTED LINE IS 

NOT THE REGRESSION LINE, IT IS A 1:1 LINE. 

 

c) E4. Discussion  
As with most remote sensing analyses of natural materials, this experiment revealed 

unexplained variability associated with the rotational properties of diffuse structures as 

described by the laser. However, the rotational effect was small. The relationship between 

samples scanned at different orientations was unbiased, highly significant, and robust 

(FIGURE I-J), although natural variability in the size, shape, and orientation of diffuse 

structures produced some random variation. The amount and character of this variation 

provides a reasonable argument for not attempting a correction for orientation effects, and 

this research moves forward from this point without such a correction. 
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E. PHASE I DISCUSSION 
 The previous four laboratory experiments performed in Missoula, MT provide 

guidance for developing methods and interpreting data in whole-shrub scans obtained in a 

wind tunnel.   The ghosting and halo effects were identified as primary concerns for 

sampling in confined areas, as was development of an intensity correction for range. 

Establishing predictive relationships between TLS metrics and physical properties of 

chamise samples was necessary for converting laser point clouds into biophysical data.  And 

finally, orientation effects were tested and found to be small. 

 The ghosting phenomena produced a false representation of target geometry, 

making it a primary concern. It was shown that the proximity of a discrete surface behind a 

diffuse target caused an increase in ghost points. Ghosting could be minimized by scanning 

with backgrounds >2.5 meters from targets, or by placing properly angled, highly reflective 

backgrounds close to a target. The simplest and most effective method to prevent ghosting 

is to ensure there was no such background within 2.5 m of a diffuse target. The halo effect, 

caused by partial returns, is a necessary artifact of the data. While the measurements of 

targets at the halo are inaccurate, the points are located within one laser spot, 

approximately 10 mm, from the actual location of the target. The negative consequence of 

halo points is the filling in of canopy gaps smaller than the laser spot size (1 cm). It is 

possible that more sparsely occupied volumes could be considered empty, and this is 

examined in Phase II, below. Essentially, then, we deferred to accept the halo as inevitable, 

but attempted to minimize ghosting by scanning shrubs without backgrounds. 

 Intensity data from LiDAR are particularly interesting for their potential to aid in 

prediction of biophysical traits in addition to geometric location (Franceschi, et al., 2009). In 

order to accurately interpret intensity, we developed a normalization curve for the intensity 

data. The normalization curve was applied to each data set immediately following parsing 

so that all intensity data collected throughout this project could be interpreted on a 

normalized intensity scale. 

 Analyzing small, variable pieces of chamise branches proved useful for developing 

models relating TLS data to biophysical data. It found that the intensity of sample point 

clouds was related to mass of samples. This relationship lends credibility to the idea that 

mass, and more importantly mass loss following fire, could be inferred through the use of T-

LiDAR. 
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 As previously noted, shadowing caused by complex geometry while using a LiDAR 

instrument is problematic when sampling targets of any kind (Van der Zande, et al., 2006). 

The requirement to assess complex geometries from multiple angles raises the concern of 

whether or not the instrument characterizes shrub samples differently from different 

angles. During the rotational geometry experiment it was discovered that small samples 

were similarly described regardless of the angle at which they were scanned. This similarity 

and the randomness of shrub structure suggests that within a shrub, the orientation of a 

single branch, or portion of branch, will not greatly affect the integrity of the data collected 

while scanning a diffuse form shrub. Certainly, shadowing will occur within shrubs at 

whole-shrub scale, but an orientation correction is not necessary to adjust the 

characteristics of samples within the shrub.      
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II. PHASE II. MODELING SHRUBS USING T-LIDAR 

The goal of phase II was to create a three-dimensional description of fuel elements 

in chamise and sagebrush fuel beds for use in leaf-scale fire behavior simulations. Phase I 

results were applied in order to assess the distribution of fuel elements in a number of plant 

structures and to produce a realistic description of the geometry and interrelation of fuel 

elements within shrubs. Essentially, the intent was to replace the current state of science 

(e.g., random distributions of fuel elements within hypothetical volumes) with descriptions 

of real fuel elements and their locations. Because fire propagation is dependent on the 

relative positions of combustible materials, we sought an accurate depiction of the location 

of plant material that burns during flame passage. 

Phase II, Modeling Shrubs Using T-LiDAR, consisted of four objectives associated 

with the data produced from scanning shrub fuel beds. The first objective was to 

successfully build a shrub model from TLS data. We built the shrub models through 

collection and manipulation of TLS data obtained from scanning diffuse-form shrubs. The 

type of model created was a voxel volume array that was built in a Cartesian coordinate 

system. 

It was then necessary to evaluate the created model for descriptive capabilities to 

determine whether or not the model presented any improvement from previously available 

fuel bed descriptions. The descriptive capabilities of the shrub models were assessed 

through an ocular comparison of voxel representations to RGB pictures taken of 

correspondent samples. We also analyzed the data for thorough representation within the 

model structure.  

The potential for the produced fuel bed model to track changes was done in two 

separate analyses. The first attempt to track change in fuel beds was done through 

combustion of samples and comparing the pre- and post-combustion models. The second 

attempt involved a manual removal of plant material and the creation of model 

representations at each stage of sample alteration.  

The final objective of phase II was an application of characteristic density 

descriptions to fuel elements within the shrub model to analyze the predictive potential 

prior to any manipulation of the fuel bed. We applied an empirical distribution of densities 

to the voxel models in an attempt to attribute each voxel with an individual value. Giving 
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each voxel a value represented the potential to attribute the array with more detailed 

information than a uniform description. 

Throughout phase II it was difficult to determine the accuracy of the shrub models 

when compared to the physical shrubs studied in the experimentation. A review of the 

literature failed to yield any viable method for describing diffuse structures in three 

dimensional on the scale of the measurement that TLS data allows. The highly 

heterogeneous structure of diffuse shrubs makes the material not conducive to precise 

measurement with currently available technology.  The labor required to accurately map a 

shrub using manual measurements would lead to questionable results simply due to the 

opportunity to incur error from mapping minute details with manual methods. Due to the 

lack of a feasible method to track volume change we employed mass loss as a viable 

representation of change to the samples. The assumption in this substitution is that 

measureable plant material has mass and that larger samples weigh more than smaller 

samples.  In each portion of study we were able to track mass and have assessed the quality 

of shrub models by comparison of volume estimates to mass measurements. This 

relationship assumes that mass and volume are related to each other, in that more mass 

occupies more volume. Using mass allowed us to numerically track physical changes in the 

shrub samples that would otherwise be difficult to accurately verify.  

A. BUILDING A SHRUB MODEL FROM TLS 

1. DATA COLLECTION 
Data were collected in three sets, once in Missoula, MT and twice in Riverside, CA. In 

each case, data collection included collection of shrub samples from the field, construction 

of shrub fuel beds, laser scanning, treatment (mechanical and fire) of shrubs, and 

measurements of treatments. In Missoula we mechanically removed biomass from shrubs, 

whereas in experiments in Riverside we combusted biomass in a wind tunnel. For the latter 

experiments, data were collected at the Pacific Southwest Research Station-Riverside’s burn 

chamber during the dates December 16-20th, 2012 and again from July 29th-August 1st, 

2013. Data collection during both sessions consisted of building diffuse form shrub fuel 

beds, scanning them with TLS, burning them in a controlled environment, and scanning 

them again after combustion. Data collection during combustion also included high speed 

video, thermal data, and mass/mass loss. During the December visit, thirteen constructed 

fuel beds of chamise were created, scanned, and burned. The July visit yielded sixteen 
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replications of scanning, burning, and re-scanning sagebrush. The Missoula data collection 

was for chamise only. 

The collection site for chamise was located on the San Bernardino National Forest at 

33.84° N by 116.88° W, elevation ranging from 3600-3900 feet ASL. Neighboring species at 

the collection site were typical of a chaparral fuel type, with manzanita (Arctostaphylos 

manzanita), scrub oak (Quercus berberidifolia) and Greenbark ceanothus (Ceanothus 

spinosus) making up the over story with California poppy (Eschscholzia californica) and 

annual grasses the primary components of the ground species. Samples were subject to a 

typical Mediterranean climate pattern of cool, wet winters with hot and dry summers 

(FIGURE II-A). Collection of sagebrush samples also occurred on the San Bernardino National 

Forest at 34.28° N by 116.78° W elevation ranging from 6900-7200 feet ASL. Neighboring 

species were typical of a high-desert ecotype with Pinyon pine (Pinus edulis) and California 

juniper (Juniperus californica). Ground species were sparse, but small patches of annual 

grasses were found growing the microclimate located under and around over story species. 

The climate on the site is typical of high elevation, Mojave Desert, receiving little rainfall 

with moderate winters and hot summers.  

 

FIGURE II-A. CHAMISE IN EARLY JUNE (ANZA-BORREGO DESERT NATURAL HISTORY ASSOCIATION, 2013) 

The vessel for combustion at the Pacific Southwest Research Station in Riverside, CA 

is a custom built wind tunnel framed with angle iron. Walls are constructed with high 
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temperature glass as well as sheet metal. The tunnel has a fan on the north end of the 

structure and is open on top and to the south. The eastern and western portions (sides) of 

the walls can be removed for access. In the sample placement area of the wind tunnel, the 

dimensions are approximately 1.2 m wide by 1.2 m tall. Fuel beds were placed on a scale for 

mass measurement before, during, and after combustion. Our fuel beds were limited to 2 m 

lengths to avoid shadowing caused by the structure of the tunnel. A mesh was created using 

Jackson fencing and chicken wire where stems of samples could be placed and held 

stationary during scanning and burning. Samples were assembled in the wind tunnel to 

create a variety of different burning conditions. The density of biomass in each replication 

was constructed to represent a range of fire behavior, rather than to re-create natural shrub 

structures explicitly. Observed fire behavior during experimentation ranged from active 

flame front passage that consumed most of the plant material (FIGURE II-B) to minimal fire 

behavior that consumed only small, isolated portions of plant material (FIGURE II-C). 

 

FIGURE II-B. PICTURE OF CHAMISE BURNING IN THE RIVERSIDE BURN FACILITY. THIS PHOTO SHOWS THE WIND 

TUNNEL USED FOR COMBUSTION TRIALS. THIS VIEW IS FROM THE EAST, LOOKING WEST. THE NORTH END OF THE 

WIND TUNNEL THAT HOUSES THE FAN IS TO THE RIGHT. 
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FIGURE II-C. SAGEBRUSH SAMPLE 11 DURING COMBUSTION. EXIBITED LOW FIRE INTENSITY AND LIMITED 

CONSUMPTION OF BIOMASS. 

The structure of the wind tunnel restricted the number of angles that samples could 

be scanned from. For each fuel bed a laser scan was taken from two opposite sides (east and 

west). During the first period of sampling, the chamise fuel beds were also scanned from the 

south side (downwind end) of the wind tunnel. Scans from the north end were not possible 

due to the location of the fan assembly. The southerly scans proved to be problematic, and 

were not included in the analysis. Ghosting, difficulty with alignment, and asymmetrical 

representation of the fuel beds in the absence of a north scan precluded their use. For side 

scans, the T-LiDAR instrument was placed at 4 meters range from the leading edge of the 

sample and was set at a height of 1.4 m above the ground, approximately equivalent height 

to the middle of each shrub sample. Scan locations were marked with tape on the floor of 

the wind tunnel facility and the scanner was fixed on the tripod for the duration of the 

experiments to ensure nearly identical geometry between scans.  

Focus distance for the collected data was set at 4.0 m and the spot spacing was held 

at 1.0 mm.  Raw data from each scan were saved to an external USB thumb drive as well as 

the hard drive of the laptop PC being used to control the TLS.  
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2. DATA MANIPULATION AND SCRUBBING 
As noted previously, the raw data produced by the ILRIS™ 36D-HD TLS are 

contained in binary digital files that must be parsed into different formats for analysis. The 

Optech Parser v. 5.0.2.7 was used to create the data files used in this research. Following 

data collection, files were parsed into two formats: .pif and .xyz. While parsing data, a range 

gate was applied to all files at 2 and 10 meters to exclude data outside these ranges.  

The .pif files were used in Polyworks™ IM Align software for the purpose of creating 

a rotation matrix to align and merge the easterly and westerly scans. The Polyworks 

software allows users to specify point pairs with which to align two or more different point 

clouds. For each replication the region of interest scanned was larger than the shrub so 

common points within the wind tunnel were visible in the point clouds to allow for manual 

alignment. Following manual alignment, the IM Align software was used to apply an 

automatic alignment algorithm. When properly aligned an alignment matrix was output for 

each file. 

Intensity data were corrected using an algorithm written in IDL. The intensity 

values reported in the .xyz files were altered from the native 16-bit, binned data format to 

the continuous 9-bit scale as described previously. After the data were re-scaled, intensity 

was then range-corrected based upon distance from the laser scanner. The range correction 

was written based upon the relationship developed in Experiment 2. The .xyz files were 

again altered following range correction by applying the alignment matrices created in IM 

Align. After alignment, the files from each fuel bed were then merged into one. The resulting 

files included the scan data from both the west and east side of the shrub with rescaled and 

range-corrected intensity. 

The aligned and merged files for each scan were then passed through a series of 

visualizations and clippings to remove any points that were not a part of the shrub itself. 

The first visualization was completed in Polyworks™ IM Survey, where a range gate was 

defined for the x, y, and z coordinates to exclude the majority of reflections not from the 

shrub. The range gate was applied while importing the files into ArcMap 10 using a 

definition query that left only the target point cloud within the range gate. The data were 

projected in two dimensions, typically in the x, y plane, and a shapefile was created to 

manually clip any of additional points that were not to be included in the description of the 
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shrub (e.g., points from the wind-tunnel structure itself). This was done using the ‘select by 

lasso’ tool in ArcMap, which allowed the user to specify a custom boundary around the 

shrub in two dimensions. Remaining points were then exported as a text file and re-

visualized again in IM Survey to check for any remaining erroneous points. If points 

remained, the file was re-projected on the x, z or the y, z plane and the process of manually 

selecting the shrub was repeated to remove the excess points from the file. After the excess 

points were adequately removed from the file, a final text file was exported and then saved. 

Text files at this point were typically 150-250 megabytes in size.  

There was considerable deliberation on how to represent the point cloud accurately, 

but effectively. The aim was to represent the geometric complexity of fuel beds while 

maintaining a usable file structure that was not so large it was not beneficial. Additionally, 

we wanted to remove very fine details that were irrelevant to fire behavior and fuels 

representation at the scale of this study. The method decided upon to represent the fuel bed 

was the creation of a volume grid matrix based on the point cloud information. The volume 

elements (voxels) in the volume grid were created by establishing a volume grid around the 

shrub structure and filling each voxel with information from the point cloud, (e.g., average 

intensity and number of points). The voxel dimension was 8 cm3, or 2x2x2 cm voxels. The 

voxel dimensions corresponded with the size of the fuel elements used for combustion 

experimentation in the flat-flame burner facility of collaborators at BYU.  

Voxel creation was completed by establishing a grid of centroids spaced at 2 cm in 

all directions. From each centroid, a search was performed for data points within a box with 

sides positioned 1 cm from the centroid in six directions. For each voxel, the number of 

points and average intensity were reported and recorded in a new file. The file output was a 

text file reporting locations in x, y, and z coordinates with average intensity and point count 

attached, or x,y,z,i,c. Voxels were classified as empty if there were less than five points found 

in the space, and retained in the grid structure. This was done in order to ensure that voxels 

were not being reported as full if a minimal number of points were found in the space.    

3. DETERMINING OPTIMAL POINT PER VOXEL DENSITY 
The initial voxel volume creation used a threshold of five points per voxel to define 

whether or not a voxel was occupied. This was done to ensure that a voxel was not 

represented as occupied based upon a single point return within the volume. After the 

initial threshold was employed to create the data set, a sensitivity analysis was necessary to 
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inform the most accurate threshold to occupy a voxel or not. The analysis completed here 

was done to test at what point per voxel count the data were optimally represented when 

relating volume loss estimations to mass loss measurements.    

Based on spot spacing each voxel created had the potential to contain 8,000 points. 

However, due to shadowing the actual number of points that could be detected within the 

space of a 2 cm voxel was 400 from each scan or 800 total based on scan specifications. The 

creation process placed a threshold of 5 points per voxel but the potential of voxels being 

classified as filled even though the target contained little biomass remained an issue. Partial 

laser returns on very small targets had the potential to define a filled volume whether or not 

the target was substantial enough to matter to the overall shrub description. As shown in 

experiment 1, the halo effect associated with partial laser returns could be falsely 

representing the size and shape of a target.  

The analysis completed was used to test at what point density the voxel 

representation best described the amount of mass lost during combustion. Proportion of 

mass change was predicted based upon the proportion of volume change in the model. The 

number of voxels was used to represent volume for each shrub and mass measurements 

were taken prior to and following combustion. The number of points within a voxel that 

would mean filling the space with data was changed in order to represent a range of 

possibilities. The threshold placed on the number of points was truncated at 5, 20, 40, 60, 

and 80 points per voxel. In each trial the number of voxels before and after combustion was 

used to derive volume loss and proportion of volume lost. After each threshold was applied, 

a linear regression predicting proportion of mass loss based on proportion of volume lost 

was created. Each model was then compared in an ANOVA test. For statistical comparison, 

the model with the lowest Residual Sum of Squares, Residual Standard Error, P-Value, and 

highest R-Squared value was accepted as the best level to threshold point density within a 

voxel. The point per voxel threshold that most accurately predicted proportion of mass lost 

was then used for data analysis and representation.      

 Using voxel volume estimates to predict mass loss is discussed in further detail later 

in Phase II. However, each model created from the different thresholds was statistically 

significant and showed that volume loss was a fairly good predictor of mass loss. The model 

with the highest significance and most predictive capability was created at a 20 point per 

voxel point density threshold (Adj. R2: 0.8554, P-Value: 4.586 e-13) (TABLE II-1). The lowest 
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Residual Sum of Squares reported during the ANOVA test also indicated the model created 

at 20 points per voxel was the model with the least amount of error (lowest RSS at 0.186). 

The result of this analysis led us to use a 20 point per volume threshold for data 

representation and analysis. 

TABLE II-1. DESCRIPTIVE STATISITCS FOR LINEAR REGRESSION MODELS CREATED AT DIFFERING POINT DENSITY 

THRESHOLDS. 

Points Per Voxel Intercept Slope RSE Adj. R2 P-Value RSS 

  5 -0.020 ± 0.040 0.768 ± 0.063 0.087 0.8414 1.614 e-12 0.204 

20 -0.052 ± 0.040 0.804 ± 0.062 0.083 0.8554 4.586 e-13 0.186 

40 0.081 ± 0.054 0.620 ± 0.088 0.132 0.6366 1.32 e-07 0.468 

60 0.041 ± 0.042 0.781 ± 0.076 0.101 0.7871 8.824 e-11 0.274 

80 0.153 ± 0.041 0.673 ± 0.854 0.122 0.6859 1.788 e-08 0.405 

 

Through the process of scanning and data transformation we were able to create a 

three-dimensional model representation of a constructed, diffuse-form shrub. Data 

produced from the original laser scan was altered significantly to produce a final structure 

that represented some of the intricacies of a diffuse-form shrub. The data sets created 

showed a high level of spatial heterogeneity in all three dimensions that were visibly 

comparable to images of the target structure (FIGURE II-D, FIGURE II-E). The models produced 

were a manageable size to allow data processing on commonly available computing 

technology. While clipped and aligned point clouds produced data files up to 250 

megabytes, the voxel representations ranged from 13 to 54 megabytes in size. While each 

voxel was generalized within the 8 cm3 space it represented, the overall voxel arrays 

represented a large amount of structural variability that included descriptive variables for 

each space. The final voxel array was a manageable data set from which descriptive 

statistics could also be extracted. Point distributions and intensity information within 

defined areas of the shrubs were easily extracted from the data sets and representative of 

rich data sets, even after the generalization of voxels. 

B. EVALUATE CONSTRUCTED MODEL FOR DESCRIPTIVE CAPABILITIES  

1. OCULAR EVALUATION OF SHRUB MODELS   
The models of each shrub fuel bed were spatially heterogeneous, but the accuracy of 

the descriptions was unknown. The complexity of the data sets in three dimensions made it 

difficult to verify accuracy in any other way than ocular comparison. For this comparison, 
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models were visualized in three-dimensions and then compared to RGB images of the 

sampled shrubs (FIGURE II-D, FIGURE II-E). The profiles of the shrubs were examined, along with 

canopy gaps and areas of obvious post combustion change. The constructed models 

corresponded with biomass visible in the images, and the geometry of the exterior of the 

shrubs appeared to be described consistently in the models. This was especially apparent in 

post-fire samples where remaining foliage was more spread out and larger gaps easier to 

identify. Overall, the external shape and dimensions of the shrubs appear to be well-

characterized by the laser and relatively modest changes in the shrub architecture due to 

burning are detected. Of the concerns identified with using T-LiDAR to characterize diffuse 

targets, none are known to influence the location of an initial return. The first object the 

laser intersects (absent a hard target background) is generally well-described in location. 
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FIGURE II-D. VOXEL MODELS OF SAGEBRUSH SAMPLE 10. FROM TOP TO BOTTOM, PRE-COMBUSTION (GREEN), 

CHANGE FROM PRE- TO POST-COMBUSTION (RED), AND POST-COMBUSTION (BLACK). 
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FIGURE II-E. PICTURES OF SAGEBRUSH SAMPLE 10. FROM TOP TO BOTTOM: PRE-COMBUSTION, DURING THE FINAL 

STAGES OF COMBUSTION, AND POST-COMBUSTION. 



 

22 

 

We could not verify the positional accuracy of individual points, but the qualitative 

evidence suggests that the voxel models fit the external dimensions of the shrubs. 

 

2. ASSESSMENT OF SHRUB INTERIORS 
Modeling the interior of the shrubs was likely inaccurate due to occlusion. Based on 

findings from the ghosting experiment (experiment 1), there is potential for points to occur 

toward the center of the shrubs as diffuse targets on the shrub hull align with hard targets 

in the background. ‘Ghost’ or ‘air points’ are the result of the two or more targets spatially 

close in the y-dimension that both return energy from the laser pulse and produce a single 

average return (Béland, et al., 2014). Separating these erroneous points from accurate 

returns would not be tractable.  

Upon examination of shrub interiors, however, it became apparent that ghosting 

was not a significant issue. Rather, shrub interiors were largely void of any reflections 

(FIGURE II-F). When visualizing single planes in the center of the shrubs, substantial canopy 

gaps were evident where foliage material was expected to occur. Because the shrub fuel 

beds were constructed to distribute foliage material uniformly, there was a reasonable 

expectation that most of the shrub interiors were filled with material. The occlusion of data 

in the center of the shrubs was most likely due to the energy from the laser not penetrating 

the shrub hull. When laser energy is intercepted at the first piece of material, locational data 

are only collected for that material.  Although some TLS instruments do allow for multiple 

returns from the same energy pulse after passing through semi-transparent material 

(Béland, et al., 2014), the ILRIS 36D is not capable of detecting more than one reflection per 

pulse. In order to better understand occlusion within shrub interiors, we set out to identify 

the depth of penetration of the laser and the amount of volume not identified as being filled 

during the voxel model creation.  
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FIGURE II-F. TOP-CHAMISE SAMPLE 9 PICTURED ON THE Y-Z PLANE. BOTTOM (LEFT TO RIGHT, TOP TO BOTTOM) X-

AXIS VOXEL FREQUENCY PLOT, Y-Z PLANE PLOTS OF VOXEL LOCATIONS, EACH A SLICE FROM 40 CM, 66 CM, AND 94 

CM ALONG THE X-AXIS (25TH, 50TH, AND 75TH PERCENTILE). 

 

a) Methods 
Quantifying the amount of missing  filled volume in the center of the voxel was done 

by counting the number of filled and unfilled voxels on single lines of data along the y axis 

(through the shrub). Lines of data were evaluated at nine different locations within six voxel 

models for each species for a total of 108 replications, from the twelve shrubs represented. 

The lines of data were located at the 25th, 50th, and 75th percentile values along the x-axis 

and at 0.2, 0.4, 0.6 m or 0.1, 0.3, 0.5 m height on the z-axis, respectively, for chamise and 
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sagebrush shrub models. Shrubs selected for this analysis were even-numbered chamise 

and odd numbered sagebrush trials. This method of assessment was selected because the 

only ‘lost’ volume in the center of the shrub was along the y axis due to occlusion along the 

direction of the scan. Because the proportion of voxels missing in one direction is directly 

related to the total volume, using a voxel count on only the lines of data assessed was an 

acceptable method of determining the total amount of missed volume. The proportion of 

missing voxels to total voxels was then plotted in a density histogram and fit with a 

statistical distribution.  

b) Results 
The depth of laser energy penetration and subsequent description in the models 

averaged 5.45 ± 2.27 voxels (10.9 ± 4.54 cm) (FIGURE II-G). Interior of this depth is mostly 

void except in cases where the total shrub width is less than ~24 cm. When expressed as a 

proportion of total width of shrub, the void space ranges from none to more than 75% of 

the total width (FIGURE II-H). In more than a quarter of the lines sampled, the length of the 

data was fully described and there were no voxels left unfilled in the model. In about half of 

the data lines, one third of the shrub was not described. At the least descriptive data line, 

the filled voxels represented 18% of the length sampled. The statistical distribution that 

best fit the proportion histogram was a logistic distribution. The resulting logistic model 

had a location of 0.305 with a scale of 0.156 with corresponding standard errors of 0.027 

and 0.012. The Akaike information criterion (AIC) for the model fit was 25.9.  

 

FIGURE II-G. HISTOGRAM OF THE NUMBER OF VOXELS COUNTED ALONG THE EDGE OF A SHRUB MODEL EACH VOXEL 

REPRESENTS 2 CM OF LASER PENETRATION INTO THE SHRUB ALONG THE Y-AXIS. 
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FIGURE II-H. HISTOGRAM OF PROPORTION OF TOTAL THAT WAS NOT REPRESENTED IN THE CENTER OF THE VOXEL 

MODEL. BARS ARE OBSERVED PROPORTION OF ‘LOST’ DATA AND THE LINE IS THE LOGISTIC MODEL FIT TO THE 

DATA. 

 

c) Analysis 
The empirical distribution of proportion empty space across the shrubs shows that 

the majority of the shrub volume located interior of the structure is represented, but a 

portion of the center is missing due to occlusion caused by the exterior of the shrub. For the 

purpose of this research, the logistic distribution was used to create a statistical adjustment 

that was applied to the volumes described in the data sets. The logistic distribution model 

was applied to the volume as a multiplying factor where a random number was selected for 

each voxel within a shrub. The numbers generated from the random number selection were 

then used to increase the total number of voxels. This was done to more accurately 

represent the volume described. It was a means to empirically adjust for the ‘lost’ data in 

the center of the shrub.  
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Representing shrubs with a hole of missing data is troublesome for the purpose of 

application to fire behavior modeling. Solving the problem of describing interior volume 

could be accomplished through several methods, all of which necessarily depend on the 

assumption the holes are fully occupied by material (e.g., no gaps). The most logical method 

to fill this empty space would be to search in each direction around each unfilled voxel, and 

if the search encountered a filled volume in every direction around that voxel, it would then 

be filled with a value (either a constant or derived from a statistical distribution). This logic 

would fill the volumes in the center of the shrub while maintaining the observed 

heterogeneity of the exterior shrub structure. This avenue for filling the unaccounted for 

volumes has not yet been pursued. 

C. EVALUATING MODEL POTENTIAL FOR TRACKING FUEL BED CHANGE 
Having achieved the goal of creating realistic three-dimensional models and 

addressing their shortcomings, the focus of this research shifted to testing the application of 

the models. The most direct application was comparing changes in volume associated with 

combustion and mechanical removal with changes in mass. The arrays of voxels lent 

themselves to a simple, yet direct, estimation of volume. Because each voxel represented 8 

cm3 volume, the sum of all filled voxels (x8) represented the total volume of a fuel bed. This 

total volume was then compared with biomass pre- and post- treatment and with mass loss 

following treatment. This comparison assumes a direct relationship between volume and 

mass that is largely untested. However, the fuel bed volume estimate represents a large 

improvement over previous methods (cubes and spheres), and biomass is the only 

systematic ‘field’ measurement available. The mass measurements were taken during 

experimentation and put to use without adjustment. Both the volume estimates and mass 

measurements were taken from the two Riverside combustion experiments and a 

laboratory experiment performed in Missoula. 

1. COMBUSTION MASS LOSS 
The variety of burning conditions produced in each replication provided a range of 

consumption amounts and mass losses within the shrub structures. Mass loss during 

combustion ranged from 5.2 to 82.5 percent of total wet mass. Using volume estimates 

derived from the voxel arrays, volume loss was compared to mass loss for each replication, 

in sagebrush and chamise.  Volume loss during combustion ranged from 21.1 to 92.7 

percent of pre-combustion volume.  
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a) Methods 
As noted previously, volume was represented by summing the number of voxels 

containing greater than 20 data points (filled voxels). In order to address missing 

(occluded) volume in the center of the shrubs, the logistic distribution created in the 

previous section was applied to the voxel counts. The logistic distribution model was 

applied to the volume as a multiplying factor where a random number was selected for each 

voxel within a shrub and then used to increase the total number of voxels. Adjusted post-

combustion volumes were then subtracted from adjusted pre-combustion volumes to 

produce an estimate of total volume lost during combustion. Total mass following 

combustion was subtracted from total mass prior to combustion to provide mass loss for 

each trial. The method of statistical comparison was a multiple-linear regression analysis 

relating mass loss to volume loss and species burned. 

b) Results 
The multiple linear regression proved robust and highly significant (F-stat: 50.52 on 

2 and 26 DF). The model (shown below) was produced using R statistical package where 

Mloss is mass loss in grams, Voxloss is volume loss in voxels, and SpecSage is the specification for 

species burned. The model accounted for 78% of the variability (Adj. R2: 0.7796) in mass 

loss and each predictive variable and the intercept were significant (P-values: Voxloss 2.23 e-

10, SpecSage 9.72 e-06, Intercept 0.00415) (FIGURE II-I).  
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FIGURE II-I. MASS LOSS AND ADJUSTED VOLUME LOSS DURING COMBUSTION OF DIFFUSE FORM SHRUBS. 

c) Analysis 

The strong correlation between the loss of volume and the loss of mass showed that 

the T-LiDAR can be used to assess changes in biomass following combustion across a range 

of losses on a per shrub basis (FIGURE II-I). Near constant variance across the range of mass 

losses shows that the TLS can detect changes in the fuel bed effectively even when only 

parts of the fuel bed are consumed. Although the model does not numerically depict where 

the loss is occurring in the shrub fuel bed; ocular assessment of change shows that the TLS 

identifies the locations of mass loss (FIGURE II-D, FIGURE II-E). This is an important 

consideration for fire modelers wishing to track propagation of fire through the shrubs. The 

ability to accurately model mass loss using voxel volumes suggests that the application of 

TLS in diffuse-form shrub may be useful to fire modelers despite shortcomings identified 

previously. The regression also showed a significant difference between mass loss in 

chamise compared with sage (Intercept adjustment: 1277 g). The mass removed during 

combustion was different between the two species and this was represented in the voxel 

volumes. The linear regression fit the same slope to both species showing that the same 

mass loss to volume loss relationship was significant. However, the different intercepts 
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show that sagebrush volumes are represented as being denser and account for more mass 

loss with less volume than those of chamise. 

d) Discussion 
This comparison of volume loss to mass loss showed that T-LiDAR can detect the 

removal of biomass from a fuel bed across a full range of consumption. In instances of 

complete combustion, the laser correctly interprets an empty volume (less the large branch 

stubs remaining). The more interesting capability of the laser is the ability to detect partial 

mass loss that appears to be spatially explicit. When portions of a shrub were removed in 

the flaming front the laser detected changes from pre- to post-combustion and reported it 

as a change in volume (FIGURE II-I). Ocular comparison with photos and video show that the 

volume loss occurred in the correct locations (FIGURE II-J).  While it is difficult to infer that the 

voxel arrays accurately portrayed mass loss in the center of the shrubs, the exterior 

geometries were altered in ways that were visible in the models. Further, there were no 

instances when the center of the shrubs burned and the hull did not, and this occurrence is 

not ever likely. Accurately locating the area in which mass was removed was not isolated to 

one or two instances in the samples but was the trend among all voxel models. The difficulty 

in directly comparing the two for a creation of a vegetation burned description came from 

the change in structure following combustion. One major shortcoming of this mass loss 

work was inability to produce a spatially explicit comparison of pre- and post- combustion 

scans when most of the biomass was removed by fire. In such cases, the structural integrity 

of the shrubs was lost during combustion and the remaining branch butts shifted and fell. 

The movement of branch stalks during combustion made it unfeasible to directly compare 

post-fire voxel arrays to pre-fire arrays in the context of creating constant geometry 

between scans.  
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FIGURE II-J. SAGEBRUSH SAMPLE 1. PRE-FIRE VOXEL REPRESENTATION (TOP), PICTURE OF SAMPLE NEAR THE END 

OF COMBUSTION SHOWING WHERE MATERIAL WAS REMOVED (MIDDLE), AND POST-FIRE VOXEL REPRESENTATION. 

2. SIMULATED MASS LOSS 
Following combustion experiments, a third test was conducted to determine 

whether the T-LiDAR instrument could detect changes in mass associated with removal of 

different kinds of material (e.g., foliage-and-branches, branches-by-size-class, random). This 

experiment was conducted for chamise only. The purpose was two-fold: first to examine the 

sensitivity of volume loss to mass loss of different types of material; second to test whether 

random removals of material were detectable by laser-measured volume loss. 

a) Methods 
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Samples of chamise were shipped from Riverside, CA to Missoula, MT for 

experimentation as outlined in the common methods of Phase I. Six branches were selected 

with similar masses, diameters, and dimensions (TABLE II-2). Each branch was sampled 

systematically by three methods with laser scans completed between each branch 

modification. The first method, termed foliage and diameter, was completed by removing all 

the needles, then removing branch wood sequentially by diameter thresholds. Branch wood 

was removed first at a diameter of one millimeter, then two, up to five millimeters. Each 

time a branch was altered, the removed material was collected, weighed, and kept separate 

from other samples. The second method, termed diameter, involved removing material 

from the branch in the same sequential fashion as above, but foliage was left on the branch. 

The third method, termed random, was done to mirror the amount of material lost in the 

second method, but with no consideration given to the size or location of the material 

removed. In short, material removed from the second replicate was weighed between each 

iteration and an equivalent weight was randomly removed from the third at each iteration. 

All removed material was collected separately, bagged, and dried at 75° C for a period of 24 

hours to obtain dry weight.  

TABLE II-2. BRANCH DESCRIPTIONS FOR SIMULATED MASS LOSS SAMPLES. 

Branch Height (cm) Weight (g) Base Diameter (mm) Replicate 
1 101 171 14 Foliage and Diameter 
2 98 164.5 12 Diameter 
3 108 176 12 Random 
4 91 217.5 17 Foliage and Diameter 
5 94 239.5 15 Diameter 
6 99 214.5 14 Random 

 

The ILRIS 36D-HD TLS was used to collect a scan each time the branches were 

altered. The scanner range to target was 4.5 meters, corresponding focus distance. Spot 

spacing for each scan was 1.0 mm. Scans were processed in the same fashion as point clouds 

from the combustion experimentation described above and a voxel array was produced for 

each branch, replicate, and removal. The resulting data set produced 38 voxel arrays. 

Statistical analysis completed on the data set was creation of a multiple linear regression 

relating mass to voxel volume using variables of the type of removal.  

b) Results 
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The multiple linear regression proved robust and significant (F-stat: 71.5 on 3 and 

34 DF). The model (shown below) was produced using R statistical package where M is 

mass in grams, Vol is volume in voxels, and Rep is the specification for type of mass removal. 

The model accounted for 85% of the variability (Adj. R2: 0.8511) of mass using volume and 

mass removal method. The volume predictor was highly significant (P-value: <0.0001) but 

only the random mass removal method was discriminated from the others in the model (P-

value: 0.003). The diameter based removal of mass was not significantly different from the 

foliage and diameter method (P-value: 0.6286). 
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FIGURE II-K. MASS AND VOLUME DURING SIMULATED MASS REMOVAL FROM CHAMISE BRANCHES. 
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c) Analysis 
The relationship between manual removal of mass and volume perceived by the 

voxel array remained robust when the method of removal was simulated, similar to 

combusted. The observed relationship showed that mass increased predictably with 

increasing volume. The volume representation did discriminate between random removal 

of mass and a diameter-based removal. However, the diameter-based, sequential removal of 

biomass was not significantly different between foliated and non-foliated branches. The 

voxel models showed change that occurred during each step of removal (FIGURE II-L, FIGURE 

II-M). The model also showed a significant difference between random removals and 

diameter based removals. It is likely that biomass removed in an occluded area was not 

represented during the change from one replication to another. It is more likely that the TLS 

produced models would show a diameter based biomass removal because that method 

inherently removes the top and sides from the branch, areas in which occlusion is not as 

prevalent.  

The ability of the TLS to detect mass loss in a controlled experiment indicates that 

there is utility in detecting change to highly diffuse targets. More specifically, the ability to 

detect random mass removal indicates that the laser is spatially explicit in its ability to 

detect change. The voxel arrays were able to track mass loss with high significance, but the 

random removal of material indicates that the laser detects biomass removal even if it is not 

just removed from the exterior of the branch sample.  
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FIGURE II-L. VOXEL MODELS OF BRANCH THAT UNDERWENT A DIAMETER REMOVAL. LEFT TO RIGHT, TOP TO 

BOTTOM: UNALTERED BRANCH, <1MM REMOVED, <2 MM REMOVED, ETC. UNTL >5MM REMAINDER. 
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FIGURE II-M. PICTURES OF BRANCH THAT UNDERWENT A DIAMETER REMOVAL. LEFT TO RIGHT, TOP TO BOTTOM: 

UNALTERED BRANCH, <1MM REMOVED, <2 MM REMOVED, ETC. UNTL >5MM REMAINDER. 

D. ATTRIBUTING FUEL ELEMENTS WITH BULK DENSITIES 
The previous research has demonstrated that the voxel models produced from TLS 

are effective at characterizing mass loss when shrubs are altered through combustion and 

mechanical treatments. Ocular assessments show that biomass changes in the shrubs are 



 

36 

 

spatially consistent with observed changes in the voxel arrays. A primary shortcoming of 

the shrub models, however, remains the uncertainty in how much material resides in each 

voxel. Given the inevitable occurrence of shadowing (and perhaps ghosting), it is difficult to 

predict mass of individual voxels directly. An alternative approach is to develop a statistical 

distribution of mass per voxel (e.g., bulk density) that can be applied to whole shrubs. The 

numerous measurements of samples taken during this study provided many observations 

with which to create a statistical distribution of bulk densities for voxel values of chamise 

samples. By measuring mass and estimating volume, a method was derived to predict bulk 

densities for sampled shrubs. This method was applied to whole-shrub fuel beds by 

predicting mass based solely upon the TLS measured volume and a statistical estimation of 

density. The motivation for this line of inquiry was to demonstrate an application TLS data 

to predict the amount of biomass resident within a sample without measurements aside 

from the laser scan. 

a) Methods 
Estimates of bulk density were derived from each experiment where mass data 

were collected (Phase I: Experiment One and Phase II). For the 2 cm samples taken in 

Experiment One, each samples fit within a single voxel. In the combustion and simulated 

mass loss experiments, bulk densities were estimated by dividing total mass by the number 

of voxels in the array for a given sample. The voxel counts were adjusted in the combustion 

voxel arrays based on the empirical volume relationship created in a previous section (the 

holes within the shrub centers were filled and added to the voxel counts for each fuel bed). 

Weights were reported as a density in grams per voxel and done only for chamise samples. 

Because wet weight was the only reportable measurement for pre-combustion arrays, all 

values were based upon wet weight for each sample. The density histogram was fit with a 

gamma distribution to describe the variability in bulk density per voxel. 

Mass estimations were performed only for pre-combustion arrays because 

predicting mass for post-combustion arrays would involve a separate density distribution 

that was not producible from the available data. Using the empirical volume adjustment and 

the density distribution, mass was predicted for the 13 pre-combustion chamise shrubs. 

Mass was predicted by first adjusting the volume according to the volume loss distribution. 

This was done by producing a random array of values based on the logistic distribution for 

volume adjustment. The resulting values produced a number of voxels to add to the partial 

volume to provide a logical voxel count that included an adjustment for the missing volume 
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on the interior of the shrub. With the adjusted volume a gamma distribution for density was 

then applied to each voxel. For each voxel within a shrub or branch a random density value 

was selected from the gamma distribution. The density values were used to derive masses 

that were then summed to produce a total mass for the shrub. The resulting total mass was 

the predicted weight based on the TLS produced volume. Total predicted mass was then 

plotted against the actual mass measurements for each sample and fit with a linear 

regression model. 

b) Results 
The distribution of voxel densities was best represented by a gamma distribution, as 

the majority of the values were small (FIGURE II-N). The voxel densities of chamise voxels 

ranged from .009 to 1.805 g/voxel. The 75th percentile of the density distribution was at 

0.332 g/voxel showing that the majority of density values for chamise were low and very 

few densities were large by comparison. The gamma distribution fit to the data estimated a 

shape of 1.06 and a rate of 4.03 with an AIC of -88.7. The empirical data were also fit to a 

Weibull distribution which reported an AIC of -88.5. 

 

 

FIGURE II-N. HISTOGRAM OF VOXEL DENSITIES FOR CHAMISE SAMPLE WITH PREDICTED GAMMA DISTRIBUTION. 

BARS INDICATE OBSERVED FREQUENCIES AND THE LINE INDICATES THE GAMMA DISTRIBUTION FIT. 

Predicted mass estimates consistently overestimated the observed mass 

measurements, but the predicted mass produced a linear regression model that accounted 

for ~59% of the variability within the measured mass values (Adj. R2: 0.598) (FIGURE II-O). 
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The linear model produced was robust (F-Statistic: 18.85 on 1 and 11 DF). The slope for the 

model was significant, but showed a prediction curve that was very close to a 1:1 

relationship (Estimate: 1.022, P-Value: 0.00117). The intercept was not significant 

(Estimate: -3295, P-value: 0.1104) but helped to account for the majority of over-predicting 

mass. The resulting model is shown below, where MEmp is the empirical, measured mass and 

MPred is the predicted mass value:   

                        

 

 

FIGURE II-O. TLS VOLUME PREDICTED MASS PLOTTED AGAINST MEASURED MASS VALUES. 

c) Analysis 
The linear regression model showed that using TLS-produced volumes to predict 

mass is a viable method of mass estimation without the need for destructive sampling. This 

portion of the research was meant to create a model that was to be validated against 

empirical observations and the one consistent measurement taken throughout this project 

was mass. By predicting mass from the voxel volume arrays, we were able to validate the 

descriptive capacity of the TLS derived data on a per-shrub basis. Applying a density 

distribution to each voxel within the volume allowed attribution of each piece of data with a 

randomized value representing of the range of densities observed within chamise shrubs. 

By attributing the data with an empirically defined range of densities, the linear regression 

model reveals that a high percentage of variability in measured mass was accounted for in 

estimated mass (FIGURE II-O).  

Accounting for missing data in the center of the shrubs introduced significant 

limitations to the methodology of creating shrub models. The statistical adjustment 
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approach completed was not meant to be a temporary solution to allow for more accurate 

inferences by applying measured, empirical data. Additionally, accounting for the missing 

voxels in the center would allow for better attribution of physical characteristics, rather 

than reliance on an empirical relationship. The empirical approach did allow us to account 

for missing volume data where it would have otherwise not been assessed. The result was a 

model that, although statistically descriptive, was ultimately creating a spatially 

heterogeneous model with characteristically homogenous attributes.  

E. SHRUB MODEL DISCUSSION 
The creation of a three-dimensional model that was representative of diffuse-form 

shrubs, but still usable from a data processing perspective, proved to be an achievable task. 

The model produced in this research was a reasonable, three-dimensional depiction of the 

shrubs studied. Ocular inspection of the digital models showed that the models were 

spatially explicit and the continuity of data on the surrounding edges represented a fairly 

good description of the exterior of all scanned samples. The developed methodology 

minimized the trans-location of points away from the target of interest but it was not 

possible to accurately differentiate points from one another within the hull of the shrub. 

The hole in the center of the shrub models indicated that occlusion is an issue for describing 

the interior of samples. While not achieved in this study, a shrub model that accounted for 

the missing volume in the center and could apply specific physical attributes would greatly 

impact the state of fuel bed and fire behavior modeling.   

The application of T-LiDAR made for a repeatable, efficient method for assessing the 

structure of a diffuse form that has historically been difficult to characterize. Using T-LiDAR 

to map structural properties across a landscape has proven to be effective (Akay, et al., 

2009), but the application of the technique at fine scales has only been recently attempted 

in the literature (Omasa, et al., 2007). Our goals with developing a methodology for T-LiDAR 

use on the scale of a single shrub were to create a spatial model for use in fire behavior 

simulation and produce a base of knowledge that can be used for further research. We have 

shown that the technology is effective at interpreting the structure to a higher degree of 

detail than traditional fuel models (Scott & Burgan, 2005). If the majority of variation in 

mass loss can be predicted on a fine scale, it is likely that the application of T-LiDAR will 

prove useful on broader scales. 
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The voxel arrays were highly descriptive and showed utility, but issues remain with 

the integrity of the data sets that must ultimately be addressed. The primary concern 

associated with using the laser to assess diffuse structures is shadowing. Occlusion of the 

interior of the shrubs was shown to impact the accuracy of the voxel volume descriptions in 

the center of the volumes. An empirically derived distribution was used to adjust the 

volume to represent a hypothetically fully filled volume for the purposes of this study. While 

this is a short-term fix to the problem of omitting interior material, it allowed an improved 

representation of the volumes for mass and bulk density prediction. A more robust solution 

could involve filling interior empty voxels by searching surrounding voxels for filled space 

and identifying those that are entirely surrounded by biomass. This solution still assumes 

that all space within the interior of the shrub is filled, yet this assumption is reasonable 

based on how the fuel beds were constructed. 

We found that ghosting when a diffuse target was in front of a discrete object (Phase 

I- Experiment One). The experiment in Phase I identified ghosting as a concern for scanning, 

specifically on the influence of discrete, bright backgrounds when scanning diffuse targets. 

This may have been from the instrument averaging points that had partial returns in 

multiple locations. So, if a laser point coincided with part of the target and part of the 

background, the laser reported that point in between the two actual locations. It is possible 

that ghosting also occurred within the structure of the diffuse-form target, without the 

influence of a background. With such a non-discrete target, points created in the interior of 

the model structure have the potential to be the result of partial-return point information 

that was averaged by the instrument (Béland, et al., 2014). There is no way to discern the 

accuracy of point location within the shrub structure with the information that was 

collected during experimentation and this is a subject that should be researched in the 

future. While this is a concern for scanning with a discrete object, the laser was shown to 

only be able to penetrate an average of 10-12 centimeters of the chamise or sagebrush 

shrubs. The data points within that penetration area would be averaged within that space in 

both location and intensity. This concern shows the need for further understanding of ghost 

points, but it is underscored by the inability of the laser to describe the whole depth of the 

shrub.  

The use of intensity to better describe characteristics of the target, although 

interesting, proved difficult to apply when creating the volume array models. We found that 

increased intensity values within a small area were associated with an increase of biomass 
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(Phase I- Experiment 3). While the general premise of the relationship could be applied to 

the full-shrub data sets, the values associated with the linear regression were not unusable 

for this purpose. The reason for the linear regression not being applicable was the scale of 

samples being used. In the 2 cm sample relationships, the average intensity used to model 

against biomass was an average for only that 2 cm sample with no surrounding values. The 

2 cm sample averages included partial return points around the edge (halo) that lowered 

the average intensity (FIGURE I-H). It was evident from whole shrub scans that the 2 cm voxels 

created from full shrubs did not have the same halo effect because the partial returns 

surrounding each point in the volume included point values from neighboring voxels. 

Rather than having low-intensity halo points, each 2 cm area in the shrub volumes had 

equivalent or higher intensity values contributing to the average intensity within the 

specified voxel. Applying the linear regression created in Phase I resulted in gross over-

estimations of total mass for the shrubs created in Phase II. While the estimates of mass 

were not accurate, the general principle of associating intensity with mass was a reasonable 

assumption (Phase I- Experiment 3). The relationship between intensity and mass could 

still prove useful with additional research. 

The product of this research was a volumetric description of a diffuse-form shrub 

that was surveyed prior to destructive sampling. The models produced describe three-

dimensional geometry and show heterogeneity within the sampled volume. The models 

created demonstrate the applicability of T-LiDAR technology in describing fuels in great 

detail while still retaining the structure and heterogeneity for other sampling, in our case, 

destructive sampling done through combustion or manual mass removal. When sampling 

fuel beds, traditional descriptions rely upon representation and estimation. For example, in 

order to model fuels in fire behavior, researchers have been forced to destructively sample 

a neighboring plot to produce an estimate, while using a separate plot in burn 

experimentation. We have shown how T-LiDAR can create a descriptive representation of 

the same sample that is used in combustion, thereby potentially improving the association 

between fuel model description and fire behavior model inputs. 

III. PROJECT DISCUSSION 

The motivation for this research stemmed from the need to improve 

characterization of fuel beds for physics-based fire behavior simulations and to develop 
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shrub fire models that consider spatial heterogeneity of fuel elements. Airborne LiDAR has 

been applied to map fuels across the landscape and has been shown to increase the 

descriptive capability of fuels modeling on broad scale samples (Andersen, et al., 2005).  

Our results indicated that T-LiDAR is applicable on fine-scale fuel beds as well as useful in 

the creation of three-dimensional descriptions. The project was successful in establishing 

sampling protocols for laboratory settings produced realistic three-dimensional 

descriptions of diffuse-form shrubs. The base of knowledge provided by this study provides 

a starting point for improving the methodology and application of this tool in natural 

environments. 

Diffuse-form shrubs were the target of interest for this research because of their 

atypical physiology and difficulty to describe in reliable, repeatable fashion. The species of 

interest were sagebrush and chamise, both of which are dominant species that make up 

primary components of two different wildland fire fuel models.  Sagebrush has been 

modeled as a fuel using the crown dimensions of the plant with high predictability and has 

been tested against various stages of the life-cycle of the sampled plants (Rundel & Parsons, 

1979; Frandsen, 1983; Cleary, et al., 2008). Chamise, on the other hand, has seen limited 

predictive evaluations of biomass and structure in the available literature (Countryman & 

Philpot, 1970). Obtaining crown dimensions was not addressed in this research because the 

data sets produced were more detailed and precise than field measurement and could allow 

for countless arbitrary selections of crown diameters. Additionally, the shrubs produced in 

the laboratory were artificial reconstructions of natural shrubs that were built to represent 

a variety of burning conditions, not necessarily natural shrub structures. Previous biomass 

assessments of diffuse form shrubs were completed using diameter and height 

measurements and were shown to be fairly descriptive of the shrub structures (Murray & 

Jacobson, 1982). The nature of TLS point clouds lend themselves to measuring diameter and 

height remotely without the need for manual measurements or altering the structure. While 

we did not pursue this approach during our study, the richness of TLS data sets easily allow 

for manipulation and the extraction of length, height, and width measurements. 

Fuel bed modeling in the past has been used to provide a quantification of natural 

fuels present on the landscape for the purpose of providing numerical comparisons and 

inputs for fire behavior modeling (Brown, et al., 1982; Scott & Burgan, 2005). The method 

developed in this thesis, while not a traditional fuel model, shows great potential to derive 

descriptive values necessary to make up fuel model descriptions. With little adaptation, 
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these models have proven useful in estimating volume and biomass, allowing the user to 

derive a rough estimation of bulk density. The estimation of bulk density derived in this 

study was a statistical distribution of the chamise samples that were harvested for this 

project. The methodology used to create a distribution of bulk density values represents 

progress in understanding the form of chamise and the range and variability of bulk density. 

The distribution of bulk densities derived during this study was appropriate for this specific 

research. However, the methodology could be broadened to account for a wider range of 

samples that are more representative of a chamise plant, as a whole, from stalk to tip.   

Our research shows its greatest potential outside of the laboratory and in the 

natural environment. The plants studied in this research are not only spatially 

heterogeneous within a single shrub, they are distributed heterogeneously across a 

landscape.  The use of LiDAR, is increasing in the available literature as a viable means to 

determine forest characteristics on the landscape (Hopkinson, et al., 2004; Watt & 

Donoghue, 2005; Akay, et al., 2009) and also in ecosystems other than forests, such as the 

sagebrush-steppe ecosystem (Vierling, et al., 2012). The ability to locate shrubs on a 

landscape and describe in greater detail their volume and distribution presents users with 

the ability to rapidly collect a per-plant assessment of biomass, rather than a line-intercept 

estimation of fuels present. Different methods of TLS data processing have shown to be 

highly descriptive of biomass as well, suggesting that there are several ways to interpret 

LiDAR data and arrive at reasonable assessments of aboveground biomass (Olsoy, 2013). 

Our methods focused on one approach, but the general techniques and measurements 

derived through volume-based biomass estimation have even more potential. More 

fundamental work researching and improving this line of application is warranted. 

The volumetric models presented here represent a substantial shift from traditional 

fuels models and simple fire behavior model inputs. Traditional fuels models assume 

homogeneity and continuity, which is a largely unrealistic description of landscape fuel 

beds (Anderson, 1982; Scott & Burgan, 2005). These assumptions are made in order to meet 

the requirements of simple fire behavior models that are used widely in operational fire 

management (Rothermel, 1972). Three-dimensional, detailed, computational fluid 

dynamics models have demonstrated sensitivity to heterogeneity in tree crowns (Parsons, 

et al., 2011), lending credibility to the argument that a diffuse-form shrub might better be 

described in detail, rather than in uniformity. This assumption has not yet been tested in 

new fire models, but needs to be before much additional TLS research is completed. 
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Understanding the heterogeneity of landscape fuel beds has been the subject of research 

using TLS in other, more continuous fuel types and is being lauded as a method to connect 

fire behavior models with empirical studies in an effort better predict fire dynamics and 

mixed fire effects (Hiers, et al., 2009). While rudimentary in their descriptive capability, the 

shrub models that were created in our study represent an initial step in the sampling 

diffuse-form shrubs for the purpose of characterizing the heterogeneity of a sparse and 

complex fuel bed in its natural environment. The benefit of using TLS in this setting allows 

for a preliminary description of the dynamism of the fuel structure and distribution. This 

description can then be used for fire behavior studies without having to generalize the 

landscape. By increasing the descriptive capability of fuels models we show great potential 

to increase the predictive ability of fire behavior models to better understand fire on the 

landscape and both its physical and ecological dynamism. 

IV. CONCLUSIONS 

The research conducted in this thesis has shown a novel application for T-LiDAR 

measurement of fuel beds. The difficulty in classifying sagebrush and chamise stems from 

their atypical forms and biomass distribution patterns. We have identified necessary steps 

for the using T-LiDAR in confined spaces that included correcting for range and reducing 

the number of falsely represented points. We developed a data processing method that 

produces a voxelized volume array that is heterogeneous and representative of the actual 

shrub and not a generalized statistical estimation. The investment involved in creating 

volumetric arrays from T-LiDAR data requires substantial data processing capabilities and 

time for sampling. However, the resulting product is an accurate description of where 

material exists in three dimensions, except the centers of wide fuel beds. Manual sampling 

and description of diffuse form shrubs would involve substantially more time investment, 

likely lead to the alteration of the subject of study, and produce a less geometrically correct 

subject. With limited ways to create models of shrubs, T-LiDAR is one of the few tools that 

allow for the creation of a model that maps more-or-less directly to the sampled shrub. 

 The volume arrays created in this research are useful in characterizing the amount 

and location of biomass lost during combustion. They have also shown the ability to 

determine biomass in advance of altering a sample. TLS allows users to collect observations 

for a different experimental purpose while still collecting highly precise data about the 
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sample being studied. By increasing the amount of vegetation descriptions created from T-

LiDAR data, the field will expand in both the processing capacity and application of the data 

sets. T-LiDAR data sets are poised to become a very beneficial tool in multiple fields, one of 

particular interest being fire behavior modeling. 

This research is novel and fundamental. It presents a base of knowledge that merits 

expanded research and wider application. This is a necessary first step and a feasible 

method to improve fuels descriptions and our understanding of the role physiological 

structure plays in the dynamism of fire behavior.  Specific future work should include 

applying TLS generated fuel bed models in fluid dynamics fire behavior models to test for 

sensitivity to fuel bed heterogeneity. Additionally, this research should be applied in natural 

environments to test the utility on larger scales on the landscape. If the new generation of 

fire behavior models prove sensitive to TLS derived fuel bed models and methodologies are 

developed for landscape-scale TLS assessments, an ideal product would be a system that 

incorporates heterogeneous fuel beds and provides highly descriptive and accurate fire 

behavior predictions for use in research and in fire management.  
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APPENDICES 

DATA PROCESSING WORKFLOW 
Scan Collection 
 The process begins with the data collection. In the interest of consistency, we should 

be specifying a four meter range with 1.0mm spot spacing for every scan. Try to have the 

front of the sample (nearest to the scanner) ranged at 4 m, and have the sample built away 

from the scanner head. We can omit the 3rd scan, since there is no way to angle the scanner 

for an equal sampling in 3 directions. 2 scan directions, 180° from each other will be 

sufficient for data collection. The reasoning for this is best explained by imagining how the 

laser would scan a ball. A round object can be seen completely from 2 sides, but when you 

include a 3rd side without adding another scan from the 4th, the 3rd side becomes over-

sampled and the point cloud will show a higher density of points on the side of the 3rd scan. 

The naming scheme for each sample should indicate the run number and scan direction. 

Document the interpretation of the name in the lab notebook. For the purposes of stitching, 

be sure there are some bright, hard surfaces with discrete corners or angles. Also, there 

should be sufficient external geometry so that auto-align will work (just the sample won’t 

provide for good auto-align). 
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FIGURE IV-A. INSTRUMENT COLLECTING SCAN INFORMATION OF SAGEBRUSH SAMPLE IN RIVERSIDE BURN 

FACILITY. 

Data Processing 
Parsing 

When parsing the data, apply a range gate to each scan. For the shrubs in Riverside, 

an acceptable gate was 7 m. Parse into a .pif file as well as a .xyz file. The intensity output 

should be 16 bit-raw format. When parsing, make sure the box for ‘keep saturated’ is not 

checked. The reflective tape will saturate the laser and produce ghost points through the 

scene, it is best to just omit the saturated readings. 
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FIGURE IV-B. ILRIS PARSER 5.0.2.7 SOFTWARE WITH SETTINGS DIALOGUE BOX. 

Aligning-.pif 

 Alignment can be done before the IDL code to correct for range and intensity 

because it is done using the .pif files in IM Align. Using the bright points placed in the scene 

start with an n-pair alignment using 4+ common points between the two scans. When you 

are aligning the scans, be consistent about which point cloud you upload first and which one 

you lock. For the chamise shrubs in December, I consistently locked the East scan and 

stitched to that. In retrospect, it might be beneficial to lock the West scan so that fire can 

move in a positive direction on the X axis as it propagates through the shrub. Either way 

should work, just be consistent. After the scans are sufficiently aligned, export the 

alignment matrices. I placed each alignment matrix in the main folder for the shrub that it 

corresponds to. The matrix should be easy to find. 
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FIGURE IV-C. POLYWORKS IMALIGN SOFTWARE ALIGNING TWO POINT CLOUDS. 

Correcting for range and 16 bit intensity 

As we discovered early into the process, intensity averages change with a change in 

the range to the target, which were particularly notable in close-range scans. Each point 

cloud needs to be corrected for both the intensity range relationship, and the 16 bit raw 

intensity needs to be converted to the 9 bit raw value that it actually is. This is done using 

Eric’s code ‘normalizei.pro’ in IDL. When you run this code it will create a second file in the 

same location, by the same name, with an extension of .xyz.xyz. Cut this file and paste it into 

a new folder titled ‘Corrected.’  It is important that this be done before aligning the .xyz files 

because the points need to be corrected relative to the scanner head, not to each other. 

Aligning and Merging-.xyz 

Taking the files that are in the ‘Corrected’ folder, you can then use Eric’s other code 

‘TLSprocessor.pro’ in IDL to apply the alignment matrices to the corresponding .xyz file. 

When it asks what to save the file as, keep the same name, but place it in a folder labeled 

‘Aligned.’  After each file has been aligned, use ‘TLSprocessor.pro’ to merge the scans 

together. I have just been saving these files in the main folder corresponding to the sample. 

The file name can be shortened here to #pre or #post. 
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Clipping 

The first step to clipping the merged file is to open it using IM Survey. Once the point 

cloud is opened, using View->Annotation->Coordinate Annotation-> Select from Picking, 

manually select the extent of the bounding box to be clipped. Manually record the extend for 

X [#,#], Y [#,#], and Z [#,#].  

The format of the file coming from TLSprocessor.pro doesn’t have a header and also 

has spaces in between the values. Using a text editor, I have been using Boxer, do a find and 

replace search where all spaces “ “ are replaced with no space “”. Once it has completed, 

save the file with a .csv extension so that it can be imported into Arc. 

 

FIGURE IV-D. POLYWORKS IMSURVEY SOFTWARE SELECTING A BOUNDING BOX. 

In Arc 

This is where the bulk of the actual clipping happens and gets to be pretty involved. 

Using the .csv file for the point cloud, add XY data to the layer in ArcMap. This is where it is 

useful to pay attention to how the point cloud looked in IM Survey so you know which plane 

to project. If it has to start somewhere, start by projecting x as x and z as y. As the points are 

loading, right click on the layer and open the query builder. Apply the bounding box that 

was manually recorded from IM Survey by building the definition of x># AND x<# (same for 
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Y and Z). After the bounding box has been applied, right click and export the file as a 

shapefile and add to the map as a layer. Remove the layer that isn’t a shapefile because it 

can’t be edited. Using the shapefile, select elements by lasso in order to remove the 

ghosting, or noise points, from around the actual structure of the shrub. When the elements 

are selected, right click and export the selected elements as a shapefile and save it as: 

#(pre/post)(XZ,XY,YZ)clip to show which plane has been clipped. After the shapefile has 

been exported, you will need to open the attribute table and export the table as a text file. 

When you do this, be sure to turn off any extra columns that arc created (FID, Shape, etc). 

Once the text file is exported you can load the file into arc the same way as before (add XY 

data) until it has been clipped on all 3 planes (if necessary). The order is unimportant, what 

does matter is that you clip as much as possible. If unsure about whether or not there are 

still ghost/noise points, any of the text files can be opened in IM Survey and visually 

assessed. 

 

FIGURE IV-E. ARCMAP 10 PROJECTING POINT CLOUD ON THE X-Z PLANE FOR A SAGEBRUSH SAMPLE. 

Voxel Array 
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The final clipped text file should have the format “FID”,”x”,”y”,”z”,”i” with a blank 

column under the FID. This is how the file will be read into IDL for the voxelizing code. 

Eric’s code for the voxel array creation is ‘voxel.pro’ and can be run with a text file. The 

output will be a file called “voxellist” so be sure to keep track of which sample you are 

voxelizing so you can immediately save it with a meaningful name. The file name I used was: 

voxel#pre/post. 

 

DESCRIPTIVE STATISTIC SPREADSHEETS 

PHASE I-EXPERIMENT 1 
Distance-the distance between the diffuse target and the discrete background in centimeters 
Ghost-the number of points generated between the target and the background 
Total-the total number of points making up the point cloud of the target and area ahead of the 
background 
Logghost-Log base 10 values of the number of ghost points 
TABLE IV-1. DESCRIPTIVE STATISTICS FOR THE NUMBER OF GHOST POINTS 

distance ghost total logghost 

40 45498 106995 4.657992 

50 49795 110433 4.697186 

70 45739 93533 4.660287 

80 16794 74047 4.225154 

90 4560 71158 3.658965 

100 1779 89597 3.250176 

150 2701 164032 3.431525 

200 21 164349 1.322219 

250 7 164386 0.845098 

 

PHASE I-EXPERIMENT 2 
Sample-Number of 2 cm sample being scanned 
Direction-Direction the TLS instrument was pointed during the scan, S being towards the South 
and N being towards the North 
Range-Distance between the 2 cm sample targets and the TLS instrument, in meters 
Mean-Mean intensity of laser return values for sample 
Sum-Sum of intensity values for sample 
TABLE IV-2. DESCRIPTIVE STATISTICS FOR RANGE-INTENSITY RELATIONSHIP WITHIN 3.5-6 M. 

sample direction range mean sum 

101 S 6 138 72032 

101 S 5.5 157 77326 

101 S 5 147 67880 

101 S 4.5 142 65403 
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101 S 4 142 68442 

101 S 3.5 129 43610 

101 N 6 167 73974 

101 N 5.5 168 70594 

101 N 5 168 67885 

101 N 4.5 165 65214 

101 N 4 162 65072 

101 N 3.5 151 50827 

102 S 6 172 120697 

102 S 5.5 167 108588 

102 S 5 166 103770 

102 S 4.5 171 108526 

102 S 4 161 105617 

102 S 3.5 161 74564 

102 N 6 171 120919 

102 N 5.5 171 107666 

102 N 5 169 104166 

102 N 4.5 167 102448 

102 N 4 167 104945 

102 N 3.5 163 83543 

103 S 6 165 67272 

103 S 5.5 146 70391 

103 S 5 149 67556 

103 S 4.5 145 66195 

103 S 4 138 34535 

103 S 3.5 131 43756 

103 N 6 157 79063 

103 N 5.5 148 70143 

103 N 5 151 71360 

103 N 4.5 149 70436 

103 N 4 142 68238 

103 N 3.5 131 51243 

104 S 6 154 103670 

104 S 5.5 164 99909 

104 S 5 165 94488 

104 S 4.5 162 90176 

104 S 4 165 89688 

104 S 3.5 161 62302 

104 N 6 174 112038 

104 N 5.5 176 105492 

104 N 5 185 111610 
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104 N 4.5 179 108746 

104 N 4 166 99648 

104 N 3.5 161 78683 

105 S 6 97 35298 

105 S 5.5 107 34232 

105 S 5 103 31581 

105 S 4.5 99 29648 

105 S 4 86 26286 

105 S 3.5 91 19032 

105 N 6 97 32071 

105 N 5.5 104 33802 

105 N 5 103 34433 

105 N 4.5 103 32224 

105 N 4 82 25763 

105 N 3.5 81 19628 

106 S 6 167 111202 

106 S 5.5 169 106292 

106 S 5 181 113475 

106 S 4.5 175 105115 

106 S 4 155 93730 

106 S 3.5 152 63091 

106 N 6 157 104744 

106 N 5.5 161 102496 

106 N 5 161 97007 

106 N 4.5 165 100707 

106 N 4 158 95700 

106 N 3.5 153 76767 

107 S 6 184 151605 

107 S 5.5 185 141384 

107 S 5 185 137381 

107 S 4.5 183 137671 

107 S 4 179 140015 

107 S 3.5 172 96757 

107 N 6 177 173406 

107 N 5.5 176 164244 

107 N 5 173 157473 

107 N 4.5 179 165896 

107 N 4 172 149837 

107 N 3.5 163 119093 

108 S 6 161 62797 

108 S 5.5 159 58899 
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108 S 5 157 55752 

108 S 4.5 157 55609 

108 S 4 150 56816 

108 S 3.5 145 38662 

108 N 6 140 71854 

108 N 5.5 145 68916 

108 N 5 150 68462 

108 N 4.5 144 64233 

108 N 4 136 61797 

108 N 3.5 124 42680 

109 S 6 163 119832 

109 S 5.5 167 113550 

109 S 5 169 110347 

109 S 4.5 164 107833 

109 S 4 160 109918 

109 S 3.5 152 74995 

109 N 6 164 118404 

109 N 5.5 168 112778 

109 N 5 165 109151 

109 N 4.5 164 108036 

109 N 4 160 109304 

109 N 3.5 154 86984 

110 S 6 152 75792 

110 S 5.5 146 65382 

110 S 5 142 60969 

110 S 4.5 141 59792 

110 S 4 137 61838 

110 S 3.5 131 42831 

110 N 6 169 67118 

110 N 5.5 167 62625 

110 N 5 167 61554 

110 N 4.5 166 60596 

110 N 4 155 59329 

110 N 3.5 150 46988 

 

PHASE I-EXPERIMENT 3 
Sample-Number of sample in scan 
Type-Descriptive variable of the type of sample being scanned: Terminal being the end piece of 
a branch, Branch being a section of branch wood prior to the teriminus, and Fork being a 
location where the branch forks 
Dia-Diameter of sample in millimeters 
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Needles-Count of the number of needles on the sample 
Bunches-Count of the number of clusters where needles were bunched on the sample 
Forks-Number of times the sample forked 
Count-The number of TLS returns for the sample scan 
i-Mean intensity for the TLS scan 
Sum-Sum of intensity values for the TLS scan 
Wweight-weight of the sample prior to drying in grams 
Dweight-weight of the sample after oven drying in grams 
 
TABLE IV-3. DESCRIPTIVE STATISTICS FOR 2 CM CHAMISE SAMPLES 

sample type dia needles bunches forks count i sum wweight dweight 

1 Terminal 1 29 7 0 353 95 33519 0.023 0.019 

2 Terminal 1 24 8 0 284 112 31846 0.018 0.012 

3 Branch 2 50 8 0 665 156 103799 0.197 0.173 

4 Branch 2 40 5 0 425 158 67146 0.101 0.087 

5 Fork 2 27 5 2 479 165 79038 0.179 0.15 

6 Fork 2 10 4 2 555 158 87613 0.157 0.137 

7 Branch 5 0 0 0 269 148 39772 0.357 0.337 

8 Branch 5 0 0 0 365 160 58470 0.332 0.312 

9 Fork 5 55 13 2 935 178 166470 0.449 0.415 

10 Fork 5 86 20 5 1095 191 209174 0.718 0.652 

11 Terminal 1 34 8 0 281 128 35912 0.038 0.031 

12 Terminal 1 20 7 0 280 116 32482 0.021 0.015 

13 Terminal 1 17 5 0 288 136 39169 0.018 0.014 

14 Branch 3 25 5 0 373 165 61621 0.146 0.136 

15 Branch 2 40 7 0 340 160 54454 0.125 0.111 

16 Branch 4 35 7 0 485 178 86291 0.276 0.254 

17 Fork 4 47 9 2 598 177 105815 0.274 0.253 

18 Fork 4 115 23 4 812 190 154363 0.428 0.398 

19 Fork 3 116 27 5 1088 177 192627 0.455 0.423 

21 Branch 11 0 0 2 763 175 133487 1.518 1.424 

22 Branch 8 0 0 0 513 177 90811 0.988 0.93 

23 Fork 10 52 11 5 1205 173 208455 1.541 1.443 

24 Fork 7 56 17 5 963 184 177226 0.839 0.786 

25 Fork 6 71 12 3 837 188 157405 0.823 0.764 

26 Fork 4 33 7 1 601 160 96229 0.195 0.178 

27 Branch 4 10 3 0 325 157 50973 0.329 0.306 

28 Fork 4 39 9 1 582 168 97854 0.254 0.233 

29 Fork 3 55 14 5 734 183 134290 0.332 0.31 

30 Terminal 2 66 4 0 419 141 59035 0.088 0.081 

31 Terminal 1 20 6 0 359 133 47740 0.039 0.037 

32 Fork 2 33 10 1 502 171 85883 0.16 0.148 

33 Fork 3 70 18 5 962 176 169319 0.395 0.368 
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34 Fork 6 27 8 1 485 184 89234 0.659 0.614 

35 Fork 10 12 3 2 784 185 145066 1.21 1.136 

36 Fork 4 24 8 1 583 164 95552 0.171 0.161 

37 Branch 1 24 4 0 237 138 32760 0.048 0.047 

38 Branch 7 0 0 0 400 172 68802 0.675 0.638 

39 Branch 1 27 7 0 318 136 43277 0.029 0.028 

40 Fork 7 64 17 4 743 180 133788 0.831 0.777 

41 Fork 11 12 3 2 711 184 130865 1.805 1.692 

42 Fork 3 40 11 2 588 173 101773 0.164 0.156 

43 Branch 1 25 5 0 343 145 49802 0.054 0.046 

44 Terminal 1 31 6 0 352 160 56346 0.045 0.043 

45 Fork 5 59 13 6 673 171 115095 0.566 0.532 

46 Branch 8 0 0 0 496 162 80401 0.594 0.559 

47 Branch 7 30 6 1 530 182 96519 0.684 0.643 

48 Terminal 1 65 8 0 443 170 75391 0.111 0.104 

49 Branch 2 41 6 0 411 154 63363 0.109 0.102 

50 Branch 2 32 7 0 377 133 50133 0.054 0.05 

61 Branch 10 0 0 0 498 177 88220 1.168 1.102 

62 Fork 5 16 7 3 538 161 86695 0.488 0.46 

63 Branch 2 0 0 0 275 123 33802 0.062 0.059 

64 Fork 2 29 9 3 554 157 86908 0.119 0.111 

65 Fork 1 59 9 1 468 147 68799 0.082 0.076 

66 Fork 3 43 11 3 728 176 128212 0.295 0.277 

67 Terminal 1 41 6 0 419 139 58305 0.051 0.046 

68 Branch 1 27 4 0 359 159 57136 0.074 0.066 

69 Fork 3 42 8 5 536 175 93841 0.188 0.169 

70 Branch 6 5 2 0 333 159 52992 0.363 0.337 

71 Fork 11 25 7 3 852 188 160144 1.644 1.541 

72 Fork 3 27 6 1 582 169 98295 0.157 0.147 

73 Fork 3 51 13 3 639 166 106075 0.153 0.143 

74 Branch 5 8 2 0 447 166 74162 0.347 0.329 

75 Branch 2 28 5 0 321 157 50473 0.053 0.05 

76 Terminal 1 38 7 0 342 154 52646 0.047 0.046 

77 Fork 4 37 9 2 619 169 104629 0.375 0.355 

78 Branch 1 15 4 0 260 137 35632 0.035 0.033 

79 Branch 2 27 5 0 328 150 49143 0.05 0.05 

80 Terminal 1 45 7 0 338 154 52022 0.033 0.033 

81 Fork 6 29 7 4 768 184 141310 0.56 0.526 

82 Branch 1 32 4 0 376 142 53451 0.053 0.05 

83 Terminal 1 68 8 0 311 151 46907 0.028 0.027 

84 Fork 4 55 7 4 800 178 142390 0.479 0.451 
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85 Branch 2 73 6 0 469 158 74159 0.11 0.101 

86 Branch 4 0 0 0 397 165 65451 0.218 0.203 

87 Fork 3 35 7 1 622 156 97080 0.169 0.159 

88 Terminal 1 0 0 0 271 73 19775 0.009 0.008 

89 Branch 2 31 6 0 397 164 65135 0.078 0.074 

90 Fork 2 56 10 3 514 168 86275 0.179 0.166 

91 Terminal 1 78 7 0 353 161 56791 0.035 0.032 

92 Fork 3 123 12 5 938 181 169733 0.425 0.385 

93 Branch 5 2 1 0 410 175 71750 0.352 0.333 

94 Branch 2 48 4 0 360 149 53593 0.06 0.055 

95 Fork 3 139 18 3 448 166 74336 0.084 0.08 

96 Fork 3 139 18 3 519 181 93982 0.185 0.175 

97 Fork 4 57 7 3 768 166 127408 0.414 0.388 

98 Branch 2 44 5 0 345 156 53786 0.044 0.044 

99 Terminal 1 47 3 0 344 143 49197 0.038 0.038 

100 Branch 1 35 4 0 286 151 43227 0.034 0.031 

 

PHASE I-EXPERIMENT 4 
Sample-Number for sample being scanned 
i-mean intensity for original TLS scan of sample 
sum-sum of intensity values for original TLS scan of sample 
ti-mean intensity for the TLS scan of sample after it was rotated 
tsum-sum of intensity values for the TLS scan of the sample after it was rotated 
TABLE IV-4. DESCRIPTIVE STATISTICS FOR ROTATIONAL GEOMETRY EXPERIMENT 

sample i sum ti tsum 

31 133 47740 135 47765 

32 171 85883 166 108973 

33 176 169319 170 152674 

34 184 89234 171 99184 

35 185 145066 175 145486 

36 164 95552 157 97058 

37 138 32760 135 43637 

38 172 68802 155 60171 

39 136 43277 131 45447 

40 180 133788 179 144918 

41 184 130865 186 132956 

42 173 101773 167 105665 

43 145 49802 153 56093 

45 171 115095 173 116578 

46 162 80401 166 83791 

47 182 96519 158 65512 

48 170 75391 171 79025 
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49 154 63363 157 68223 

50 133 50133 132 49960 

61 177 88220 178 91152 

62 161 86695 161 91278 

63 123 33802 136 32560 

64 157 86908 165 78852 

65 147 68799 150 70060 

66 176 128212 169 117482 

67 139 58305 151 53033 

68 159 57136 163 61360 

69 175 93841 174 111738 

70 159 52992 172 68991 

71 188 160144 178 131109 

72 169 98295 169 102488 

73 166 106075 166 107161 

74 166 74162 179 71074 

75 157 50473 153 50471 

76 154 52646 153 52325 

77 169 104629 169 86955 

78 137 35632 141 36993 

79 150 49143 158 55912 

80 154 52022 146 50534 

81 184 141310 185 146319 

82 142 53451 140 55840 

83 151 46907 148 46149 

84 178 142390 180 129068 

85 158 74159 163 86293 

86 165 65451 161 59005 

87 156 97080 150 75457 

88 73 19775 94 25899 

89 164 65135 164 68256 

90 168 86275 166 90389 

91 161 56791 159 53382 

92 181 169733 181 168456 

93 175 71750 180 72613 

94 149 53593 145 57000 

95 166 74336 167 75476 

96 181 93982 174 94523 

97 166 127408 160 119707 

98 156 53786 157 52801 

99 143 49197 144 57765 
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100 151 43227 157 45780 

 

PHASE II-COMBUSTION MASS LOSS 
Run-Number corresponding to the replication of sample that was scanned and burned 
Species-Type of plant species being combusted, sagebrush being sagebrush, Chamise being 
Chamise 
Preweight-measured mass of the sample prior to combustion 
Massloss-Difference in mass between pre- and post-combustion 
Postweight-measured mass of the sample following combustion 
Voxpre-number of voxels in the modeled volume occupied with material, prior to combustion 
Voxloss-difference in number of voxels in modeled volume between pre- and post-combustion 
Voxpost-number of voxels in the modeled volume occupied with material, following combustion 
TABLE IV-5. DESCRIPTIVE STATISTICS FOR COMBUSTION MASS AND VOLUME LOSS. 

run species preweight massloss postweight voxpre voxloss voxpost 

1 Sage 2263 360 1903 12327 4265 8062 

2 Sage 5272.2 2841 2431.2 17811 13052 4759 

3 Sage 5051.4 2752 2299.4 16405 13250 3155 

4 Sage 2176.1 267.5 1908.6 11338 3230 8108 

5 Sage 5199.4 2910 2289.4 16531 13618 2913 

6 Sage 5277.2 2878 2399.2 19067 17670 1397 

7 Sage 1941.5 1133.3 808.2 8683 6846 1837 

8 Sage 2161.7 1474 687.7 10024 8266 1758 

9 Sage 4293.6 3542 751.6 10943 9881 1062 

10 Sage 2950.3 1056 1894.3 7925 4488 3437 

11 Sage 2304.1 487 1817.1 8712 3181 5531 

12 Sage 5449.1 4113 1336.1 16540 13981 2559 

13 Sage 2199.4 1180 1019.4 10440 6780 3660 

14 Sage 2529.6 547 1982.6 12484 2692 9792 

15 Sage 5299.5 2758 2541.5 18492 11667 6825 

16 Sage 5308 3303 2005 17958 14365 3593 

1 Chamise 2990 154 2836 29381 6986 22395 

2 Chamise 6638 3090 3548 29803 27002 2801 

3 Chamise 2613 847 1766 23690 12346 11344 

4 Chamise 5065 3001 2064 26267 20762 5505 

5 Chamise 4643 973 3670 29063 9581 19482 

6 Chamise 6125 509 5616 36743 7962 28781 

7 Chamise 5061 710 4351 32460 7849 24611 

8 Chamise 3851 740 3111 27157 5719 21438 

9 Chamise 5227 3264 1963 28979 20939 8040 

10 Chamise 3647 1755 1892 26499 16826 9673 

11 Chamise 8036 2119 5917 39070 17776 21294 

12 Chamise 4816 2141 2675 29518 14151 15367 
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13 Chamise 4549 2977 1572 27630 23964 3666 

 

PHASE II-SIMULATED MASS LOSS 
Branch-Number corresponding to the sample branch being scanned 
Scan-number corresponding to the sequence of scans of the sample 
Voxels-number of voxels in the modeled volume occupied with material 
wweight-total wet mass of sample at the time of scan in grams 
dweight-total dry mass of sample in grams 
replicate-method of mass removal during experimentation: Foliage + Diameter being the sample 
where foliage was removed initially then branch wood was removed by a sequentially increasing 
diameter, Diameter being where material was removed by a sequentially increasing diameter, 
Random being where an equivalent mass as the Diameter replication was removed with no 
cause for location on the sample branch 
TABLE IV-6. DESCRIPTIVE STATISTICS FOR SIMULATED MASS LOSS EXPERIMENT. 

branch scan voxels wweight dweight replicate 

1 0 2244 165.7 139.8 Foliage + Diameter 

1 1 2253 137.5 114 Foliage + Diameter 

1 2 1853 122.1 100.4 Foliage + Diameter 

1 3 565 95.9 76.9 Foliage + Diameter 

1 4 418 90.2 71.9 Foliage + Diameter 

1 5 273 84.2 66.7 Foliage + Diameter 

1 6 242 79.4 62.5 Foliage + Diameter 

2 0 1440 155.3 107.7 Diameter 

2 2 1303 145 100 Diameter 

2 3 892 102 67.9 Diameter 

2 4 543 82 53.5 Diameter 

2 5 248 64.9 41.9 Diameter 

2 6 150 53.5 34.5 Diameter 

3 0 1536 162.5 103 Random 

3 2 1570 152.2 96.5 Random 

3 3 1063 109.2 69 Random 

3 4 727 89.2 56.1 Random 

3 5 497 72.1 45.1 Random 

3 6 301 60.7 37.8 Random 

4 0 2871 210.9 176.4 Foliage + Diameter 

4 1 2752 178.3 147.3 Foliage + Diameter 

4 2 1993 148.6 120.9 Foliage + Diameter 

4 3 756 120.8 96.4 Foliage + Diameter 

4 4 378 108.4 85.3 Foliage + Diameter 

4 5 287 104.3 81.6 Foliage + Diameter 

4 6 258 100.5 78.2 Foliage + Diameter 

5 0 3237 230.7 182.6 Diameter 
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5 2 2110 172.2 130.6 Diameter 

5 3 974 144.9 107.2 Diameter 

5 4 538 130.7 95.8 Diameter 

5 5 385 121.6 88.7 Diameter 

5 6 304 112.8 82 Diameter 

6 0 2943 209.5 150.5 Random 

6 2 2168 151 105.9 Random 

6 3 1564 123.7 84.5 Random 

6 4 1095 109.5 73.6 Random 

6 5 663 100.4 66.7 Random 

6 6 370 91.6 60.1 Random 

 

PHASE II-INTERIOR VOLUME REPRESENTATION 
Depth of Penetration 

Sage-Count of number of voxels on one side of voxel model for sagebrush sample 
Chamise-Count of number of voxels on one side of voxel model for chamise sample 
TABLE IV-7. DESCRIPTIVE STATISTICS FOR HULL DEPTH 

sage chamise sage chamise sage chamise sage chamise 

5 10 5 4 6 11 6 8 

4 11 5 6 4 5 7 8 

5 8 18 6 4 5 4 5 

9 6 3 6 4 11 3 5 

7 4 3 6 6 8 9 6 

5 12 7 10 7 9 7 3 

4 9 5 4 7 8 7 3 

5 8 6 3 7 3 5 3 

5 5 5 4 5 12 5 4 

4 6 5 5 4 8 5 6 

2 9 6 5 6 3 1 2 

5 8 7 5 4 3 5 4 

6 4 4 5 4 7 3 5 

5 5 10 5 5 3 4 4 

4 2 5 4 3 6 5 7 

4 5 5 3 7 6 4 6 

5 8 5 5 8 5 3 4 

3 5 5 5 5 3 4 4 

4 4 4 10 4 3 3 5 

7 3 5 7 4 5 6 3 

4 8 4 2 3 4 5 6 

6 5 6 3 4 5 8 3 

4 4 4 4 2 7 4 3 
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3 3 5 8 5 8 6 3 

2 4 8 6 6 8 6 7 

1 8 6 8 6 7 6 5 

4 7 6 6 3 7 2 4 

2 9 8 5 10 7 4 14 

10 4 4 7 5 7 5 6 

8 7 9 4 4 6 3 4 

 

Missing Volume 

Species-Type of plant represented in the voxel model 
Number-Replication number during combustion experimentation 
x-Location on the X-axis where the data line was sampled 
z-Location on the Z-axis where the data line was sampled 
Filled-Number of voxels along the data line with more than 20 points filling the volume 
Empty-Number of voxels along the data line with less than 20 points filling the volume 
Prop-Proportion of empty to filled voxels on the data line 
Sum-Total number of voxel spaces along the data line from edge to edge of the shrub 
Prop_total-Proportion of the number of empty voxels to the total number of voxels along the 
data line  
TABLE IV-8. DESCRIPTIVE STATISTICS FOR MISSING VOLUME DISTRIBUTION. 

species number x z filled empty prop sum prop_total 

chamise 2 0.5 0.2 18 6 0.33 24 0.25 

chamise 2 0.5 0.4 19 8 0.42 27 0.296296 

chamise 2 0.5 0.6 15 4 0.27 19 0.210526 

chamise 2 0.8 0.2 1 0 0 1 0 

chamise 2 0.8 0.4 15 13 0.87 28 0.464286 

chamise 2 0.8 0.6 13 8 0.62 21 0.380952 

chamise 2 1.08 0.2 16 3 0.19 19 0.157895 

chamise 2 1.08 0.4 6 21 3.5 27 0.777778 

chamise 2 1.08 0.6 1 0 0 1 0 

chamise 4 0.28 0.2 19 5 0.26 24 0.208333 

chamise 4 0.28 0.4 9 12 1.33 21 0.571429 

chamise 4 0.28 0.6 12 8 0.67 20 0.4 

chamise 4 0.58 0.2 1 0 0 1 0 

chamise 4 0.58 0.4 16 3 0.19 19 0.157895 

chamise 4 0.58 0.6 1 0 0 1 0 

chamise 4 0.96 0.2 17 21 1.24 38 0.552632 

chamise 4 0.96 0.4 9 19 2.11 28 0.678571 

chamise 4 0.96 0.6 1 0 0 1 0 

chamise 6 0.32 0.2 18 4 0.22 22 0.181818 

chamise 6 0.32 0.4 18 22 1.22 40 0.55 

chamise 6 0.32 0.6 13 18 1.38 31 0.580645 
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chamise 6 0.64 0.2 1 0 0 1 0 

chamise 6 0.64 0.4 10 10 1 20 0.5 

chamise 6 0.64 0.6 16 23 1.44 39 0.589744 

chamise 6 1.02 0.2 15 1 0.07 16 0.0625 

chamise 6 1.02 0.4 15 4 0.27 19 0.210526 

chamise 6 1.02 0.6 6 19 3.17 25 0.76 

sage 5 0.38 0.1 1 0 0 1 0 

sage 5 0.38 0.3 7 12 1.71 19 0.631579 

sage 5 0.38 0.5 7 7 1 14 0.5 

sage 5 0.68 0.1 10 5 0.5 15 0.333333 

sage 5 0.68 0.3 12 16 1.33 28 0.571429 

sage 5 0.68 0.5 1 0 0 1 0 

sage 5 0.98 0.1 7 2 0.29 9 0.222222 

sage 5 0.98 0.3 18 19 1.06 37 0.513514 

sage 5 0.98 0.5 1 0 0 1 0 

sage 3 0.38 0.1 9 29 3.22 38 0.763158 

sage 3 0.38 0.3 9 17 1.89 26 0.653846 

sage 3 0.38 0.5 10 19 1.9 29 0.655172 

sage 3 0.64 0.1 9 32 3.56 41 0.780488 

sage 3 0.64 0.3 9 36 4 45 0.8 

sage 3 0.64 0.5 11 2 0.18 13 0.153846 

sage 3 0.9 0.1 8 4 0.5 12 0.333333 

sage 3 0.9 0.3 1 0 0 1 0 

sage 3 0.9 0.5 7 4 0.57 11 0.363636 

sage 1 0.44 0.1 11 2 0.18 13 0.153846 

sage 1 0.44 0.3 7 11 1.57 18 0.611111 

sage 1 0.44 0.5 1 0 0 1 0 

sage 1 0.78 0.1 1 0 0 1 0 

sage 1 0.78 0.3 11 4 0.36 15 0.266667 

sage 1 0.78 0.5 1 0 0 1 0 

sage 1 1.06 0.1 10 9 0.9 19 0.473684 

sage 1 1.06 0.3 9 9 1 18 0.5 

sage 1 1.06 0.5 1 0 0 1 0 

sage 7 0.38 0.1 1 0 0 1 0 

sage 7 0.38 0.3 11 6 0.55 17 0.352941 

sage 7 0.38 0.5 1 0 0 1 0 

sage 7 0.6 0.1 1 0 0 1 0 

sage 7 0.6 0.3 11 13 1.18 24 0.541667 

sage 7 0.6 0.5 1 0 0 1 0 

sage 7 0.9 0.1 1 0 0 1 0 

sage 7 0.9 0.3 10 1 0.1 11 0.090909 
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sage 7 0.9 0.5 1 0 0 1 0 

sage 9 0.48 0.1 8 18 2.25 26 0.692308 

sage 9 0.48 0.3 1 0 0 1 0 

sage 9 0.48 0.5 1 0 0 1 0 

sage 9 0.78 0.1 10 16 1.6 26 0.615385 

sage 9 0.78 0.3 11 10 0.91 21 0.47619 

sage 9 0.78 0.5 1 0 0 1 0 

sage 9 1.02 0.1 11 11 1 22 0.5 

sage 9 1.02 0.3 11 9 0.82 20 0.45 

sage 9 1.02 0.5 1 0 0 1 0 

chamise 8 0.42 0.2 16 3 0.19 19 0.157895 

chamise 8 0.42 0.4 14 1 0.07 15 0.066667 

chamise 8 0.42 0.6 12 9 0.75 21 0.428571 

chamise 8 0.66 0.2 11 7 0.64 18 0.388889 

chamise 8 0.66 0.4 11 6 0.55 17 0.352941 

chamise 8 0.66 0.6 18 7 0.39 25 0.28 

chamise 8 0.92 0.2 11 8 0.73 19 0.421053 

chamise 8 0.92 0.4 16 8 0.5 24 0.333333 

chamise 8 0.92 0.6 19 9 0.47 28 0.321429 

chamise 10 0.48 0.2 16 4 0.25 20 0.2 

chamise 10 0.48 0.4 1 0 0 1 0 

chamise 10 0.48 0.6 15 12 0.8 27 0.444444 

chamise 10 0.76 0.2 16 17 1.06 33 0.515152 

chamise 10 0.76 0.4 1 0 0 1 0 

chamise 10 0.76 0.6 9 18 2 27 0.666667 

chamise 10 1.06 0.2 5 23 4.6 28 0.821429 

chamise 10 1.06 0.4 10 7 0.7 17 0.411765 

chamise 10 1.06 0.6 1 0 0 1 0 

chamise 12 0.54 0.2 10 22 2.2 32 0.6875 

chamise 12 0.54 0.4 12 3 0.25 15 0.2 

chamise 12 0.54 0.6 14 10 0.71 24 0.416667 

chamise 12 0.82 0.2 14 9 0.64 23 0.391304 

chamise 12 0.82 0.4 12 4 0.33 16 0.25 

chamise 12 0.82 0.6 10 13 1.3 23 0.565217 

chamise 12 1.16 0.2 12 6 0.5 18 0.333333 

chamise 12 1.16 0.4 10 10 1 20 0.5 

chamise 12 1.16 0.6 1 0 0 1 0 

sage 11 0.46 0.1 10 15 1.5 25 0.6 

sage 11 0.46 0.2 1 0 0 1 0 

sage 11 0.46 0.3 1 0 0 1 0 

sage 11 0.8 0.1 8 9 1.13 17 0.529412 
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sage 11 0.8 0.2 10 9 0.9 19 0.473684 

sage 11 0.8 0.3 1 0 0 1 0 

sage 11 1.06 0.1 9 3 0.33 12 0.25 

sage 11 1.06 0.2 9 7 0.78 16 0.4375 

sage 11 1.06 0.3 9 14 1.56 23 0.608696 

 

PHASE II-VOXEL BULK DENSITY 
Experiment-Experiment from which data was pulled: Sim_mass_loss corresponds to the 
simulated mass loss experiment, comb_mass_loss corresponds to the combustion 
experimentation, and isb_2_cm corresponds to the chamise characteristics within a 2 cm 
segment experiment. 
Run-Trial number in experiment 
Replicate-Style of sample 
Voxels-count of number of voxels in sample: Combustion samples have been adjusted for 
missing volume based on the volume distribution 
Wweight-mass in grams of sample 
Vox_density-Density of sample in grams per voxel 
TABLE IV-9. DESCIPTIVE STATISTICS FOR CHAMISE VOXEL DENSITY DISTRIBUTION. 

experiment run replicate voxels wweight vox_density 

sim_mass_loss 0 Foliage_Diameter 2244 165.7 0.074 

sim_mass_loss 1 Foliage_Diameter 2253 137.5 0.061 

sim_mass_loss 2 Foliage_Diameter 1853 122.1 0.066 

sim_mass_loss 3 Foliage_Diameter 565 95.9 0.170 

sim_mass_loss 4 Foliage_Diameter 418 90.2 0.216 

sim_mass_loss 5 Foliage_Diameter 273 84.2 0.308 

sim_mass_loss 6 Foliage_Diameter 242 79.4 0.328 

sim_mass_loss 0 Diameter 1440 155.3 0.108 

sim_mass_loss 2 Diameter 1303 145 0.111 

sim_mass_loss 3 Diameter 892 102 0.114 

sim_mass_loss 4 Diameter 543 82 0.151 

sim_mass_loss 5 Diameter 248 64.9 0.262 

sim_mass_loss 6 Diameter 150 53.5 0.357 

sim_mass_loss 0 Random 1536 162.5 0.106 

sim_mass_loss 2 Random 1570 152.2 0.097 

sim_mass_loss 3 Random 1063 109.2 0.103 

sim_mass_loss 4 Random 727 89.2 0.123 

sim_mass_loss 5 Random 497 72.1 0.145 

sim_mass_loss 6 Random 301 60.7 0.202 

sim_mass_loss 0 Foliage_Diameter 2871 210.9 0.073 

sim_mass_loss 1 Foliage_Diameter 2752 178.3 0.065 

sim_mass_loss 2 Foliage_Diameter 1993 148.6 0.075 

sim_mass_loss 3 Foliage_Diameter 756 120.8 0.160 
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sim_mass_loss 4 Foliage_Diameter 378 108.4 0.287 

sim_mass_loss 5 Foliage_Diameter 287 104.3 0.363 

sim_mass_loss 6 Foliage_Diameter 258 100.5 0.390 

sim_mass_loss 0 Diameter 3237 230.7 0.071 

sim_mass_loss 2 Diameter 2110 172.2 0.082 

sim_mass_loss 3 Diameter 974 144.9 0.149 

sim_mass_loss 4 Diameter 538 130.7 0.243 

sim_mass_loss 5 Diameter 385 121.6 0.316 

sim_mass_loss 6 Diameter 304 112.8 0.371 

sim_mass_loss 0 Random 2943 209.5 0.071 

sim_mass_loss 2 Random 2168 151 0.070 

sim_mass_loss 3 Random 1564 123.7 0.079 

sim_mass_loss 4 Random 1095 109.5 0.100 

sim_mass_loss 5 Random 663 100.4 0.151 

sim_mass_loss 6 Random 370 91.6 0.248 

comb_mass_loss 1 Chamise_pre 38379.55 2990 0.078 

comb_mass_loss 2 Chamise_pre 39009.6 6638 0.170 

comb_mass_loss 3 Chamise_pre 30919.61 2613 0.085 

comb_mass_loss 4 Chamise_pre 34262.39 5065 0.148 

comb_mass_loss 5 Chamise_pre 37938.27 4643 0.122 

comb_mass_loss 6 Chamise_pre 48019.63 6125 0.128 

comb_mass_loss 7 Chamise_pre 42492.92 5061 0.119 

comb_mass_loss 8 Chamise_pre 35628.05 3851 0.108 

comb_mass_loss 9 Chamise_pre 37857.56 5227 0.138 

comb_mass_loss 10 Chamise_pre 34669.29 3647 0.105 

comb_mass_loss 11 Chamise_pre 51004.03 8036 0.158 

comb_mass_loss 12 Chamise_pre 38628.61 4816 0.125 

comb_mass_loss 13 Chamise_pre 36045.71 4549 0.126 

isb_2_cm 1 Terminal 1 0.023 0.023 

isb_2_cm 2 Terminal 1 0.018 0.018 

isb_2_cm 3 Branch 1 0.197 0.197 

isb_2_cm 4 Branch 1 0.101 0.101 

isb_2_cm 5 Fork 1 0.179 0.179 

isb_2_cm 6 Fork 1 0.157 0.157 

isb_2_cm 7 Branch 1 0.357 0.357 

isb_2_cm 8 Branch 1 0.332 0.332 

isb_2_cm 9 Fork 1 0.449 0.449 

isb_2_cm 10 Fork 1 0.718 0.718 

isb_2_cm 11 Terminal 1 0.038 0.038 

isb_2_cm 12 Terminal 1 0.021 0.021 

isb_2_cm 13 Terminal 1 0.018 0.018 
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isb_2_cm 14 Branch 1 0.146 0.146 

isb_2_cm 15 Branch 1 0.125 0.125 

isb_2_cm 16 Branch 1 0.276 0.276 

isb_2_cm 17 Fork 1 0.274 0.274 

isb_2_cm 18 Fork 1 0.428 0.428 

isb_2_cm 19 Fork 1 0.455 0.455 

isb_2_cm 21 Branch 1 1.518 1.518 

isb_2_cm 22 Branch 1 0.988 0.988 

isb_2_cm 23 Fork 1 1.541 1.541 

isb_2_cm 24 Fork 1 0.839 0.839 

isb_2_cm 25 Fork 1 0.823 0.823 

isb_2_cm 26 Fork 1 0.195 0.195 

isb_2_cm 27 Branch 1 0.329 0.329 

isb_2_cm 28 Fork 1 0.254 0.254 

isb_2_cm 29 Fork 1 0.332 0.332 

isb_2_cm 30 Terminal 1 0.088 0.088 

isb_2_cm 31 Terminal 1 0.039 0.039 

isb_2_cm 32 Fork 1 0.16 0.160 

isb_2_cm 33 Fork 1 0.395 0.395 

isb_2_cm 34 Fork 1 0.659 0.659 

isb_2_cm 35 Fork 1 1.21 1.210 

isb_2_cm 36 Fork 1 0.171 0.171 

isb_2_cm 37 Branch 1 0.048 0.048 

isb_2_cm 38 Branch 1 0.675 0.675 

isb_2_cm 39 Branch 1 0.029 0.029 

isb_2_cm 40 Fork 1 0.831 0.831 

isb_2_cm 41 Fork 1 1.805 1.805 

isb_2_cm 42 Fork 1 0.164 0.164 

isb_2_cm 43 Branch 1 0.054 0.054 

isb_2_cm 44 Terminal 1 0.045 0.045 

isb_2_cm 45 Fork 1 0.566 0.566 

isb_2_cm 46 Branch 1 0.594 0.594 

isb_2_cm 47 Branch 1 0.684 0.684 

isb_2_cm 48 Terminal 1 0.111 0.111 

isb_2_cm 49 Branch 1 0.109 0.109 

isb_2_cm 50 Branch 1 0.054 0.054 

isb_2_cm 61 Branch 1 1.168 1.168 

isb_2_cm 62 Fork 1 0.488 0.488 

isb_2_cm 63 Branch 1 0.062 0.062 

isb_2_cm 64 Fork 1 0.119 0.119 

isb_2_cm 65 Fork 1 0.082 0.082 
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isb_2_cm 66 Fork 1 0.295 0.295 

isb_2_cm 67 Terminal 1 0.051 0.051 

isb_2_cm 68 Branch 1 0.074 0.074 

isb_2_cm 69 Fork 1 0.188 0.188 

isb_2_cm 70 Branch 1 0.363 0.363 

isb_2_cm 71 Fork 1 1.644 1.644 

isb_2_cm 72 Fork 1 0.157 0.157 

isb_2_cm 73 Fork 1 0.153 0.153 

isb_2_cm 74 Branch 1 0.347 0.347 

isb_2_cm 75 Branch 1 0.053 0.053 

isb_2_cm 76 Terminal 1 0.047 0.047 

isb_2_cm 77 Fork 1 0.375 0.375 

isb_2_cm 78 Branch 1 0.035 0.035 

isb_2_cm 79 Branch 1 0.05 0.050 

isb_2_cm 80 Terminal 1 0.033 0.033 

isb_2_cm 81 Fork 1 0.56 0.560 

isb_2_cm 82 Branch 1 0.053 0.053 

isb_2_cm 83 Terminal 1 0.028 0.028 

isb_2_cm 84 Fork 1 0.479 0.479 

isb_2_cm 85 Branch 1 0.11 0.110 

isb_2_cm 86 Branch 1 0.218 0.218 

isb_2_cm 87 Fork 1 0.169 0.169 

isb_2_cm 88 Terminal 1 0.009 0.009 

isb_2_cm 89 Branch 1 0.078 0.078 

isb_2_cm 90 Fork 1 0.179 0.179 

isb_2_cm 91 Terminal 1 0.035 0.035 

isb_2_cm 92 Fork 1 0.425 0.425 

isb_2_cm 93 Branch 1 0.352 0.352 

isb_2_cm 94 Branch 1 0.06 0.060 

isb_2_cm 95 Fork 1 0.084 0.084 

isb_2_cm 96 Fork 1 0.185 0.185 

isb_2_cm 97 Fork 1 0.414 0.414 

isb_2_cm 98 Branch 1 0.044 0.044 

isb_2_cm 99 Terminal 1 0.038 0.038 

isb_2_cm 100 Branch 1 0.034 0.034 

 
 
 

DATA PROCESSING CODE AND OUTPUT 

PHASE I-EXPERIMENT 1 
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Code 
library(lattice) 

library(car) 

ghost<-read.csv(file.choose()) 

summary(ghost) 

plot(ghost$logghost~ghost$distance, 

 ylab="Log 10 Number of Ghost Points", 

 xlab="Distance from Target to Background (cm)") 

fit<-lm(ghost$logghost~ghost$distance) 

summary(fit) 

coef<-summary(fit)$coeff 

coef 

int<-coef[1,1] 

slope<-coef[2,1] 

abline(int,slope) 

 

Output 
Call: 

lm(formula = ghost$logghost ~ ghost$distance) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.44683 -0.23222  0.02926  0.13978  0.70545  

 

Coefficients: 

               Estimate Std. Error t value Pr(>|t|)     

(Intercept)     5.63885    0.26681  21.135 1.34e-07 *** 

ghost$distance -0.01942    0.00201  -9.659 2.69e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.4052 on 7 degrees of freedom 

Multiple R-squared: 0.9302,     Adjusted R-squared: 0.9202  

F-statistic: 93.29 on 1 and 7 DF,  p-value: 2.689e-05 

 

PHASE I-EXPERIMENT 2 

Code 
library(lattice) 

library(car) 

library(lme4) 

range<-read.csv(file.choose()) 

summary(range) 

sample.direction<-as.factor(paste(range$sample, range$direction, 

sep="-")) 

boxplot(range$mean~sample.direction) 

type<-as.numeric(sample.direction) 

plot(range$mean~range$range, 

 col=type, 
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 pch=type, 

 ylab="Mean Intensity", 

 xlab="Range (m)", 

 xlim=c(3,7) 

 ) 

legend("bottomright", 

 levels(sample.direction), 

 pch=1:20, 

 col=1:20, 

 title="Sample and Direction" 

 ) 

mem<-lmer(range$mean~range$range + (1|sample.direction)) 

summary(mem) 

 

Output 
Call: 

Linear mixed model fit by REML  

Formula: range$mean ~ range$range + (1 | sample.direction)  

   AIC   BIC logLik deviance REMLdev 

 685.1 695.6 -338.6    683.2   677.1 

Random effects: 

 Groups           Name        Variance Std.Dev. 

 sample.direction (Intercept) 509.894  22.5808  

 Residual                      21.215   4.6059  

Number of obs: 100, groups: sample.direction, 20 

 

Fixed effects: 

            Estimate Std. Error t value 

(Intercept) 117.7750     5.8562   20.11 

range$range   7.7300     0.6514   11.87 

 

Correlation of Fixed Effects: 

            (Intr) 

range$range -0.501 

 

PHASE I-EXPERIMENT 3 

Code 
summary(r2cm) 

is.factor(r2cm$type) 

type<-as.numeric(r2cm$type) 

summary(lm(r2cm$i~log(r2cm$dweight))) 

anova(lm(r2cm$i~r2cm$dweight+r2cm$type)) 

plot(r2cm$i~log(r2cm$dweight), 

     col=type, 

     pch=type, 

     ylab="Intensity", 

     xlab="Log Value of Mass (g)", 

     ) 

legend("bottomright", 
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       levels(r2cm$type), 

       pch=1:3, 

       col=1:3, 

       title="Sample Type") 

tom<-lm(r2cm$i~log(r2cm$dweight)) 

dick<-lm(r2cm$i~log(r2cm$dweight)+r2cm$type) 

summary(dick) 

anova(tom,dick) 

 

 

Output 
Call: 

lm(formula = r2cm$i ~ log(r2cm$dweight)) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-47.396  -6.433   1.835   8.018  21.785  

 

Coefficients: 

                  Estimate Std. Error t value Pr(>|t|)     

(Intercept)        185.940      2.277   81.66   <2e-16 *** 

log(r2cm$dweight)   13.575      1.009   13.45   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 11.89 on 87 degrees of freedom 

Multiple R-squared: 0.6754, Adjusted R-squared: 0.6716  

F-statistic:   181 on 1 and 87 DF,  p-value: < 2.2e-16 

 

Call: 

lm(formula = r2cm$i ~ log(r2cm$dweight) + r2cm$type) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-47.538  -5.953   0.517   7.578  24.778  

 

Coefficients: 

                  Estimate Std. Error t value Pr(>|t|)     

(Intercept)        179.310      3.271  54.817  < 2e-16 *** 

log(r2cm$dweight)   11.314      1.333   8.486 5.93e-13 *** 

r2cm$typeFork        7.132      2.911   2.449   0.0164 *   

r2cm$typeTerminal   -4.146      4.063  -1.021   0.3104     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 11.51 on 85 degrees of freedom 

Multiple R-squared: 0.7029, Adjusted R-squared: 0.6924  

F-statistic: 67.04 on 3 and 85 DF,  p-value: < 2.2e-16  

 

Analysis of Variance Table 
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Model 1: r2cm$i ~ log(r2cm$dweight) 

Model 2: r2cm$i ~ log(r2cm$dweight) + r2cm$type 

  Res.Df   RSS Df Sum of Sq      F  Pr(>F)   

1     87 12305                               

2     85 11261  2    1044.2 3.9411 0.02308 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

PHASE I-EXPERIMENT 4 

Code 
summary(twist) 

twistregress<-lm(twist$i~twist$ti) 

summary(twistregress) 

plot.new() 

par(mfrow=c(1,2)) 

plot(twist$i~twist$ti, 

     ylab="Intensity-Rotated Samples", 

     xlab="Intensity") 

abline(0,1) 

twistsum<-lm(twist$sum~twist$tsum) 

summary(twistsum) 

plot(twist$sum~twist$tsum, 

     ylab="Sum of Intensity-Rotated Samples", 

     xlab="Sum of Intensity") 

plot(twist$intensity~twist$tintensity) 

abline(0,1) 

 

Output 
Call: 

lm(formula = twist$sum ~ twist$tsum) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

-23741  -4422  -1469   2565  31549  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -2.341e+03  3.332e+03  -0.702    0.485     

twist$tsum   1.027e+00  3.783e-02  27.158   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 9750 on 57 degrees of freedom 

Multiple R-squared: 0.9283, Adjusted R-squared: 0.927  

F-statistic: 737.6 on 1 and 57 DF,  p-value: < 2.2e-16 

PHASE II-COMBUSTION MASS LOSS 

Code 
summary(vol_mass_all) 
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plot(vol_mass_all$massloss~vol_mass_all$voxloss,     

     col=type, 

     pch=type) 

type<-as.numeric(vol_mass_all$species) 

plot.new() 

summary(lm(vol_mass_all$massloss~vol_mass_all$voxloss+ 

             vol_mass_all$species)) 

plot(vol_mass_all$massloss~vol_mass_all$voxloss,     

     col=type, 

     pch=type, 

     xlab="Volume Loss (voxels)", 

     ylab="Mass Loss (g)") 

legend("bottomright", c("Chamise","Sage"), pch = 1:2, col = 1:2, 

title = "Species") 

 

Output 
Call: 

lm(formula = vol_mass_all$massloss ~ vol_mass_all$voxloss + 

vol_mass_all$species) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

-860.6 -388.1  -57.9  258.5 1442.8  

 

Coefficients: 

                           Estimate Std. Error t value Pr(>|t|)     

(Intercept)              -982.45563  312.11713  -3.148   0.0041 

**  

vol_mass_all$voxloss        0.18269    0.01832   9.974 2.24e-10 

*** 

vol_mass_all$speciesSage 1276.43213  233.38615   5.469 9.79e-06 

*** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 562.5 on 26 degrees of freedom 

Multiple R-squared: 0.7953, Adjusted R-squared: 0.7796  

F-statistic: 50.51 on 2 and 26 DF,  p-value: 1.107e-09 

PHASE II-SIMULATED MASS LOSS 

R-Code 

summary(weightloss) 
summary(lm(weightloss$dweight~weightloss$voxels+weightloss$replic

ate)) 

rep<-as.numeric(weightloss$replicate) 

plot(weightloss$dweight~weightloss$voxels,     

     col=rep, 

     pch=rep, 

     xlab="Volume (voxels)", 

     ylab="Mass (g)") 

legend("bottomright", c("Foliage + Diameter", 
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                        "Diameter", 

                        "Random"),  

       pch = 1:3,  

       col = 1:3,  

       title = "Removal") 

 

Output 
Call: 

lm(formula = weightloss$dweight ~ weightloss$voxels + 

weightloss$replicate) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-25.9623  -7.6053  -0.7728  11.6145  21.5505  

 

Coefficients: 

                                 Estimate Std. Error t value 

Pr(>|t|)     

(Intercept)                     57.795796   4.814784  12.004 

8.92e-14 *** 

weightloss$voxels                0.035534   0.002527  14.061 

9.92e-16 *** 

weightloss$replicateRandom     -21.657127   5.429761  -3.989 

0.000335 *** 

weightloss$replicateSequential  -2.663618   5.456511  -0.488 

0.628574     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 13.8 on 34 degrees of freedom 

Multiple R-squared: 0.8632, Adjusted R-squared: 0.8511  

F-statistic:  71.5 on 3 and 34 DF,  p-value: 9.16e-15  

 

PHASE II-INTERIOR VOLUME REPRESENTATION 

Depth of Penetration Code 
hist(hull_voxel_depth_count$chamise) 

hist(hull_voxel_depth_count$sage) 

 

hull_depth<-

c(hull_voxel_depth_count$sage,hull_voxel_depth_count$chamise ) 

 

hist(hull_depth, 

     xlab="Voxels", 

     main="") 

 

library(fitdistrplus) 

 

norm<-fitdist(hull_depth, "norm") 

summary(norm) 
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plot(norm) 

 

summary(hull_depth) 

Depth of Penetration Output 
Fitting of the distribution ' norm ' by maximum likelihood  

Parameters :  

     estimate Std. Error 

mean 5.454167  0.1471663 

sd   2.279890  0.1040622 

Loglikelihood:  -538.3358   AIC:  1080.672   BIC:  1087.633  

Correlation matrix: 

     mean sd 

mean    1  0 

sd      0  1 

 

 
 

Missing Volume Code 
library(vcd) 

library(fitdistrplus) 

 

logis<-fitdist(hole_size_data$prop_total, "logis") 

summary(logis) 

plot(logis) 
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Missing Volume Output 
Fitting of the distribution ' logis ' by maximum likelihood  

Parameters :  

          estimate Std. Error 

location 0.3071524 0.02700370 

scale    0.1561923 0.01204362 

Loglikelihood:  -10.96602   AIC:  25.93203   BIC:  31.2963  

Correlation matrix: 

            location       scale 

location 1.000000000 0.005907653 

scale    0.005907653 1.000000000 

 

 
 

 

 

PHASE II-VOXEL DENSITY DISTRIBUTION 

Code 
lirbary(fitdistrplus) 

library(vcd) 

 

gamma<-fitdist(adj_chamise_density$vox_density, "gamma") 

summary(gamma) 

plot(gamma) 



 

83 

 

weibull<-fitdist(adj_chamise_density$vox_density, "weibull") 

summary(weibull) 

plot(weibull) 

 

Output 
Fitting of the distribution ' gamma ' by maximum likelihood  

Parameters :  

      estimate Std. Error 

shape 1.064906   0.112690 

rate  4.026085   0.538739 

Loglikelihood:  46.35221   AIC:  -88.70441   BIC:  -82.82113  

Correlation matrix: 

          shape      rate 

shape 1.0000000 0.7908214 

rate  0.7908214 1.0000000 

 
 

Fitting of the distribution ' weibull ' by maximum likelihood  

Parameters :  

       estimate Std. Error 

shape 0.9715045 0.05943920 

scale 0.2606213 0.02406447 

Loglikelihood:  46.29217   AIC:  -88.58434   BIC:  -82.70106  

Correlation matrix: 

          shape     scale 

shape 1.0000000 0.3353589 
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scale 0.3353589 1.0000000 

 

MASS PREDICTION 

Code 
library(vcd) 

library(fitdistrplus) 

 

logis<-fitdist(hole_size_data$prop_total, "logis") 

summary(logis) 

plot(logis) 

 

voxd<-combustion_density_chamise$voxels 

 

 

gamweight<-numeric(1) 

set.seed(1) 

i=1 

j=1 

while(i<=13) 

{ 

   

  j<-voxd[i] 

   

  gam<-rgamma(j, shape=1.191366, rate=4.436428 ) 
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  gamweight[i]<-sum(gam) 

  i<-i+1 

   

} 

 

gammod<-lm(combustion_density_chamise$wweight~gamweight) 

 

summary(gammod) 

 

 

plot(gamweight,combustion_density_chamise$wweight,  

     ylab="Measured Weight (g)", 

     xlab="Predicted Weight (g)") 

 

coef(gammod) 

 

abline(coef(gammod)) 

 

 

Output 
 
 
Call: 

lm(formula = combustion_density_chamise$wweight ~ gamweight) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-1841.9  -575.5    -1.3   529.4  1779.6  

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)    

(Intercept) -3295.2136  1897.6568  -1.736  0.11037    

gamweight       1.0222     0.2354   4.342  0.00117 ** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 937.7 on 11 degrees of freedom 

Multiple R-squared: 0.6315, Adjusted R-squared: 0.598  

F-statistic: 18.85 on 1 and 11 DF,  p-value: 0.001171  
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