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Abstract. Measured soilmoisture datamay improvewildfire probability assessments because soilmoisture is physically
linked to fuel production and live fuel moisture, yet models characterising soil moisture–wildfire relationships have not

been developed.We therefore described the relationships betweenmeasured soil moisture (concurrent and antecedent), as
fraction of available water capacity (FAW), and large ($405 ha) wildfire occurrence during the growing (May–October)
and dormant (November–April) seasons from 2000 to 2012 in Oklahoma, USA. Wildfires were predominantly grass and
brush fires but occurred across multiple fuel types including forests. Below-average FAW coincided with high wildfire

occurrence each season. Wildfire probability during the growing season was 0.18 when concurrent FAW was 0.5
(a threshold for plant water stress) but was 0.60 when concurrent FAW was 0.2 (extreme drought). Dormant season
wildfire probability was influenced not only by concurrent but also by antecedent FAW. Dormant season wildfire

probabilitywas 0.29 and 0.09when FAWduring the previous growing seasonwas 0.9 (near ideal for plant growth) and 0.2,
respectively. Therefore, although a wet growing season coincided with reduced wildfire probability that season, it also
coincided with increased wildfire probability the following dormant season, suggesting that themechanisms bywhich soil

moisture influences wildfire probability are seasonally dependent.
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Introduction

The ongoing proliferation of large-scale soil moisture moni-
toring networks (e.g. Oklahoma Mesonet, McPherson et al.

2007) and the advent of dedicated soil moisture satellites (e.g.

SMAP, Entekhabi et al. 2010) have created the opportunity to
develop innovativewildfire danger assessments that incorporate
soil moisture data. Improved assessments have the potential to

increase wildfire preparedness and reduce the negative effects
that wildfires have on humans. Wildfire suppression costs in the
US have approached US$2 billion annually (NIFC 2013), and in

2012, losses due to wildfires reached US$1 billion (Sutley
2014). Furthermore, recent changes in climate have resulted in
increased wildfire danger in North America (Jolly et al. 2015),

and the eight years in which wildfires were most widespread in
the US all occurred since 2000 (NIFC 2013). These recent
increases in wildfire danger highlight the need to refine current
wildfire danger assessments.

Wildfire danger rating systems such asOK–FIRE inOklahoma
in the US (Carlson 2010; JFSP 2011) and the US National Fire
Danger Rating System (NFDRS) (Bradshaw et al. 1983) rely on a
variety of environmental variables including air temperature,

relative humidity, wind speed, and precipitation to assess fire
danger. These variables have been used to estimate live fuel
moisture (LFM), a key influence on fire behaviour (Yebra et al.

2013). In the 1978 NFDRS, for example, herbaceous and woody
LFM estimates are used directly in model calculations, and they
also are involved in the transfer of fuel between live and dead

categories (Bradshaw et al. 1983). Typically, LFM is estimated
using weather data (Bradshaw et al. 1983; Forestry Canada Fire
Danger Group 1992; Viegas et al. 2001; Castro et al. 2003;

Dennison et al. 2008; Matthews 2014), using weather-derived
soil moisture metrics (Dimitrakopoulos and Bemmerzouk 2003;
Pellizzaro et al. 2007; Yebra et al. 2013) or satellite remote
sensing techniques (Chuvieco et al. 2002; Caccamo et al. 2012;

CSIRO PUBLISHING

International Journal of Wildland Fire 2016, 25, 657–668

http://dx.doi.org/10.1071/WF15104

Journal compilation � IAWF 2016 www.publish.csiro.au/journals/ijwf



Jurdao et al. 2012). In the absence of measured LFM, these
indirect estimates have been critical for assessing wildfire danger
in operational fire danger rating systems.

However, wildfire danger assessments informed by measured
soil moisture may be an improvement over existing techniques
because soil moisture directly influences the amount and rate of

water that can be supplied to growing vegetation. Plant–water
interactions are driven by the water potential gradient between
plants and soil, and when water demand by the plant exceeds the

rate at which water can be supplied by the soil, water potential
within the plant (and by extension LFM) decreases (Hillel 1998).
Pellizzaro et al. (2007) provided evidence for the potential
benefits of using measured soil moisture in wildfire danger

assessmentswhen they reported that itwasmore highly correlated
with LFM than weather variables or drought indices in shallow-
rooted perennial shrubs. Similarly, Qi et al. (2012) found that in

situ soil moisture measurements were more strongly correlated
with LFM in shrubs and deciduous trees thanwere several remote
sensing proxies that they investigated.

With continued advances in soil moisture monitoring, soil
moisture data are becoming widely available (Ochsner et al.
2013), but the link between measured soil moisture and wildfire

occurrence has only recently been studied. Our preliminary
work found that soil moisture expressed as fraction of available
water capacity (FAW) was among the strongest environmental
drivers of growing-season wildfire size in Oklahoma (Krueger

et al. 2015), a region where grass and brush fires account for the
majority of wildfires. Values of FAW typically range between 0
(no soil moisture available to plants) and 1 (maximum available

soil moisture). Values of FAW less than ,0.5 indicate condi-
tions of plant water stress (Allen et al. 1998), and values less
than 0.2 indicate extreme drought (Sridhar et al. 2008). Krueger

et al. (2015) found that 91% of growing-season fires $121 ha
occurred at FAW,0.5 and 77% occurred at FAW,0.2, a clear
indication of the effect of soil moisture onwildfire occurrence in
the growing season. Measured soil moisture is often expressed

as an index such as FAW because soil moisture per se does not
account for the control that soil physical properties have on
moisture available to plants, or plant available water (PAW).

Maximum PAW varies greatly across soils depending on their
physical properties. This maximum is referred to as available
water capacity (AWC), and FAW is the ratio of PAW to AWC.

By normalising soil moisture as FAW, comparisons across sites
of varying soil properties can be made.

Both concurrent and antecedent soil moisture are likely to

affect wildfire occurrence and extent but, in previous studies,
soil moisture has necessarily been estimated from weather-
derived soil moisture surrogates such as the Palmer Drought
Severity Index (PDSI), accumulated precipitation, and Z-index

(Westerling et al. 2003; Crimmins and Comrie 2004; Collins
et al. 2006; Mondal and Sukumar 2014). In the North American
Great Plains, for example, accumulated rainfall and PDSI were

negatively related to wildfire area during the year of fire,
whereas lags of up to 2 years generally had positive relationships
with wildfire area (Littell et al. 2009). Likewise, large grass fires

in the western US occurred more regularly when soil moisture
estimated using the Z-index was near normal or wetter the
previous year (Knapp 1998). These results highlight the effect
that soil moisture can have on wildfire extent and suggest a

mechanism behind the effect. In the short term, low soil
moisture reduces LFM of existing fuels, potentially resulting
in the curing of herbaceous and deciduous woody fuels if

drought conditions are severe. The long-term mechanism
includes increased fuel production during times of high soil
moisture followed by decreased fuel moisture induced by low

soil moisture or phenological processes.
The research focus on the relationships between surrogates of

soil moisture and wildfire occurrence has been necessary because

measured soil moisture data were lacking on operational scales of
time and space. Now, such data are increasingly common and
underutilised. We aimed to identify the effect of concurrent and
antecedent FAW on the occurrence of large wildfires in

Oklahoma and to develop statistical models describing these
relationships. We hypothesise that the effect of FAW differs by
season, with FAW being more important in temperate climates

during the growing season than during the dormant season when
most plants have senesced or are dormant. Our objectives were
(1) to assess the monthly and seasonal trends in FAW and

wildfire occurrence, (2) to develop regression models that
describe the relationship of FAW and important weather
variables with daily wildfire occurrence for two seasons of

contrasting fuel conditions, and (3) to investigate the temporal
autocorrelation, or persistence, of important wildfire predictors.
We used logistic regression to produce daily wildfire probability
models based on FAW and weather variables at lags of up to

2 years for large ($405 ha) wildfires during the growing season
and during the dormant season in Oklahoma. We used auto-
correlation analysis of daily time series FAW and weather data

to investigate their persistence during each season.

Materials and methods

Study area

Oklahoma was chosen for this study because of the availability of
soil moisture and weather data, which are intensely monitored

throughout the state. Soil moisture and weather data are recorded
by the Oklahoma Mesonet, a state-wide meteorological moni-
toring network with a data record spanning over 20 years

(McPherson et al. 2007). Beginning in 1999, soil moisture was
recorded at 101 sites across the state (McPherson et al. 2007), a
number that increased to,110 sites by 2012 (Ochsner et al.2013).

Soil moisture measurements cover 184 900 km2, making the
OklahomaMesonet one of the largest andmost denselymonitored
soil moisture networks in the world (Ochsner et al. 2013).

The climate of Oklahoma is primarily temperate with state-
wide average monthly air temperatures ranging from 38C in
January to 278C in July. More precipitation occurs during the
growing season fromMay to October (573 mm) than during the

dormant season from November to April (369 mm) (SCIPP
2014). Mean annual temperature and precipitation also vary
geographically, with both increasing from the north-west to the

south-east. Precipitation ranges from 432 mm in the arid north-
west to 1422 mm in the humid south-east, and average annual
temperature ranges from 138C to 178C from north-west to south-

east (OCS 2014). Annual precipitation can vary greatly, and
drought lasting frommonths to years is a recurring characteristic
of Oklahoma’s climate (Stockton and Meko 1983). Approxi-
mately 72% of Oklahoma’s vegetated land cover is made up of
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herbaceous plants, which includes grassland (40% of vegetated

area), cultivated crops (20%), and pasture/hay (12%), with 23%
of the vegetated area forest and 5% shrub/scrub (Fig. 1) (Homer
et al. 2015).

Wildfires

We studied 501Oklahomawildfires$405 ha that occurred from
2000 to 2012 (Fig. 1). Wildfire data, excluding prescribed fires,
were compiled primarily from two sources. Our principal source

was the Fire Program Analysis Fire Occurrence Database (FPA
FOD) compiled by the USDA Forest Service and consists of
both federally and state reported fires (Short 2014b). This

database is unique in that it contains standardised data that have
been compiled from disparate databases, and the data are readily
accessible online. Of the 501 fires in our study, 389 came from

the FPA FOD. The FPA FOD data include date of fire ignition,
final area burned, and origin (latitude and longitude).

Our second source of data was the Oklahoma State Fire

Marshal’s office, which maintains an annual record of reported
wildfires in Oklahoma. This database contained 251 wildfires
$405 ha from 2000 to 2012. With the assistance of the USDA
Forest Service (K.C. Short, pers. comm., March 2014), these fires

and several from other available sources were examined, and
those deemedvalid yet not in the FPAFOD(112 fires)were added
to our final database. Of the additional fires, 109 were from

the Fire Marshal database, with the remaining three from the
Stillwater, Oklahoma Fire Department and Oklahoma Forestry
Services. It is likely that these 112 fires were excluded from the

FPAFODbecause theywere not recorded in the databases used to
compile it, or theywere intentionally excluded from the FPAFOD
because they were missing one or more of the required core data
elements (Short 2014a). The data obtained from the Oklahoma

FireMarshal did not contain specific location descriptions, but the
nameof the responding fire departmentwas recorded for each fire.
We assignedapproximate latitude and longitude to each of the 112

additional fires according to theUSPostal Service ZIP code of the
responding fire department (Fig. 1).

Because the soil moisture and weather conditions that

promote wildfire occurrence are not the same throughout the
year (Krueger et al. 2015), growing season and dormant season
fires were analysed separately. The dormant season was defined

as the months of November through April, which corresponds
approximately with the period after vegetation has senesced and
before completion of spring regrowth (Senay and Elliott 2000).
The growing season was defined as the months of May through

October.
Vegetation descriptions were not included for fires in the

FPA FOD, so it was impossible to develop separate analyses by

vegetation type (i.e. fuel type). However, descriptions of vege-
tation type were available for some of the wildfires (2008–2012)
in the Fire Marshal dataset. Of the 165 fires$405 ha from 2008

to 2012, 39%were classified as ‘brush or brush/grass fire’, 30%
as ‘grass fire’, and 20% as ‘forest, woods, or wildland fire’, with
the remaining fires classified as ‘natural vegetation fire, other’
(5%), ‘fire, other’ (5%), and ‘cultivated vegetation, crop fire,

other’ (1%). Based on the vegetation types for these fires and
visual assessment of distribution of wildfires across vegetation
types in Oklahoma (Fig. 1), it is likely that the results of our

analyses are primarily applicable to brush and grass fires, but
forest fires were also part of our dataset. Furthermore, the spatial
variability of vegetation inOklahoma (Fig. 1) suggests that large

fires typically burn across multiple fuel types and cannot be
neatly categorised by a single vegetation type.

Soil moisture

Soil moisture from 1997 to 2012 was calculated based on
the output of heat dissipation sensors (Model 229, Campbell
Scientific Inc., Logan, Utah) installed at depths of 5 and 25 cm
beneath warm season grasses at weather stations maintained by

the Oklahoma Mesonet (McPherson et al. 2007) (Fig. 1). Raw
data (temperature difference after application of a brief heat
pulse) were recorded every 30 min, normalised, and used to

compute daily average reference temperature difference, which
was then converted to soil matric potential using a calibration
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Evergreen forest
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Fig. 1. Oklahoma land cover (Homer et al. 2015), locations of OklahomaMesonet soil moisture sensors used for

the calculation of fraction of available water capacity (FAW), and locations of 501 wildfires$405 ha from 2000 to

2012. (For colour figure, see online version available at http://www.publish.csiro.au/nid/17.htm.)

Soil moisture related to wildfire probabilities Int. J. Wildland Fire 659

http://www.publish.csiro.au/nid/17.htm


function (Illston et al. 2008). Reliable data were not available
when soil was frozen (Illston et al. 2008); however, frozen soil
conditions occur only infrequently in Oklahoma, the depth of

freezing is limited, and the duration of freezing is brief (OCS
2014). Soil volumetric water content (y) was calculated from
soil matric potential using a database of soil water retention

properties for the Mesonet stations (Scott et al. 2013).
At a given volumetric water content, soils vary in the amount

of water available to growing plants. Therefore, soil moisture

alone does not provide a complete description of soil water
status. Instead, soil moisture conditions are better described by
plant available water (PAW):

PAW ¼ ðy� yWPÞd ð1Þ

where y is measured volumetric water content, yWP is the
volumetric water content at the permanent wilting point, and d

is the thickness (mm) of the layer represented by the measure-
ment. To normalise PAW across sites, the ratio of PAW to
maximum possible PAW, or available water capacity (AWC),

was calculated to get FAW:

FAW ¼ y� yWPð Þ= yFC � yWPð Þ ð2Þ

where yFC is volumetric water content at field capacity. In this
study, FAWwas calculated for the 0–10-cm layer using the data

from the soil moisture sensor at 5 cm and for the 10–40-cm layer
using the data from the soil moisture sensor at 25 cm. Then the
depth-weighted average FAW for the 0–40-cm layer was

calculated using FAW from 0–10 cm and 10–40-cm layers
weighted 0.25 and 0.75, respectively. Daily state-wide average
FAW was calculated using data from each Mesonet site.

Although this averaging obscures any spatial information in
the dataset, it was necessary because our analysis was designed
to model the daily probability of a large wildfire occurring
somewhere in the state. The average daily standard deviation for

FAW measurements across the state was 0.24 and 0.19 during
the growing and dormant seasons, respectively.

We chose the 0–40-cm depth because only 76 Oklahoma

Mesonet sites record soil moisture at deeper depths (McPherson
et al. 2007). Soil moisture in the 0–40-cm layer is well suited for
our analysis because most root biomass in grasslands, shrub

lands and forests – the primary vegetation types in our study – is
within 30 cm of the soil surface (Jackson et al. 1996). However,
we recognise that most vegetation types have rooting depths that

extend below 40 cm. Therefore, to identify differences in near
surface and subsurface soilmoisture, we calculated FAW from 0
to 80 cm for sites with available data. We found that state-wide
average FAW in the 0–40-cm layer was significantly correlated

with FAW in the 0–80-cm layer (Pearson correlation coefficient,
r¼ 0.97, P, 0.001), which suggests that FAW in the 0–40-cm
layer is indicative of soil moisture conditions deeper in the soil

profile.
Permanent wilting point, the water content at which plants

cannot remove additional water from the soil profile, was

defined as the volumetric water content corresponding to a
matric potential of �1500 kPa (Scott et al. 2013). Based on
visual inspection of matric potential data, field capacity, the
water content at which drainage of water from the soil becomes

negligible, was defined as the water content corresponding to a
matric potential of�10 kPa. Mesonet sites vary greatly in AWC
(i.e. (yFC – yWP)d), with values for the top 400 mm of the soil

profile ranging from 20mm for a sandy loam to 113mm for a silt
loam.

Long-term (1997–2012) averagemonthlyFAWwas calculated

from daily state-wide average values and compared with the total
number of wildfires for each month. Seasonal FAW anomaly was
calculated from daily state-wide average values for each growing

season and dormant season and compared with the number of
wildfires for each season from 2000 to 2012. To calculate FAW
anomaly, state-wide average FAW was first calculated for each
day of the year from1 to365, and this averagewas smoothed using

the central moving average method with a window of 19 days
(Dente et al. 2013). The smoothed average was then subtracted
from state-wide daily average FAW for each day from 2000 to

2012 to obtain daily FAW anomaly. Finally, seasonal FAW
anomaly was calculated from daily FAW anomaly.

Weather

Daily weather data were obtained for each Oklahoma Mesonet
station from 1995 to 2012. Weather data included maximum air
temperature, minimum relative humidity, maximumwind speed

(measured at 10-m height) and precipitation. At each Mesonet
site, air temperature, relative humidity, and wind speed were
measured continuously, and 5-min averages were recorded. In
our analysis, maximum air temperature, minimum relative

humidity, and maximum wind speed were respective maximum
and minimum 5-min averages for each day. Precipitation was
the daily total. These variables were chosen because they have

previously been shown to be related to the occurrence of large
wildfires in Oklahoma (Reid et al. 2010; Krueger et al. 2015).
Daily state-wide averages for each variable were calculated

from data from each Mesonet site.

Logistic regression model

The relationship between wildfire occurrence probability

(hereafter referred to simply as probability) and environmental
variables (FAW and weather) was examined using stepwise
multiple logistic regression. Our use of the term ‘occurrence’
encompasses both the wildfire behaviour (i.e. spread and energy

release components) and occurrence (i.e. ignition component)
portions of the NFDRS because ‘occurrence’ in our study
requires both that a fire occur and that it be large. Logistic

regression is a commonly used technique in wildfire research
(Preisler et al. 2004; Mermoz et al. 2005; Catry et al. 2009;
Martı́nez et al. 2009; Magnussen and Taylor 2012; Mondal and

Sukumar 2014) and is appropriate for studies with a dichoto-
mous response variable and continuous predictor variables, such
as the presence or absence of a wildfire related to environmental
conditions. In the case of multiple regression, the logistic

equation has the form:

Pw ¼ eb0þb1x1þb2x2þ...þbk�1xk�1þbkxk

1þ eb0þb1x1þb2x2þ...þbk�1xk�1þbkxk
ð3Þ

where Pw is the probability of an outcome (wildfire occurrence)

and ranges from 0 to 1, b is the modelled regression coefficient
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of each independent variable, x, and k is the number of
independent variables.

The logistic regression model was designed to represent the

probability of a large wildfire occurring in Oklahoma for each
day from 2000 to 2012. Our spatial scale was chosen to avoid
zero inflation caused by an increased number of days without

fires at smaller spatial scales (Magnussen and Taylor 2012). The
analysis was subdivided by season, with 2392 and 2357 days
during the growing and dormant seasons, respectively. Candi-

date input variables were chosen based on earlier research.
Large wildfires in Oklahoma tend to occur under conditions of
low FAW, high maximum air temperature, low minimum
relative humidity, high maximum wind speed, and low precipi-

tation (Reid et al. 2010; Krueger et al. 2015). Values of these
variables for each day as well as their values at lags of 7, 14, 21,
30, 60, 90, 180, 270, 365, 455, 545, 635, and 730 days (before the

present day) were entered into the regression, resulting in 70
possible predictors. Lags were chosen to examine the influence
of antecedent environmental conditions at short term, seasonal

and annual time scales.
Variables retained in the final model were selected using the

stepwise approach outlined by Shtatland et al. (2001) using the

LOGISTIC procedure of SAS software ver. 9.2 of the SAS
System for windows (SAS Institute Inc., Cary, NC). In this
method, the significance levels for a variable to be entered and
retained in the initial model were each set to P¼ 1.0. At each

step, the variable with the greatest value of the Score x2-statistic
was added to the initial model, and the process was repeated
until all 70 possible predictors had been entered and retained.

The Schwarz Criterion (SC) was determined at each step, and
the variables for the final models were identified by those in the
model at the step at which the SC was minimised. An advantage

of using SC for variable selection instead of the commonly used
Akaike Information Criteria (AIC) is that SC results in a model
with simpler explanatory equations because the SC is more
restrictive thanAIC. The SC is also preferable when themodel is

intended for description and interpretation rather than prediction
(Shtatland et al. 2001), as was the case with our study. In our
analysis, final models had corresponding entry significance

levels of P, 0.001 and P, 0.007 for the growing and dormant
seasons, respectively.

We tested for collinearity among independent variables in

the final model using the variance inflation factor (VIF). The
VIF was determined by conducting a multiple linear regression
of each independent variable against all other independent

variables and was calculated as:

VIF ¼ 1

1� R2
ð4Þ

where R2 is the coefficient of determination of the regression
(O’brien 2007). AVIF of 1 represents no collinearity, values.5
indicate collinearity may be present, and values.10 are strong

evidence of the presence of collinearity (Menard 2001). In our
study, the variables in the final growing and dormant season
models had VIF values ,1.5 and ,3, respectively, and we

therefore concluded that collinearity was not a problem.
When reporting results of logistic regression, the information

included must be sufficient to (1) evaluate the overall model,

(2) assess model goodness of fit, (3) determine the significance
of individual predictors, and (4) validate predicted probabilities
(Peng et al. 2002). Model performance and goodness of fit were

assessed using the likelihood ratio x2 statistic and theMcFadden
pseudo-R2, respectively (Menard 2001). Although pseudo-R2 is
analogous to R2 in linear regression, its values tend to be lower

than those in linear regression, with pseudo-R2 values in the
range of 0.2–0.4 indicating excellent fit (McFadden 1979).
The significance of individual predictors was assessed using

the Wald x2 statistic (Menard 2001).
Validation of the model’s predicted probabilities was done

using the 2� 2 classification table and the c-statistic (Swets
1988; Peng et al. 2002). With these techniques, the wildfire

probabilities generated by the logistic regression models (Pw)
were converted to dichotomous values representing the presence
or absence of wildfire for each day. The first step in the

dichotomisation was to determine the cut-off value of Pw that
would indicate that a wildfire occurred. When there is an equal
probability of each outcome, the cut-off value is 0.5, but this was

not the case with our study because the number of days without
fires greatly outnumbered days with fires. The cut-off values
were instead calculated for each season as the fraction of days

with fires from the total number of days within each season
(Cramer 1999). The calculated cut-off values were 0.034 and
0.088 for the growing season and dormant season, respectively.
Therefore, when the modelled probability was dichotomised for

growing-season fire days, for example, Pw $ 0.034 indicated
that a fire occurred. The 2� 2 classification table is an account
of the number of days with and without fires that were correctly

and incorrectly classified after dichotomisation. The c-statistic
was also reported because it describes the model predictive
performance in a single value ranging from 0.5 (prediction

accuracy equal to that of random category assignment) to 1
(perfect category prediction). Accurate models generally have
c-statistic values greater than 0.7 and highly accurate models
have values greater than 0.9 (Swets 1988).

Sensitivity of wildfire probability to fraction of available
water capacity

For illustrative purposes, wildfire probability for varying levels
of FAW, minimum relative humidity and maximumwind speed
was determined for the growing season and dormant season

using the final logistic regression model for each season. In this
analysis, minimum relative humidity and maximumwind speed
were held constant at moderate, high and extreme levels, while

FAW was varied across its entire range, and other significant
variables were held constant at their median values. Moderate
levels of minimum relative humidity and maximum wind speed
corresponded to their median daily values for a given season for

observations from 2000 to 2012. High levels were intended to
represent conditions more favourable to the occurrence of large
wildfires than moderate conditions, and were defined as mini-

mum relative humidity equal to its 25th-percentile value and
maximum wind speed equal to its 75th-percentile value. During
the growing season, minimum relative humidity values corres-

ponding to the 50th and 25th percentiles were 40% and 31%,
respectively, while the 50th and 25th percentiles were 39% and
29% in the dormant season. For maximum wind speed, the
growing-season 50th and 75th-percentile values were 7.3 and
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8.7 m s�1, respectively, with corresponding dormant season
50th and 75th-percentile values of 8.1 and 9.7 m s�1.

Extreme levels of minimum relative humidity andmaximum

wind speed were chosen to approximate the US National
Weather Service (NWS) criteria for red flag warning (i.e. fire
weather warning) for central and western Oklahoma, which

include relative humidity #20% and wind speed (measured at
6-m height) $8.9 m s�1. The 6-m NWS wind speed criterion
was adjusted to 10 m by multiplying by 1.15 (Turner and

Lawson 1978). Extreme levels were thus defined as minimum
relative humidity of 20% andmaximumwind speed of 10.3m s�1.
During the growing season, extreme minimum relative humidity
and maximum wind speed were their 3rd and 93rd-percentiles

values, respectively,whileduring thedormant season, these values
were in the 6th and 82nd percentiles.

Autocorrelation analysis

Successive observations of climatological variables (WMO
2011) and soil moisture tend to be similar (De Lannoy et al.

2006; Dente et al. 2013). Variables that are significant

predictors of fire occurrence and that exhibit strong persistence,
or autocorrelation, may be particularly useful for assessing
wildfire danger because they can be better anticipated. For

example, the period over which soil moisture is predictable is
closely related to its period of autocorrelation (Schlosser and
Milly 2002). Therefore, we calculated autocorrelation functions
of FAW and weather variables for each season for lags up to

90 days as:

r ¼
Pn

t¼kþ1 yt � �yð Þ yt�k � �yð Þ
Pn

t¼1 yt � �yð Þ2 ð5Þ

where r is the autocorrelation coefficient at lag k, n is the number
of observations, yt is the data value at time t, and �y is the average
of all observations. The significance of autocorrelation is
generally assessed as� 2/On, where n is sample size (Dente

et al. 2013). As the sample size for each season in our study was
large, the correlation coefficient corresponding to significant
autocorrelation was small (0.04). Although autocorrelation

values at this level are unlikely to be of practical importance,
values as low as 0.2–0.5 may be useful for anticipating future
conditions (Walsh et al. 2005). We conducted the VIF and

autocorrelation analyses withMatlab R2012a (TheMathWorks,
Inc., Natick, MA).

Results and discussion

Seasonal characteristics of fraction of available water
capacity (FAW) and wildfire occurrence

Measured soil moisture is a strong candidate variable for wild-
fire probability assessments because it is physically linked to

fuel production and LFM and thereby wildfire occurrence. We
aimed to assess the monthly and seasonal trends in FAW and
wildfire occurrence in Oklahoma and found that during the

growing season, the months of greatest wildfire occurrence
coincided with the months of lowest average FAW (Fig. 2).
Average monthly FAW reached its minimum by mid to late

summer (August), and it was recharged throughout the fall and
winter before reaching its maximum in February and March.

The pattern of wildfire occurrence was bimodal, peaking in
March and again in August. Few fires occurred during the
growing-season months of May, June and October when

average monthly FAW ranged from 0.56 to 0.68; whereas FAW
averaged 0.41 from July to September. In contrast, during the
dormant season, most wildfires occurred during the months

when average FAW was high (Fig. 2), and the dormant season
months of greatest wildfire occurrence coincided with high
FAW. Furthermore, more fires occurred during the dormant

(382) than the growing season (119) even though average
monthly FAW was higher during all dormant season months
than at any time during the growing season. A cursory inspection
of these results could lead to the false conclusion that soil

moisture conditions are not an important influence on dormant
season wildfire occurrence in Oklahoma.

However, when analysed seasonally from 2000 to 2012,

negative FAW anomalies were associated with high wildfire
occurrence during both the growing and dormant seasons
(Fig. 3). The four growing seasons when FAW anomaly was

at its lowest (2000, 2006, 2011, and 2012) correspondedwith the
four growing seasons of greatest wildfire occurrence. Growing
seasons with positive FAW anomalies averaged only 2 wildfires

per season, whereas those with negative FAW anomalies aver-
aged 18. An apparent exception to the pattern occurred during
the 2000 growing season when FAW anomaly was only slightly
negative (�0.05), yet wildfire occurrence was the third highest

for any growing season in the study. Upon closer inspection, we
discovered that each of the 24 growing-season wildfires in 2000
occurred from August to October when the FAW anomaly

averaged �0.20 and 17 occurred during September when the
FAW anomaly was �0.32. Thus, the pattern of low FAW
associated with large wildfire occurrence was also present in

2000.
Similar to the pattern observed in the growing season, the

three dormant seasons when FAW anomaly was at its lowest
(2005–2006, 2008–2009, and 2010–2011) corresponded with

the three dormant seasons of greatest wildfire occurrence.
Notably, the FAW anomaly during the 2005–2006 dormant
season was far lower than at any other point in the study, and this
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period corresponded with extreme wildfire outbreaks through-
out Oklahoma. Unlike the growing season, however, dormant
season wildfire occurrence was relatively high in some seasons

when the FAW anomaly was positive (2002–2003, 2007–2008
and 2009–2010).

A lag effect of FAW on dormant season wildfire occurrence

was apparent, with above-average FAW for a year or more
before a given dormant season corresponding with increased
wildfire occurrence. Each of the four dormant seasons when

wildfire occurrence was greatest (2005–2006, 2007–2008,
2008–2009, and 2010–2011) occurred after a period of near or
above-average FAW (Fig. 3). For example, the wildfires during
the outbreak of the 2005–2006 dormant season occurred after a

3-year period when FAW was near or above average, and
wildfires during the 2008–2009 dormant season occurred after
a period of 2 years with above average FAW. A similar trend

was not observed for the growing season, with the growing
seasons of highest wildfire occurrence occurring after dormant
seasons of above- (2012) and below-average (2011) FAW.

This distinction likely arises from key seasonal differences in
the underlying mechanisms behind the soil moisture–wildfire
occurrence relationship. During the growing season, we found

evidence of a direct effect of FAW on growing vegetation. The
months of greatest wildfire occurrence (July, August, and
September) each had average monthly FAW ,0.5 (Fig. 2), a
threshold below which moisture stress in plants typically occurs

(Allen et al. 1998). Under conditions of moisture stress, LFM
decreases in grasses (Wittich 2011), annual herbaceous vege-
tation (Dimitrakopoulos and Bemmerzouk 2003), shallow- and

deep-rooted perennial shrubs (Pellizzaro et al. 2007), and
evergreen trees (Engle et al. 1987), thereby increasing the
likelihood of wildfire occurrence. During the dormant season,

wildfire occurrence was likely influenced by multiple factors
in addition to FAW, and the apparent lag effect suggested that
fuel accumulation during wetter periods helps drive dormant
season wildfires after vegetation has senesced. These trends

support previous findings where individual wildfires $405 ha
occurred exclusively at low FAW during the growing season

and at all levels of FAW during the dormant season (Krueger
et al. 2015).

Fraction of available water capacity (FAW) and
wildfire probability

To further investigate the relationships between FAW and
wildfires, we developed seasonal models to describe the rela-

tionships between environmental conditions and wildfire
probability. Logistic regression models incorporating FAW and
weather variables were significantly related to wildfire proba-

bility during both growing and dormant seasons. Concurrent
FAWwas significant during both growing and dormant seasons,
with lagged FAW also being significantly related to dormant
season wildfire probability.

Growing season

During the growing season, wildfire probability was nega-
tively related to FAW and minimum relative humidity, and

positively related to maximum wind speed (Table 1). The final
logistic regressionmodel was highly significant (likelihood ratio
x2¼ 261, P, 0.0001), and the high McFadden R2 of 0.37

indicated excellent fit. Remarkably, of the 70 possible predictor
variables, only three were retained in the final model. Tempera-
ture and precipitation were not retained, and all lagged variables

were insignificant. The model had a c-value of 0.92, indicating a
highdegree of accuracy (Swets 1988),with 89%of dayswith fires
and 83%of dayswithout fires being correctly classified (Table 2).

Under conditions of extreme relative humidity and wind,

wildfire probability increasedmore than three-fold, from 0.18 to
0.60, as FAW decreased from 0.5 to 0.2 (Fig. 4). Extreme
conditions approximated the criteria for fire weather warnings
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Table 1. Growing-season logistic regression model for 119 wildfires

$405 ha in Oklahoma 2000–2012

The likelihood ratio x2-statistic for the final model was 260.8 (df¼ 3,

P, 0.001). The McFadden R2 was 0.37, with values in the range of

0.2–0.4 indicating excellent fit (McFadden 1979)

Standard Wald

Variable df Coefficient error x2 P value

FAW 1 �6.42 1.038 38.2 ,0.0001

Maximum wind speed 1 0.25 0.036 47.6 ,0.0001

Minimum relative humidity 1 �0.13 0.019 46.0 ,0.0001

Intercept 1 �1.41 0.652 4.6 0.0312

Table 2. Observed and predicted frequency for days with and without

fire for 2392 growing-season days in Oklahoma 2000–2012

The cut-off value was 0.034. The c-value for the model was 0.92, with

highly accurate models generally having values .0.9 (Swets 1988)

Predicted

Observed Fire No fire % correct

Fire 72 9 88.9

No fire 402 1909 82.6

Correctly classified 82.8
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issued by theNWS,withminimum relative humidity of 20%and

maximumwind speed of 10.3m s�1. In contrast, when FAWwas
higher than the 0.5 threshold for water stress in plants, wildfire
probability was relatively low even when relative humidity and
wind speed were extreme. This result suggests that fire weather

warning criteria might be improved by the inclusion of soil
moisture information. Wildfire probability under high condi-
tions, where daily minimum relative humidity and maximum

wind speed were 31% and 8.7 m s�1, respectively, was lower
than under extreme conditions, as expected, with probabilities of
only 0.02 for FAW¼ 0.5 and 0.13 for FAW¼ 0.2. When

minimum relative humidity and maximum wind speed condi-
tions were moderate (minimum relative humidity¼ 40% and
maximum wind speed¼ 7.3 m s�1), wildfire probability was

only 0.02 even with FAW¼ 0.2.
Our results suggest that low FAW, low minimum relative

humidity and high maximum wind speed worked in concert to
create conditions under which the probability of large wildfire

occurrence during the growing season was great. When soil was
moist during the growing season, a condition that would support
high LFM in shrubs (Pellizzaro et al. 2007), evergreen trees

(Engle et al. 1987) and herbaceous vegetation (Dimitrakopoulos
and Bemmerzouk 2003;Wittich 2011), wildfire probability was
low even under extreme relative humidity and wind speed

conditions. Conversely, when soil was dry, a condition that
could lead to low LFM, wildfire probability was high only when
minimum relative humidity and maximum wind speed were

sufficient to support large fires. Each of the studied variables
may explain a portion of the mechanism behind growing-season
wildfire danger. According to the NFDRS, high wildfire danger

is associated with environmental conditions that support wild-
fire ignition, spread, and energy release (Bradshaw et al. 1983).

Moisture content of live fuels declines as soil moisture declines,
which results in an increased rate of wildfire spread and energy
release. If soil drying persists, vegetation can transition from

live to dead. Low relative humidity, and therefore low dead fuel
moisture, increases the likelihood of wildfire ignition, rate of
spread and energy release, and wildfire spread is driven by

increased wind speed.

Dormant season

During the dormant season, the final logistic regression model

was highly significant (likelihood ratio x2¼ 387, P, 0.0001)
(Table 3) and was well fitted to the data, with a McFadden
R2¼ 0.28. Nine of 70 possible predictors remained in the final
model, including all concurrent variables except precipitation.

The directions of the relationships were as expected for all
concurrent variables, with FAW and minimum relative humidity
being negatively related to wildfire probability, and maximum

temperature and wind speed being positively related. Several
lagged variableswere also significant, including positive relation-
ships for FAW �270d and FAW �635d. These two variables

represent lag times of 9 and 21 months, respectively, and are
1 year apart. The dormant season model correctly classified 77%
of days with fires and 76% of days without fires and had a c-value

of 0.86 (Table 4).
The positive influence of lagged FAW on dormant season

wildfire probability is apparent from the wildfire probability
sensitivity analysis (Fig. 5). Here, FAW �270d was varied

across its range whereas minimum relative humidity and maxi-
mum wind speed were held at extreme, high, and moderate
values, with all other significant variables being held constant at

their medians. Under extreme conditions, wildfire probability
was 0.09, 0.15, and 0.29 when FAW �270d was 0.2, 0.5, and
0.9, respectively. The greater than three-fold increase inwildfire

probability occurred as FAW �270d ranged from extreme
drought (FAW¼ 0.2) (Sridhar et al. 2008) to the threshold for
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Fig. 4. Daily probability of wildfire occurrence during the growing season

as a function of fraction of available water capacity (FAW) and three levels

of wildfire conditions (extreme, high, and moderate). Data are based on 119

growing-season wildfires$405 ha in Oklahoma from 2000 to 2012. Under

‘extreme’ wildfire conditions, minimum relative humidity (RH) and maxi-
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Service fire weather warnings in central and western Oklahoma. Under

‘high’ wildfire conditions, RH andWS corresponded to their respective 25th
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medians over the 13-year period. Daily wildfire probability markedly

increased for FAW ,0.5, the threshold for water stress in plants.

Table 3. Dormant season logistic regression model for 382 wildfires

$405 ha in Oklahoma 2000–2012

The likelihood ratio x2-statistic for the final model was 387.0 (df¼ 9,

P, 0.001). The McFadden R2 was 0.28, with values in the range of

0.2–0.4 indicating excellent fit (McFadden 1979)

Standard Wald

Variable df Coefficient error x2 P value

FAW 1 �2.28 0.563 16.4 ,0.0001

FAW �270d 1 2.08 0.479 18.8 ,0.0001

FAW �635d 1 2.31 0.475 23.6 ,0.0001

Maximum temperature 1 0.04 0.008 24.5 ,0.0001

Maximum

temperature �90d

1 �0.03 0.007 27.0 ,0.0001

Maximum

temperature �455d

1 �0.03 0.007 15.3 ,0.0001

Maximum wind speed 1 0.10 0.016 35.6 ,0.0001

Minimum relative humidity 1 �0.06 0.008 67.1 ,0.0001

Minimum relative

humidity �360d

1 �0.02 0.005 9.2 0.0024

Intercept 1 �1.45 1.074 1.8 0.1783
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water stress in plants (FAW¼ 0.5) to conditions near optimum

for plant growth (FAW¼ 0.9). For fires during the peak dormant
season wildfire months of March and April, the �270d lag
corresponds to soil moisture conditions the previous June and
July, suggesting that moist conditions at the beginning and

middle of the growing season increased wildfire probability in
the subsequent dormant season. Similar correlations with FAW
�635d suggest conditions during the growing season 2 years

prior are also linked to increased fire probability.
We expected that the dormant season variables related to the

occurrence of large wildfires would be those that dictate

moisture of dead fuels (temperature, relative humidity and
precipitation) and wildfire spread (wind speed) (Bradshaw
et al. 1983; Nelson 2000; Carlson et al. 2007), with FAW being
less important because of the relatively low proportion of live

fuels during the dormant season. The monthly analysis (Fig. 2)
suggested a weaker link between FAW and wildfire occurrence

during the dormant season than during the growing season, and
large dormant season wildfires are known to occur across a range
of FAW (Krueger et al. 2015). Nonetheless, FAW was signifi-

cantly related to dormant season wildfire probability (Table 3). It
is likely that the importance of FAW during the dormant season
was partially a result of our definition of dormant season

(November–April). Although vegetation in Oklahoma does not
reach peak greenness until after 1May, the onset of spring growth
begins in March (Senay and Elliott 2000). Low FAW during the

transition from dormant to growing seasons could inhibit spring
growth, resulting in a lower proportion of live fuels and increased
wildfire probability. The moisture of long-lag-time dead fuels
(i.e. 100-h and 1000-h fuels) also decreases under drought

conditions (Bradshaw et al. 1983). Finally, low dormant season
soil moisture may reduce leaf moisture content of live fuels
during the dormant season (Engle et al. 1987), increasing their

flammability (Weir and Scasta 2014) and contributing to
increased wildfire probability (Ursino and Rulli 2011).

The foreshadowing of elevated dormant season wildfire

probability by high FAW the previous growing seasons has also
been reported for moisture-limited grass and shrublands (Knapp
1998; Westerling et al. 2003) and in the Great Plains in the US

(Littell et al. 2009). Unlike during the growing season when the
probability of large fires is constrained by the moisture content
and level of curing of live fuels, which is driven by concurrent
soil moisture, the probability of large dormant season wildfire

occurrence is driven in part by low within-season soil moisture
and high soil moisture during previous growing seasons. There-
fore, we conclude that the mechanisms behind the influence

of FAW on wildfire occurrence are seasonally dependent.
Decreased moisture content and curing of live fuels induced
by low FAW increased wildfire occurrence during both dormant

and growing seasons, and fuel accumulation under high mois-
ture conditions during previous growing seasons also increased
dormant season wildfire probability.

Persistence of fraction of available water capacity (FAW)
and weather variables

The persistence of FAW and weather variables in the final

logistic regression models was assessed using autocorrelation
for the growing and dormant seasons. We found that FAW was
more persistent than the other variables, with the autocorrelation

coefficient (r) for FAW remaining above 0.5 for a lag of 22 days
during the growing season (Fig. 6). For minimum relative
humidity and maximum wind speed, the other significant

growing-season variables, r was .0.5 for only 2 and 0 days,
respectively. Similarly, for FAW during the dormant season,
r remained above 0.5 for a lag of 54 days, compared with only 2,
1, and 0 days for maximum temperature, minimum relative

humidity, and maximum wind speed, respectively (Fig. 7). At a
lag of 7 days, FAW had autocorrelation coefficients of 0.80 and
0.94 during the growing and dormant seasons. At a lag of 3 days,

FAW had r¼ 0.93 during the growing season and 0.97 during
the dormant season, respectively. No other significant variable
had r .0.5 after 2 days.

The persistence of FAW suggests strong potential for its use
in short-term wildfire danger forecasts. For example, the NWS
StormPredictionCenter prepares wildfire weather outlooks at 1,
2, and 3–8 day increments based on weather forecasts and fuels

Table 4. Observed and predicted frequency for days with and without

fires for 2357 dormant season days in Oklahoma 2000–2012

The cut-off value was 0.088. The c-value for the model was 0.86, with

accurate models generally having values .0.7 (Swets 1988)

Predicted

Observed Fire No fire % correct

Fire 161 47 77.4

No fire 508 1641 76.4

Correctly classified 76.5
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increased for FAW �270d.0.5, the threshold for water stress in plants.
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information (NWS 2015). Likewise, the National Interagency

Coordination Center produces 7-day fire potential outlooks as
part of its Predictive Services Program. This service has
demonstrated skill in predicting large wildfire occurrence,

although wildfire probability on moist and dry fuel days could
not be differentiated (Riley et al. 2014). Given the strong relation-
ship between FAW and wildfire occurrence and the persistence of

FAW, it may provide a simple and effective supplement to
weather and fuels data in these wildfire danger forecasts.

Conclusion

Wildfire occurrencewas found to be dependent on soil moisture,
expressed as FAW, during both the growing and dormant

seasons, but themechanisms bywhich FAW influencedwildfire
occurrence were seasonally dependent. For the growing season,

wildfire probability increased when FAW was low, whereas
dormant seasonwildfire probabilitywas increased by high FAW
the previous growing season and low FAW during the current

season. Our results demonstrate that soil moisture and weather
work in concert to support high wildfire probability, with each
variable explaining a portion of the mechanism behind occur-

rence of large wildfires. During the growing season, low FAW
decreases LFM and may cause herbaceous and deciduous
woody fuels to transition from live to dead, low relative

humidity lowers dead fuel moisture, and high wind speed drives
fire spread. Low FAW and extreme weather were both required
for wildfire probability to be high. Dormant season wildfire
probability was increased by low concurrent FAW and high

lagged FAW, indicating that fuel accumulation from previous
growing seasons supports dormant season wildfire. Relative
to rapidly fluctuating weather variables, FAW also exhibits

considerable persistence and may therefore improve wildfire
danger forecasts.

No wildfire danger models currently incorporate soil mois-

ture because the necessary data have been lacking at operational
scales. The increasing availability of soil moisture data makes
its inclusion in wildfire danger assessments more feasible, and

our results can guide wildfire managers on how to use this
information when assessing wildfire danger. In light of our
finding that soil moisture is significantly related to wildfire
probability during both the growing and dormant seasons, we

recommend that concurrent and lagged soil moisture be included
in wildfire danger assessments in Oklahoma and other regions
across the world with similar climates and vegetation types.
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