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Introduction
Wildland fire behaviour is broadly defined as the manner in 
which fuel ignites, flame develops, fire spreads and exhibits 
other related phenomena as determined by the interactions of 
fire with its environment—i.e., fuels, weather and topography 

(Merrill and Alexander 1987). More specifically, fire behaviour 
includes “a set of characteristics that describe the rate of the fire’s 
spread, the fuel strata it consumes, the overall shape of its pe-
rimeter, its rate of energy release along the perimeter, its mode 
of propagation, and perhaps the geometry of the flames along 
the perimeter” (Albini 1984). The immediate needs of fire op-
erations personnel for fire behaviour information would most 
likely be met by a partial list of such descriptors (McArthur 
1968, Alexander 2000a), although fire behaviour researchers 
would be focused on developing predictive models for all these 
characteristics.

Safe and effective control of wildfires and the use of fire as 
a management tool is dependent on the ability to predict fire 
behaviour as accurately as possible (Countryman 1972). Fire 
behaviour is determined by complex chemical and physical 
processes occurring over a wide range of spatial and temporal 
scales (Santoni et al. 2011). The observed spread rate in a high-
intensity, free-burning wildfire, for example, can span over four 
orders of magnitude around its perimeter (Cruz et al. 2012). 
The ability to accurately model fire processes over these dispa-
rate scales offer significant challenges.
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How accurately can we expect to predict wildland fire behav-
iour? It is quite unlikely that the minute-by-minute behaviour of 
a fire will be achievable as the hour-to-hour variation remains 
a challenge. The difficulty in predicting wildland fire behaviour 
boils down to the fact that there are numerous, interacting vari-
ables involved (Fig. 1). Even if a perfect mathematical model for 
predicting fire behaviour were available, there are still uncer-
tainties associated with inherent variation in fuels, weather and 
topography in both time and space (Countryman 1972).

The main sources of error in model predictions of wildland 
fire behaviour are lack of model applicability, internal inaccu-
racy, and data input errors (Albini 1976a). This paper represents 
in part an expansion and updating of the earlier scholarship on 
the subject of error sources associated with predictions of wild-
land fire behaviour by the late Dr. Frank Albini. Readers and 
“students of fire” may find the extensive bibliography, which 
includes many items long since forgotten, of great value in ex-
ploring the subject in greater depth.

A brief Historical sketch of Developments in Wild-
land Fire behaviour research
The first known field research into rate of fire spread was un-
dertaken by Show (1919) who documented the growth of 
experimental point source fires in the ponderosa pine (Pinus 
ponderosa Dougl. ex P. & C. Laws.) forest type of northern Cali-
fornia during the summers of 1915 to 1917. Gisborne (1927) 
published the first wildfire case study. Field studies involving 
experimental fires began in earnest in the early 1930s in the U.S. 
(Curry 1936, Curry and Fons 1938, Bickford and Bruce 1939) 
and Canada (Wright 1932, Paul 1969, Simard 1970).

Jemison (1939) describes some of the frustration in those 
early years:

“Rates of spread vary in a bewildering way. It would be 
easy to yield to the temptation to throw up our hands and 
say that it is useless to try for anything but good guesses 
at the rate a given fire will spread under given conditions 
of fuel, weather, and topography. The saner attitude is to 
keep digging away at the effect of this or that factor on 
rate of spread in the belief that in time the intricate puzzle 
will be solved by the creation of something that can right-
fully be called the science of rate of spread.”
The size of experimental fires in brush lands gradually ex-

panded to that approaching a landscape scale in the late 1950s 
(Schroeder and Countryman 1960) and experimental burning 
eventually extended to the deliberate initiation of crown fires 
in conifer forests in Canada beginning in the early 1960s (Van 
Wagner 1968, Stocks 1987a,b, 1989, Alexander and Quintilio 
1990, Stocks et al. 2004a,b).

Experimental fires carried out in a laboratory environment, 
including a wind tunnel (Fons 1940), were initiated soon after-
wards to supplement the field studies of fire behaviour (Curry 
and Fons 1940, Fons 1946) that gradually evolved into more 
complex, outdoor investigations of fire behaviour involving 
heavy slash fuel loads (Fahnestock 1960, Fahnestock and Diet-
erich 1962, Anderson et al. 1966, Countryman 1969). Indoor 
experimental burning significantly escalated with the creation 
of the three national forest fire laboratories by the U.S. Forest 
Service during the period from 1959 to 1963 (Wilson and Davis 
1988, USDA Forest Service 1993, Smith 2012). Still, the active 
monitoring and documentation of wildfires (Traylor 1961, 

Fig. 1. Flow diagram illustrating the various factors influencing wildland fire behaviour and in turn the complexities involved in its predic-
tion (from OMNR 1982).
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Hardy and Franks 1963), begun in the mid 1920s, continued 
until the early 1970s.

For a time, individual fire report (Donoghue 1982) data 
were analyzed as source of information to produce estimates of 
rate of fire spread (Abell 1937, 1940, Jemison and Keetch 1942, 
Banks and Frayer 1966). Barrows (1951) produced the first 
comprehensive guide to the systematic prediction of wildland 
fire behaviour, which was based in part on such an approach. 
However, it was McArthur (1958, 1960) who, following his ap-
pointment as Australia’s first full-time bushfire researcher in 
1953, would produce in very short order the first operational 
models to the quantitative prediction of fire behaviour in the 
form of field guides for native forests and grasslands (Luke 
1961, McArthur 1960, 1962, McArthur and Luke 1963, Cheney 
1968). Refinements of these models (Fig. 2) and work on ad-
ditional fuel types has continued to this day (Cruz and Gould 
2009b).

Numerous mathematical models, computerized decision 
support systems, and guides have come to be developed for 
predicting wildland fire behaviour as documented in earlier 
reviews by Catchpole and de Mestre (1986), Weber (1991), 
Perry (1998), Pastor et al. (2003) and more recently by Sullivan 
(2009a,b,c). Fire behaviour models are typically distinguished 
into two main categories: (1) physical and (2) empirical or 
semi-empirical models. Physical or process-based models 
(e.g., Morvan and Dupuy 2001, Linn et al. 2005) are mostly 

developed with theoretical purposes in mind, aiming to bet-
ter understand the physical and chemical processes controlling 
fire propagation. The justification for empirical or semi-em-
pirical models (e.g., Neuenschwander 1980, Fernandes et al. 
2009) is to support a decision-making process; the emphasis 
is on the purpose and perfection of the process description is 
not necessarily sought (Papadopoulos and Pavlidou 2011).  
A hybrid approach involving the two main categories of models 
is viewed by many as the best possible solution for the future of 
wildland fire behaviour research (Cruz and Gould 2009a).

Some fire behaviour models are made available as very sim-
ple and easy- to-use decision support tools (e.g., Bruner and 
Klebenow 1979, Alexander and Fogarty 2002). In some cases, 
equation development followed many years later (e.g., Noble et 
al. 1980, Beck 1995). For more complex models (e.g., Rothermel 
1972) the complexity is typically, but not always, buried out of 
sight in the form of prepared tables (e.g., McArthur 1960, 1962, 
National Wildfire Coordinating Group 1992b), graphical com-
putational aids such as nomographs (Albini 1976a), various 
types of slide-rule devices (Luke and McArthur 1978, McAlpine 
1986, Cheney and Sullivan 2008), and computer programs (Co-
hen 1986, Andrews 1986).

Computer calculation of wildland fire behaviour for opera-
tional and research purposes began to take hold in the early to 
mid-1970s (Frandsen 1973, Albini 1976b, Albini et at. 1977). 
The use of programmable pocket or hand-held calculators 

proved popular in the late 1970s and first half 
of the 1980s (Burgan 1979, Crane 1982, Sus-
ott and Burgan 1986). 

sources of Error in model Predic-
tions of Wildland Fire behaviour
All of the fire behaviour prediction tools list-
ed in Box 1 will produce results that do not 
always agree exactly with observed fire be-
haviour. In some instances, the disagreement 
can be quite significant (Brown 1982, Hély 
et al. 2001), as illustrated for example by the 
large (i.e., almost three times), consistent un-
derprediction trend evident in Fig. 3.

Albini (1976a) pointed out that there are 
three principal reasons for disagreement be-
tween model predictions and observed fire 
behaviour, no matter which models are being 
used:
1. The model may not be applicable to the 

situation. 
2. The model’s inherent accuracy may be at 

fault. 
3. The data used in the model may be 

inaccurate. 
While much progress has been made in 

wildland fire behaviour research over the 
past 35 years or so since the publication of 
his seminal work on fire behaviour model-
ling, these same three basic principles still 
remain valid to this day.

model applicability
If one applies a model or a system to a situa-
tion for which it was not intended to be used, 

Fig. 2. Graphical representations of the (a) dead fuel moisture, (b) degree of curing, 
(c) wind speed and (d) slope steepness functions incorporated into the model for 
predicting forward or head fire rate of spread in Australian grasslands (adapted from 
Cheney et al. 1998 and Cheney and Sullivan 2008). The following conditions are 
assumed constant in (a) and (c): dead fuel moisture content – 5%; degree of curing 
– 100%; 10-m open wind speed – 35 km/h; and slope steepness – 0%.
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the error associated with the prediction can in turn be quite 
large (Kessell et al. 1980). Brown and Davis (1973: 183) had this 
to say about the limitations of fire behaviour models in general:

“All fire models simulate reality but fall short of it in 
varying degrees. In meeting the objective of simplifying 
relationships, minor factors are neglected and the model 
is usually based on a single set of idealized conditions. If 
fire-modelling laws are observed, this will permit approx-
imations close enough for many purposes, but it is easy to 
forget that they are approximations only. Consequently, 
there is a strong tendency to apply models beyond their 
field of usefulness. To avoid this, the assumptions on 
which they are based and the range of conditions under 

which the model is valid need to be care-
fully defined and frequently rechecked.”

There are for example 18 major assumptions as-
sociated with Rothermel’s (1991: 36–37) guide to 
predicting crown fire behaviour and size in the 
U.S. Northern Rocky Mountains.

Most rate of fire spread models have the fol-
lowing kinds of limitations and should not be 
expected to predict what they do not pretend to 
represent (after Albini 1976a):
1. The fuel complex is assumed to be continuous, 
uniform, and homogeneous. The more the actual 
fuel situation departs from this idealized assump-
tion, the more likely the prediction will not match 
the observed fire behaviour. While this issue is a 
matter of scale, subsequent research (e.g., Frand-
sen and Andrews 1979, Catchpole et al. 1989) 
and other innovations (Fujioka 1985, Finney 
2003) such as the two-fuel model concept (Ro-
thermel 1983, Martin 1988), as well as geographic 
information system (GIS)-based fire growth mod-
els (Beck 2000, Finney 2004, Tymstra et al. 2010) 
have not substantially reduced this problem. It 
thus remains a continuing research challenge (Par-
sons et al. 2011) and involves both the physical fuel 
characteristics as well as fuel moistures, including 
differences due to topographic features such as 
slope exposure (Cheney 1981).
2. Some models assume that the fuel bed is a 
single layer and is contiguous to the ground. 
In other words, there is no distinct gap between 
fuel layers (e.g., a forest stand with ground/
surface fuels and crown or aerial fuels). As Van 
Wagner (1985) has so emphatically stated, “The 
fire world would beat a path to the door of the 
modeller who could account for vertical gradi-
ents and interruptions in moisture content and 
fuel density.” Much progress has been made in 
recent years to model the step changes in fire be-
haviour (Fig. 4) due to variations in vertical fuel 
continuity, composition and structure, both em-
pirically (Van Wagner 1977a, Gould et al. 2007, 
Cruz et al. 2008, 2013, Cheney et al. 2012) and 
on a physical basis (Linn et al. 2005). Much of 
our understanding has come about as a result of 
field experimentation, particularly in Australia 
(Sullivan et al. 2012), subsequently supported by 
laboratory test fires (Finney et al. 2010).
3. Fire spread by spotting (flying embers or 

firebrands) is not accounted for. This includes laboratory or 
theoretically based rate of fire spread models (e.g., Rothermel 
1972) and fire modelling systems that rely upon such models 
(e.g., Andrews et al. 2008). In situations where this form of fire 
propagation is influential or a dominant mechanism, fore-
casts or predictions of fire spread are likely to result in 
underestimates. Even statistical or empirically based models 
developed from burning small-scale outdoor plots may suf-
fer the same weakness (e.g., Lindenmuth and Davis 1973). 
Some empirically based models or model systems indirectly 
include the influence of short- and intermediate-range spot-
ting on rate of fire spread (e.g., Rothermel 1991, Forestry 
Canada Fire Danger Group 1992) although it is not expected 

box 1 – Examples of Operational Fire behaviour Prediction 
tools from North America, Australasia, and Europe
Tables

•	 Davis and Dieterich (1976) – Oak–chaparral, Arizona, USA
•	 Hough and Albini (1978) – Palmetto–gallberry, southeastern 

USA
•	 Sneeuwjagt and Peet (1998) – Western Australia
•	 Alexander and Lanoville (1989) – Black spruce–lichen wood-

land, Northwest Territories, Canada
•	 Taylor et al. (1997) – Canada
•	 National Wildfire Coordinating Group (1992b, 2006) – USA
•	 Alexander and Fogarty (2002) – Grasslands – New Zealand 

and Canada
•	 Gould et al. (2008) – Dry eucalypt forest, Australia
•	 Kidnie et al. (2010) – southern Ontario, Canada
•	 Pearce et al. (2012) – New Zealand

Graphical and Computational Aids
•	 McArthur (1962) – Control burning guide for eucalypt forest, 

Australia
•	 Roussopoulos (1978) – Boundary Waters Canoe Area, Min-

nesota, USA
•	 Rothermel (1991) – Northern Rocky Mountains, USA
•	 National Wildfire Coordinating Group (1992a)
•	 Dimitrakopoulos and Dritsa (2003) – Greece
•	 Leuschen (2005) – Potential Rate of Spread (PROS) Chart, 

USA
•	 Bishop (2007) – FireLine Assessment MEthod (FLAME), 

USA
•	 Dimitrakopoulos et al. (2007) –Aleppo pine, Greece
•	 Scott (2007) – USA

Computer Programs
•	 Alexander et al. (2006) – Canada
•	 Anderson et al. (2008) – New Zealand
•	 Andrews et al. (2008) – USA
•	 Fernandes et al. (2012) – Maritime pine, Portugal

Slide-rule Devices
•	 McArthur (1966) – Grassland Fire Danger Meter, Australia
•	 McArthur (1967) – Forest Fire Danger Meter, Australia
•	 Cheney and Just (1974) – Cane Burning Meter, Queensland, 

Australia
•	 Muraro (1975) – Prescribed Fire Predictor (clear-cut logging 

slash), British Columbia, Canada
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that these models will be able to account for the effect of 
short-range spotting over the full spectrum of possible burn-
ing conditions. Recent simulation studies have attempted to 
explicitly model the transport and distribution of firebrands 
ahead of idealized fires (e.g., Porterie et al. 2007, Sardoy et al. 
2008). The extent that new ignitions ahead of the main fire 
front result in an increase in the overall rate of fire spread 
(Fig. 5) depends on a multitude of factors such as the physi-
cal characteristics of the fuel type, moisture content of the 
surface fuels, the number and distribution of firebrands, and 
fire–atmospheric interactions. Alexander and Cruz (2006) 

formulated a simple method of estimating the minimum 
separation distance required for a newly ignited spot fire 
to avoid being overrun by the main advancing fire front, 
assuming no interaction between the two flame fronts, in 
order to judge when this is likely to occur. In situations in-
volving heterogeneous fuel type distributions and complex 
topography, spotting will allow the main advancing fire 
front to quickly bypass areas with low spread potential (e.g., 
downslope runs, pure hardwood stands in summer, discon-
tinuous fuels) thereby effectively advancing the horizontal 
extent of the fire’s “head” (Boychuk et al. 2009). Long-range 
spotting, where viable firebrands are transported over dis-
tances in excess of 5 km (Cruz et al. 2012), have a more 
distinct effect on fire propagation than short- to interme-
diate- or medium-range spotting. In such cases, the fires 
typically burn independently of the source flame front and 
thus generally do not contribute to the movement of the main 
advancing fire edge, although they do contribute to the final 
area burned in many cases. However, depending on their den-
sity, short- to medium-range spotting can effectively serve as a 
proxy for a backfire and thereby temporarily decrease the head 
fire’s momentum and the potential area burned as a whole (D. 
Quintilio, Dennis Quintilio and Associates, Glenevis, AB, 2012, 
personal communication).
4. Vertical and horizontal fire whirlwinds are not modelled. 
Amongst these other factors, Albini (1976a) also pointed out 
that the influence of fire whirls (Fig. 6) and similar extreme, 
fire-induced vortices (Haines and Smith 1987, McRae and 
Flannigan 1990) on the rate of spread or growth of a free-
burning wildland fire are not considered. While fire whirls 
have been documented to travel in excess of 2.5 km from 
the main fire (Steiner 1976, Cheney and Sullivan 2008), it is 
questionable whether their frequency of occurrence war-
rants special consideration given the sporadic nature of such 
events. Site-specific predictions of vertical and horizontal vor-
tex activity in wildland fires are not yet possible (Forthofer 
and Goodrick 2011). Nevertheless, guidelines do exist as to 
when and where such fire phenomena are generally thought 
most likely to occur (Countryman 1971, Haines and Updike 
1971, Goens 1978). A quantitative understanding of how these 
events will specifically affect rate of fire spread for example  
is lacking.

Accuracy of model input data 
Predictive models must be sensitive to those parameters known 
to readily affect fire behaviour, such as wind speed, dead fuel 
moisture and slope steepness, amongst others (Salazar 1985, 
Trevitt 1991, Bachmann and Allgöwer 2002, Jolly 2007). If these 
input data are not known accurately enough or the user fails 
to appreciate the spatial and temporal variability of input data, 
model output can in turn be significantly in error (Albini 1976a).

Given the nonlinear dynamics of free-burning wildland 
fires (Sullivan 2009d), model output may be highly sensitive 
to a particular parameter over one range of values and quite 
insensitive to that same parameter over a different value range 
(Albini 1976a, Cruz et al. 2006). Rate of fire spread models, for 
example, are comprised of power or curvilinear functions of 
wind strength, slope angle and fuel moistures (Murphy et al. 
1966; Van Wagner 1968, 1977b; Thomas 1971; Cheney 1981; 
Nelson and Adkins 1988). In Fig. 4, we present an example of 
such relationships for a single fuel complex, namely grass. Simi-
lar composite summaries for several different fuel types have 

Fig. 3. Observed rates of spread for experimental fires in 
lodgepole pine logging slash in southwestern Alberta (Quintilio 
1972) and jack pine logging slash in northeastern Ontario (Stocks 
and Walker 1972) versus predictions from Rothermel’s (1972) 
surface fire rate of spread model for Fuel Model 12 – Medium 
Logging Slash (Anderson 1982) using a wind adjustment factor of 
0.4 (Andrews 2012) (adapted from Cruz and Alexander 2013). 
The dashed lines around the line of perfect agreement indicate 
the ±35% error interval. 

Fig. 4. Stepped-pattern observed in forest and shrubland fuel 
complexes that are subject to both surface and crown fire propa-
gation (adapted from McArthur 1967).
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been prepared by Cheney (1981), Catchpole (2002) and Sulli-
van (2009b).

As a result of the non-linear nature of fire behaviour, it is 
often difficult to make a valid quantitative statement about the 
relationship between input data accuracy and output accuracy. 
As such, the model in question must be used to establish its re-
quirements for data accuracy, considering the range of values of 
the variables used for input (Albini 1976a).

The greatest challenge a fire model user 
faces in a predictive situation is the accurate 
estimation of representative input values. A 
deterministic approach for fire behaviour predic-
tion assumes best estimates of input conditions 
to represent the fire environment. Nonetheless, 
the fuel complex is not uniform, continuous or 
homogeneous. Nor is the wind speed and direc-
tion constant, the slope steepness uniform or the 
moisture content of dead and live fuels the same 
from place to place (Chandler et al. 1963, Crosby 
and Chandler 1966, Countryman 1977, Rice and 
Martin 1985, Gibos 2010), especially in com-
plex, mountainous terrain (Schroeder and Buck 
1970), making the prediction of fire rate of 
spread difficult. Yet most methods and guides 
to predicting fire behaviour generally assume 
idealized burning conditions (e.g., Rothermel 
1991, Taylor et al. 1997, Pearce et al. 2012).

If standard techniques and procedures (e.g., 
Rothermel 1983, Norum and Miller 1984, Law-
son and Armitage 2008) are strictly adhered to, 
the error component arising from uncertainty in 
input data is reduced to acceptable levels. If no 
direct measurements or observations are made, 
inaccurate forecasts are used, or predictions are 
based solely on good “guess-timates”, then the 
error associated with the input data could be the 
dominant error source.

Internal accuracy of model  
relationships
Wildfires, being unpredictable as to their tim-
ing and location and often occurring in remote 
locations, are seldom amenable subjects for con-
ventional instrumentation and measurement 
(Rothermel and Reinhardt 1983) as afforded by 
a prescribed fire or experimental fire although 
there is the odd exception (e.g., Norum 1982, 
Alexander et al. 1991). Furthermore, some as-
pects of wildfire behaviour, such as observations 
of maximum spot fire distance and associated 
influences (Albini et al. 2012), are difficult to 
monitor and thus to precisely document.

In the absence of a long-term, concerted effort 
to systematically monitor and document wild-
fire behaviour (Alexander and Thomas 2003a,b), 
data to test theoretical or empirical model formu-
lae against actual wildfire behaviour accumulate 
slowly from opportunistic high-quality observa-
tions (e.g., Butler and Reynolds 1997, Alexander 
and Taylor 2010, Santoni et al. 2011, Cruz et al. 
2012). As a result, model testing or evaluation is 

usually based on laboratory experimental fires (e.g., Beaufait 
1965, Menage et al. 2012), as opposed to operational prescribed 
fires (e.g., Hough 1968, Doren et al. 1987, Custer and Thorsen 
1996, Alexander 2010) or outdoor experimental fires (e.g., Stocks 
et al. 2004a,b, Stephens et al. 2008, Cruz et al. 2010, 2013, McCaw 
et al. 2012).

Albini (1976a) considered that the causal relationships be-
tween the driving variables and fire behaviour in most models 

Fig. 5. Spotting activity associated with a wildfire advancing through a maritime 
pine (Pinus pinaster Ait.) forest near Coimbra, Portugal, on the afternoon of 
August 22, 2005. Photo by M.G. Cruz.

Fig. 6. Fire whirlwinds are the most spectacular of all wildland fire behaviour 
phenomena and also the most difficult to predict. This particular fire whirl “rope” 
resulted from the burning of white spruce–subalpine fir logging slash approxi-
mately 120 km east of Williams Lake, British Columbia, during the summer of 
1990. Photo by S.D. Harvey, British Columbia Forest Service (retired).



Mai/Juin 2013, vol. 89, nº 3 – The foresTry chronicle376

must be viewed as weakly tested, semi-empirical in nature, and 
subject to exception. Experimental fires carried out in plots of 
very uniform fuel complexes involving grasslands, shrublands 
and conifer forest stands has shown that there will always be some 
degree of unexplained variation (Cheney et al. 1998, Cruz et al. 
2010, 2013). For example, using the experimental crown fire da-
taset of Stocks (1987b) consisting of 11 observations in a uniform 
stand of jack pine (Pinus banksiana Lamb.) on level ground, with 
spread rates ranging from 7.9 m/min to 49.4 m/min, Alexander 
and Cruz (2006) found that a model based on the main drivers 
of fire spread, wind speed and fine dead fuel moisture, could  ex-
plain 84% of the variation in the observed rates of spread. Even 
with laboratory fires involving constant wind flow in replicated or 
reproducible fuelbeds (Schuette 1965, Deeming and Elliott 1971), 
there can be a large degree of unexplained variation in observed 
spread rates (Fons 1946).

Given the inherent natural variation in wildland fire behav-
iour, Albini (1976a) suggested that model builders considered 
models successful if the relationships predict fire behaviour 
within a factor of two or three over a range of two or three or-
ders of magnitude. McArthur (1977) on the other hand felt that 
the forest and grassland fire danger meters that he developed for 
Australia (McArthur 1966, 1967) could predict rate of spread 
and other fire characteristics to within ±20% of the actual ob-
served fire behaviour (e.g., if the predicted rate of spread was 15 
m/min then the observed rate of spread should vary from 12 
m/min to 18 m/min). Cruz and Alexander (2013) have on the 
basis of an extensive review of 49 fire spread model evaluation 
studies involving 1278 individual rate of spread model predic-
tion–observation pairs, concluded that an error threshold of 
35% constitute an acceptable error for model predictions of rate 
of fire spread (Fig. 3).

Present-day realities of Wildland Fire behaviour 
Prediction
Predicting wildland fire behaviour is a difficult task. Long-range 
spotting, fire whirl development, and simultaneous ignitions 
over large areas are characteristics of fire behaviour that are dif-
ficult to predict with accuracy (Fig. 5 and Fig. 6). Their 
occurrence can be forecasted only in a very general way.

The preceding discussion can be taken as roughly 
representative of the current state of the art in fire be-
haviour model accuracy, including both the effects of 
model applicability and internal model accuracy. Until 
some of the limitations of model applicability as dis-
cussed in the previous section are relaxed by further 
advances in fire behaviour research, improvements in 
the accuracy of model relationships beyond the cur-
rent level are unlikely to increase the overall accuracy of 
model predictions of wildland fire behaviour.

Wildland fire behaviour predictions are inevitably 
fraught with uncertainty. The most important source of 
error in any particular prediction of fire behaviour may 
be difficult to pin down, regardless of the whether the 
model systematically over- or under-predicts (Albini 
and Anderson 1982). As Albini (1976a) acknowledged, 
“The usually dominating error source in model predic-
tions of wildland fire behavior is that the fuel complex 
is not uniform, continuous, homogeneous, and consoli-
dated into a single layer. Nor is the wind speed constant, 
the slope everywhere the same, nor the fuel moisture 
content the same from place to place.”

Overall prediction accuracy is also dependent upon the skill 
and knowledge of the user (Weick 2002, Alexander and Thomas 
2004). As Cheney (1981) quite rightly points out, “the reality 
of fire behaviour predictions is that overestimates can be easily 
readjusted without serious consequences.” On the other hand, 
“underestimates of behaviour can be disastrous both to the op-
erations of the fire controller and the credibility of the person 
making the predictions.” The “art and science” of predicting 
wildland fire behaviour includes a multitude of considerations, 
including being able to correctly assess both the components of 
the fire environment and the fire’s current status (Fig. 7).

Advances in computer technology have greatly aided the 
operational utilization of predictive fire behaviour models in 
recent years (Lee et al. 2002, Andrews 2007). This has led to a 
suite of computerized decision support systems (e.g., Tolhurst 
et al. 2008, Anderson 2010, Noonan-Wright et al. 2011). These 
systems are in reality, simply mechanical schemes that involve 
a whole host of model and specific prediction assumptions 
and limitations. However, they, like the core models that they 
depend on, very seldom give an exact answer. As one experi-
enced operational fire behaviour analyst recently remarked, 
“The products look pretty dazzling, but it remains critical that a 
fire behaviourist analyze them, provide feedback to the fire geo-
spatial analysts, and interpret the outputs to decision-makers” 
(R.D. Wilmore, USDA Forest Service, Eagle, CO, 2012, personal 
communication).

Future Outlook
Few would argue that the management or control of wildland 
fires will never become a reality until their behaviour can be 
predicted over the many conditions under which they occur 
(Underwood 1985). As Van Wagner (1971) has stated:

“The goal of research on the behaviour of forest fires is 
presumably to be able to predict with reasonable assur-
ance how a fire will behave in any stated weather and 
forest fuel. This goal does not, of course, have an abso-
lute form since the prediction of forest fire behaviour can 
never be an exact process. Performance may someday 

Fig. 7. Flow diagram illustrating that the “science and art” of wildland fire 
behaviour prediction encompasses the coupling of practical knowledge, 
professional judgment, and fire behaviour experiences (including local 
knowledge) with the computational tools produced by fire research.
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approach a generally acceptable level of accuracy, but 
error due to the infinite variety of weather, fuel and to-
pography will always be present.” 
While there is still much to do from a practical fire behav-

iour research standpoint (Alexander 2000b, Cruz and Gould 
2009a), in the continuing desire for “better” predictions it is 
easy to lose sight of the fact that model predictions are only a 
guide and that perfect, near-real time prediction of wildland 
fire behaviour will probably never be achievable. Neverthe-
less, fire behaviour model development and training in their 
use has now evolved to the point that they can be successfully 
applied in a number of situations that were un-thought of two 
decades ago (e.g., community evacuation alerts, indirect fire 
suppression planning).

Van Wagner (1985) was also to note that “Fire behavior pre-
dictions may not be infinitely valuable: but as long as the forest 
fire people continue to want better ones, and there are research-
ers to work on them, it is safe to say that next year’s predictions 
will be better than last year’s.” There are, however, undoubtedly 
limits to what can be expected, which begs the question, are 
such expectations realistic? Have we in fact reached the limit? 
From a purely practical operational standpoint, improvements 
in the field of wildland fire behaviour prediction are more likely 
to come about from individual self-improvement, using the best 
available models, local case study work and adaptation, rather 
than waiting and hoping for yearly advances to be made by 
wildland fire behaviour research.

Since the publication of Albini’s (1976a) seminal work on 
wildland fire behaviour modelling, experimental fire behaviour 
field studies have provided new insights into the dynamics as-
sociated with the heterogeneity in fuel structure and moisture 
content, the transient nature of wind speed, and the interaction 
between the fire and its surrounding environment. We now 
possess at least a heuristic understanding of the mechanisms 
driving fire propagation, albeit the implementation of this 
knowledge into a comprehensive predictive modelling frame-
work is yet to be achieved.
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