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INTRODUCTION 

Carbonaceous compounds are a significant component of fine particulate matter (PM2.5) and contribute to 

haze in class I areas.  The Regional Haze Rule sets the goal of returning visibility on the worst haze days to 

natural conditions by 2064.  To achieve this goal, it is necessary to understand the contributions of natural 

and anthropogenic sources to the particulate carbon in class I areas. 

A receptor-oriented, Lagrangian particle dispersion model with highly simplified physical/chemical 

processes was developed to simulate primary and secondary PM2.5 total carbon (TC) concentrations in 

rural areas
1
.  The model uses readily available meteorological and emission inputs and simulates the 

contributions from various source types, including wildfires and area sources.  Modeling evaluation 

revealed potential spatial and temporal biases in the modeled TC concentrations and source attributions.  In 

this work, the biases are reduced by incorporating the modeled source attribution results into a hybrid 

model in the receptor framework.   

MODELED TC SOURCE ATTRIBUTIONS 

The receptor-oriented, Lagrangian particle dispersion model is based on the CAPITA (Center for Air 

Pollution Impact and Trend Analysis) Monte Carlo model (CMC)
2
 and simulates the contributions from 

eight source categories, including biomass burning and secondary organic carbon (SOC) from vegetation.  

The model is based on 6-day-back airmass histories generated using 40-km meteorological data from the 

Eta Data Assimilation System (EDAS) and the Western Regional Air Partnership (WRAP) 36-km emission 

inventory, aggregated to 24-h emission rates.  The WRAP biomass burning emissions were replaced by the 

National Center for Atmospheric Research (NCAR) regional fire emissions model version 2.0
3
.  TC 

removal and formation mechanisms are simulated using a simplified parameterization of atmospheric 

processes based on pseudo-first-order rate equations. The rate coefficients are empirical functions of 

meteorological parameters derived from measured, modeled, and literature data.  These functions were 

optimized such that the simulated TC concentrations reproduce the average spatial and temporal patterns in 

measured 2008 TC concentrations from the IMPROVE monitoring network, as well as measured SOC 

fractions at two eastern U.S. sites.   

The optimized model was used to simulate 2006–2008 TC at 148 rural and 14 urban IMPROVE monitoring 

sites.  The contributions from the modeled source types average over each month and the three years of 

simulations are presented in Figure 1 for three U.S. subregions.  As illustrated, the CMC model was able to 

reproduce the seasonality well throughout the rural U.S.  In regions, such as the Northeast, it also 
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reproduced the average TC concentrations well.  However, systematic biases were also evident.  For 

example, in much of the eastern U.S., e.g., Appalachia, the summer TC was underestimated indicating that 

the contributions from one or more source types were underestimated.  Also, contributions from biomass 

burning could be significantly over- or underestimated due to errors in the biomass burning emissions and 

airmass transport.  This is clearly evident in Figure 1, where in March at Appalachia and June–October 

along the California Coast the simulated contributions from fires were larger than the measured TC.  While 

biases in the simulated TC are evident in Figure 1, potential compensating errors between contributions 

from different source types are not.  For example, the good correspondence between the measured and 

simulated TC in the Northeast could hide a systematic underestimation from vegetation balanced by an 

overestimation in contributions from area sources. 

HYBRID RECEPTOR MODEL  

The conservation of mass for a single species such as TC can be defined as the sum of the contributions 

from all sources.  For the simulation of measured TC concentrations by modeled source contributions, the 

conservation of mass can be written as 

Equation 1.   
j iiji egC   

where: 

Ci = concentration of the i
th
 measurement at the receptor site, units are μg/m

3
 

gij = modeled contribution of the k
th
 source to the receptor on the i

th
 measurement, units are μg/m

3
 

ei = residual for the i
th
 measurement, units are μg/m

3
 

The distribution of residuals is the error of the system due to errors in the measurements, mismatch 

between the model and measurement spatial and temporal scales, i.e., representativeness error, and errors in 

the modeling system.  The measurement error is thought to be nonbiased, but systematic errors could occur 

in both the representativeness and modeling errors.  The modeling biases are due to errors in the model 

formulations and model inputs, such as emissions, and could vary for each source category and by space 

and time.  In this application, we modeled the errors as a multiplicative bias for each source type j and 

group of observations l and an additive random error with zero mean and standard deviation σ.  Equation 1 

can then be written as 

Equation 2.   
j

ll

j

l

ij

l

i sgC   

where: 

 l

j

l

j as  1  are unitless scaling coefficients and 
l

ja  are the unitless multiplicative biases 

This equation is identical in form to the synthesis inversion equation for emission estimation
4,5

, but no 

physical interpretation is given to the regression coefficients.  Provided the measured concentrations and 

modeled source attributions are known, the scaling coefficient s can be found through a variety of inversion 

methods.  In this work we used the same Bayesian least square regression method as Schichtel
5
 to solve 

equation 2 for s.  Subsequently, these scaling coefficients were used to refine the source attribution results 

to reduce the systematic biases.  

The Bayesian regression method incorporates prior estimates of the source attribution scaling coefficients 

and their variances into a weighted least square regression analysis such that 

Equation 3.  s = [G
T
XG + W]

–1
[G

T
XC + Wz] 

Equation 4.  The covariance matrix of s is [G
T
XG + W]

–1
 

where z is the vector of the prior source attribution scaling coefficients and is unitless. W is the inverses of 

the error covariance matrices for the measured concentrations and has units (μg/m
3
)

2
.  X is the inverse of 

the error covariance matrices for the prior estimates and is unitless. 



This set of equations was solved for each group of observations l using an extended data-weighted least 

squares technique
6,7

. 

 

Modeled Source Attributions  

 

Refined Source Attributions Using the Hybrid Model 

 

Figure 1.  The average contributions of modeled and refined source types to TC for three United States 

regions.  The average measured TC concentrations are also shown. The average values are for each month 

of the year from 2006 through 2008.  Month 1 is January and month 13 is the annual average. 

SOURCE ATTRIBUTION REFINEMENT 

The CMC model simulates hourly TC concentrations and source contributions.  These hourly values were 

aggregated to the same 24-h periods used in the IMPROVE network.  Only data corresponding with 

IMPROVE’s 1 in 3 day sampling schedule were used in the analysis.  The CMC model had very poor 

performance at the fourteen urban, four southern California, and two Washington state sites.   

To account for spatial and temporal variation in the model biases, Equations 3 and 4 were solved using data 

from each monitoring site and its 20 closest neighboring sites for each quarter of the year, with quarter 1 

starting in January.  This provided a balance between spatial and temporal resolution and enough data for 

stable inversions.  W was estimated from the uncertainties of the measured TC data which were estimated 

as    22
*17.0 mdlCic   where mdl is the minimum detection limit which was set to

8
 0.35 µg/m

3
.  

Evaluation of the monthly mean modeled and measured TC values found a modeling error of about 50%.  

Since the errors in the individual source attribution estimates could not be evaluated, it was assumed that all 

source attribution estimates had a 50% error and X was derived accordingly.  The a priori scaling estimates 

were all set to 1, i.e., it was assumed the model was unbiased. 

The CMC model often had poor performance when impacted by nearby wild or prescribed fires, resulting 

in large over- or underestimated TC concentrations.  These high concentration outliers could bias the 

regression analysis used in the hybrid model.  To reduce this, all measured and simulated TC 

concentrations greater than 8 µg/m
3
 were excluded from the hybrid model runs.  Eight µg/m

3
 is the 99

th
 TC 



percentile at the Washington DC site.  This is an urban site with little contribution from fires and represents 

an upper bound on nonfire contributions to TC.  This is a conservative estimate for when fires are the 

dominant contributor to rural TC and affected 1.8% of the data.  Although these concentrations were 

removed from the hybrid model, they were incorporated into the refined source attribution results.  This 

was done by assuming that the difference between the measured TC and the sum of the modeled nonfire 

source contributions was due to fire.  Then the modified source contributions were scaled by the hybrid 

model scaling coefficients.  

RESULTS  

The quarterly and annual average source contributions from each source type from the initial model and 

hybrid model runs were examined.  Some compensating biases in the initial model results were found, with 

average contributions from vegetation underestimated by about 10% over the year and 15% during summer 

months.  This was compensated for by apparent overestimations of contributions from area sources and fire 

by ~10%.  This is evident in the Northeast results (Figure 1), where the refined attributions maintain the 

excellent agreement with the measured TC concentrations, but the summer contributions from vegetation 

were increased while the contributions from the area sources were decreased. The low contributing source 

types, such as oil and gas and point sources, had scale coefficients near 1.  This is likely due to the fact that 

the contributions from these source types were small compared to the error in the system as opposed to 

these source types being unbiased.  The hybrid model also improved the fit between the simulated and 

measured TC in many regions.  As shown in Figure 1, the underestimated TC during the summer months at 

Appalachian sites by the CMC model was removed by increased TC contributions from vegetation.  The 

large overestimation from biomass burning along the California coast was also removed.   

On average over the United States, fires and vegetation accounted for about 60% of the TC.  These 

contributions are seasonal, accounting for about 75% of the TC in quarter 3 and about 33% in quarter 1.  In 

fact, most of the seasonality in the TC is due to these two sources.  Vegetation and fire are primarily natural 

sources, and their contributions represent limits on the reduction of carbonaceous aerosol for improving 

visibility in these rural areas.   

Of anthropogenic sources, area sources were the largest contributors, accounting for about 40% of the TC 

in quarter 1 and 15% in quarter 3.  This is followed by mobile sources, which accounted for 5–15% of the 

TC.  In contrast to vegetation and fire, the anthropogenic sources have the largest contributions during the 

winter months. 
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