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Abstract

Fire plays a key role in many ecosystems of the southeastern U.S. Longleaf pine (Pinus palustris)
and Table Mountain pine-pitch pine (P. pungens—P. rigida) forests along with other ecosystems —
including oak (Quercus) forests, grasslands, and spruce-fir (Picea-Abies) forests — illustrate the range
of fire effects and plant persistence strategies in the American South. Fire history research reveals
that fires and fire-associated vegetation were common before the fire exclusion of the past
century. Both lightning and anthropogenic ignitions (caused by American Indians or European
settlers) contributed to burning, but their relative importance is debated. The humid climate
constrains burning, especially by lightning-ignited fires, which often occur during moist condi-
tions. Studies of fire climatology indicate the importance of dry conditions (e.g. drought years and
relatively dry areas) for widespread burning in this humid region. Landscape fragmentation also
influences burning. In the past some fires also likely grew much larger than today because they
were unimpeded by roads, farms, and other barriers.

Introduction

The American South (hereafter, ‘the South’) has long occupied a central place in debates
about fire. By the early 1900s, widespread logging, grazing, and burning had ravaged the
longleaf pine (Pinus palustris) stands of the Coastal Plain (Schift 1962), and disagreements
ensued about how to promote longleaf reestablishment (e.g. Cary 1932; Chapman 1932;
Demmon 1929; Howell 1932).

The controversy centered on fire. Frequent light burning of grass and forest litter was
used for range improvement and other purposes (Pyne 1982). Many foresters suspected
the fires would impede reforestation of the logged stands and suffocate the region’s tim-
ber industry, and the U.S. Forest Service sought to guard longleaf pine seedlings from fire
so the species could reclaim cutover lands (Schift 1962). Demmon’s (1929) statements
typify the Forest Service view:

The general opinion seems to be that these fires do little or no damage to the forest. Such an
erroneous idea fits in well with the common practice of winter burning which has been nearly
everywhere prevalent in the South since settlement took place about 100 years ago. It is true
that fires rarely kill large trees outright, but they do take an immense toll from the forest tree
seedlings. (Demmon 274)

He argued that ‘[t]here is adequate evidence that if fires could be eradicated new crops of
trees would soon appear...” (Demmon 273).

Chapman (1932) and others, however, contended that fire was vital to prevent the
encroachment of shrubs and inferior hardwood timber species. Consider Greene’s (1931)
article, ‘“The forest that fire made’:
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920 Fire in the American South

Where seed trees are available all that is necessary to get a pure stand of longleaf without a
hardwood undergrowth is to have frequent grass fires. Indians and lightning could and did set
fire to the dead grass and straw fall and the material was ready to burn over expanses hundreds
of miles in extent ... if it had not burned the previous year. (Greene 618)

The debate stimulated research that confirmed the benefits of fire for longleaf pine and
its associated wildlife habitat and livestock pasture (e.g. Chapman 1932; Greene 1931;
Heyward 1939; Siggers 1932; Stoddard 1931). This work formed an early foundation for
fire ecology, eventually contributing to Forest Service endorsement of prescribed fire
(Chapman 1950; Schift 1962).

The global interest in fire ecology today emerged partly from this work. Here I review
the role of fire in the South, but space will not permit an exhaustive treatment of the
various Southern environments. My intent is to portray the range of fire effects on vege-
tation — longleaf pine and selected other ecosystems — and to convey how humans and
climate influence fire activity.

The Setting

The Coastal Plains cover about half the South (Figure 1), while rougher terrain occupies
northern and interior areas. The humid subtropical/temperate conditions support needle-
leaf evergreen and broadleaf deciduous forests. The South has higher annual precipitation
than any equally large region in North America — over 1000 mm across virtually the
entire region and much higher amounts in many locations (NCDC 2002). The South as
defined here corresponds largely with Braun’s (1950) Southeastern Evergreen, Oak-Pine,
Oak-Chestnut, Mixed Mesophytic, Western Mesophytic, and Oak-Hickory Forest
Regions. Some of these forest regions extend beyond the South, but because fire is both
a cultural and physical phenomenon I confine my discussion to areas within the Upland
and Lowland South culture regions (cf. Jordan-Bychkov 2003).
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Fig. 1. The American South, noting major physiographic regions mentioned in the text. Green shading indicates
the region of interest, the largely forested areas within the Upland and Lowland South.
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Fire in the American South 921

Effects of Fire on Vegetation

The crowded plantations of spindly loblolly pines (Pinus taeda) that cover much of the
Coastal Plain today scantly resemble the open longleaf pine woodlands and savannahs that
once cloaked the uplands from Texas to Virginia (Figure 2; Frost et al. 1986; Platt et al.
1988a,b). These longleaf stands apparently developed under a surface fire regime (Frost
1998; Heyward 1939). The term ‘fire regime’ refers to the characteristic fire frequency,
severity, seasonality, and size that emerge over time (Frelich 2002). The fires consumed
the fine surface fuels and possibly recurred as often as one to three years (Frost 1998).

Longleaf pine has thick bark that protects the cambium inside from heat (Hare 1965).
Its unusual seedling development also enables it to thrive in frequently burned areas. The
seedlings occupy a ‘grass stage’ for several years, growing deep roots but not elongating
their stems (Figure 3; Keeley and Zedler 1998). Their terminal buds are protected, so
they survive if burned. After 5-20 years the stems ‘bolt” rapidly (Figure 2), thrusting their
crowns above the reach of flames. Vulnerability to fire increases during the bolt stage, but
even small stems have relatively thick, protective bark (Figure 4; Garren 1943). After one
or two years the tree is virtually immune from surface fires (Agee 1998), which destroy
seedlings and saplings of competing species. Frequent burning in the past would have
maintained open, nearly monospecific (single-species) stands of longleaf pine with grassy
understories (Heyward 1939; Platt et al. 1988a,b). Hurricanes, insect infestations, or other
disturbances periodically killed some adult pines, benefiting the seedlings through reduced
shading (Figure 5; Gillam et al. 2006; Myers and van Lear 1998; Platt et al. 1988a,b).

A debate in fire ecology concerns whether plant species can adapt to a fire regime
(Bond and Keeley 2005). Some traits, like the grass stage in longleaf pine, seem clearly
linked to fire (Keeley and Zedler 1998). Three Southern pine species — pond pine (Pinus
serotina), shortleaf pine (P. echinata), and pitch pine (P. rigida) — may resprout following

Fig. 2. Longleaf pine woodland, Francis Marion National Forest, South Carolina. Frequent prescribed fires maintain
the open, sunny conditions. The dead foliage on the foreground saplings resulted from fire.
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922 Fire in the American South

Fig. 3. Longleaf pine seedling in the grass stage, Francis Marion National Forest, South Carolina.

stem mortality (Keeley and Zedler 1998). Sprouting is unusual in pines and is considered
an adaptation to moderate or severe fires.

Some pines exhibit cone serotiny, wherein cones remain unopened on the plant for
years until heated (Lamont et al. 1991). Keeley and Zedler (1998) hypothesized that
serotiny adapts plants to thrive on infertile sites visited periodically by intense fires. The
poor soils restrict tree height growth; their short stature exposes the entire plants to
flames. Serotiny protects seeds and releases them after fire, when seedlings can root into
the exposed mineral soil and grow uninhibited in the open conditions. Serotiny is com-
mon in sand pine (Pinus clausa) stands that inhabit infertile soils of the Florida peninsula
(Brendemuehl 1990; Parker et al. 1997, 2001). Serotiny occurs in scattered populations of
pitch pine (Williams 1998), typically on infertile ridgetops with stunted trees (personal
observation). It is ubiquitous in an associated species, Table Mountain pine (Pinus pun-
gens), which is endemic to the Appalachian Mountains (Figures 6 and 7; Williams 1998).

Table Mountain pine-pitch pine stands cloak dry ridgetops and south- or west-facing
slopes. Hardwood forests surround these small patches (Figure 8). Recent dendroecologi-
cal (tree-ring) work reveals that the stands burned frequently in the past (Aldrich et al.
2010; Harmon 1982; Sutherland et al. 1995). Apparently the pines throve in a ‘polycy-
clic’ fire regime of frequent surface fires and occasional more severe fires (Aldrich et al.
2010; Frost 1998). Surface fires at short intervals (2—10 years) impeded the encroachment
of fire-intolerant competitors from surrounding hardwood stands. They likely maintained
open understories beneficial to shade-intolerant (light-demanding) herbs and small shrubs,
e.g. blueberries (Vaccinium spp.), which recover rapidly through sprouting (Figure 9; Elli-
ott et al. 1999; Harrod et al. 2000). More severe burns at longer intervals (50—100 years)
exposed mineral soil and generated large canopy gaps that enabled the highly shade-intol-
erant pine seedlings to become established and grow (Aldrich et al. 2010; Sutherland
et al. 1995; Waldrop and Brose 1999; Welch et al. 2000). Storms and insect outbreaks
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Fire in the American South 923

Fig. 4. Small longleaf pine sapling, Big Thicket National Preserve, Texas. Despite its small size the sapling already
has a large stem with thick bark.

occasionally disturbed the forests (Figure 9), creating gaps amenable to pine colonization
(Brose and Waldrop 2006; Lafon and Kutac 2003; White 1987).

Fires do not necessarily stop at the edge of pine stands. According to the ‘fire-oak
hypothesis” (Abrams 1992, 2003; Brose et al. 2001; Lorimer et al. 1994) many oak (Quer-
cus) forests, which have moderately flammable leaf litter, developed under centuries of
frequent burning (Figure 10). Fire benefits oaks by inhibiting the establishment of fire-
sensitive competitors. Many oaks have relatively thick, protective bark and an ability to
‘compartmentalize’ fire-damaged wood to prevent decay from spreading (Smith and Suth-
erland 1999). Extensive roots and a strong sprouting capacity (Figure 11) enable oak seed-
lings to persist through frequent burning until a longer fire-free window occurs,
permitting their growth to a more fire-resistant size (Brose and van Lear 1998; Petersen
and Drewa 2006). Growing-season fires seem particularly to benefit oaks by weakening
the post-fire resprouting ability of competitors.

Fire does not benefit all vegetation, however. It can devastate certain forests, including
high-elevation spruce-fir (Picea-Abies) forests on cool, moist sites rarely visited by fire
(Figure 12; Delcourt and Delcourt 2000). As on mesic sites worldwide (e.g. Huston
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924  Fire in the American South

Fig. 5. Pines snapped by Hurricane Rita, Big Thicket National Preserve, Texas. This is a mixed pine stand that the
National Park Service is attempting to restore to longleaf pine woodland through thinning and fire.

Fig. 6. Table Mountain pines, George Washington National Forest, Virginia. The numerous large, serotinous cones
clustered along stout branches are typical features of the species.

1994), stands of long-lived, slow-growing, shade-tolerant species develop over long fire-
free intervals. These species have low fire-resistance and slow post-fire recovery (Korstian
1937; White et al. 1993). A different suite of species typically colonizes after fire. These
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Fire in the American South 925

Fig. 7. Old Table Mountain pine cones, still mostly unopened, and heavily armored to protect the seeds from pre-
dation.

Fig. 8. View toward the northeast from Reddish Knob, George Washington National Forest, Virginia. In this leaf-off
photograph the dark green pine stands are distinguishable from the extensive deciduous forests. The pine stands
occupy dry, west-facing slopes and ridgetops. Clearings in the background are farms in the Shenandoah Valley.
Some writers (e.g. Maxell 1910) have suggested that before European settlement frequent fire maintained exten-
sive grasslands in the Shenandoah Valley.
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926 Fire in the American South

Fig. 9. Table Mountain pine stand photographed in summer 2002 one year after a wildfire, Jefferson National For-
est, Virginia. Most of the understory plants are blueberry shrubs that reprouted after the fire. The stand had many
small Table Mountain pine seedlings but they are inconspicuous in this photograph. In addition to the fire, two
other recent disturbance events had affected the forest — ice storms in 1994 and a southern pine beetle outbreak
in 2001-2002. The ice storms were responsible for the downed pine trees strewn over the ground.

Fig. 10. Oak litter in a second-growth oak stand, Jefferson National Forest, Virginia. The curly nature of dead oak
leaves permit more rapid drying and greater flammability than most other hardwood litter.
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Fire in the American South 927

Fig. 11. Post-fire resprouting of chestnut oak (Quercus montana), Jefferson National Forest, Virginia.

include ‘weedy’ species, like pin cherry (Prunus pensylvanica), with widely dispersed seeds,
shade-intolerant seedlings, rapid growth, and short life-spans. The original dominants
eventually might recolonize, but the recovery could take centuries (Figure 13).

Despite its extensive forests the South has many herbaceous plants that thrive when
burned. Best known are the bluestem (Andropogon)- and wiregrass (Aristida)-dominated
understories of longleaf pine stands (Frost et al. 1986), which reportedly have greater
plant diversity than any other U.S. ecosystem. Frequent burning enhances diversity by
eliminating shrubs and trees that would exclude herbaceous associates — especially on
fertile or mesic sites where they rapidly outgrow the herbs (Kirkman et al. 2001, 2004;
Platt et al. 2006). The high-diversity understory/low-diversity overstory paradox in long-
leat stands reflects tree versus herb longevity (Huston 1994). Only the fire-resistant trees
(longleaf pine) persist between successive fires to become mature individuals, while
numerous herbaceous species colonize and mature between fires, especially in productive
ecosystems with rapid recovery. And burning enhances productivity by releasing nutrients
bound in plants (Christensen 1977). Lengthening fire intervals, e.g. through fire protec-
tion, allows tree diversity to rise (Heyward 1939) but suppresses herbaceous diversity
(Kirkman et al. 2004).

Clearly the South has numerous habitats, varied fire regimes, and diverse plant
responses to fire. General order can be discovered by considering the ecological topic of
species’ persistence ‘strategies’ (e.g. Buhk et al. 2007; Vesk 2006), the set of traits govern-
ing how plants respond to disturbances. Rowe (1983) identified two general persistence
modes relevant to fire.

The first is disseminule-based persistence wherein post-fire population growth follows
seed dispersal into a burned site. Some species, ‘invaders,” produce numerous, readily dis-
persed seeds that enable rapid colonization. Pin cherry is a good example. Other species,
‘evaders,” store seeds in the soil or canopy, where they are protected until released from
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928 Fire in the American South

Fig. 12. Spruce-fir forest on Mt. Rogers, Jefferson National Forest, Virginia.

dormancy after fire. The serotinous pines provide examples. ‘Avoiders’ are the least
adapted to fire. Most are slow-growing, shade-tolerant species like spruce, which recap-
ture burned sites over a long fire-free period.

The second persistence mode is vegetative-based. The vegetative components of ‘resist-
ers’ withstand low- to moderate-severity fires and occupy the site under repeated burn-
ing. Most pines, especially longleaf, show this strategy. ‘Endurers,” e.g. many hardwood
trees and shrubs, persist by resprouting after stem mortality.

Rowe’s persistence modes are neither mutually exclusive nor binary (e.g. resistant
versus non-resistant). Table Mountain pine, for example, resists light or moderate fires
(Williams 1998). It recolonizes rapidly after severe fire via serotiny. Many oak species
persist via moderate fire-resistance, a moderate number of widely dispersed seeds, and
sprouting (Abrams 1992; Larsen and Johnson 1998).

An important consideration is that every species cannot resist fire, resprout prolifically,
and produce abundant seeds. Resource limitations preclude carbon allocation to all these
responses, thus requiring tradeofts (e.g. Huston 1994; Tilman 1990). Prolific sprouters,
for example, often produce fewer seeds than non-sprouters and differ in other factors of
lite history (Bellingham and Sparrow 2000; Bond and Midgley 2001; Midgley 1996).
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Fire in the American South 929

Fig. 13. The Dolly Sods area atop the Appalachian Plateau, Monongahela National Forest, West Virginia. Red
spruce (Picea rubens) forest once cloaked the plateau, but logging and severe fires destroyed most of the soil. A
century later, much of the harsh landscape remains deforested, colonized only by shrubs, grasses, and ferns.

Such tradeoffs generate biogeographic patterns by sorting species along environmental
and disturbance gradients (e.g. Harmon et al. 1983; Ojeda et al. 2005); and because tem-
poral changes in fire regime can alter these patterns, understanding plant geography
requires us to consider fire history.

Fire History

Large-scale industrial logging ravaged the South ca. 1880-1930 (Clarkson 1964; Pyne
1982; Sarvis 1993). Loggers built railroads into the wildlands, cutting adjacent forests and
leaving deforested landscapes strewn with woody debris that fueled catastrophic wildfires.
Ignitions were pervasive. Locomotives belched sparks and cattlemen fired the cutover
lands to encourage pasture. The U.S. Forest Service and state foresters launched a
campaign to deter the incessant burning. Often their interventions provoked local resent-
ment, prompting incendiarism. But they were determined to eradicate fire and rebuild
the nation’s timber wealth, which was considered vital to American industrial progress.
Success came through fire prevention campaigns (Figure 14) and expensive technological
assaults to suppress fires. Controlled burning emerged later as a tool for managing
commercial timber and wildlands.

The preceding synopsis of the past century’s fire history is well understood, at least
qualitatively. Less certain is the role of fire before the great logging episode. Forest fires
generally seem to be common during periods of extensive land use, e.g. agricultural
expansion, and to decline with shifts to industrial forestry and sedentary agriculture (Pyne
1982). Some writers have argued that American Indians burned widely and frequently —
annually in places — to support their agricultural’hunting/gathering economies (e.g.
Abrams and Nowacki 2008; Denevan 1992; Fowler and Konopik 2007; Greene 1932;
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Fig. 14. Smokey Bear posters at a work center on the Jefferson National Forest, Virginia.

Kay 2007; Mann 2005; Maxwell 1910; Rostlund 1957; Sauer 1950). European settlers
apparently adopted similar burning practices, especially in the agrarian South (Otto and
Anderson 1982; Prunty 1965; Pyne 1982). This portrayal contrasts with the popular view
of the forest primeval (e.g. Shetler 1991). Some scholars have articulated a middle ground
in which American Indians burned frequently near settlements but rarely in remote areas
(e.g. Allen 2002; Baker 2002; Russell 1983; Vale 2002; Whitney 1994; Williams 1998).
These diverging possibilities connect with broader debates over aboriginal impacts on the
environment, but I limit the following brief discussion to evidence about fire history
specifically.

The existence of the fire-dependent vegetation discussed above demonstrates that fire
has inhabited the South a long time. But was such vegetation common? Early travelers’
accounts provide a useful source of evidence (e.g. Baskin et al. 1994; Day 1953; Rostlund
1957). Rostlund (1957) compiled such accounts to argue that grasslands — many of them
probably fire-maintained — were scattered liberally over the South before European settle-
ment. Bartram (1791), for example, described many scenes like the ‘sublime forests,
almost endless grassy fields, detached groves and green lawns for the distance of nine or
ten miles’ (Bartram 386), which he encountered near the Chattahoochee River. Some
accounts describe trees, including oak and pine, growing in open forests devoid of thick
understory. Maxwell (1910) noted that some travelers reported aboriginal burning over
large areas. Such anecdotes seem to suggest that fire was widespread. But they do not
permit quantitative estimates of fire frequency or grassland/pine/oak extent; hence a wide
range of interpretations has resulted (e.g. Fowler and Konopik 2007; Maxwell 1910;
Nelson 1957; Russell 1983).

Original land surveys, which record witness trees along property boundaries, help clar-
ify the abundance of fire-dependent trees before major European influence (Wang 2005).
Despite potential biases, witness trees provide quantitative, spatially explicit portrayals
unavailable from travelers’ accounts. The handful of such studies conducted in the South
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implies that fire-associated trees, especially pine and oak, were common when European
settlers arrived (Abrams and McCay 1996; Black et al. 2002; Cowell 1995; Schwartz
1994, 2007). These findings strengthen the case for widespread burning. For example, fire
likely played an important role on the Georgia Piedmont (Cowell 1995). In northern
Florida, pine forests overwhelmingly dominated the landscape (Schwartz 1994). Schwartz
(1994) hypothesized they were mostly longleaf pine stands maintained by fire. This find-
ing matches Chapman’s (1932) statement that longleat occupied roughly half the Coastal
Plain, and reveals that fire-associated vegetation was not restricted to scattered dry sites.
Instead the fire-intolerant, mesophytic (moisture-demanding) hardwoods were confined
to small fire-sheltered locations.

Fire appears to have remained common after European settlement. The earliest settlers
likely migrated into grasslands maintained previously by aboriginal and/or lightning-
ignited fires (Prunty 1965; Pyne 1982). They continued to burn to perpetuate and
expand the openings. Conceptual models of Appalachian fire history suggest that fires
occurred frequently during presettlement and post-settlement times (Brose et al. 2001) or,
alternatively, that fire frequency was low at first but increased gradually following Euro-
pean settlement (Williams 1998). Fire was necessary for shifting agriculture on marginal
soils (Otto and Anderson 1982; Pyne 1982) and for the extensive ‘woods ranch’ settle-
ment pattern that developed across the South (Prunty 1965). The wildlife biologist Stod-
dard (1962) recalled frequent — even annual — burning during his boyhood days in
Florida, where woodland pasturing was practiced during the 1890s as it had been for
generations. At that time, before large timbering operations, the pines were of limited
value. The cattlemen burned the woodlands to encourage palatable understory herbs,
control understory shrubs, facilitate travel, stimulate berry production, and reduce the
habitat of ‘varmints’ such as chiggers and snakes.

Trees that survive mild/moderate fires often sustain injuries (Figures 15 and 16) that
can be dated from tree rings, providing unequivocal evidence of fire at specific times and
places. The South permits limited opportunities for dendroecological research on fire
history because of rapid wood decay and past forest clearing. However, fire-scarred pines
and oaks discovered in the Appalachian and Ozark-Ouachita Highlands record fires back
to the 1600s and 1700s (Aldrich et al. 2010; Cutter and Guyette 1994; Guyette and
Spetich 2003; Guyette et al. 2002, 2006; Hoss et al. 2008; Shumway et al. 2001). The
resultant fire chronologies largely support the historical sketch above — fire abounded
amid extensive land uses but virtually ceased under fire protection. Fire-scarred trees from
the Ozark-Ouachita Highlands extend back to the period of aboriginal depopulation.
They suggest that fire frequency was low at that time but increased as displaced eastern
tribes and then white settlers arrived (Guyette and Spetich 2003; Guyette et al. 2002,
2006). The Appalachian fire chronologies have similar length, but they indicate that fires
occurred frequently, and at similar levels, before and after European settlement, and dur-
ing more intensive land use phases such as iron mining and logging (Aldrich et al. 2010;
Hoss et al. 2008; Shumway et al. 2001).

Dendroecological data on tree establishment dates indicate that fire-resistant pines and
oaks throve under the historic fire regime (Abrams and Copenheaver 1999; Abrams et al.
1995; Aldrich et al. 2010; Hoss et al. 2008; Shumway et al. 2001; Sutherland et al.
1995), and that less fire-resistant trees encroached rapidly when frequent burning ceased
(Figures 17 and 18). These findings corroborate evidence from forest plots (Harrod et al.
1998) and computer simulations (Lafon et al. 2007; Shang et al. 2007). Nowacki and
Abrams (2008) argue that mesophytic tree species have expanded throughout eastern
North America because of fire exclusion, while fire-associated vegetation has contracted.
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932 Fire in the American South

Fig. 15. Fire-scarred pine near Reddish Knob, George Washington National Forest, Virginia. The ‘catface’ on the
uphill side resulted from multiple fires that injured the tree over the course of its life. Each ridge within the catface
formed as the wood grew over a new fire scar.

Given the importance of oak, pine, and grasslands for numerous wildlife species (Lorimer
2001; McShea and Healy 2002), the influences of fire — and fire exclusion — ripple across
multiple trophic levels.

Reconstructing a longer history of fire and vegetation involves radiometric dating of
charcoal and fossil pollen buried in soils or pond/bog sediments. At a well known site in
Kentucky fire occurred to varying extents over the last 9500 years (Delcourt et al. 1998).
Evidence from this and other locations (Delcourt and Delcourt 1997, 1998) was inferred
to imply that aboriginal burning, particularly during the last 3000 years, promoted open
forests of oak, pine, and chestnut in the Appalachian uplands. Lynch and Clark (2002)
also discovered charcoal evidence of fire in the Appalachian Mountains, but it was not
ubiquitous among their several study sites. Continuous accumulation of pine pollen and
charcoal in Coastal Plain sediments over the last 5000 years potentially evidences frequent
fire in longleaf pine forests (Watts 1971). At other sites on the Coastal Plain charcoal has
accumulated for the last several hundred years (Foster and Cohen 2007), with an eigh-
teenth-century rise interpreted to indicate American Indian burning associated with the
deerskin trade.
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Fig. 16. Close-up view of a fire-scarred cross-section cut from a pine tree on the George Washington National For-
est. After cutting the section we sanded it and then used the tree rings to date the year of each fire scar. Eight fire
scars are visible in this photograph, which reveals the structure of the ridges (cf. Figure 15) that formed as the
wood curled over each scar. Photo credit: Jean Wulfson, Division of Research and Graduate Studies, Texas A&M
University.

Fig. 17. In the absence of fire, a dense understory of shrubs and trees has developed in this Table Mountain pine-
dominated stand on the Jefferson National Forest, Virginia. The stand is located near the one shown in Figure 9.
The small pine in the foreground is a white pine (Pinus strobus), which is less fire-tolerant than the overstory Table
Mountain and pitch pines. Young white pines are common in upland forests throughout the Appalachian Moun-
tains today, but mature white pines are uncommon except along streams.
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934 Fire in the American South

Fig. 18. Old-growth oak forest in the Great Smoky Mountains National Park, Tennessee. Numerous fire-scarred
pines in the vicinity evidence a history of frequent burning in the past, when the oak trees established. Most of the
young trees that established during the recent period of fire exclusion are less fire-resistant species such as red
maple (Acer rubrum). Photo credit: Amanda Young, Mount Allison Dendrochronology Lab, Department of Geogra-
phy, Mount Allison University.

The available evidence, then, suggests that fire was common for a long time in some
locations, promoting grasslands and pine/oak/chestnut forests. However, the spatial extent
of fire and fire-associated ecosystems needs clarification. We probably can rule out vast,
uninterrupted mesophytic forests. But did fire occur mostly near American Indian — and
later European — settlements, largely sparing remote locations until industrial logging? Or
did fire pervade Southern landscapes long before European settlement, maintaining vast
pine/oak woodlands and grasslands that attracted settlers who perpetuated fire for a time?
Increasing evidence of fire bolsters the latter view, but some inferences have been stated
quite strongly given the limited, sometimes ambiguous information. Amassing firm evi-
dence from charcoal, witness trees, and fire scars will help mitigate data limitations and
enable more certain conclusions.

The existence of fire-dependent vegetation and the history of frequent fire, at least in
some areas, lead to another question: given the high humidity and precipitation, what
climatic conditions permit fires to ignite and spread on Southern landscapes?

Fire Climatology

The climate system influences three ingredients necessary for fire (Bond and van Wilgen
1996). First, fuel must exist and be sufficiently continuous for fire to spread. Second, fuel
must be dry enough to burn. Third, an ignition source must exist. One source, lightning,
originates within the climate system.
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A long-recognized generalization about fire climatology (Sauer 1952), and one that has
been articulated recently, is that moderately wet climates are the most fire-prone (Meyn
et al. 2007; van der Werf et al. 2008). These include, for example, tropical savannas,
Mediterranean shrublands, temperate grasslands, and many temperate forests — ecosystems
with enough precipitation for heavy fuel production but with periodic dry spells that
permit burning. High fuel moisture usually precludes fire in extremely wet locations, e.g.
tropical rainforests, while insufficient fuel accumulation prevents arid lands from burning.
Moderate environments, then, are the most fire-prone, but climatic influences on fire
differ across the broad range of intermediate environments. In moderately dry ecosystems,
e.g. low-elevation forests in the southwestern U.S., anomalous wetness promotes fuel
production and subsequent fire (Brown et al. 2001; Grissino-Mayer and Swetnam 2000).
Conversely, drought favors fire in more humid environments like subalpine forests (Scho-
ennagel et al. 2004).

The South would seem to occupy the humid side of the moisture gradient where fuel
moisture restricts fire. Limited fire climatology research has been conducted in the region,
but records of recent fires reveal elevated burning in dry years (Beckage et al. 2003;
Brenner 1991; Dixon et al. 2008; Harrison 2004; Lafon et al. 2005; Mitchener and
Parker 2005). Some of this work suggests that global ocean—atmosphere teleconnections,
e.g. El Nino-Southern Oscillation, contribute to fire activity by influencing interannual
precipitation variability. Dendroecological research reveals limited influence of climate on
fire (McEwan et al. 2007; Schuler and McClain 2003), possibly because of widespread
anthropogenic burning historically, even during wet years. Most dendroecological work
in the South focuses on land use—fire relationships, so historic climate-fire linkages
warrant more research.

Within the humid South spatial patterns in burning reflect precipitation gradients.
Mitchener and Parker (2005) found that relatively warm, dry environments (e.g. Florida)
are more flammable than cool, moist areas (e.g. Appalachian Highlands). Within
Appalachia the relatively dry Ridge and Valley province has more fire than the wetter
Appalachian Plateau (Lafon and Grissino-Mayer 2007). Surprisingly, however, the Ridge
and Valley experiences less burning than the Blue Ridge, which has high annual precipi-
tation similar to the Appalachian Plateau. Lafon and Grissino-Mayer speculated that intra-
annual precipitation variability might contribute to the spatial pattern — a climate with
infrequent heavy precipitation (Blue Ridge) should have longer dry spells, hence more
fire, than one with frequent light precipitation (Appalachian Plateau).

Seasonality is a form of intra-annual climatic variability, and seasonal burning patterns
underscore the importance of dry conditions. Most of the South has bimodal fire season-
ality (Schroeder and Buck 1970). Burning peaks in spring and fall (Lafon et al. 2005),
when low relative humidity, high winds, and warm temperatures desiccate surface fuels.
Deciduous canopies are absent, so wind and sun penetrate to the forest floor and dry the
litter. Winter has less fire, apparently because cool temperatures and/or snow restrict dry-
ing. The winter curtailment is more pronounced in northern/high-elevation areas (Lafon
and Grissino-Mayer 2007) than in southern parts of the region (Dixon et al. 2008). Dur-
ing summer, flammability is reduced by high humidity, low windspeed, succulent vegeta-
tion, partial decay of dead fuels, and presence of deciduous canopy (Lafon et al. 2005).

The seasonal fire distribution primarily reflects anthropogenic (human-ignited) fires
(Abrams and Nowacki 2008; Lafon et al. 2005). People can ignite fires in dry weather,
but lightning ignitions are limited to periods of thunderstorm occurrence, mostly late
spring and summer. As noted, summer weather often does not favor burning, and when
rain accompanies lightning it further dampens ignition. These constraints have led some
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researchers to propose that lightning is an insignificant ignition source in the humid
South (Schroeder and Buck 1970), a hypothesis supported by fire records from some
areas (Yaussy and Sutherland 1994). Florida, however, has many lightning ignitions
during the transition from winter drought to summer thunderstorms (Beckage et al.
2003; Harrison 2004). Lightning ignitions also are more important in the Appalachian
Mountains than commonly recognized (Cohen et al. 2007; Lafon and Grissino-Mayer
2007). The transitional period from dry spring to humid summer seems especially favor-
able.

Lightning ignitions likely have ecological consequences disproportionate to their
frequency (Lafon et al. 2005). Plants — especially woody species — often sustain higher
mortality from summer fires than dormant-season burns (Drewa et al. 2002; Glitzenstein
et al. 1995; Harrington 1993; Waldrop et al. 1992; Figures 19 and 20). Leaf-scorch dur-
ing the growing season reduces photosynthetic capacity at a time when the plant is physi-
ologically active and continues to have high respiration demands. Reduced
photosynthesis inhibits the replenishment of carbohydrate reserves that were depleted

Fig. 19. Recently burned hardwood forest in the Linville Gorge along the eastern front of the Blue Ridge, Pisgah
National Forest, North Carolina. This and other lightning-ignited fires during the dry spring and summer of 2007
killed trees over extensive tracts of the forest. The photograph was taken within a few weeks of the fire.
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Fig. 20. Patches of forest killed by a lightning-ignited fire along the west slope of the Blue Ridge, Jefferson National
Forest, Virginia. The fire occurred during the dry summer of 2001, and the photograph was taken in summer 2003.
The patchiness in tree mortality apparently resulted from variations in fire intensity. Forest stands on the presumably
moister north-facing slopes fared better than those on other sites. North is toward the left of the photograph.

during the spring growth flush. With diminished carbohydrate reserves the plant suffers
reduced post-fire resprouting ability and has lower root and shoot growth the following
spring. All these factors combine to increase the probability of mortality following a
growing-season fire. A dormant-season fire, in contrast, occurs when respiration is low,
carbohydrate reserves are protected in underground storage, and deciduous foliage is
absent.

Periodic high-mortality episodes such as growing-season fires promote disturbance-
dependent species like Table Mountain pine (Aldrich et al. 2010). Summer burns also can
favor herbaceous over woody vegetation (Sparks et al. 1998; Waldrop et al. 1992)
because of high mortality of the woody competitors. Summer burning synchronizes flow-
ering and stimulates increased flower and seed production among some common herba-
ceous species of longleaf pine-wiregrass savannas (Brewer and Platt 1994; Outcalt 1994,
Platt et al. 1988a,b). A long history of lightning-ignited fires may have selected for a mass
reproductive effort timed to the season of lightning ignitions (Brewer and Platt 1994).
But many legume species in wiregrass communities respond less favorably to growing-
season than other fires (Hiers et al. 2000), suggesting their reproductive biology is not
adapted to lightning-ignited fires. Hiers et al. argued that a seasonally varied fire regime
would be more eftective than a growing-season fire regime for maintaining high under-
story plant diversity.

The historic role of anthropogenic versus lightning ignitions in the South and
elsewhere is debated (e.g. Abrams and Nowacki 2008; Barrett et al. 2005; Kay 2007,
Petersen and Drewa 2006). Some (e.g. Chapman 1950; Frost 1998) have argued that
fire-dependent plants demonstrate the primacy of lightning ignitions, i.e. human
habitation has been too brief to explain these adaptations. One question is whether it is
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conceivable for aboriginal or even early European fires to have burned vast wildlands fre-
quently enough to maintain fire-associated vegetation without help from lightning (Bar-
rett et al. 2005). Several authors think so (e.g. Kay 2007; Pyne 1982). Given
climatic/weather constraints on lightning ignitions, and their limited role today, Kay
(2007), Delcourt and Delcourt (2007), and others argue that people caused the prepon-
derance of pre-European fires. This debate has implications for understanding aboriginal
landscape manipulation (e.g. Abrams and Nowacki 2008) and for guiding fire manage-
ment. Over the past decade many federal agencies have suppressed anthropogenic but not
lightning-ignited fires (Zimmerman and Bunnell 1998). This policy assumes that ecosys-
tems developed historically with minimal human influence and that lightning ignitions by
themselves can maintain ‘natural’ conditions.

The historic fire records discussed above afford some insights about this debate but do
not resolve it. Fire-scar seasonality indicates that most fires occurred in spring before stem
growth began or in fall after growth ceased (e.g. Aldrich et al. 2010; Guyette et al.
2006). This pattern matches the seasonality of anthropogenic fires today. But lightning
ignitions overlap the spring anthropogenic fire season; therefore some dormant-season
scars could reflect lightning ignitions. Also, some growing-season scars exist.

Where temporal variations in fire frequency correspond with land use changes they
may offer glimpses into ignition sources (Allen 2002). Fire history work in the Ozark-
Ouachita Highlands suggests a strong land use control and minimal lightning influence
(e.g. Guyette et al. 2002, 2006). But Appalachian fire chronologies show little temporal
variation (Aldrich et al. 2010; Shumway et al. 2001), even during the depopulated period
preceding European settlement, possibly reflecting lightning ignitions from terrain-
induced thunderstorms under dry conditions.

Fire, Vegetation, and Climate on Southern Landscapes

Hidden within the lightning ignition question is the issue of landscape fragmentation.
Two centuries or more of sedentary agriculture, logging, urbanization, etc. have disrupted
fuel continuity. Where fires once may have spread unimpeded for miles, they now
encounter obstacles. Fire suppression erects additional barriers; indeed the objective of fire
suppression is to contain small fires before they expand (Pyne 1982). Lightning ignitions
usually are readily contained as they smolder in moist fuels (Cohen and Dellinger 2006).
How large might some have grown historically, when they could smolder several days
until the fuels dried? And how large did anthropogenic fires become?

Answers are unavailable, but if some grew large, e.g. during droughts, it is easier to
imagine landscapes burning frequently enough to maintain fire-dependent vegetation.
Even in remote areas that may have had sparse ignitions, large fires could have sustained
high fire frequency by spreading across the landscape (Aldrich et al. 2010; Ward et al.
2001). A computer simulation suggested that much larger and more frequent fires likely
occurred on a Florida landscape when it was less fragmented (Duncan and Schmalzer
2004).

Fragmentation and fire spread illustrate the value in keeping real landscapes and their
history in view. Vegetation, fire, and climate exist within a specific place and time that
are linked inextricably to surrounding landscape and previous history (Baker 2003). Dry
uplands covered with fire-resistant plants are interspersed with stream valleys occupied by
shade-tolerant fire avoiders (Harmon et al. 1983). The moist valleys can inhibit fire
spread between neighboring uplands, but severe droughts may erase these boundaries.
Hilly terrain presents more such obstacles than flatlands, partly explaining the high fire
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frequency of the Coastal Plain and the abundance of fire-avoiding plants in the
Appalachian Mountains (Frost 1998). Terrain also interacts with climate, for example, by
forcing thunderstorm/lightning development along the Blue Ridge and near the coast
(Hodanish et al. 1997; Lafon and Grissino-Mayer 2007). Such interactions may elevate
fire activity, promoting open, flammable vegetation and dry microclimatic conditions that
further escalate burning (Harrod et al. 2000).

Land use changes have disrupted these feedbacks, reducing fire frequency and permitting
a shift to mesophytic forests (‘mesophication’) with less combustible leaf litter, more shade,
and cooler, moister conditions (Nowacki and Abrams 2008). Although mesophytic tree
seedlings do not resist fire, some can resprout if top-killed (Welch et al. 2000), and their fire
resistance increases as they mature (Harmon 1984). Today resource managers use prescribed
fire to attempt to restore fire-associated ecosystems. But mesophication — and the decline of
pine/oak/grassland seed sources — make it increasingly difficult to restore such vegetation
(Nowacki and Abrams 2008). These alterations in vegetation and flammability also make it
harder for us to envision the historic role of fire on Southern landscapes.
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