

Final Report to the Governing Board, Joint Fire Science Program
Project 05-4-1-12

Innovative, 3-D, Interactive, and Immersive Techniques for Visualizing, Querying, and
Understanding Regional Maps of Forest Vegetation, Fuels, and Fire Risk

Principal Investigators:
Janet L. Ohmann

Matthew J. Gregory
Timothy M. Holt

28 September 2007

 2

Introduction

This report summarizes accomplishments, key findings, and final products from Project
05-4-1-12 funded by the Joint Fire Science Program, ‘Innovative, 3-D, Interactive, and
Immersive Techniques for Visualizing, Querying, and Understanding Regional Maps of
Forest Vegetation, Fuels, and Fire Risk.’ The project is also referred to as the 'GNNViz'
project. This report is accompanied by a DVD containing all project deliverables in
electronic format (see Appendix 1). This report and final products also can be viewed and
downloaded from our website, http://www.fsl.orst.edu/lemma/gnnviz. A glossary of
terms and abbreviations used in this report is included at the end of the report.

Project Background

As part of our previously funded JFSP project (Project 01-1-4-09), called ‘GNNFire,’ we
created maps of vegetation and fuels using the Gradient Nearest Neighbor (GNN)
method. We distributed our map products and methodology through traditional
technology transfer modes, including meetings with stakeholders, presentations at
workshops and conferences, research papers, and our website. However, communication
with users during both development and technology transfer phases of our research was
hampered by the physical distance between investigators and users, by the complexity
and novelty of the GNN map products, and by time limitations. In the course of our
research it became apparent to our research team that alternative and more effective ways
of communicating regional spatial information were needed.

Our traditional methods for portraying fuel patterns were not always effective for fuel
managers and field specialists. In general, it was difficult for many users to move beyond
viewing the GIS-based maps as abstractions of reality, and there often was a tendency to
distrust this model-based view of the real world. There also was a lack of understanding
of the richness of the vegetation and fuels data contained in the GNN-based maps, as
many users were unfamiliar with maps based on imputation methods. We believed there
were opportunities to make the regional maps more ‘real’ by developing innovative ways
for users to visualize and interact with the maps. These enhanced visualization tools
would also create opportunities for two-way communication between researchers (map
developers) and managers, for scientists to learn from managers where the maps were
accurate and where they needed further improvement.

To that end, we proposed developing innovative ways of visualizing and interacting with
broad-scale mapped information on fuels and vegetation to improve communication
between researchers and managers, as well as to enhance delivery and use of our own and
similar research products. Our objectives were to:

1. Create an interactive and immersive tour of our three study areas using state-of-
the-art gaming technology and detailed data from existing GNN vegetation and
fuels maps. The methodology for creating this visualization environment would
be generalized to be extendable to other locations and mapping methods

 3

2. Couple these visualization tools to web-based map server technology to give the
user analytical tools for querying the underlying GNN mapped attributes and the
ability to overlay polygon and raster information from external sources into the
visualization environment.

We have successfully created the visualization environment for our three study areas and
developed an application that is extensible to other mapped information and geographic
locations. The research path taken to arrive at this application was not always as
proposed, and many of our key findings speak to the evolutionary nature of developing
software that relies on cutting edge technology. The software has morphed from a paired
visualization environment and web-based mapping site, as outlined in our objectives
above, into an integrated visualization and analysis platform. We are not reinventing the
GIS wheel, although the visualization environment does have some elements that will be
familiar to GIS users. Rather, we have created a tool for visualizing and browsing spatial
information that is unique from GIS – a hybrid experience between GIS, Google Earth,
and a computer game. We believe this platform holds promise for future visualizations
and simulations.

Study Areas

Our three study areas were: the Inland
Empire of northeastern Washington, the
coastal province of western Oregon, and
the west slope and foothills of California’s
Sierra Nevada. The study areas range from
31,000 to 50,000 km2. The study
landscapes represent three distinctive
ecoregion Divisions (Bailey 1995):
temperate steppe, marine, and
Mediterranean.

 4

Key Findings

Game Engines

The choice of a game engine is an important decision that significantly impacts
application development time and project direction

One of our greatest frustrations in this project has been finding an appropriate game
engine technology that would serve the project's requirements. In general, most game
technologies concentrate their efforts on rendering a relatively small game space (on the
order of a kilometer or less in dimension) in high detail. For entertainment games, content
is typically hand-created by developers and artists and is not programmatically or
procedurally generated. This contrasts with GNNViz requirements that we render
extremely large areas on the order of 100's of kilometers across, and render potentially
millions of objects (trees) in this landscape.

So though many game technologies would have allowed us to create small, high-fidelity
renderings of forest scenes, we found very few that would let us render large areas with
large numbers of items. It in a sense became a ‘quantity versus quality’ issue, with most
game technologies supporting the ‘quality’ side of the coin.

We considered several different game engines for this project, described below. Our
comparative assessment of them is in Appendix 2.

We initially proposed using Valve Software's Source engine as the base for our
visualization environment. It is well documented and has a large developer community,
which speaks to its stability and usability. However, we quickly ran into limitations.
There were issues with level-of-detail (LOD) rendering and game tiling that we were not
able to modify through the program's application-programmer interface (API). Tiling is
the concept of having the game engine only keep in memory portions of the terrain
(arranged as tiles) that are currently visible by a player. The Source engine (along with
many others) does allow entire new game environments to be loaded so the player can
transition from one area to another. However, it requires that all players move to the
newly loaded environment, which rules out multiple players exploring different parts of a
shared larger environment.

This led us to consider other commercial, off-the-shelf engines such as Crytek's FarCry
and Oblivion, but other limitations such as limited elevation ranges (FarCry) and no
multi-player support (Oblivion) made these options unsuitable as well. As with Source,
these engines provided effective APIs for game modification, but they did not allow us to
implement large areas of terrain with vast numbers of accurately positioned trees.

In March 2006, we looked at two new game engines that seemed better suited. One was
the Multiverse game technology, which is designed to manage vast game areas for a type
of game known as an MMOG (Massive Multiplayer Online Game). Though capable of

 5

rendering large areas, Multiverse technology did not provide us with sufficient control
over placement of trees and other objects, which meant we could not duplicate the
vegetation distribution present in our GNN vegetation and fuels maps.

The other technology we examined was the Garage Games Torque engine, which gives
users full access to the source code and is able to render large terrains with many objects.
We developed a small (20km x 20km) example scene and devoted nearly six months of
development time to creating custom algorithms and content suitable for our project. We
gave a number of presentations and demonstrations of this visualization based on this
example scene, including a September 2006 presentation to the JFSP Governing Board.
However, when it came time to render other scenes in our study areas, the modules and
file formats for creating topographic surfaces from digital elevation models (DEMs) were
very buggy and ultimately unusable.

Finally, in May 2007, we changed engines again and settled on the Delta3D engine
(http://www.delta3d.org/). Delta3D is an open-source project which has a number of
desirable features including automatic tiling of large landscapes, easy translation of GIS
data into game content, and fully modifiable source code. The drawback to this engine
was that sample applications were not developed as fully as with other engines, so more
development time was required to modify the existing content. The engine has improved
dramatically from when we began the project, so many of these desirable features were
not present during our initial engine evaluation.

These decisions, as a whole, have increased development time on this project and pushed
back our project schedule. Indeed, this is a major challenge of implementing a project
that is highly dependent on cutting-edge technology, which by definition is rapidly
changing and evolving. The target is always moving, and has required that we learn and
adapt as we went.

Delta3D is a flexible and extensible platform for regional visualizations

Delta3D offered several compelling reasons for use as the GNNViz game engine. As
Delta3D is an open-source project, we were able to modify the code to fit our project's
requirements. More importantly, it directly supports effectively infinite terrain via
dynamic tiling and caching of game content to create a manageable memory load while
running the visualization. The game also included modules for dynamic geographic
placement of tree objects onto the landscape. In general, the Delta3D engine had greater
‘geographic awareness’ (i.e. an established relationship with geographic coordinates)
than all other engines we investigated. As such, incorporating georeferenced datasets,
such as digital elevation models (DEMs) and ancillary drape images, is greatly simplified
(see Appendix 3).

Building on the base Delta3D code, we extended the source code extensively to include a
variety of enhancements specific to our project. These include: creating flexible tile sizes,
adding multi-player and chat capabilities, generating intuitive heads-up-display (HUD) of

 6

user interface elements, and tying controlled placement of objects (trees) onto the terrain
surface based on underlying GNN data.

Of the features added to the Delta3D code, the ability to control object placement based
on underlying data provides the greatest opportunity for extensibility. Given any density
surface and one or more models to represent this density, a new landscape visualization
can be added to GNNViz, requiring only a change to an XML file without a
recompilation of the source code. For example, if a user wished to visualize fire risk
within the wildland-urban interface (WUI), s/he could symbolize housing density with
individual 3D house models over a landscape draped with a fuel model image. One might
even visualize a fire by taking a map representing real or simulated fire densities and
using it to control placement of flame models on the simulated terrain.

There are limitations to the Delta3D engine as well, but these tend to be common
limitations shared among all three-dimensional game engines. Most notably, the
representation of millions of discrete objects (such as trees) is a computationally intensive
process and can negatively impact the user experience. This is almost exclusively a
hardware-dependent issue and we saw dramatic differences in performance based on
different systems that we tested. As computing and graphics performance continue to
improve, this application will be able to render the visualization environment almost
seamlessly.

Realism in Visualization

3D game engines provide unique possibilities for rendering at a variety of spatial
scales

Typically, users of geospatial data are used to visualizing their data in GIS as a top-down
view with data abstracted to points, lines, polygons and images. With the advent of some
newer applications based on 3D graphics libraries (e.g. Google Earth, NASA
WorldWind, ArcGlobe), users have the ability to be a part of their data by rendering
oblique views and generating limited numbers of three-dimensional objects. This project
extends that trend by providing different symbolic information at different spatial scales.

At the coarsest scale in our GNNViz application, users are presented with a traditional
GIS view, albeit draped upon a realistic topographic surface. As the user gets closer to
the surface, s/he transitions into a more realistic view of the ground surface, which we
achieved by combining textures (i.e. two-dimensional tiled images) of forest floor
photographs. The ratio of each texture's contribution to the overall combination is
controlled by the modeled GNN canopy cover. For example, in dense conifer forests, the
user will see a ground texture which is almost exclusively needles with very little
understory vegetation, whereas in an open hardwood stand, various forbs and grasses
tend to dominate the ground texture.

At the finest scale, users are presented with the actual tree models (graphical renderings
of trees) in relative amounts of conifers, hardwoods, and snags as predicted from GNN.

 7

These have been generalized to three tree models for each group, but future work may
include increasing the number of unique models used to symbolize densities of individual
tree species, size classes, crown geometries, etc. Although it would be hard to argue that
the landscape is photo-realistic, the finest scale of rendering does allow the user to more
easily visualize GNN model output than is possible through traditional GIS programs.
Part of the advantage is due to the way users can navigate through the visualization
landscape.

‘Pseudo’ satellite imagery can be effectively generated from GNN data for distant
viewing

Although this feature is not yet incorporated into the current release of the visualization
environment, we have developed a method of creating images which mimic the look and
feel of fine-grain satellite imagery or air photos, but are instead generated from GNN
model data. This view can provide a seamless transition from draped images into 3D
models.

For every pixel in a GNN model, the visualization creates a ‘stem map’ of 3D objects
based on the total tree density from the GNN prediction. Because we have no information
on how the trees are distributed across a pixel, we randomly place trees in the pixel until
we reach the required density. The key is that the random number generator is actually a
known sequence but can be initiated with a truly random seed to begin the sequence.
Rather than allowing the seed to be random, we set it to be a linear combination of the
pixel's row and column coordinates. In this way, we create the stem map to have a
random spatial distribution across the pixel that is generated identically each time that
pixel is visited.

To create the ‘pseudo’ satellite image, we use this same distribution of the 3D models,
but use a top-view, two-dimensional (2D) image of a tree crown to represent that 3D
model. As the user zooms in, the 2D crown images fade into actual 3D models in the
same locations. We had implemented this feature into the Torque engine version of the
visualization environment, and we hope to incorporate this functionality into future
versions based on Delta3D.

Two-dimensional ‘billboards’ are surprisingly effective and computationally
inexpensive for rendering trees

In game engines, it is possible to render trees as either 3D models or 2D ‘billboards.’
Tree models are typically comprised of hundreds to thousands of individual polygons at
their most detailed, and exert a heavy load on the computer's graphics card. When we
tried to render GNN models, which may consist of tens of thousands of trees in a single
scene, we found that frame rates (i.e. the number of frames rendered per second) were
very low. This led to discontinuous movement in the visualization environment.

‘Billboards,’ on the other hand, are 2D vertical rectangles with an image texture stretched
to fit onto it. As such, there is only one polygon to render per tree object, and GNN

 8

scenes are rendered much more smoothly. When a user is walking along the ground
surface in the visualization environment, billboards rotate on their z-axis to always face
the user. In addition, the images used for billboards can have transparency built in, so that
billboards in the foreground do not fully obstruct billboards in the background. The one
drawback of using billboards is, when viewed from directly overhead, the billboards
appear to be thin lines with no depth, much like playing cards on edge. It is possible to
remedy this view by adding another billboard perpendicular to the first with an image of
the tree crown as the texture. We would like to incorporate this into future versions of the
visualization.

A hybrid view of GIS pixels and individual tree objects is an effective tool for
understanding relationships among spatial datasets

One of the most interesting bits of feedback we received from our beta tests was that
users liked to visualize the relationship between the 30-meter pixels and the rendered tree
objects. We had assumed that users would want the most photo-realistic view of the
forest when walking along the terrain. Instead, users were interested in the abstract view
of the GIS data draped on the terrain surface coupled with the spatial depiction of tree
objects. For example, users who would not know what a particular fuel model looked like
on the ground were able to visualize the relative density and composition of live trees and
snags that are expected in that fuel model using the tree objects.

This is perhaps even more relevant when comparing different modeled vegetation layers,
from GNN or other sources, against known tree distributions. For example, a land
manager could use stand exam data as ‘truth’ to spatially render tree objects and then
cycle between multiple modeled layers to gauge individual model performance. Patterns
that may not be readily evident in a traditional GIS (such as slope or aspect effects)
would be more easily seen in the visualization environment. This hybrid view could also
be used as a powerful visual communication tool, through screenshots or animations,
when describing relationships between two datasets.

In-Game Communication, User Interfaces and Visualization Content

The visualization environment provides multi-user support while maintaining small
server loads

The visualization environment is distributed as a stand-alone application packaged with
all the spatial data required to view the environment. A user can run the visualization on
his/her own computer from a Windows executable file by specifying a mission XML file,
which sets various parameters of the visualization environment, including spatial extent,
spatial layers and in-game markers. However, it is also possible for a user to use the game
in a multi-user environment. At present, the networking model for running the application
is that one user and their computer (i.e., a client) acts as the server and manages all
communication packets among all clients. Other clients join the game by specifying a
server name at the command line. Because all game content is resident with each client
(i.e., each user has installed the application on their computer), the server is only

 9

responsible for managing the chat among clients and for tracking clients' positions. This
results in ‘thick client / thin server’ architecture, as each client is responsible for
generating the visualization on their own computer.

In its source distribution, Delta3D provides core functionality for running applications in
a multi-user mode, where multiple users interact in the same simulated environment.
Unfortunately, this functionality is somewhat rudimentary and we needed to expand its
capabilities to meet our project's needs. We have added in-game communication tools
through a chat window, and commands for querying who is simultaneously in the
visualization environment. We have also added symbols to represent users’ positions so
that all users can see one another in the visualization environment.

One enhancement that we would like to incorporate into future versions would be a
stand-alone server that is always running. As it is now, the server must also be in the
game. This puts load stress on the server machine, which could be avoided. This feature
would need to be implemented before the visualization environment could be used by
many people simultaneously.

User interface elements are effective when incorporated into the heads-up display
(HUD)

Even though the focus of this project was the visualization environment itself, there were
a number of user interface elements that we needed to provide geographic and
informational context to the environment. Initially, we conceived of providing basic GIS
functionality through a separate but linked internet map server application. This would
include navigation, query and display capabilities; typical functionality for map serving
websites. As the project progressed, however, it became evident to us that having
separate processes and windows was confusing and detracted from the immersive
experience.

We have begun to incorporate the needed informational and analytical tools directly into
the visualization as heads-up display (HUD) user interface elements. Included in the
current version are drape and object layer control, a legend for the current drape image,
and a dynamic attribute table which gives information about the user's current location as
a tabular view. We have also designed new movement commands to navigate the
visualization space, including simulated ‘jump-to’ and ‘fly-to’ motions. Finally, users can
track their positions with information about current geographic location, elevation and
heading. All of these HUD elements were designed to be non-intrusive and intuitive to
use, so as to not detract from the main focus, i.e. the visualization itself.

In future releases of the application, we would like to incorporate an overview map to
show player positions as well as adding the capability to query in-game objects for
detailed attributes by selecting them with a mouse click (i.e., ‘picking’ functionality).

 10

Translation of GIS data to game content is done through simple utilities

One of the most convenient features of the Delta3D engine is its ‘geographic awareness’
and ability to read in a variety of spatial data formats for rendering terrain features. This
geographic awareness is not at all common in traditional computer game engines, and is
in fact a very important advantage of Delta3D over other technologies.

Because Delta3D is based on the earth's latitude/longitude coordinate system, translation
of GIS data to game content is straightforward. We have developed simple utilities to
translate spatial data, with the intention that other users could use the utilities to likewise
incorporate their own data into the visualization.

Delta3D renders elevation surfaces from Digital Terrain Elevation Data (DTED) files,
which are one of three resolutions: level 0 (~900 meters), level 1 (~90 meters) and level 2
(~30 meters). For our visualization environments, we chose to use level 2 data to
correspond with the native resolution of the GNN products. The Geospatial Data
Abstraction Library (GDAL) provides simple utilities for converting elevation data in any
format to 1-degree DTED tiles.

For draped surfaces, Delta3D provides software for reading in GeoTIFF files, which is a
common raster format for most GIS packages. Again, GDAL provides functionality for
re-projecting rasters and translating file formats, and we have developed custom scripts
(AMLs) to create both categorical and continuous GeoTIFF files. In addition, the mission
XML file allows the user to create simple legends for the draped surfaces.

Instructions for creating custom content for the visualization using our utilities are in
Appendix 3.

 11

Deliverables

We produced most of the deliverables listed in our proposal. However, a couple of items
(most notably the site visits and reports) were contingent upon having a beta version of
our software completed. The difficulty of finding a suitable game engine, as described in
the key findings section, delayed our development schedule such that we were unable to
complete these tasks. Now that we have a beta-tested application, released with this final
report, we intend to solicit feedback from our stakeholders as they use the visualization.
Not that we developed several products that are in addition to what we originally
proposed, which are described in the second table below.

Copies of all our final products are available from our website
(http://www.fsl.orst.edu/lemma/gnnviz). The directory structure and file names for final
products are listed in Appendix 1.

Proposed Delivered Status

Ohmann, Janet L., Matthew J. Gregory, and
Timothy M. Holt. Final Report to the Governing
Board, Joint Fire Science Program: Project 05-4-
1-12

This
document

Annual Reports

Ohmann, Janet. 2006. Progress report to the
JFSP Governing Board (JFSP Project Number:
05-4-1-12)

Completed

GNNViz Software
and Visualization
Environments

We have created the base GNNViz application
and example visualizations of our three study
areas: the Inland Empire of northeastern
Washington, the coastal province of western
Oregon, and the west slope and foothills of the
Sierra Nevada in California. Each example
visualization is controlled by the modification of
an XML file, which creates a flexible interface to
the core application.

With each study area, we have included a
number of GIS layers (e.g. Landsat TM imagery,
National Land Cover Database 1992 land
classification, land ownership, etc.) as well as
key variables from the GNNFire maps (e.g.
Albini fuel model, vegetation class, crown bulk
density, etc.). In addition, values of key variables
from the GNNFire plot database can be viewed
on-screen during the application based on the

Completed

 12

user's location. (See Appendix 4 for variable
definitions.)

One report detailing the methodology used to
translate GNN fuel mapping predictions into
virtual landscapes.

Not
completed

Technical Reports

One report outlining the technical aspects of
embedding external processes (map server
technology) into the virtual gaming environment.
Because we do not incorporate external
processes in the visualization environment, this
deliverable is no longer applicable.

No longer
applicable

Site Visits Site visits to three study areas to instruct forest
managers and fuel specialists how to use the
visualization environment and collaborative
tools.

Not
completed

Additional
Products

Delivered Status

Holt, Timothy. "Lightweight and Innovative
MMP Technologies for Serious Games."
Game Developers Conference, San Jose, CA.

March 2007

Holt, Timothy. "Serious Games Engine
Shootout." Panel member, Game Developers
Conference, San Jose, CA.

March 2007

Holt, Timothy. "Games Get Serious: Computer
Games for Visualization and More."
Geovisualization: A Window to the Earth
Surface, Structure and System lecture series.
Corvallis, OR.

January 2007

Presentations and
Demonstrations

Holt, Timothy; Gregory, Matthew.
Demonstration of application of computer
gaming technology to forest visualization
('serious gaming'). College of Forestry
Centennial Open House.

November 2006

 13

Holt, Timothy. "Games Get Serious: Computer
Games for Visualization and More" Keynote
presentation. GIS Day, Oregon State
University. Corvallis, OR.

November 2006

Holt, Timothy. "Using Game Technology to
Present Scientific Data" Presentation to
Software Association of Oregon Corvallis
Chapter, Corvallis, OR.

November 2006

Holt, Timothy; Ohmann, Janet. Demonstration
of the GNNViz project to the Governing
Board of the Joint Fire Sciences Program.
Missoula, MT.

September 2006

Holt, Timothy; Ohmann, Janet. Demonstration
of application of computer gaming technology
to forest visualization ('serious gaming').
College of Forestry payday coffee.

April 2006

Holt, Timothy. "Healthcare and Forestry -
Half-Life 2: Meet Serious Games Modding."
Serious Games Summit. Washington, DC.

October 2005

GNNViz project website -
http://www.fsl.orst.edu/lemma/gnnviz/

Completed Websites

GNNFire project website -
http://www.fsl.orst.edu/lemma/gnnfire/

Completed

Oregon State University College of Forestry
beta-test. Ten users participated in a beta-test
of the application, intended primarily to test
the utility of the multi-player functionality
including collaborative viewing and chat, and
to provide general feedback on the
visualization experience.

September 2007 Beta-Testing and
Collaboration

Teleconference with ESRI federal team. December 2006

Software Utilities
and
Methodologies

Cache building tool for pre-caching tree
objects and GIS layers as game content (to
avoid long delays in the main application).
This is called “buildcache.exe” in the main
directory.

Completed

 14

Methodology of converting GIS layers into
game content using GDAL.

Will be released

Extraction program which converts raster data
into user-defined tiles with associated
metadata. This was a utility developed to serve
data needs when we were using the Torque
game engine. It has no utility when using the
Delta3D engine.

Available upon
request

Users’ Guide Quickstart guide to the GNNViz visualization
environment.

Included with
DVD

Future Developments to the Visualization Environment

The following is a partial list of additions or enhancements to the GNNViz visualization
that we would like to implement given more time and funding.

• Develop methods to dynamically update the visualization to view landscape
changes, either real (e.g., maps from change detection that show fire or harvest) or
simulated (e.g., output from a fire simulation model).

• Provide more explicit treatment and display of uncertainty information in the
visualization. One approach would be to allow user to toggle between a detailed
(smoothed) view and a ‘pixelated’ view.

• Incorporate vector data such as roads, streams, and political boundaries (states,
counties, etc.), to improve the frame of reference for the visualization.

• Provide tools that allow users to interact with visualization objects within the
game environment that have data associated with them. For example, a user could
query a tree object and find out that it is a 20 cm Douglas-fir and that there are 12
such trees per hectare in the stand. Available tree information includes species,
DBH, crown ratio, height, etc.

• Provide a regional perspective for querying the visualization. For example, a user
could query the game to ‘Spatially depict all the trees where the average stand
diameter is within a given threshold from the one I'm clicking on.’

• Optimize the object rendering to allow display of trees and other objects over a
larger area of terrain than is possible within constraints of the current game engine
(i.e., display more trees over a larger area).

 15

Glossary of terms and acronyms used in this report

2D
Short for two-dimensional.

3D
Short for three-dimensional.

Application Programmer Interface (API)
An API is a software library designed to allow programmers access to an application. An
API is not necessarily the complete source code for the entire application, but rather just a
set of ‘hooks’ that give a programmer access to the application via custom software.

Billboards
Billboards are 2 dimensional images displayed in a computer game. They are often drawn
such that no matter which way a player views them, the same 2D image always faces
towards the viewer. They can be used for displaying trees and other such objects by
essentially displaying a picture of the object which always faces the camera.

Client / Server Architecture
Used in terms of describing the general responsibilities of clients and servers in a multi
user networked game. The client is the program that is running on a user’s machine and is
how they connect into the shared environment of a multi-user game. The server is a
centralized program that manages all client connections to it.

Commercial Off-The-Shelf (COTS)
COTS refers to the use of commercial products (including games) for some application. It
implies that the product can be used as-is without much modification to meet some need.

Content
In a game context, the content refers to the ‘stuff’ that a virtual world is composed of.
This might be virtual models of trees, the landscape and terrain and so forth. Usually
content is not used to refer to things such as the user interface or underlying datasets.

Delta3D
Delta3D is a widely used and well-supported open source game and simulation engine.
Delta3D is a fully-featured game engine appropriate for a wide variety of uses including
training, education, visualization, and entertainment. Delta3D is unique because it offers
features specifically suited to the Modeling and Simulation and DoD communities such
as High Level Architecture (HLA), After Action Review (AAR), large scale terrain
support, and SCORM Learning Management System (LMS) integration.

Density Surface
A 2D image that represents the count or frequency of a some datum over a surface. It is
typically represented with a grayscale image, where black represents no value, up to
white which means the maximum number of items occurring in that spot. In the context

 16

of GNNViz, we use a density surface that represents the number of trees per hectare in a
given area. This density surface is then used to compute the placement of decorator
objects (tree models and/or billboards) onto the terrain, with more objects being placed in
areas with higher density values, and fewer in low density areas.

Game Tiling
Tiling is the process of breaking large pieces of content such as terrain into a series of
smaller tiles of some fixed size. Tiling allows the game engine to only render and keep in
memory portions of the terrain that are near to and visible to the player. As the player
moves through the terrain, new tiles are dynamically loaded as they come into view, and
old tiles are removed from memory when they become more distant.

GNN
The Gradient Nearest Neighbor method of predictive vegetation mapping, named for its
use of direct gradient analysis and nearest-neighbors imputation.

GNNViz
Informal name of this project, which developed an application to visualize regional maps
of vegetation and fuels developed using GNN.

GNNFire

Heads-Up Display (HUD)
A method of displaying numerical or other information on the view into a real or virtual
space by overlaying the information in front of the viewer’s eye. In an airplane, this
might be information displayed directly onto the plane cockpit glass. In a game it is
typically drawn on the computer screen as if it is projected in front of the viewer’s eyes.

Imputation
A class of statistical methods used for prediction of missing data. An increasingly
common application in forestry is for imputing vegetation attributes to pixels or polygons
for which the data are lacking. Also referred to as nearest-neighbors methods.

Level Of Detail (LOD)
Level of Detail is a technique used by many game engines to help improve performance
by drawing lower resolution versions of some objects when detail is not required. This is
usually done by creating multiple versions of a model or object, varying from high detail
down to very simple detail. The high detail version is displayed only when the player’s
point of view is close to the object, and progressively lower level detail versions are
drawn as the player’s point of view moves farther away.

LEMMA
Landscape Ecology, Modeling, Mapping, and Analysis team, of which Ohmann,
Gregory, and Holt are members. See http://www.fsl.orst.edu/lemma.

 17

Mission XML File
An XML file used by GNNViz which contains specific data about what terrain data to
use, tree model rendering methods, and images to be overlaid on the terrain’s surface.

MMOG (Massive Multiplayer Online Game)
A multiplayer game which is played online via the internet. Typically these games take
place in large and persistent worlds where many players share in the game experience
together. Popular commercial games such as World of Warcraft are examples of
MMOGs. They also are referred to at times as MMORPGs (Massive Multiplayer Online
Role Playing Games) or just MMOs (Massive Multiplayer Online).

MOD
Short for modification. Modding is the act of taking an existing COTS computer game
and modifying it to create a new game by changing the game content and artwork, sounds
or even game behavior via an API. Many game companies actually sanction and
encourage the public to mod their games, but do require anyone running a mod to own a
copy of the original game.

Mouse look
Mouse Look refers to a common game interaction method, where moving the mouse
(either with or without an associated mouse click) changes the player’s view. They do not
actually change position on mouse clicking, but the view is moved about as if the player
is looking around.

Multi-user mode
Wherein more than one user/person may join and interact inside of a game world. Typical
of an MMOG (Massive Multi-player Online Game)

Networking model
The method by which a multi-user game such as GNNViz or an online game shares data
between different players. It is necessary for there to be some kind of underlying
networking model so that if one users moves, types a ‘chat’ message or does some kind
of action in the game, other users will see a representation of the other user moving,
display their chat message and so forth.

OpenGL
OpenGL is a method for rendering 3D images. GL stands for Graphics Language.
OpenGL is the ‘open source’ version of GL. id software is a huge proponent of OpenGL
because it is platform-independent, unlike DirectX which is Windows-specific.

OpenSceneGraph
OpenSceneGraph is an open source high performance 3D graphics toolkit, used by
application developers in fields such as visual simulation, games, virtual reality, scientific
visualization and modeling. Written entirely in Standard C++ and OpenGL it runs on all
Windows platforms, OSX, GNU/Linux, IRIX, Solaris, HP-Ux, AIX and FreeBSD
operating systems.

 18

Open source
Software made available to the public for free where the complete source code is also
made available. The user base of such a program is often encouraged to contribute to the
source code so that it in a sense becomes a community written project. Typically open
source projects restrict the use of the code for commercial applications.

Picking functionality
The ability to click on an object or point with the mouse and select it. Picking something
typically is to either mark it for some future action or to request more information on the
selected point.

Software development kit (SDK)
A programming package that enables a programmer to develop applications for a specific
platform. Typically an SDK includes one or more application program interfaces (APIs),
programming tools, and documentation.

Source engine
The Source Engine is a game engine created by Valve Software for use in their Half-Life
2 and other computer games. Source was actually an internal nickname for the engine
used by Valve’s developers, which was later used and adopted by the public.

Thick client / thin server architecture
This is a client/server architecture where most of the computational work is put on the
individual clients rather than on the centralized server. With GNNViz for example, the
client is responsible for all terrain rendering, calculation of tree positions and other such
work. The server does very little work beyond just acting as the central exchange point
for allowing clients to communicate with each other.

Tree models
Models are shapes defined in 3 dimensions and used in a game or other virtual
environment. 3d models can typically be viewed from multiple angles. In the context of
GNNViz, a tree model would be a 3 dimensional representation of a tree, showing trunk,
branches, foliage and other physical aspects of the tree.

WASD
WASD refers to the W, A, S and D keys on a keyboard, which are commonly used in
games for moving the player. The W key, when pressed, moves the player’s view
forward. S moves the view backwards, and A and D move the view left and right
respectively. The layout of these keys is similar to the four-arrow key ‘inverted T’ layout
on most keyboards.

 19

Appendix 1: DVD contents

The GNNViz reports, application, and data are distributed on four DVDs due to the large filesize of the accompanying data. Disk 1
contains the base program and reports. The other disks contain data for the GNNViz application for the three study areas: Disk 2 is
California, Disk 3 is Oregon, and Disk 4 is Washington. File structure is listed in the table below for Disk 1 and 2 only – Disk 3 and 4
follow the same format and naming conventions as Disk 2. Each disk has a “README_DISK*.txt” file describing disk contents.

Disk1_Program files Type Description

Reports

\reports\final_report_01-4-1-12_coverletter.pdf pdf document Cover letter for this report.

\reports\final_report_01-4-1-12_28sep07.pdf pdf document This report.

\reports\GNNViz_User_Guide.pdf pdf document User’s guide for the GNNViz application.

Program files

\Delta3d\ext* Dynamic link
libraries External linking libraries distributed with Delta3D

\Delta3d\gnnviz\bin* Dynamic link
libraries

Main GNNViz executable program plus linking
libraries distributed as core from Delta3D (modified
for GNNViz)

\Delta3d\gnnviz\bin\build_california.bat batch file Prebuilds the GNNViz cache files for the California

 20

project area

\Delta3d\gnnviz\bin\build_oregon.bat batch file Prebuilds the GNNViz cache files for the Oregon
project area

\Delta3d\gnnviz\bin\build_washington.bat batch file Prebuilds the GNNViz cache files for the Washington
project area

\Delta3d\gnnviz\bin\buildcache.exe executable GNNViz utility program which prebuilds all cache
files needed by GNNViz

\Delta3d\gnnviz\bin\gnnviz.exe executable The GNNViz program

\Delta3d\gnnviz\bin\setup.bat batch file
Sets environment variables needed by gnnviz.exe and
buildcache.exe. Note that this must be edited for each
installation to set path values.

\Delta3d\gnnviz\bin\california.bat batch file Starts GNNViz with the California dataset

\Delta3d\gnnviz\bin\oregon.bat batch file Starts GNNViz with the Oregon dataset

\Delta3d\gnnviz\bin\washington.bat batch file Starts GNNViz with the Washington dataset

\Delta3d\gnnviz\data\mission_california.xml XML file Mission file for typical California visualization

\Delta3d\gnnviz\data\mission_california_all.xml XML file Mission file for pre-building all California spatial data
tiles

\Delta3d\gnnviz\data\mission_oregon.xml XML file Mission file for typical Oregon visualization

\Delta3d\gnnviz\data\mission_oregon_all.xml XML file Mission file for pre-building all Oregon spatial data
tiles

 21

\Delta3d\gnnviz\data\mission_washington.xml XML file Mission file for typical Washington visualization

\Delta3d\gnnviz\data\mission_washington_all.xml XML file Mission file for pre-building all Washington spatial
data tiles

\Delta3d\gnnviz\inc* Source code .h include files for GNNViz libraries and modules

\Delta3d\gnnviz\src* Source code Source code for GNNViz and associated modules and
libraries

\Delta3d\gnnviz\VisualStudio* Source code Microsoft Visual C++ project files for GNNViz

\Delta3d\inc* Source code Include files for Delta3D

\Delta3d\lib* Source code Library files for Delta3D

\Delta3d\src* Source code Source code for Delta3D

\Delta3d\VisualStudio* Source code Microsoft Visual C++ project files for Delta3D

Disk2_CA_Data

\Delta3d\gnnviz\data\gnnviz\california\ca_fcsum.xml XML file GNN attribute data for California

\Delta3d\gnnviz\data\gnnviz\california\ca_fcsum.xsd XSD file GNN attribute XML schema for California

\Delta3d\gnnviz\data\gnnviz\california\cancov.tif GeoTIFF Canopy cover (percent) (see Appendix 4)

\Delta3d\gnnviz\data\gnnviz\california\dvph_ge_25.tif GeoTIFF Down wood volume (m3/ha) >= 25cm intercept
diameter (see Appendix 4)

 22

\Delta3d\gnnviz\data\gnnviz\california\fuelmodel.tif GeoTIFF Albini fuel model (see Appendix 4)

\Delta3d\gnnviz\data\gnnviz\california\nlcd.tif GeoTIFF 1992 National Land Cover Data (NLCD) land cover
type (see Appendix 4)

\Delta3d\gnnviz\data\gnnviz\california\nnplt.tif GeoTIFF GNN neighbor plot assignment (used to link attribute
data to current position)

\Delta3d\gnnviz\data\gnnviz\california\owner.tif GeoTIFF Generalized ownership classes (see Appendix 4)

\Delta3d\gnnviz\data\gnnviz\california\rcbdu2.tif GeoTIFF
Canopy bulk density (kg/m3) using uncompacted
crowns and Rocky Mountain equations (see Appendix
4)

\Delta3d\gnnviz\data\gnnviz\california\rhtcbu2.tif GeoTIFF Height to crown base (m) using uncompacted crowns
and Rocky Mountain equations (see Appendix 4)

\Delta3d\gnnviz\data\gnnviz\california\shrcov.tif GeoTIFF Uncorrected shrub cover (percent) (see Appendix 4)

\Delta3d\gnnviz\data\gnnviz\california\stph_ge_12.tif GeoTIFF Snags (no. trees/ha) >= 12.5 cm diameter at breast
height (DBH) (see Appendix 4)

\Delta3d\gnnviz\data\gnnviz\california\tmstack.tif GeoTIFF Landsat TM composite image (Bands 4,5,3) from
2000

\Delta3d\gnnviz\data\gnnviz\california\v_stph_ge_12.tif GeoTIFF Snags (no. trees/ha) >= 12.5 cm DBH (used to create
tree objects)

\Delta3d\gnnviz\data\gnnviz\california\v_tphc_ge_3.tif GeoTIFF Conifer trees (no. trees/ha) >= 2.5 cm DBH (used to
create tree objects)

\Delta3d\gnnviz\data\gnnviz\california\v_tphh_ge_3.tif GeoTIFF Hardwood trees (no. trees/ha) >= 2.5 cm DBH (used
to create tree objects)

 23

\Delta3d\gnnviz\data\gnnviz\california\vegclass.tif GeoTIFF

Vegetation class (Johnson, DH, and TA O’Neil. 2001,
eds. Wildlife-habitat relationships in Oregon and
Washington. Oregon State University Press; Corvallis,
OR; 736 p.)

Disk3_OR_Data

\Delta3d\gnnviz\data\gnnviz\oregon* Same files as Disk2 but for Oregon.

Disk4_WA_Data

\Delta3d\gnnviz\data\gnnviz\washington* Same files as Disk2 but for Oregon.

 24

Appendix 2: Game engine comparison for use with the GNNViz
application

Selection of a game engine is perhaps the most crucial and important step in creating any
kind of visualization tool such as GNNViz. Considerations can include the cost of the
underlying technology, the availability of a software development kit (SDK), its
extensibility, and even the quality and size of the developer community using the
technology.

As with any rapidly growing field of technology, there are always new technologies and
industry trends not yet available that show great promise. Chief among these for projects
such as GNNViz are technologies for Massive Multiplayer Online Games (MMOGs)
such as World of Warcraft. MMOGs are typically games covering huge areas with many
players.

Stability and support of the underlying technology

An important, if not somewhat abstract factor in choosing a game engine is the stability
and support of the technology from the original game developer and also the community
of developers using the technology. The list of game engines available is littered with
half-finished and abandoned open-source projects that at one time showed promise, but
never were completed.

In general, the presence or absence of a thriving developer community is a good sign of
the relative health and usability of a game engine. Valve’s Source Engine for example
has an extremely healthy developer community, and is also well supported by the engine
developers themselves. Conversely, the Garage Games Torque Game Engine Advanced
does have a fairly active developer community, but it is not well supported by the engine
developers, which makes it a less desirable choice.

Support of game companies for non-entertainment and non-commercial projects

In general, game companies offer minimal support and show little interest for non-
standard applications of their technology such as proposed for GNNViz. There are a few
exceptions to this rule, such as the Multiverse company, which is very open to talking
and working with developers of atypical projects such as ours.

One important trend that many commercial game companies support is the idea of
modding of their games. Modding is the act of taking an original commercial game and
modifying it to create a new game. Modding might be as simple as changing the artwork
associated with a game to make it look different, or it might be a complex task of
changing the underlying game’s look and behavior to create a whole new game.

Modding always comes with one limitation: those that develop mods are not allowed to
commercialize their work (sell their mod), and anyone wishing to play a mod must first
buy and own a copy of the original game. This protects the commercial rights of the

 25

original game company, while allowing modders the freedom to create and explore new
kinds of games without an excessive up-front cost for engine technology licensing.

Specific features required for GNNViz

We analyzed seven primary factors while considering different game technologies for
GNNViz: the cost to use the technology, support for multiple players in the same shared
environment, the size of the terrain that could be rendered, support for geo-referenced
data (data in latitude/longitude space), ability to render vegetation, access to an SDK and
developers tools, and the amount of source code available for modification.

In some cases it is possible to work around game engine limitations. For example, with
the Valve Source Engine, it is possible to effectively scale the player’s view of the world
in order to create the illusion of a very large space. However, other limitations such as the
lack of multi-player support cannot be overcome without full access to the underlying
game engine source code and a lot of hard work on the developer’s part.

Game technologies examined for GNNViz

The table below summarizes game technologies that we examined for use with GNNViz.
Since many game companies allow and encourage modding of their games, it was
relatively easy and inexpensive to explore the technologies with a minimal up-front cost.
It should be noted that, unless otherwise specified, all technologies listed below work
only work in the Windows PC environment.

Engine GNNViz
Specific
Features
Support

Notes

Valve
Source
Engine

Cost: $25

Multi-player:
Yes

Terrain: Limited,
on the order of 1
kilometer in
extent

Geo-referenced
data support: No

Vegetation: Yes

Would be an excellent choice for creating highly
detailed visualization of smaller forested areas.
However, terrain limitations prevent its use for
large-scale visualization.

Offers an extensive SDK and a supportive developer
community.

Wide installation base with over 8 million registered
users playing games on this platform.

http://developer.valvesoftware.com

 26

SDK: Yes

Source code:
SDK only

Ubisoft
FarCry
Game
Engine

Cost: $25

Multi-player:
Yes

Terrain: large
scale, on the
order of 10s of
kilometers

Vegetation: Yes

SDK: Yes

Source code:
SDK only

Very easy to modify and work with.

Underlying game engine technology limits the
maximum range between highest and lowest
elevation to 256 meters. This limitation alone
prevented us from using it for GNNViz, as we were
not able to override this limitation via the SDK.

Note that Ubisoft is soon to release a new version of
this engine that shows great promise for large-scale
visualization environments.

http://www.crymod.com

Multiverse
MMO
Engine

Cost: Free

Multi-player:
Yes

Terrain:
Extremely large
scale, on the
order of 100s of
kilometers

Geo-referenced
data support: No

Vegetation: Yes,
but with limited
control over
density and
placement

SDK: Yes

Source code:

Has great potential for use as a large scale
visualization platform. However, it does not
currently offer any way to control precise placement
of vegetation, which precludes being able to
accurately place vegetation based on GNN data.

Business model of developer allows free use of their
technology and only requests payment if the
developer charges for their game.

Company is extremely open to discussing non-
traditional projects such as this one.

Supports SpeedTree library for high fidelity tree
rendering.

http://www.multiverse.net

 27

SDK only

Oblivion
Game
Engine

Cost: $40

Multi-player: No

Geo-referenced
data support: No

Terrain: Large
scale, on the
order of 10s of
kilometers

Vegetation: Yes

SDK: Yes

Source code:
SDK only

Would be effective for a medium-scale visualization
tool, but does not allow multiple players to be in the
same shared virtual environment.

Supports SpeedTree library for high fidelity tree
rendering.

http://cs.elderscrolls.com/constwiki/index.php/Oblivi
on_Mods_FAQ

Garage
Games
Torque
Game
Engine
Advanced

Cost: $1500

Multi-player:
Yes

Geo-referenced
data support: No

Terrain: Large
scale terrain, on
the order of 10s
of kilometers

Vegetation: Yes

SDK: Yes

Source code:
Full

Has good potential. However, the underlying code is
incomplete and contains various long-standing bugs.

Integration of real world data requires extensive
‘hand holding’ and can’t be automated.

Does not work with geo-referenced data and
latitude/longitude coordinate systems.

Is able to effectively render very large numbers of
trees over the area of terrain it does support.

Delta3D Cost: Free

Multi-player:

An open-source engine used by the US military and
other research groups for game and simulation
projects.

 28

Rudimentary

Geo-referenced
data support:
Yes

Terrain:
Extremely large
scale, essentially
infinite

Vegetation: Yes

SDK: Yes

Source code:
Full

Extremely easy to integrate geo-referenced data such
as DTED height maps and GeoTIFF images. Use of
such data is virtually trouble-free and little to no data
massaging is required.

Is able to work directly with coordinates and data
referenced in latitude/longitude space.

Multi-player support is somewhat rudimentary.

Capable of running on the Linux platform, so is not
restricted to the Windows environment.

BigWorld
MMO
Engine

Cost: $500,000

Multi-player:
Yes

Terrain:
Extremely large
scale

Geo-referenced
data support: No

Vegetation: Yes

SDK: Yes

Source code:
SDK and Full

Offered as an example of a high-quality and high-
cost game engine that would be an excellent choice
for a large-scale visualization. However, its cost is
prohibitive most projects.

Other sources of game engine comparisons

The above list is not meant to be a comprehensive list of all game engines that could be
used or were considered. Many engines were deemed lacking in features or support. The
following online resources were invaluable in our selection process.

The DevMaster.Net 3D engines database, online at
http://www.devmaster.net/engines/index.php.

 29

The GPWiki Game Engines list, online at
http://www.gpwiki.org/index.php/Game_Engines

 30

Appendix 3: Process for user to create their own visualization by
importing their own data

For our current version of the visualization application, we created a methodology to
translate any raster data in any projection into GeoTIFF files for use in Delta3D. All of
our raster data was stored in ArcInfo GRID files, and we used utilities to translate from
this format into GeoTIFFs. However, because this approach requires that users have
ArcInfo and several other utilities installed on their computers, we ultimately decided not
to distribute these utilities and instructions as part of our final report. Instead, we plan to
continue development on a data translation utility that will be based on Python and
distributed as an executable, which will be more generic and able to accommodate a
variety of spatial data formats.

We will post any new utilities to our website at http://www.fsl.orst.edu/lemma/gnnviz.
Any questions about the methodology should be referred to Matt Gregory at
matt.gregory@oregonstate.edu.

 31

Appendix 4: Data dictionary

The following vegetation and fuels variables are included with the GNNViz visualization
environment.

Variable name Description

FCID Unique forest class identification number.

BAA_GE_3 Basal area (m2/ha) of all live trees >=2.54 cm DBH

BAC_GE_3 Basal area (m2/ha) of all live conifers >=2.54 cm DBH

BAH_GE_3 Basal area (m2/ha) of all live hardwoods >=2.54 cm DBH

QMDA_DOM Quadratic mean diameter (cm) of all dominant and codominant
trees.

CANCOV Canopy cover (percent) of all live trees, calculated using methods
in the Forest Vegetation Simulator (Crookston, NL, and AR
Stage. 1999. Percent canopy cover and stand structure statistics
from the Forest Vegetation Simulator. RMRS-GTR-24. 8 pp.)

TPH_GE_3 Density (no. trees/ha) of all live trees >=2.54 cm DBH

TPHC_GE_3 Density (no. trees/ha) of all live conifers >=2.54 cm DBH
(V_TPHC_GE_3 is used to create tree objects)

TPHH_GE_3 Density (no. trees/ha) of all live hardwoods >=2.54 cm DBH
(V_TPHH_GE_3 is used to create tree objects)

STPH_GE_12 Density (no. trees/ha) >= 12.5 cm diameter at breast height (DBH)
and >=2.0 m tall (V_STPH_GE_12 is used to create tree objects)

DVPH_GE_25 Volume (m3/ha) of down wood >=25.4 cm diameter at intercept
and >=1 m long. [R5 plots limited to pieces >=3.0 m long. FIA
plots do not include decay class 5 logs.]

SHRCOV Uncorrected shrub cover (percent) that is the cumulative cover of
all shrubs (may be >100%).

VEGCLASS Vegetation class (from Johnson, DH, and TA O’Neil. 2001, eds.
Wildlife-habitat relationships in Oregon and Washington. Oregon
State University Press; Corvallis, OR; 736 p.). BAH_PROP is the

 32

proportion of total live tree basal area that is hardwood.
1 Sparse (CANCOV <10)
2 Open (CANCOV 10-39)
3 Broadleaf, sap/pole, mod/closed (CANCOV >=40, BAH_PROP
>=0.65, QMDA_DOM <25 cm)
4 Broadleaf, sm/med/lg, mod/closed (CANCOV >=40,
BAH_PROP >=0.65, QMDA_DOM >25 cm)
5 Mixed, sap/pole, mod/closed (CANCOV >=40, BAH_PROP
0.20-0.64, QMDA_DOM <25 cm)
6 Mixed, sm/med, mod/closed (CANCOV >=40, BAH_PROP
0.20-0.64, QMDA_DOM 25-50 cm)
7 Mixed, large+giant, mod/closed (CANCOV >=40, BAH_PROP
0.20-0.64, QMDA_DOM >50 cm)
8 Conifer, sap/pole, mod/closed (CANCOV >=40, BAH_PROP
<0.20, QMDA_DOM <25 cm)
9 Conifer, sm/med, mod/closed (CANCOV >=40, BAH_PROP
<0.20, QMDA_DOM 25-50 cm)
10 Conifer, large, mod/closed (CANCOV >=40, BAH_PROP
<0.20, QMDA_DOM 50-75 cm)
11 Conifer, giant, mod/closed (CANCOV >=40, BAH_PROP
<0.20, QMDA_DOM >75 cm)

FUEL_MODEL Fire behavior fuel model. Classification rules were modified
slightly from those in documentation for the appropriate variant of
FVS Fire and Fuels Extension and to reflect the fuels and
vegetation variables available in the GNNFire database and local
expert knowledge.
1 short grass
2 timber (grass and understory)
5 brush
6 dormant brush, hardwood slash
8 closed timber litter
9 hardwood litter
10 timber (litter and understory)
11 light logging slash
12 medium logging slash
26 modified chaparral (California)

PCBDU2 Canopy bulk density (kg/m3) computed with vertical layering
method, ‘uncompacted’ crowns, and using equations for the
coastal Pacific Northwest (used for Oregon).

RCBDU2 Canopy bulk density (kg/m3) computed with vertical layering
method, ‘uncompacted’ crowns, and using equations for the
northern Rocky Mountains (used for California and Washington).

 33

PHTCBU2 Height to crown base (m) computed with vertical layering
method, ‘uncompacted’ crowns, and equations for the northern
Rocky Mountains (used for California and Washington).

RHTCBU2 Height to crown base (m) computed with vertical layering
method, ‘uncompacted’ crowns, and equations for the northern
Rocky Mountains (used for California and Washington). Code
‘999' is assigned where there is minimal crown.

