
ORIGINAL
ARTICLE

Comparison of predictor sets for species
richness and the number of rare species
of butterflies and birds

James R. Thomson1, Erica Fleishman2*, Ralph Mac Nally1 and David S.

Dobkin3

1Australian Centre for Biodiversity: Analysis,

Policy and Management, School of Biological

Sciences, Monash University 3800, Melbourne,

Australia, 2Center for Conservation Biology,

Department of Biological Sciences, Stanford

University, Stanford, CA 94305-5020, USA

and 3High Desert Ecological Research Institute,

15 S.W. Colorado Avenue, Suite 300, Bend, OR

97702, USA

*Correspondence: Erica Fleishman, National

Center for Ecological Analysis and Synthesis,

735 State Street, Suite 300, Santa Barbara, CA

93101, USA.

E-mail: fleishman@nceas.ucsb.edu

ABSTRACT

Aim Accurate inventories of biota are typically restricted to few locations within

an extensive region. Accordingly, effective planning must involve some form of

surrogate measures coupled with spatial modelling. We conducted a

simultaneous comparison of models of both species richness and the number

of rare species using three types of surrogates (indicator species, vegetation

composition and structure, and topoclimate) as predictors. We evaluated each

type of surrogate alone and in combination with others.

Location Data for our analyses were collected from 1996–2004 in three adjacent

mountain ranges in the central Great Basin (Lander and Nye counties, Nevada,

USA), the Shoshone Mountains, Toiyabe Range and Toquima Range.

Methods Data on species richness and species composition of butterflies and

birds and measures of vegetation composition and structure were obtained in the

field. Topoclimatic variables were derived by GIS from digital sources and satellite

images. We used Poisson regression with Bayesian model averaging to predict

species richness and the number of rare species. We compared the expected

prediction success of all models on the basis of internal and external validation

trials.

Results Same-taxon indicator species were the most accurate predictors of

species richness and of the number of rare species of butterflies and birds. Cross-

taxon indicator species and topoclimate variables were reasonably accurate

predictors of species richness of butterflies and birds and of the number of rare

butterfly species. Although vegetation variables were more effective for predicting

species richness and number of rare species of birds than of butterflies, they were

the least accurate predictors overall.

Main conclusions Although indicator species may provide the most accurate

predictions of species richness, their practical value, like any surrogate measure,

depends greatly on ecological considerations and land-use context. In general, the

ability to predict numbers of rare species based on any set of candidate predictors

was weaker than the ability to predict species richness, which may result from the

high degree of stochasticity that often characterizes distributions of rare species.

Our statistical approach for objective examination of different candidate

predictors can help ensure that selection of species-richness surrogates in any

system is scientifically reliable and cost-effective.
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INTRODUCTION

Protection of locations with high native species richness

generally is thought to be an efficient way of conserving

overall biological diversity and sustaining key ecological

functions (Scott et al., 1987; Myers et al., 2000). There also

is inherent interest in natural and anthropogenic processes

associated with species richness (Janzen et al., 1976; Pickett

et al., 2001; Hawkins et al., 2003; Yeoman & Mac Nally,

2005). Moreover, species richness has been measured in

many places over long periods of time and typically is more

practical to assess and to monitor than abundance or

demographic variables (Link & Sauer, 1998) (for a review of

the utility and limitations of species richness metrics, see

Fleishman et al., 2006).

Whether the underlying reason is legal mandate, influence

on ecological function, or aesthetics, conservation planning

often weights measures of species richness by rarity (Noss &

Cooperrider, 2004; Stein et al., 2000). Rarity, which can be

driven by a complex array of mechanisms, has often been

equated with small geographical range, low abundance or both

(Brown, 1984; Gaston, 1994). Rarity is not synonymous with

endemism, and species that are locally rare (uncommon) may

not have narrow geographical ranges. At the landscape level,

the total number of species and the number of rare species are

frequently correlated, especially in nested systems (Patterson &

Atmar, 1986; Wright et al., 1998). However, rare species often

do not occur in locations with the highest species richness

(Chaplin et al., 2000; Jetz & Rahbek, 2002; Orme et al., 2005;

Stohlgren et al., 2005). The distributions of different rare

species in the same taxonomic group, and especially in

different taxonomic groups, may not overlap (Freitag et al.,

1997; Moore et al., 2003). Therefore, effective methods for

measuring and managing rare species may differ from those

directed toward species richness (Lawler et al., 2003).

Given that species-inventory data for many regions are

sparse and acquisition of new data is costly, surrogate-based

approaches to the estimation of biodiversity patterns have

become common. Depending on taxonomic group, geograph-

ical location and scale (grain and extent in space or time), any

number of environmental variables may be associated with the

distribution of species richness and the number of rare species

(Guisan & Thuiller, 2005). Both scientific reliability and cost-

effectiveness influence the selection of variables for modelling.

Inevitably, there is a trade-off between the quality of informa-

tion provided by predictor variables and the cost of obtaining

that information.

In this paper, we use advanced modelling approaches to

compare the effectiveness of three different types of predictor

variables, indicator species, vegetation and topoclimate, to

predict both species richness and the number of rare species of

butterflies and birds in the central Great Basin of western

North America. One ecologically important and practically

useful goal of this work is to determine the most reliable

surrogate(s) for species richness and the number of rare species

in this system. More generally, we aim to develop methods

that can be used to identify the most effective surrogates for

biodiversity patterns in other systems.

Local distributional patterns of bird and butterfly assem-

blages might reasonably be expected to be a function of the

taxonomic composition and physical structure of local veget-

ation (MacArthur et al., 1966; Wiens & Rotenberry, 1981;

Scott, 1986), but collecting detailed vegetation data requires

site visits. Measures of topography or topoclimate have also

been shown to be effective as explanatory and predictive

variables of species richness and occurrence in some cases

(e.g. Weiss et al., 1988; Scott et al., 2002). With GIS and

appropriate software, these variables are probably the cheapest

per unit area to acquire among possible predictor data because

they do not require site visits. Remote sensing data for

variables associated with biomass and primary productivity,

such as the normalized difference vegetation index (NDVI)

(Rouse et al., 1973), have similar advantages (Roughgarden

et al., 1991; Turner et al., 2001).

Workers have identified statistical relationships between

species richness of a relatively large set of organisms and the

occurrence patterns of a small set of ‘indicator’ species

(Pearson, 1994; Scott, 1998; Mac Nally & Fleishman, 2004).

Our recent work suggested that it is possible to identify

small suites of butterflies and birds whose presence/absence

patterns can be used to predict species richness of their own

taxonomic group, of the other taxonomic group or the

combined species richness of both groups (Fleishman et al.,

2005; Thomson et al., 2005). Whether it is more efficient to

measure the occurrence of a small number of indicator

species or to conduct comprehensive species inventories

depends greatly on geographical location and taxonomic

group. In addition, reliable data on the occurrence of any

species may require multiple site visits (Thomson et al.,

2005; MacKenzie et al., 2006). We are not aware of any

previous work examining the relationships between indicator

species (as defined here) and the number of rare species, nor

of efforts to compare statistically the predictive ability of

indicator species against the predictive ability of other sets

of variables.

METHODS

Data for our analyses were collected in three adjacent

mountain ranges that have similar biogeographical and human

land-use histories, the Shoshone Mountains (1850 km2,

approximate north–south boundaries 39�14¢ to 38�57¢), the

Toiyabe Range (3100 km2, 39�54¢ to 38�30¢) and the Toquima

Range (1750 km2, 39�17¢ to 38�29¢) (Lander and Nye counties,

Nevada, USA). Our data collection incorporated established

techniques that reliably detect species presence and permit the

assessment of distributional trends (Pullin, 1995; Bibby et al.,

2000). We provide an abbreviated description here; these

methods have been described in detail in previous publica-

tions, as well as tested for sampling adequacy (e.g. Dobkin &

Wilcox, 1986; Fleishman et al., 2000, 2001; Mac Nally et al.,

2004).
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We inventoried butterflies using walking transects, a stand-

ard method for temperate regions (Pollard & Yates, 1993;

Pullin, 1995). Approximately every 2 weeks throughout the

majority of the adult flight season (late May to August), using

equal sampling effort per unit area of the site, we recorded the

presence of all butterfly species in each site. In temperate

regions, it is generally reasonable to interpret that a given

butterfly species is absent if the area has been searched

repeatedly by experienced observers during the appropriate

season and weather conditions (Pullin, 1995). Sites were

sufficiently large that an individual was not recorded in more

than one site during a sampling round (Fleishman et al.,

1997).

We sampled birds during the breeding season (late May to

June) using two or three 75-m variable-radius point counts in

each site. Most point centres were at least 350 m apart. Point

counts are an effective method of sampling birds in the Great

Basin (Dobkin & Rich, 1998). Within a site, points were located

in each of the dominant vegetation types (e.g. aspen, pinyon-

juniper, sagebrush). During each visit, we recorded by sight or

sound all birds actively using terrestrial habitat within the point.

Each point was visited three times per year for 5 min per visit.

Three surveys are considered sufficient to determine which

species of birds are present at point count locations (Buckland

et al., 2001; Siegel et al., 2001); species accumulation curves

indicated that this was the case in our work (Betrus, 2002).

From 1996–2003, inventories for butterflies were conducted

at 195 sites and inventories for birds were conducted at 84 of

those sites. Site areas ranged from 1.5 to 44.4 ha, but area

explained little variance in species richness (< 3%) of either

taxonomic group (Mac Nally et al., 2003).

We recorded 65 species of resident butterflies and 74 species

of breeding birds. Site-level species richness was calculated as

the total number of species recorded in the site across all years.

Site-level species richness ranged from 3 to 51 for butterflies

(mean 24.9) and from 5 to 34 for birds (mean 17.3). We

defined species that occurred in < 20% of sites as rare. Twenty-

one butterfly species and 33 bird species met this criterion. The

number of rare butterfly species at a site varied from 0 to 10

(mean 1.9) and the number of rare bird species at a site varied

from 0 to 8 (mean 2.3). In our system, no species of butterfly

or bird is listed as threatened or endangered by the federal or

state government, and there are no species-level endemics. The

rare butterfly and bird species in this system are generally taxa

with large geographical ranges that are locally uncommon or,

in a few cases, are approaching the edge of their distribution.

To characterize vegetation composition and structure, we

established two or three plots in each site that overlapped the

points at which we sampled birds. We measured three radial

30-m lines, separated by 120�, from the centre of the plot. The

end of each line served as the centre of a circular vegetation

sampling unit with 11.3-m radius (0.04 ha). Within each circle,

we recorded the identity and size of all live trees [either diameter

at breast height (d.b.h.) or basal diameter, depending on plant

morphology]. We also recorded the size and, where possible, the

identity of standing or fallen dead trees. Vegetation at each plot

was measured once. The majority of our vegetation measures

were unlikely to have changed substantially during the time

period of our study (J. Chambers, pers. comm.).

We used a concave spherical densiometer to estimate the

proportion of canopy cover. To estimate the cover of shrubs

and ground vegetation, we used an ocular tube with measure-

ments taken at a 45� angle downward from the line of sight

(Noon, 1981). When vegetation was present, we recorded the

occurrence of 12 dominant species of trees and shrubs. We

collected 21 densiometer and ocular tube readings at each plot:

one each at 8, 16 and 24 m along the 30-m line from the centre

of the plot to the perimeter of each circle, and one while facing

in each of the four cardinal directions from the centre of each

circle. Cover values for each structural layer (canopy, shrubs

and ground vegetation) were averaged for each plot and site.

Occurrence data for dominant species were aggregated into a

relative measure of frequency at each plot and site.

Sites were delineated by overlaying differentially corrected

global positioning system locations on a 30-m (1 : 24,000)

digital elevation model maintained on a GIS (Fleishman et al.,

2001). Geographical coordinates and 14 uncorrelated

(RPearson < 0.6) topographic and topoclimatic variables were

measured for each site (Table 1). All of the variables could

reasonably be expected, a priori, to have functional relation-

ships with distribution patterns of butterflies and birds. We

derived measures of NDVI from a single cloud-free, geo-

corrected Landsat Thematic Mapper image (WRS 41/33)

acquired in June 2000, coincident with the peak of the regional

growing season and the breeding season for birds. Within our

study system, NDVI in a given location and spatial patterns of

NDVI are not highly variable over years to decades (K. Seto

and B. Bradley, pers. comm.). For simplicity, we refer to the

full set of remotely derived variables as topoclimate variables.

Model building and prediction

We compared the effectiveness of indicator species, vegetation

and topoclimate as predictors of the total number of species

Table 1 Topoclimate variables used to model species richness

and number of rare species of butterflies and birds

Geographical coordinates of the centroid of the site

Mean ‘eastness’ on a scale from )100 (west-facing) to 100

(east-facing)

Mean ‘northness’ on a scale from )100 (south-facing) to 100

(north-facing)

Mean elevation (m)

Mean slope (�)

Site length (m)

Solar insolation: standard deviation for the site at the vernal

equinox (kJ)

Topographic exposure (elevation of the site compared with mean

elevation within a 300 m radius): mean and standard deviation

Mean and minimum distance (m) from the centre of the site

to running or standing water

NDVI: mean and standard deviation for the site

Comparing predictors of species richness and rare species
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and the number of rare species of both butterflies and birds.

We also tested the predictive capacity of combined environ-

mental variables (vegetation and topoclimate) and of each

environmental data set in combination with indicator species

from each taxon. Thus, there were four response variables:

species richness of butterflies, species richness of birds, number

of rare butterfly species and number of rare bird species. There

were nine predictor variables: butterfly indicator species, bird

indicator species, vegetation, topoclimate, vegetation + topo-

climate, butterfly indicator species + vegetation, butterfly

indicator species + topoclimate, bird indicator spe-

cies + vegetation and bird indicator species + topoclimate.

Therefore, there were 36 combinations of responses and

predictors.

We included orthogonal second-order polynomial (quad-

ratic) transformations of each environmental (vegetation or

topoclimate) variable to allow for possible non-monotonic

relationships with the response variables. Given that data for

indicator species are binary (presence/absence), their relation-

ships with response variables were necessarily linear. For

predictor sets that included both indicator species and

environmental variables, we restricted all variables to the

linear form for computational tractability.

Although we are trying to predict the number of rare

species (response variable), species that are difficult to detect

or that infrequently inhabit suitable sites are unlikely to be

useful indicator species (predictor variable) because of the

risk of false negatives, that is, erroneously concluding that a

species does not occupy a site (Thomson et al., 2005). In

our data, false negatives mainly arise from annual variability

in site occupancy by individual species. Our work suggests

that species can be detected reliably when they are present,

but species are not necessarily present at occupied sites

(defined here as sites inhabited by a species in one or more

years) every year. Given that it is important that predictor

variables can be measured reliably, we excluded from the list

of candidate indicator species any species with a low (< 0.4)

probability of being detected at occupied sites in any single

year.

Modelling approach

We used Poisson regression with Bayesian model averaging

(Hoeting et al., 1999; Wintle et al., 2003) to predict, on the

basis of our predictor data D, the number of species (or rare

species) S present at a site Pr(S|D). Poisson regression is a form

of generalized linear model (GLM) with a logarithmic link

function and an assumed Poisson distribution for the response

variable (McCullagh & Nelder, 1989). Bayesian model aver-

aging (BMA) incorporates uncertainty in model selection into

statistical inference and prediction (Wintle et al., 2003). This

approach has consistently been shown to produce more

accurate predictions than methods that select a single best

model (Raftery & Zheng, 2003; Burnham & Anderson, 2004).

The model averaging formula for estimating Pr(S|D) is

(Hoeting et al., 1999)

PrðSjDÞ ¼
XK

k¼1

PrðSjMk;DÞPrðMkjDÞ

where Pr(S|Mk, D) is the posterior prediction from model Mk

given the data, Pr(Mk|D) is the posterior probability of model

Mk given the data and K is the number of models considered.

In other words, BMA provides an estimate of Pr(S|D) that is a

weighted average of the posterior predictions from all models

considered, where the weights are the posterior model

probabilities (Raftery et al., 1997; Wintle et al., 2003). Integ-

rating the posterior model probabilities for all models that

include a given predictor variable yields the conditional

probability that the variable has a nonzero coefficient

Pr(b „ 0) or, equivalently, the conditional probability that

the variable is a predictor (Viallefont et al., 2001). A high

Pr(b „ 0) value indicates that a variable is included in the

most probable model(s) and therefore contributes most to

prediction; a low value indicates that the variable is included

only in less probable models and therefore contributes little to

prediction. In cases where it is necessary to reduce the number

of predictor variables for model application (e.g. in indicator

species modelling) it is appropriate to select as predictors those

variables with highest Pr(b „ 0) values. We implemented

BMA with the ‘bic.glm’ function in the ‘BMA’ package

(Raftery et al., 2005) for R (R Development Core Team,

2005). This function uses the ‘leaps and bounds’ algorithm

(Furnival & Wilson, 1974) to identify rapidly the most

probable models based on the Bayesian information criterion

(BIC) approximation to Bayes factors (Raftery, 1995). bic.glm

uses maximum likelihood estimation to fit individual models

[and hence to estimate Pr(S|Mk,D)] and weights those models

[i.e. estimates Pr(Mk|D)] according to BIC values (Raftery,

1995; Wintle et al., 2003).

Indicator species are subsets of their assemblage, and only a

small number of indicator species (predictor variables) can be

used for prediction. Therefore, variable selection is required to

choose the most useful set of indicator species (Fleishman

et al., 2005). We used Pr(b „ 0) values to select sets of

indicator species. For each response variable, we first compu-

ted BMA with all candidate indicator species to estimate the

conditional probability that each species was a predictor,

Pr(b „ 0). We selected the six species with the highest

Pr(b „ 0) values as the indicator species for that response

variable. We then obtained predicted values of species richness

or number of rare species by applying BMA to the selected

indicator species only. That is, predictions from indicator

species models were weighted averages of predictions from all

possible combinations of the six selected indicator species. For

some response–indicator taxon combinations, the full model

(all six indicator species) had posterior probability of 1

(conditional on the set of 26 ¼ 64 models possible, given the

selected indicator species), so predictions effectively were from

a single model.

We used a similar two-step model-averaging procedure to

select indicator species, and subsequently to predict species

richness or number of rare species, for models combining

J. R. Thomson et al.
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indicator species with environmental variables. For each

response–predictor combination, we first computed BMA

with all possible variables (e.g. all candidate bird species plus

all vegetation variables) to identify the most promising

indicator species in combination with a particular set of

environmental variables. The six species with highest

Pr(b „ 0) were selected as the indicator species. We then

used BMA to predict values of species richness or number of

rare species from models that combined any of the six selected

indicator species with any of the relevant environmental

variables (i.e. vegetation or topoclimate).

For vegetation and topoclimate variables, we assumed that

the cost of obtaining data for additional variables was

negligible. Therefore, all variables were used in model avera-

ging. We made predictions using models built from any

possible combination of 21 vegetation variables and 16

topoclimate variables. This assumption is valid for the types

of remotely sensed topoclimate data used here, although

collecting field data on many vegetation variables may be more

time-consuming than collecting data on a smaller set of

variables. All environmental variables were standardized prior

to model fitting: Xik¢ ¼ (Xik ) Xk)/sk, where Xk and sk are the

mean and standard deviation of variable k and Xik is the value

of variable k at site i.

Model validation

We compared the expected prediction success of all models

using both internal and external validation trials. We assessed

predictive performance primarily on the basis of Spearman

rank correlations between predicted and observed species

richness. Rank correlation scores are more robust than

parametric correlations when data do not come from a

bivariate normal distribution, as is likely with species richness

(counts) data. Furthermore, we believe that the ability to rank

sites by relative species richness or number of rare species will

often be more useful for conservation management and land-

use planning, especially in our study system, than predicting

the exact number of species or rare species in each site. Given

that the value of different measures of predictive performance

may differ among landscapes, we also evaluated the absolute

accuracy of predictions by calculating root mean square error

(rmse) and the mean absolute difference between observed and

predicted values (represented as mean bias, B).

Internal validation

We used bootstrapping to estimate the expected accuracy of

predictions of species richness and number of rare species

based on Bayesian model averaging. Bootstrapping validation

provides almost unbiased estimates of predictive accuracy with

relatively low variance (Efron & Tibshirani, 1993, 1997; Wintle

et al., 2005). Bootstrapping adjusts the in-sample (or naı̈ve)

validation statistic by an estimate of its optimism, which is

derived from simulations of model building and model testing

performed on bootstrap samples (samples drawn with replace-

ment from the model building data). We used the ‘.632

bootstrap’ method (Efron & Tibshirani, 1997) with 50

bootstrap samples to calculate adjusted validation statistics

for each response–predictor combination. The 0.632 bootstrap

estimate is a weighted average of the in-sample statistic and the

mean ‘out-of-sample’ statistic of models fitted to the bootstrap

samples. The weighting of the mean out-of-sample statistic is

0.632, which is the probability that a given case is included in a

given bootstrap draw.

External validation

Predictions of species richness or number of rare species based

on a functional relationship should be confronted with newly

collected test data (Landres et al., 1988; Mac Nally et al., 2000).

For models in which birds served as either the response

variable (species richness of birds or number of rare bird

species) or predictor variables (models with butterfly response

variables and bird indicator species as predictors), we

performed a preliminary external validation using data from

25 sites in the Toiyabe Range that have similar environmental

profiles to sites used in model building and bootstrapping.

The validation sites were surveyed for birds in 2004, after the

model building data were compiled.

For models not involving birds as either response or

predictor variables, we used the validation sites to perform a

form of cross-validation, rather than independent external

validation, because all relevant data were compiled concurrently

and used in the original model building and bootstrapping. We

rebuilt relevant models excluding the 25 validation sites from

the model building data and then examined the performance of

those models when applied to the 25 validation sites.

Alternative modelling

To ensure that our comparisons of different types of surrogate

were not biased by our choice of modelling method, we also

evaluated the performance of environmental variables as

predictors of richness (total species richness and number of

rare species) using multivariate adaptive regression splines

(MARS) (Friedman, 1991; Leathwick et al., 2005). MARS is an

efficient method of modelling more complex functional

responses and/or interactions among predictor variables. We

used the ‘mars’ function in the ‘mda’ package for R (Hastie

et al., 2005) to fit MARS models for each response variable as

functions of vegetation variables, topoclimate variables and

combined vegetation and topoclimate variables. We fitted

separately additive models and models allowing up to second-

and third-order interactions. We used forward stepwise

selection of basis functions and backward stepwise pruning

to prevent overfitting. We evaluated MARS predictions by

bootstrapping, cross-validation or external validation as

appropriate. Results were similar to BMA results, although

poorer overall (especially for models allowing interactions),

and the relative rankings of different surrogates (vegetation,

topoclimate or indicator species) were identical regardless of

Comparing predictors of species richness and rare species
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whether MARS or BMA predictions were used for environ-

mental variables. For clarity we present only BMA results.

RESULTS

Models for butterflies

Internal validation

Butterfly indicator species were the best predictors of the

species richness of butterflies (RS ¼ 0.82) and of the number

of rare butterfly species (RS ¼ 0.70). Combining environmen-

tal variables with butterfly indicator species did not improve

predictions of the species richness of butterflies or of the

number of rare butterfly species (Table 2a).

Bird indicator species were less successful predictors than

butterfly indicator species, with rank correlations of 0.52 and

0.56 for species richness of butterflies and number of rare

butterfly species, respectively. Combining topoclimate varia-

bles with bird indicator species improved slightly the predic-

tions of the number of rare butterfly species, but not the

predictions of species richness of butterflies. Combining

vegetation variables with bird indicator species reduced

prediction success (Table 2a).

Of the sets of predictor variables we examined, vegetation

variables were the poorest predictors of butterfly species

richness (RS ¼ 0.22) and of the number of rare butterfly

species (RS ¼ 0.21). Topoclimate variables were second in

accuracy to butterfly indicator species as predictors of species

richness of butterflies (RS ¼ 0.64), and showed similar

performance to bird indicator species as predictors of the

number of rare butterfly species (RS ¼ 0.52). Models based on

a combination of vegetation variables and topoclimate varia-

bles yielded less-reliable predictions of butterfly species

richness than models based on topoclimate variables alone

(Table 2a). Predictions of the number of rare butterfly species

based on a combination of vegetation variables and topocli-

mate variables had marginally higher correlations with

observed values than predictions based on topoclimate vari-

ables alone, but were less accurate absolutely (Table 2a).

Cross-validation

Cross-validation results for models of the species richness of

butterflies and for the number of rare butterfly species were

largely consistent with the internal validation results (Table 2a).

Butterfly indicator species were the best predictors of species

richness of butterflies (RS ¼ 0.83) and of the number of rare

Table 2 Validation results for Bayesian model averaged predictions of species richness and the number of rare species of (a) butterflies and

(b) birds using indicator species, vegetation and topoclimate as predictors

Predictors

Species richness of butterflies Number of rare species of butterflies

R632 Rv rmse632 rmsev B632 Bv R632 Rv rmse632 rmsev B632 Bv

(a)

Butterfly indicator species 0.82 0.81 5.50 5.23 0.03 )2.47 0.70 0.72 1.78 1.85 )0.04 )0.95

Bird indicator species 0.52 0.68 9.17 6.68 )0.44 3.35 0.56 0.65 2.94 1.35 )0.14 )0.27

Vegetation 0.22 )0.04 11.22 11.25 0.00 3.04 0.21 )0.15 2.86 2.17 )0.18 0.69

Topoclimate 0.64 0.54 7.60 9.11 )0.14 3.90 0.52 0.41 1.87 2.46 0.02 0.76

Vegetation + topoclimate 0.57 0.39 9.94 10.51 )0.50 2.50 0.55 0.54 3.28 2.04 )0.27 1.26

Butterfly indicator species + vegetation 0.78 0.77 5.88 6.07 )0.12 )3.26 0.68 0.75 2.11 2.47 )0.09 )0.77

Butterfly indicator species + topoclimate 0.82 0.74 5.65 6.16 )0.03 )0.38 0.70 0.69 1.86 2.59 )0.06 )1.17

Bird indicator species + vegetation 0.43 0.17 11.17 7.98 )1.00 0.43 0.45 0.20 8.19 6.21 )0.52 )1.36

Bird indicator species + topoclimate 0.51 0.52 9.04 8.34 0.06 )0.58 0.66 0.61 2.19 1.54 )0.08 )0.68

Species richness of birds Number of rare species of birds

(b)

Butterfly indicator species 0.68 0.45 4.84 7.63 )0.03 )5.28 0.32 0.57 1.85 1.39 0.00 )0.92

Bird indicator species 0.81 0.84 3.76 5.46 0.20 )4.68 0.45 0.52 1.59 1.47 )0.05 )0.93

Vegetation 0.56 0.54 11.03 6.08 )0.53 )2.80 0.20 0.03 5.32 2.85 )0.34 )0.96

Topoclimate 0.61 0.34 5.07 6.61 )0.24 )0.84 0.38 0.42 1.61 1.96 )0.03 )0.03

Vegetation + topoclimate 0.57 0.34 14.55 6.35 )0.56 )1.01 0.29 0.06 3.15 2.71 )0.13 )0.01

Butterfly indicator species + vegetation 0.68 0.45 4.54 8.48 )0.19 )3.21 0.43 0.54 2.01 1.66 )0.57 )0.98

Butterfly indicator species + topoclimate 0.51 0.42 5.49 7.54 0.23 )5.41 0.42 0.52 1.70 1.09 0.38 )0.27

Bird indicator species + vegetation 0.75 0.72 4.00 5.01 0.24 0.72 0.41 0.66 6.98 1.40 )0.33 0.66

Bird indicator species + topoclimate 0.68 0.83 4.77 5.22 0.69 )4.36 0.29 0.64 1.95 1.08 0.43 )0.50

R ¼ Spearman rank correlation between predicted and observed values, rmse ¼ root mean square error of predicted values, B ¼ mean bias of

predicted values, calculated as the mean absolute difference between predicted and observed values.

Results of internal validations using the 0.632 bootstrap procedure (Efron & Tibshirani, 1997) are indicated by subscript ‘632’.

Results of external validation (for models in which birds were the response or predictor variables) or cross-validation (for models not involving birds)

are indicated by subscript ‘v’.
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butterfly species (RS ¼ 0.74) at validation sites. Bird indicator

species performed better than expected given the bootstrapping

results. Models based on vegetation variables alone were

ineffective when applied to validation sites. Combining indica-

tor species from either taxon with environmental variables did

not improve predictions of either response variable.

Identity of indicator species

Twenty-two butterfly species and 20 bird species were selected

as indicator species in at least one model of butterfly species

richness or number of rare species of butterflies. Recall that

there were six different models (i.e. response–predictor

combinations) per indicator taxon and each model comprised

a maximum of six indicator species. All of the indicator species

contributed strongly [(Pr(b „ 0) > 0.70 for all but three

species and mostly > 0.90] to Bayesian model-averaged

predictions of species richness regardless of whether environ-

mental variables were also included as candidate predictors.

The identity of the selected indicator species depended on the

response–predictor combination. Some species, such as the

butterfly Ochlodes sylvanoides, and the violet-green swallow

(Tachycineta thalassina), were selected as indicators for both

species richness and number of rare species. Other species,

including the butterfly Icaricia lupini, black-headed grosbeak

(Pheucticus melanocephalus) and song sparrow (Melospiza

melodia), were selected in both indicator species-only models

and models that included environmental variables. Many

species, however, were selected in only one or two models. The

contributions of environmental variables to predictions of

species richness when indicator species also were included as

candidate predictors were often small and were much lower

than when environmental variables were the only predictors.

Models for birds

Internal validation

Bird indicator species were the best predictors of the rank

species richness of birds and of the rank number of rare bird

species (Table 2b). Predictions of bird species richness based

on bird indicator species (RS ¼ 0.81) were much better than

predictions of the number of rare bird species (RS ¼ 0.45).

The performance of bird indicator species models was not

improved by the addition of either vegetation variables or

topoclimate variables (Table 2b).

The utility of butterfly indicator species for predicting

species richness of birds (RS ¼ 0.68) was greater than that of

vegetation variables (RS ¼ 0.56), topoclimate variables

(RS ¼ 0.61), or a combination of vegetation and topoclimate

variables (RS ¼ 0.57). Combining butterfly indicator species

with vegetation or topoclimate variables improved predictions

of the number of rare bird species but not of total species

richness of birds (Table 2b).

Topoclimate variables alone were better predictors of the

number of rare bird species than vegetation variables, all

environmental variables or butterfly indicator species, but all

sets of predictions had RS < 0.50 (Table 2b).

External validation

External validations confirmed that bird indicator species were

the most reliable predictors of species richness of birds

(RS ¼ 0.84) (Table 2b). Butterfly indicator species and topocli-

mate variables performed worse than expected on the basis of

bootstrapping results and produced poorer predictions of bird

species richness than vegetation variables (Table 2b). Predic-

tions of species richness of birds based on a combination of

indicator species (either taxon) and environmental variables

were no better than predictions based on indicator species alone.

A combination of bird indicator species and vegetation

variables produced the best predictions of the number of rare

bird species at validation sites (RS ¼ 0.66). With two excep-

tions (vegetation and vegetation + topoclimate), predictions

of the number of rare bird species were better than expected

from bootstrapping results, but none of the predictions had

RS ‡ 0.70 (Table 2b).

Identity of indicator species

Thirteen butterfly species were selected as indicator species in

models of bird response variables. Several of these species were

consistently selected. Satyrium sylvinum was selected in five of

six possible models and made strong contributions

[(Pr(b „ 0) ‡ 0.75] to predicted values in each case. Nymph-

alis antiopa was selected in all six models, but made relatively

small contributions [(Pr(b „ 0) < 0.20] to predictions of the

number of rare bird species. Papilio multicaudatus and Incisalia

eryphon were selected in all three models of the species richness

of birds and each made strong contributions

[(Pr(b „ 0) ‡ 0.90] to predictions in two models.

Twenty bird species were selected as indicators of the species

richness of birds or the number of rare bird species. Different

sets of indicator species were selected according to the

response–predictor combination, but some species [e.g. west-

ern scrub-jay (Aphelocoma californica) and plumbeous vireo

(Vireo plumbeus)] were selected in multiple models. Most

species selected as indicators of the species richness of birds

contributed strongly to predicted values [15 of 18 cases had

(Pr(b „ 0) ‡ 0.70], and more strongly than environmental

variables in models that used a combination of indicator

species and environmental predictors. The strength of contri-

butions of bird indicator species to predictions of the number

of rare bird species was more variable, but was generally greater

than contributions from environmental variables in models

that drew from all candidate predictors.

DISCUSSION

Same-taxon indicator species were the most accurate surro-

gates for species richness and number of rare species. Cross-

taxonomic indicator species provided reasonable predictions

Comparing predictors of species richness and rare species
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of most response variables. They were at least as reliable as

topoclimate variables, and were generally more reliable surro-

gates than vegetation variables. Different sets of indicator

species had the strongest statistical relationships with species

richness and with number of rare species. For indicator

species-only models within taxonomic groups, only one

butterfly species (O. sylvanoides) was selected as an indicator

of both species richness of butterflies and number of rare

species of butterflies. There was no overlap in sets of birds

selected as the best indicators of species richness of birds or

number of rare species of birds. In general, the ability to

predict numbers of rare species based on any set of candidate

predictors was weaker than the ability to predict species

richness, which may result from the high degree of stochas-

ticity that often characterizes distributions of rare species in

our study system.

We acknowledge and emphasize that characterizations such

as ‘reliable’ and ‘reasonable’ are relative. Whether a given

threshold of explanatory or predictive accuracy (e.g. 80%) is

‘good enough’ inevitably depends on the context in which

information is used. Land-use decisions that are relatively

difficult to reverse (e.g. authorization of a new minerals mine)

may demand a higher level of accuracy than situations in

which land use can be modified or reversed through an

iterative management process (e.g. adjusting the number of

livestock permitted to graze in a given location). Decision

theory provides an objective framework for choosing among

alternative models in the context of how land-use or conser-

vation actions will be determined and applied (Burgman et al.,

2005).

In most cases, indicator species collectively seemed to

represent the variety of land-cover associations in the

taxonomic group for which they conveyed information about

species richness. For example, the three most influential species

of butterflies in models of species richness of birds use trees as

larval host plants, and those trees typically occur in different

vegetation communities: dry pinyon-juniper woodland

(I. eryphon), mixed riparian vegetation (P. multicaudatus)

and stands of willows associated with permanent or ephemeral

sources of water (S. sylvinum).

If indicator species reflect land-cover associations, we might

expect local vegetation variables to be equally effective as

predictors of species richness (Robinson & Holmes, 1984; Lee

& Rotenberry, 2005). Our results suggest that this is not the

case. Predictions based on vegetation variables, either alone or

in combination with other types of candidate predictors, were

often the least accurate in absolute terms (bootstrapped rmse

values). These inaccuracies resulted from substantial variability

in vegetation among sites. If model-testing sites have values

that fall outside the range of values included in the model-

building data, predictions for those test sites often will be

inaccurate. The difficulty of making predictions for new sites

with environmental characteristics that are different from

environmental characteristics at sites for which species data

exist highlights a potential disadvantage of using vegetation

variables as predictors in regions with heterogeneous land

cover. Perhaps because many of our vegetation variables

focused on structure rather than floristic composition, veget-

ation variables were more effective for predicting species

richness and number of rare species of birds than of butterflies

(Anderson & Shugart, 1974).

Topoclimate variables appeared to be reasonable predictors

of species richness of both butterflies and birds and of the

number of rare species of butterflies, although external

validation results for birds based on topoclimate were poor.

Many of the same variables were selected as predictors of

species richness for the different taxonomic groups, but the

strength of their contributions to the averaged predictions

varied. The exceptions were elevation and mean topographic

exposure within a 300-m radius. The internal and external

validation results were consistent with previous work suggest-

ing that elevation and measures of topographic heterogeneity

are strong predictors of distribution patterns of butterflies, but

are less closely associated with patterns for birds (Fleishman

et al., 2002; Mac Nally et al., 2003).

Many vegetation and topoclimate variables that strongly

influenced predictions when only environmental variables

were included in models had weaker influences when

indicator species also were included in models. For example,

number of dead trees and mean distance to water contri-

buted strongly [Pr(b „ 0) ‡ 0.75] to predictions of species

richness of butterflies and number of rare species of

butterflies when only environmental variables were included

as predictors, but contributed little when indicator species

were also included in models. Similarly, canopy cover and

ground cover had much greater weights in predictions of

bird species richness in models that excluded indicator

species as candidate predictors. Together with the superior

predictive performance of indicator species over environ-

mental variables, these results suggest that in systems with a

common pool of species but heterogeneity in species

composition and land cover, the occurrence patterns of a

small subset of an assemblage can provide more information

about species richness patterns than environmental attrib-

utes.

One reason for the superior predictive performance of same-

taxon indicator species may be that those species effectively

integrate information about multiple physical and biological

attributes across spatial and temporal scales relevant to the

organisms of interest. In contrast, it may be difficult to

measure directly environmental variables at scales relevant to

biota, particularly for mobile and/or long-lived taxonomic

groups.

Two considerations are fundamental to conservation prac-

tice: information content and cost efficiency (MacKenzie et al.,

2006). A predictive model may be extremely reliable, but its

applicability will be limited unless measurement of the

predictors is relatively fast and easy. Our results highlight the

difficulty in identifying dependable predictors of the distribu-

tion of rare species. Successful occurrence models have been

developed for individual rare species (e.g. Zabel et al., 2003;

Hoving et al., 2005) (although they may not be more efficient

J. R. Thomson et al.
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than conducting surveys directly for the target species), but it

remains difficult to predict the number of rare species in a

given location. Even when predictors that are ‘good enough’

can be identified, those predictors are likely to be different

from the set selected as predictors of species richness of the

same taxonomic group.

In our study system, indicator species were the most

accurate tools for predicting species richness and number of

rare species. We are not advocating the unqualified use of

indicator species as surrogate measures. If experienced

observers can detect all species in a focal group of plants or

animals without expending substantially more effort than

detecting a subset of species, there is little reason to implement

surveys for indicator species. However, our statistical methods

can be applied to any landscape and taxonomic group(s) to

select indicator species potentially applicable across extensive

regions on the basis of data that are collected from a small

fraction of the total area. For relatively inaccessible geograph-

ical areas and cryptic taxonomic groups, observers can save

time and money by searching for a subset of an assemblage

rather than trying to survey all species in the assemblage

(Gustafsson, 2000; Pressey et al., 2000; Faith et al., 2001). In

these situations, validated predictive models based on indica-

tor species may be a realistic method for deriving data on

distribution patterns that can inform land-use planning

(Hodkinson & Jackson, 2005).

Given that survey data for many regions are sparse and

obtaining new data is costly, efforts to identify surrogate

measures of species richness and the number of rare species are

likely to remain imperative. The modelling approaches we used

here allow investigators to compare the effectiveness of

different types of surrogate predictor variables both singly

and in combination. Promising models should be evaluated

with external validation prior to use in management decisions.

Reasons for failures, as well as successes, can be both practically

and ecologically informative. Information on predictive accu-

racy then must be related to constraints experienced by

practitioners. Practical efficiency must be an important

criterion for deciding whether a surrogate measure is prefer-

able to measuring the target directly.
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