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Abstract

Interactions between climate change and non-native invasive species may combine to

increase invasion risk to native ecosystems. Changing climate creates risk as new terrain

becomes climatically suitable for invasion. However, climate change may also create

opportunities for ecosystem restoration on invaded lands that become climatically

unsuitable for invasive species. Here, I develop a bioclimatic envelope model for

cheatgrass (Bromus tectorum), a non-native invasive grass in the western US, based on

its invaded distribution. The bioclimatic envelope model is based on the Mahalanobis

distance using the climate variables that best constrain the species’ distribution. Of the

precipitation and temperature variables measured, the best predictors of cheatgrass are

summer, annual, and spring precipitation, followed by winter temperature. I perform a

sensitivity analysis on potential cheatgrass distributions using the projections of 10

commonly used atmosphere–ocean general circulation models (AOGCMs) for 2100. The

AOGCM projections for precipitation vary considerably, increasing uncertainty in the

assessment of invasion risk. Decreased precipitation, particularly in the summer, causes

an expansion of suitable land area by up to 45%, elevating invasion risk in parts of

Montana, Wyoming, Utah, and Colorado. Conversely, increased precipitation reduces

habitat by as much as 70%, decreasing invasion risk. The strong influence of precipita-

tion conditions on this species’ distribution suggests that relying on temperature change

alone to project future change in plant distributions may be inadequate. A sensitivity

analysis provides a framework for identifying key climate variables that may limit

invasion, and for assessing invasion risk and restoration opportunities with climate

change.
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Introduction

Climate change threatens to alter global ecosystems

profoundly. Species occurrence is often tightly coupled

to climatic conditions. A shift in temperature or pre-

cipitation may make current habitat climatically unsui-

table, changing the potential distributions of species.

Climate change may lead to a shift of suitable ranges to

higher altitudes and/or poleward (e.g., McCarty, 2001;

Walther et al., 2002), loss of native species (Sala et al.,

2000; Thuiller et al., 2005a), or even extinction (Thomas

et al., 2004). In addition to change the potential distribu-

tions of native species, climate changing may also affect

the spatial distributions of land at risk from invasive

species (Peterson, 2003; Thuiller et al., 2007).

The transformation of ecosystems by invasion of non-

native species has been identified as a major component

of global change (Vitousek et al., 1996). Alien invaders

create economic losses via direct impact on industry

(e.g., agriculture, transportation) as well as through

costs associated with slowing invasion and restoring

invaded ecosystems (DiTomaso, 2000; Mack et al., 2000).

Annual costs of damage and control of plant invaders

in the United States have been estimated in the billions

of dollars (Pimentel et al., 2000). Invasive plants also

threaten native species and change ecosystem function

(e.g., by altering water availability or fire frequency)

(D’Antonio & Vitousek, 1992; Zavaleta, 2000). Predict-

ing how climate change will affect biological invasions
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is a major challenge for management and conservation

planning.

Potential interactions between climate change and

invasive species are a recognized problem (Dukes &

Mooney, 1999; Weltzin et al., 2003; Moore, 2004; Thuiller

et al., 2007), but rarely have been quantified for specific

regions, species, or future climate scenarios. Assess-

ments of the impacts of climate change on invasive

plants have focused on either the impacts of increased

CO2 or modeled changes in climatic suitability. Increased

CO2 positively affects the growth of some invasive plants

(Sasek & Strain, 1988, 1989, 1991; Ziska, 2003), and

several studies have found enhanced competitiveness

in plant invaders with elevated CO2 (Smith et al., 1987,

2000; Nagel et al., 2004), although changing competitive

regimes will be species specific. These studies highlight

the general risk of enhanced invasive species competi-

tiveness with climate change; however, they do not

address the biogeographic aspects of invasion risk.

Bioclimatic envelope models are used to statistically

describe a species’ climatic habitat (see reviews by

Franklin, 1995; Guisan & Zimmermann, 2000; Pearson

& Dawson, 2003; Guisan & Thuiller, 2005). Climatic

habitat is described based on empirical relationships

between species distributions and climate variables

(Kearney, 2006). Although this approach is limited

because other factors besides climate affect species

distribution (Dormann, 2007), bioclimatic envelope

models provide first-order estimates of both the climate

variables that most constrain distribution (Hirzel et al.,

2002) and the potential distribution changes associated

with climate change (Pearson & Dawson, 2003; Araujo

et al., 2005; Hijmans & Graham, 2006). Defining the

climatic habitat is a critical component of assessing

the ecological niche of invasive species and thus asses-

sing invasion risk (Peterson, 2003).

Bioclimatic envelope models have been used to pre-

dict invasion risk under current climate conditions

based on invasive species distributions in their native

and/or invaded ranges (Welk et al., 2002; Rouget et al.,

2004; Thuiller et al., 2005b; Mau-Crimmins et al., 2006;

Schussman et al., 2006). A handful of studies have

coupled bioclimatic envelope modeling with climate

change to predict future distributions of invasive spe-

cies (Beerling, 1993; Sutherst, 1995; Zavaleta & Royval,

2002; Kriticos et al., 2003; Mika et al., 2008). However,

only Kriticos et al. (2003) and Mika et al. (2008) included

precipitation change in addition to temperature change

in their distribution modeling. Given the importance of

water availability to plants, precipitation change needs

to be included in the predictions of climate change

effects on invasive plants.

Previous studies may have neglected precipitation

change due to the high level of uncertainty associated

with changing precipitation in coupled atmosphere–

ocean general circulation models (AOGCMs) (Milly

et al., 2005; Randall et al., 2007). This uncertainty is

particularly problematic in the western US, where com-

plex topography coupled with the difficulty of model-

ing El Niño result in highly variable climate projections.

Uncertainty in AOGCM projections must be considered

and incorporated into any predictions of change in

species range.

In this work, I present a bioclimatic envelope model

for the invasive plant cheatgrass (Bromus tectorum) in

the western US. I use regional presence data to empiri-

cally derive the climate variables that best constrain

species distribution. I then use these best climate pre-

dictors to model the climatic habitat under recent (late

20th century) climate conditions. Finally, I perform a

sensitivity analysis on the distribution of climatic habi-

tat by changing the climate predictor variables to ex-

tremes predicted by AOGCMs for the year 2100. This

approach provides estimates of spatially extensive areas

with both increased and decreased suitability for cheat-

grass under future climate change conditions.

Background

Cheatgrass is an invasive annual grass that invades

perennial shrublands in the western US, primarily

sagebrush steppe and slightly drier salt desert shrub-

land characteristic of the Great Basin Desert. Cheatgrass

is a Eurasian grass that was accidentally introduced to

the United States in the late 1800s (Mack, 1981, 1989) and

now dominates at least 40 000 km2 in the states of Nevada

and Utah alone (Bradley & Mustard, 2005). Cheatgrass-

dominated lands are less viable as rangeland because the

senesced grass is inedible for livestock (Currie et al., 1987;

Young & Allen, 1997). Furthermore, the increase in fine

fuels associated with cheatgrass leads to higher incidence

of fire (Whisenant, 1990; D’Antonio & Vitousek, 1992).

Fires in turn lead to a virtually irreversible loss of native

shrubs and grasses, which reduces ecosystem carbon

storage (Bradley et al., 2006), and threatens sagebrush

obligate species. Once established, cheatgrass is extre-

mely difficult to eradicate and expansion of the species

continues to be a major problem in the western US

(Billings, 1990; Knapp, 1996).

Cheatgrass competes with native species by growing

early in the spring season and using available water

resources (Rice et al., 1992; Peterson, 2005). Cheatgrass

senesces in the late spring, setting seed and remaining

dormant through the summer. Native sagebrush and

salt desert shrubs, on the other hand, begin growing in

mid to late spring and continue to grow through the

summer under favorable precipitation conditions.

Hence, the phenologies of the dominant native and
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invasive plant species are distinctly different, with

cheatgrass relying predominantly on spring precipita-

tion and native shrubs relying predominantly on sum-

mer precipitation (Rice et al., 1992; Loik, 2007).

The Great Basin Desert, where cheatgrass is most

problematic, is a semi-arid cold desert. This region is

characterized by hot summers, freezing winters, and

low year round precipitation. Total annual precipitation

in the region ranges from 20 to 40 cm in valleys, and is

higher in mountains, which typically extend over

3000 m in elevation. Precipitation rates are similar dur-

ing fall, winter, and spring and lowest during the

summer.

Material and methods

Regional presence of cheatgrass was based on a map for

the Great Basin ecoregion, produced with remote sen-

sing. Bradley & Mustard (2005) used Advanced Very

High Resolution Radiometer (AVHRR) Pathfinder data

to identify cheatgrass based on its amplified inter-

annual growth response to rainfall. Relative to native

shrublands, cheatgrass-dominated communities have

much higher inter-annual variability in community

greenness as measured with satellite time series. This

inter-annual response is a result of the El Niño Southern

Oscillation affecting the western US, which causes

cyclical events of regional extreme precipitation. Inter-

annual variability is not related to average climatic

conditions.

This map was initially produced at 1 km spatial

resolution for the year 1998. I down sampled the map

resolution to 0.041661 (� 4 km) spatial resolution using

a majority filter. This projection and pixel resolution

were selected to match the PRISM (Parameter-elevation

Regressions on Independent Slopes Model) current

climate dataset (Daly et al., 2002). The spatial distribu-

tion of cheatgrass presence based on this map is shown

in Fig. 1.

Although cheatgrass can be found throughout the

continental US (USDA, 2007), it is only invasive in the

Intermountain West, based on its prevalence, abun-

dance, magnitude of impact, and ability to spread.

The mapped distribution used here encompasses the

majority of lands where cheatgrass is invasive based on

this definition. The distribution map does not include

portions of central Utah and eastern Washington where

cheatgrass invasion is also problematic (Mack, 1981,

1989). However, the latitudinal and topographic gradi-

ents in the Great Basin create a considerable range of

climate conditions that encompass the missing areas.

Thus, the mapped extents provide a reasonable estimate

of the range of climatic conditions susceptible to eco-

system-transforming cheatgrass invasion.

Data sources current climate

Current climate conditions used to develop the biocli-

matic envelope model were derived from average pre-

cipitation and temperature data from the PRISM

dataset. The PRISM dataset is a 0.04166 decimal degree

interpolation of US weather station data, taking into

account the influence of topography on precipitation

and temperature (Daly et al., 2002). A total of 39 climate

variables representing monthly and annual averages of

precipitation, maximum temperature, and minimum

temperature for the 1971–2000 time period were used

in this analysis.

Data sources future climate

The application of global climate model results to

regional climate modeling holds two major challenges.

First, the spatial resolution of AOGCMs, commonly 42

decimal degrees latitude (4220 km) is coarser than

current climate data. Second, although temperature

increases are fairly consistent in the western US, there

is a high degree of variability in climate model projec-

tions for change in precipitation (Milly et al., 2005;

Randall et al., 2007). Performing a sensitivity analysis

allowed me to test the relative impact of changing

climate conditions within the range predicted by the

AOGCMs.

I selected 10 AOGCMs, all shown by Milly et al. (2005)

to be good predictors of contemporary precipitation

Fig. 1 Cheatgrass presence mapped using remote sensing data

within the Great Basin is shown in black (Bradley & Mustard,

2005). Locations outside the extents of the Great Basin (dashed

line) were not mapped and presence of cheatgrass is unknown.

198 B . A . B R A D L E Y

r 2008 The Author
Journal compilation r 2008 Blackwell Publishing Ltd, Global Change Biology, 15, 196–208



and runoff. The 10 AOGCMs used to define potential

change in monthly precipitation values are shown in

Table 1. These models are available on the Program for

Climate Model Diagnosis and Intercomparison

(PCMDI, 2007) and were compiled as part of the Inter-

governmental Panel on Climate Change (IPCC) fourth

model assessment. The SRES A1B climate scenario was

used in all cases. SRES A1B is a moderate scenario in

which energy use continues to increase, but technolo-

gical advances stabilize emissions, leading to a CO2

concentration of 720 ppm by 2100 (approximately dou-

ble current concentration) (Nakicenovic & Swart, 2000).

This single scenario was chosen because it represents

the ‘middle of the road’ of expected future conditions

absent policies to restrain greenhouse gas emi-

ssions. More importantly, the variability among climate

models for projected precipitation change is greater

than the variability among scenarios for any single

model. Hence, using a single scenario, but a range of

AOGCMs, provided a plausible range of potential

future precipitation conditions in the western US.

Percent change in future monthly precipitation for

each AOGCM was estimated by dividing average

monthly precipitation modeled for 2090–2100 by aver-

age monthly precipitation modeled for 1971–2000. The

1971–2000 time period for current climate conditions

was chosen to match the time period used in the PRISM

average precipitation data. Projected monthly percent

precipitation change for that 100-year time period was

then averaged for the regions of grossly similar climate

that cheatgrass could potentially invade: the state of

California, the Intermountain West (NV, UT, ID, eastern

OR, eastern WA), the Southwest (AZ, NM), and the

Midwest/Colorado Plateau (CO, WY, MT, ND, SD, NE,

KS). Percent precipitation change projections for the 10

AOGCMs were combined to determine the monthly

maximum gain, maximum loss, and median percent

change. Percent precipitation changes were applied by

region to the PRISM dataset to simulate the range of

possible future conditions. Temperature change was

estimated by adding static increases of 2 and 4 1C to

all of the western regions. In all cases the potential

changes were applied to a single climate predictor

variable at a time. This approach allowed me to test

the relative sensitivity of potential cheatgrass distribu-

tion to each climate predictor variable individually.

Bioclimatic envelope modeling

Bioclimatic envelope modeling is a widely used method

for defining suitable climatic conditions of a species

based on the distribution of species occurrences. Nu-

merous bioclimatic envelope modeling approaches

have been presented and reviewed (Guisan & Zimmer-

mann, 2000; Elith et al., 2006; Tsoar et al., 2007). For

invasive species, approaches relying on presence-only

data are more appropriate because absences do not

always imply lack of climatic suitability. Presence-only

data also make no assumptions about whether an area

was sampled and the species not detected, or whether

an area was not sampled. Absences may mean that the

species has not yet invaded despite suitable conditions.

Presence-only models include BIOCLIM (Busby, 1991),

DOMAIN (Carpenter et al., 1993), HABITAT (Walker &

Cocks, 1991), and Mahalanobis distance (e.g., Farber &

Kadmon, 2003).

This study uses the Mahalanobis distance to predict

climate suitability. Farber & Kadmon (2003) and Tsoar

et al. (2007) recommend this approach for bioclimatic

envelope modeling; it has been used to predict the

ranges of rare species (Johnson & Gillingham, 2005;

Rotenberry et al., 2006) and the potential ranges of

invasive plants (Rouget et al., 2004). This modeling

approach is a multivariate technique that defines per-

pendicular major and minor axes. Mahalanobis dis-

tances from a centroid in n-dimensional space are

then calculated relative to the covariance of axes

lengths. Hence, if the species is present within a narrow

range of precipitation, but a wide range of temperature,

equal Mahalanobis distances would cover a small range

of precipitation, but a large range of temperatures. In

two-variable space, an isoline defining equal Mahala-

nobis distance from the centroid is elliptical in shape,

whereas equal Euclidean distance would be circular. A

schematic example of Mahalanobis distances in two-

variable space is shown in Fig. 2.

Table 1 Climate models used to assess projected change in

precipitation by 2100

Climate

model Source

CCCma

CGCM3.1

Canadian Centre for Climate Modelling and

Analysis (Canada)

CNRM CM3 Centre National de Recherches

Meteorologiques (France)

GFDL 2.1 Geophysical Fluid Dynamics Laboratory

(USA)

GISS Goddard Institute for Space Studies (USA)

HAD CM3 Hadley Centre for Climate Prediction (UK)

INM CM3 Institute for Numerical Mathematics (Russia)

IPSL CM4 Institut Pierre Simon Laplace (France)

MIROC 3.2 Model for Interdisciplinary Research on

Climate (Japan)

MPI echam5 Max Planck Institute for Meteorology

(Germany)

NCAR ccsm3 National Center for Atmospheric Research

(USA)
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In order to identify the climate variables that best

constrained cheatgrass distribution, I calculated the

mean value of every PRISM climate variable (monthly

mean temperature and precipitation) for all locations

where cheatgrass is present (i.e., the sample mean).

Calculating distance to the sample mean for every pixel

in the sample and total populations gives an estimate of

how constrained climate conditions are for the sample

population relative to the total population. The differ-

ence between the median of the total and sample

distances represents the extent to which the climate

variable constrains the distribution of the species. A

larger difference indicates a better predictor. This ap-

proach is similar in concept to the specialization factor

presented by Hirzel et al. (2002). However, by compar-

ing median values rather than standard deviations of

sample and total populations, we reduce the influence

of extreme values, which are frequently present when

dealing with climate conditions in the western US.

Resulting distances were normalized by the sample

mean; hence, a normalized distance of 1 indicates that

the median distance of the population is � the sample

mean.

The climate variables that best constrained cheatgrass

distribution were selected by ranking the difference

between median distance values for the total and sam-

ple populations. Once the best constrained predictor

variables were identified, they were used to construct a

bioclimatic envelope model for cheatgrass. For cases

where predictor values had a high degree of correlation

in the western US (e.g., June–September precipitation), I

used the average of these variables to minimize redun-

dancy. Seasonal averages rather than single months

were used because AOGCM seasonal projections were

considered more robust. The number of variables used

in the model was selected based on area under a

receiver operating characteristic (ROC) curve, which

plots the fraction of total pixels vs. the fraction of

sample (invasive species) pixels that are within specific

thresholds of Mahalanobis distances.

Area under the ROC curve increases as more cheat-

grass presence points are predicted correctly relative to

total points. Adding additional climate variables to the

model improves the prediction, increasing the area

under the curve. However, adding too many variables

can over fit the data, resulting in a bioclimatic envelope

model that is too constrained and produces an unreli-

able future range prediction. An optimal number of

predictor variables can be identified based on area

under the ROC curve because as more variables are

added, the incremental improvement in the model

decreases.

A map of climatic habitat for cheatgrass under cur-

rent climate conditions was constructed based on the

Mahalanobis distance. For comparison, Maximum en-

tropy, or MAXENT (Phillips et al., 2006), a machine

learning method that defines distributions based on

simple functions related to each climate variable, was

also used to project current cheatgrass climatic habitat

based on the best climate predictor variables. The

resulting Mahalanobis distances or MAXENT values

that encompassed 95% of presence points were used

to define climatic habitat. This methodological compar-

ison was conducted to increase confidence in the use of

Mahalanobis distance for describing cheatgrass’ cli-

matic habitat and assessing sensitivity to climate

change.

To assess sensitivity to climate change, climate pre-

dictor variables were adjusted individually based on

projected climate change scenarios from the AOGCMs.

Mahalanobis distances for every pixel were recalculated

using current climate conditions for the sample popula-

tion and future climate conditions for the total popula-

tion. The previously calculated Mahalanobis distance

thresholds were used to assess suitability under climate

change scenarios. Expansion and contraction of total

land area within the 95% Mahalanobis distance thresh-

old showed potential cheatgrass distributions with cli-

mate change.

Results

Modeling current suitability

The climate predictors that best determined cheatgrass

distribution are the ones for which species presence is

most constrained relative to the total study area. Sum-

Fig. 2 Schematic distribution of locations where species pre-

sence is known and locations where presence is unknown in

two-variable climate space. The plus defines the centroid of the

species presence points and the ellipse represents equal Maha-

lanobis distance capturing 95% of the presence points.
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mer precipitation (June–September) variables are the

best predictors of cheatgrass presence, followed by

annual average precipitation, spring precipitation

(April–May), winter maximum temperature (Decem-

ber–February), and winter minimum temperature (No-

vember–December) (Table 2). The worst predictors of

cheatgrass presence were winter precipitation and sum-

mer maximum temperature. The distribution of June

precipitation, which is the most constrained single

variable and the best predictor of cheatgrass presence,

for the sample and total populations is shown in Fig. 3.

The distribution of July maximum temperature, which

is the least constrained variable, is also shown for

comparison.

Based on the ROC curve results, there was a sub-

stantial improvement from adding variables 1–3 (mean

summer ppt, mean annual ppt, mean spring ppt), a

small improvement from adding variables 4 and 5

(mean winter max temp, mean winter min temp), and

minimal improvement from adding additional vari-

ables (Fig. 4). Thus, for cheatgrass, the bioclimatic

envelope model is based on Mahalanobis distance

calculated from the best five seasonal climate predic-

tors.

Maps of climatic habitat based on Mahalanobis dis-

tance, and MAXENT are shown in Fig. 5. The spatial

distribution of climatic habitat identified by Mahalano-

bis distance and MAXENT is similar. Under current

climate conditions, the majority of cheatgrass climatic

habitat under current climate conditions exists in north-

ern Nevada, western Utah, southern Idaho, and eastern

Oregon and Washington, all areas with extensive cheat-

grass populations (Mack, 1981).

Predicting future suitability

Projected change in the western US varies considerably

depending on the AOGCM selected (Fig. 6). For vari-

ables relevant to cheatgrass distribution, the AOGCMs

consistently project a decrease in spring precipitation

and an increase in annual precipitation, but changes in

mean summer precipitation have a large range. In the

Intermountain West for example, AOGCMs range from

a projection of a 47% decrease to a 72% increase in

summer precipitation. The maximum loss, median

change, and maximum gain of precipitation for western

Table 2 Best climate predictors of cheatgrass presence

Climate variable

Median normalized

distance

Ratio of

total/sample

Sample

population

Total

population

June ppt 0.67* 9.30w 13.93

July ppt 0.69 9.66 13.93

September ppt 0.65 9.02 13.90

August ppt 0.66 8.85 13.34

Average ppt 0.53 5.17 9.68

October ppt 0.59 5.35 8.99

May ppt 0.57 4.88 8.50

April ppt 0.58 4.14 7.08

January Tmax 0.53 2.63 4.93

December Tmax 0.55 2.51 4.54

February Tmax 0.59 2.68 4.50

November Tmin 0.61 2.63 4.35

December Tmin 0.60 2.46 4.12

*Median distance value is 0.67� sample mean.

wMedian distance value is 9.30� sample mean.

Fig. 3 Histograms of the best and worst constrained climate

variables. (a) June precipitation is the best constrained variable.

Cheatgrass (gray) distributions encompass a range of values

much smaller than the total continental US (black). (b) July

maximum temperature is the worst constrained variable. Cheat-

grass (gray) distributions encompass a range of values almost as

large as the total continental US (black). Dashed lines in both

figures indicate the sample mean.
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US regions based on the 10 AOGCM projections are

shown in Table 3.

The total land area falling within Mahalanobis dis-

tances that capture 95% of the current extent of cheat-

grass encompasses 760 000 km2 of the western US. This

value represents the maximum potential extent of areas

at risk of ecosystem-altering cheatgrass invasion under

current climate conditions. However, depending pri-

marily on future precipitation conditions, suitable land

area could increase by as much as 45% or decrease by as

much as 70% by 2100 (Table 4).

The climate change scenario with the greatest expan-

sion of climatic habitat is shown in Fig. 7. In this case,

decreased summer precipitation opens vast areas of

Montana, Utah, and Colorado to invasion. Valleys on

the Idaho/Montana border and portions of southern

Wyoming are most commonly at risk under the multi-

ple scenarios tested.

Two scenarios in which climatic habitat contracts

with climate change are shown in Fig. 8. Increasing

summer precipitation (Fig. 8a) and increasing winter

temperatures (Fig. 8b) lead to decreases in climatic

habitat of 70% and 37%, respectively. Portions of south-

ern Nevada and southern Utah are the most likely areas

to become climatically unsuitable under the climate

scenarios tested.

The median change case for all precipitation variables

combined with a 2 1C increase in winter temperature is

shown in Fig. 9. In this scenario, most of the currently

suitable land area maintains suitability with climate

change. Parts of California and Wyoming lose their

suitability to cheatgrass under this scenario, while other

parts of Wyoming and Montana gain suitability.

Discussion

Expanding risk of invasive species as a result of climate

change is a major concern for conservation and natural

resource management (Dukes & Mooney, 1999; Moore,

2004). In the Intermountain West, invasive plants have

been shown to expand quickly into new areas (Mack,

1981), and disturbance to native systems associated

with climate change may further enhance invasion.

Fig. 4 Receiver operating characteristic (ROC) curves show the

number of total pixels vs. cheatgrass occurrences mapped with

increasing Mahalanobis distance as more climate variables are

added to the model. The area under the ROC curve increases

with the addition of up to five climate predictors. Additional

climate predictors past the first five do not improve the predic-

tion and may over-fit the model.

Fig. 5 Modeled climatic habitat for cheatgrass under current

climate conditions. Gray areas correspond to (a) Mahalanobis

distances and (b) MAXENT values that encompass 95% of

mapped cheatgrass presence.
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Identifying land at risk, and the climate changes that

might expand risk, can inform management decisions

about prioritizing treatment of invasive plants.

The methodology applied here using the Mahalano-

bis distance is promising for modeling climate suitabil-

ity for invasive plants (Rouget et al., 2004). Mahalanobis

distance compares favorably with other presence-only

methods (Farber & Kadmon, 2003; Tsoar et al., 2007),

and produces a similar result to MAXENT (Phillips

et al., 2006) (Fig. 5), which also has high predictive

accuracy (Elith et al., 2006; Phillips & Dudik, 2008).

For cheatgrass, summer, annual, and spring precipi-

tation variables are the best predictors of climate suit-

ability (Table 2). The close relationship between

cheatgrass distribution and narrow ranges of spring

and summer precipitation (Fig. 4) values may be a

Fig. 6 Global climate model SRES A1B projections of change in monthly precipitation (%) for the Intermountain West by 2100. The

median change of the 10 climate models shows a slight increase in fall/winter precipitation and a slight decrease in spring/summer

precipitation.

Table 3 Projected changes of precipitation and temperature

in cheatgrass relevant climate variables

Climate variable

Max

decrease

(%)

Median

change

(%)

Max

increase

(%)

California

Spring precipitation �59 �35 �1

Summer precipitation �67 �10 1 100

Annual precipitation �21 �1 1 37

Intermountain West

Spring precipitation �27 �6 1 2

Summer precipitation �47 �13 1 72

Annual precipitation �10 1 4 1 24

Southwest

Spring precipitation �67 �32 �4

Summer precipitation �43 �12 1 56

Annual precipitation �21 �11 1 20

Midwest/Colorado Plateau

Spring precipitation �8 1 9 1 30

Summer precipitation �38 �12 1 23

Annual precipitation �8 1 1 1 20

Table 4 Change in suitable land area for cheatgrass for a

range of 2100 climate projections

Climate

variable Change scenario

Suitable land

area (km2)

%

Change

Current

conditions

None 760 000 0

Summer

precipitation

Max decrease 1100 000* 1 45

Median change 860 000 1 13

Max increase 230 000w �70

Annual

precipitation

Max decrease 770 000 1 1

Median change 750 000 �1

Max increase 660 000 �13

Spring

precipitation

Max decrease 590 000 �22

Median change 710 000 �7

Max increase 720 000 �5

Winter

temperature

21 increase 690 000 �9

41 increase 480 000w �37

Summer,

annual, and

spring

precipitation

Median change 780 000z 1 3

Pixel sizes are calculated based on longitude length in

kilometers at 401N [longitude 5 cos(40)� 111 km] npixels�
16.38 km2.

*For geographic changes, see Fig. 7.

wFor geographic changes, see Fig. 8.

zFor geographic changes, see Fig. 9.
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result of the different phenologies of cheatgrass and

native shrub ecosystems that it commonly invades.

With increased summer precipitation, native perennial

shrubs and grasses may be more competitive because

they are able to use water resources while cheatgrass is

dormant (Loik, 2007). Where summer growing peren-

nials are more competitive, cheatgrass is less likely to

invade. Furthermore, increased summer precipitation

may reduce the frequency of fire, one of the primary

mechanisms of cheatgrass invasion. Similarly, a de-

crease in spring precipitation may reduce climatic ha-

bitat (Table 4) because cheatgrass does not have

adequate water resources during its growing season.

In the scenario of maximum potential future expan-

sion, decreased summer precipitation makes large por-

tions of Montana, Wyoming, Utah, and Colorado

climatically suitable for cheatgrass invasion (Fig. 7).

Decreased summer precipitation may make perennials

less viable and favor early season annuals such as

cheatgrass. In scenarios of maximum potential future

contraction, increased precipitation and/or higher win-

ter temperatures lead to a loss of climate suitability in

portions of Nevada, Utah, Idaho, Oregon, and Washing-

ton (Fig. 8).

The contrast between these best- and worst-case

scenarios highlights how the uncertainty inherent in

AOGCMs creates uncertainty in predictions of species

distribution. AOGCM uncertainty is particularly pro-

blematic for precipitation change in the western US

(Fig. 6; Table 3) due to complex topography and the

difficulty of modeling El Niño (Randall et al., 2007).

However, AOGCM uncertainty is likely a global pro-

blem and the range of predicted changes must be

considered in species distribution modeling. Using

any single global or regional climate model to predict

change in climate suitability may lead to erroneous

Fig. 8 Scenarios with maximum contraction of cheatgrass cli-

matic habitat: (a) climatic habitat with maximum AOGCM

projected increase in summer precipitation; (b) climatic habitat

with a 4 1C winter temperature rise.

Fig. 7 The maximum expansion of climatic habitat for cheat-

grass occurs with a reduction of summer precipitation.
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results and incorrect implications for management of

invasive and/or native species.

The median climate change scenario has been used in

efforts to identify the most likely future climate change,

although this scenario does not represent conditions

predicted by any individual AOGCM. This scenario

results in an increase in cheatgrass climate suitability

in southwest Wyoming and several valleys on the

border of Idaho and Montana (Fig. 9). Although the

land area impacted is smaller than the extreme climate

change cases, this prediction is more moderate and

should factor in management decisions for combating

cheatgrass because it may be more likely to occur.

Despite the uncertainty in future climate conditions,

the sensitivity analyses do show some consistency in

risk and restoration potential. All future scenarios show

some consistency of areas that maintain climate suit-

ability (Figs 7–9). Cheatgrass populations remain con-

sistently viable in parts of Nevada, along the Snake

River plain in Idaho, in western Utah, and in eastern

Oregon. Under most future climate conditions, these

areas will continue to be at risk of cheatgrass invasion.

Only one scenario, reduced summer precipitation,

results in a large expansion of climatic habitat (Table

4). Although this scenario represents an extreme case of

climate change, reduced summer precipitation is pro-

jected by a majority of the tested AOGCMs. Further-

more, the extent of invasion potential makes this

possibility important to consider in management plan-

ning in Montana and the Colorado Plateau (Fig. 7).

Additionally, several areas are consistently at risk under

multiple future climate scenarios, particularly parts of

southern Wyoming and valleys on the Idaho/Montana

border. Although the land area at risk in these cases is

smaller than under reduced summer precipitation, the

likelihood of occurrence is higher, making these areas

high risk. Managers should be aware of these high-risk

areas and treat small populations of cheatgrass.

Intriguingly, most of the climate change scenarios

explored here result in a decrease in climatic habitat

for cheatgrass (Table 4). The potential for contraction

with climate change has also been predicted for other

invasive species (Richardson et al., 2000; Mika et al.,

2008). For cheatgrass, large portions of southern Neva-

da and southern Utah are most likely to become clima-

tically unsuitable, either due to increased summer

precipitation or higher temperatures. Under favorable

climate change conditions, these areas are most likely to

see reduced cheatgrass viability or competitiveness.

The bioclimatic envelope model presented here pro-

vides a first-order assessment of the geographic extents

favorable to cheatgrass invasion under current and

future climate scenarios. However, climate conditions

only affect invasion at the broadest regional scale. Other

factors relating to land use, soils, competition, or topo-

graphy may affect the suitability of a given location. As

a result, a hierarchical approach for assessing local-scale

risk that includes a suite of environmental variables

depending on the scale of the analysis has been recom-

mended (Pearson & Dawson, 2003). For example, if the

goal was to assess invasive species risk within a na-

tional park, we should first consider whether climate

conditions are appropriate and then develop more

specific risk relationships based on topography, land

use, and soils (Larson et al., 2001). In the case of

cheatgrass, landscape-scale risk relationships with

roads (Gelbard & Belnap, 2003) and other forms of land

use, soils, and topography (Bradford & Lauenroth, 2006;

Bradley & Mustard, 2006; Chambers et al., 2007) have

been established. A comprehensive evaluation of local-

scale invasion risk should incorporate both regional risk

from climate change and local risk from land use

(Pearson & Dawson, 2003).

Potential changes to the distribution of cheatgrass’

climatic habitat vary considerably depending on the

AOGCM projection used. However, by empirically

identifying the most constrained climate variable pre-

dictors and evaluating potential invasive distributions

as those climate variables change, we can identify risk

and restoration potential. Land managers should be

aware that climate change will affect the potential

geographic distributions of cheatgrass, and will likely

affect other plant invaders as well. Managers of land at

Fig. 9 Cheatgrass climatic habitat under the median precipita-

tion change scenario of 10 AOGCMs and a 2 1C winter tempera-

ture rise.
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risk under any of the future climate change scenarios

can reduce risk by being increasingly vigilant in treating

small cheatgrass infestations. These bioclimatic envel-

ope model results emphasize the likelihood of large-

scale changes in future distributions of invasive plants.
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