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ABSTRACT 

 

     Recent increasing trends in fire extent have been documented, yet little is known about 

how climate, vegetation and topography influence the patterns of burn severity (defined here 

as the magnitude of vegetation change one year post-fire relative to pre-fire conditions) of 

those fires. Here, I use satellite-derived burn severity data to infer 20-year patterns of burn 

severity relative to topography and climate. A time series of Landsat Thematic Mapper (TM) 

satellite images were used to map 114 fires (195,600 hectares burned) on the Gila National 

Forest from 1984-2004. Burn severity of each fire was inferred from the Relative Differenced 

Normalized Burn Ratio (RdNBR), a derivative of the differenced Normalized Burn Ratio. 

Data from nearby weather and Snowpack Telemetry (SNOTEL) stations were used to 

evaluate the influence of Snow Water Equivalent (SWE) and precipitation patterns on severe 

fire occurrence. Vegetation and Digital Elevation Model-derived Geographic Information 

System (GIS) layers were used to analyze the spatial patterns of severe fire occurrence on the 

1.4 million-hectare Gila National Forest.  

     Severe fire occurred more frequently at high elevations, in mesic spruce-fir and mixed-

conifer vegetation types, on north-facing slopes and where solar radiation and heat load index 

values were low. Within drier Potential Vegetation Types, severe fire occurred more 

frequently where moisture was more available. However, this pattern shifts at higher 

elevations, where areas with high heat load indexes and exposed south-facing slopes 

increased the probability of severe fire occurrence during this twenty-year period. Random 

Forest predictions of severe fire occurrence using topographic variables as predictors yielded 

classification accuracies of 82% and 63% for two (high severity vs. other) and three (low, 

moderate, high severity) class burn severity grids. 

     Spring precipitation, SWE and precipitation-free periods during the fire season (April-

July) were significantly related to area burned and area burned severely, with the length of 

dry periods explaining most of the variation in fire extent and severity. These precipitation 

metrics were strongly correlated with 17-year patterns of spring and early summer vegetation 

green-up inferred from the Advanced Very High Resolution Radiometer (AVHRR).  

     Spectral indices used in this study were derived from the Landsat TM sensor. However 

the life of this sensor may be limited and other remotely sensed data on burn severity patterns 



 iv

will likely be sought in the future. Using pre and post-fire images from 4 different satellite 

sensors with varying spatial and spectral resolutions (Quickbird, the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER), Landsat TM and the Moderate 

Resolution Imaging Spectroradiometer (MODIS)) correlations between ground-based 

Composite Burn Index (CBI) plots and satellite-derived indices were compared. ASTER and 

Quickbird-derived indices performed as well or better than the Landsat-derived dNBR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 v

ACKNOWLEDGEMENTS 

 
     I thank my major advisor Penny Morgan for bringing me to the University of Idaho. It’s 

difficult to imagine where I would be without her. During the last five years she has 

gracefully allowed me to pursue many different projects, even the stupid ones. She has been 

a wonderful mentor, collaborator and boss.  

     I’m grateful to have studied in an academic department that fostered collaboration among 

researchers with very different research interests. It has been through interactions with 

scientists like John Marshall, Katy Kavanagh and Penny Morgan, Alistair Smith and Lee 

Vierling that I have become a more well-rounded scientist. Not all students are so fortunate.  

     I thank the talented, dedicated staff on the Gila National Forest. Much of this work would 

not have been possible without the assistance of Wendel Hann, Ceci McNicoll, Joe Encinas 

and many others. These people do the Forest Service great credit with their public service.  

     Finally, thanks to my father for giving me my first copy of Edward Abbey’s “Desert 

Solitaire” which steered me toward environmental science and to my family collectively for 

the unspoken pressure toward academia that has pushed me for the last few years. Somehow 

I knew the old adage “publish or perish” before I was in High School. Thanks to Dr. David 

Benzing, my college advisor for the hours of one-on-one tutoring in how to write and edit for 

the biological sciences and for being a mentor for me at a critical time in my life.  

     This research was funded by the Joint Fire Science Program Project 05-2-1-101 and 

Project 01-1-1-06. .This work was also supported by the Gloria Baron Wilderness Society 

Fellowship.  

      

 

 

 

 

 

 

 

 



 vi

TABLE OF CONTENTS 

 

Authorization to Submit Dissertation…………………………………………………………ii 

Abstract……………………………………………………………………………………….iii

Acknowledgements……………………………………………………………………………v

Table of Contents……………………………………………………………………………..vi 

List of Tables ………………………………………………………………………………...ix 

List of Figures…………………………………………………………………………………x 

Chapter 1: Introduction………………………………………………………………………..1 

Motivation and Study Area……………………………………………………………………2 

Chapter 2: Remote Sensing Techniques to Assess Active Fire Characteristics and Post-Fire  

Effects…….……………..….…………...………………………………………..………..7

Abstract..…………………………….………………………………………………......…7 

Introduction…..…..………………………………………………………………………...8

Fire and Fire Effects Terminology………………………………………………………..11 

Remote Assessment of Active Fire Characteristics………………………………………17 

Remote Assessment of Post-Fire Effects...……………………………………………….21 

Field Assessments of Active and Post-Fire Effects………………………………………29 

Management Use of Remote Sensing Fire Effects Products………………………….….31 

Future directions of fire-related remote sensing research……..………………………….35 

     Conclusions……………………………………………………………………………….45 

     Tables………………………………………………………………………………….….47 

     Figures………………………………………………………………………………….…51 

     References………………………………………………………………………………...54 

Chapter 3: A Multi-Sensor Assessment of Burn Severity on the Dry Lakes Fire, NM……...72 

     Abstract……………………………………………………………………………….…..72 

     Introduction………………………………………………………………………….……73 

     Methods…………………………………………………………………………………...75 

      Results and Discussion…………………………………………………………….……..78      

Conclusions……………………...………….……………………………….……………82 

     Acknowledgements……………………………………………………………………….82 



 vii

     References…………………………………………………………………………...……83 

     Figures…...…………………………………………………………………………….… 86 

     Tables…….…………………………………………………………………………...…..91 

Chapter 4: Fire Season Precipitation Patterns Influence Fire Extent and Severity  

in a Large Southwestern Wilderness Area, USA………………………………...…………..93 

     Abstract………………………………………………………...…………………………93 

     Introduction…………………………………………………………...…………………..94 

     Methods………………..……….…………………………………………………………95 

     Results…….....……………………………………..……………………………………..97 

     Discussion and Conclusions……………………………………………………...………97 

     References………...……………………………………………………………………..100 

     Figures…………………………………………………..………………….…………....102 

Chapter 5: Fire Season Precipitation Variability and Green-Up (1989-2005) Across a 

Vegetation Gradient in the Gila Wilderness,New Mexico,USA.………………………..…104 

     Abstract………………………………………………………………………………….104 

     Introduction……….……...……………………………………………………………...106 

     Methods………………..………………….…………………………………….....…….107 

     Results…….……………………………………………………………………………..110 

     Discussion………...…………………………………………………………….……….111 

     Conclusions……………………………………………………………………………...115 

     Acknowledgements………………………………………………………………...……115 

     References……………………………………………………………………………….116 

     Figures………………………………………………………………………………...…119 

     Tables……………………………………………………………………………………127 

Chapter 6: Twenty Year (1984-2004) Spatial Patterns of Burn Severity on the  

Gila National Forest, New Mexico…………………….…………………………………...123 

     Abstract………………………………………………………………………………….123 

     Introduction……………………………………………………………………………...124 

     Methods………………………………………………………………………………….125 

     Results…………………………………………………………………………………...130 

     Discussion……………………………………………………………………………….131 



 viii

     Management Implications……………………………………………………………….133 

     References…………………………………………………………………………….…135 

     Figures…...………………………………………………………………………………139 

     Tables………….………………………………………………………………………...144 

Chapter 7: Conclusions……………………………………………………………………..147 

     References……………………………………………………………………………….147 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ix

LIST OF TABLES 

 

Chapter 2 

Table 1. Remote Sensing Systems Relevant to Fire Detection and Monitoring……………..47 

Table 2. Selected Examples of Field and Remote Measures of Active Fire Characteristics...48 

Table 3. Examples of Field and Remote Measures of Post-Fire Effects…………………….49 

Table 4. Examples of Approaches that Remotely Assess Degree of Post-fire Change……...50 

Chapter 3  

Table 1. Correlation between satellite-derived indices and CBI data………………..………91 

Table 2. ASTER sensor characteristics……………………………………………..………..91 

Table 3. Quickbird sensor characteristics………...…….……...…...………………………..92 

Table 4. Landsat sensor characteristics…………………..…………………..……………....92 

Table 5. Spectral index equations…………………………………………………………..101 

Chapter 5 

Table 1. Correlations between AVHRR-derived NDVI and precipitation variables……….120 

Table 2. AIC results for selected MANOVA models………………………………………121 

Table 3. Canonical structure results………………………………………………………...121 

Table 4. MANOVA results of NDVI and annual area burned by severity class…………. .121 

Table 5. Canonical structure results for NDVI and annual area burned by severity class…121 

Table 6. PCA correlations with precipitation and temperature variables…………………..122 

Chapter 6 

Table 1. Predictor variables used in Random Forest models……………………………….144 

Table 2. Area burned by severity class (1984-2004) in the Gila National Forest………….144 

Table 3. Random Forest accuracy results…………………………………………………..145 

 

 

 

 

 

 



 x

LIST OF FIGURES 

Chapter 1 

Figure 1. Gila National Forest Study Area……………………………………………………6 

Chapter 2 

Figure 1. Pictures of low, moderate and high burn severity sites from 3 ecosystems…….…51 

Figure 2. Photos of Landscape Scale Heterogeneity Following Fires……………………….52 

Figure 3. Landsat Scenes, BAER and dNBR maps from the Jasper Fire, South Dakota……53 

Chapter 3  

Figure 1. Dry Lakes Fire Complex fire perimeter and sample plot locations………….…….86 

Figure 2. Quickbird dNDVI correlations with field data…………………………………….87 

Figure 3. Quickbird dEVI correlations with field data………………………………………88 

Figure 4. ASTER dNBR correlations with field data………………………………………..89 

Figure 5. Landsat-derived index correlations with field data………………………………..90 

Figure 6. MODIS-derived index correlations with field data………………………………..90 

Chapter 4 

Figure 1. Gila NF with burn severity atlas data (1984-2004)………………………………102 

Figure 2. Area burned by severity class stratified by Potential Vegetation Type…………..103 

Figure 3. Maximum consecutive and total days without rain (1958-2005)………………...103 

Chapter 5 

Figure 1. Study area figure with AVHRR sample locations and climate stations………….119 

Figure 2. Selected annual AVHRR time series with NDVI analysis dates………………...120 

Chapter 6  

Figure 1. Gila NF with burn severity atlas data (1984-2004)……………………………....139 

Figure 2. Correlation plot of RdNBR and CBI field data…………………………………..140 

Figure 3. Bayesian conditional probability plots of severe fire occurrence by topographic 

variable………………………………………………………………………………….141 

Figure 4. Pinyon-juniper PVT regresssion tree results……………………………….…….142 

Figure 5. Ponderosa pine/Douglas-fir PVT regresssion tree results...……………………...142 

Figure 6. Mixed conifer PVT regression tree analysis results…………...…………………143 

Figure 7. Spruce-fir PVT regression tree analysis results…………………………………..143



 1

CHAPTER 1 

 

INTRODUCTION 

 

Motivation and Study Area 

Only in the last three decades have land managers and policy makers begun to accept the 

critical role that fire plays as a disturbance agent in most vegetation types in the United 

States. The shift from a paradigm of fire as destructive force (symbolized by suppression of 

all fires), to recognition of its critical ecological role is still underway. The role fire plays in 

ecosystems and its interactions with topography, vegetation and climate are typically 

described in terms of fire regimes. Fire regime attributes include descriptors like extent (area 

burned), rotation (time necessary for an area of a particular size to burn), and severity 

(magnitude of change caused by fire) (Agee 1993, Morgan et al. 2001). Scientists have 

learned a great deal from tree ring (Swetnam and Betancourt 1990, Kitzberger et al. 2007) 

and fire atlas data (Morgan et al. in press) about how general climate and vegetation patterns 

influence fire occurrence. However, beyond purely theoretical distributions that describe the 

probability of severe fire occurrence within vegetation types (Agee 1993, Thode 2005), little 

is known about the temporal and spatial aspects of fire severity. Research in this area is 

needed to advance our understanding of fire ecology, assist in the management of fire-prone 

forests and provide the context for future fire management decisions.  

 

Remote sensing, the art and science of inferring land surface characteristics and change from 

a distance using airborne or spaceborne instruments is also a relatively new science. 

Combined with rapid increases in computing power and developments in Geographic 

Information Systems (GIS), remote sensing has opened new opportunities for studying 

broad-scale ecological patterns, and in particular characteristics of fire and post-fire effects. 

The Landsat TM 5 sensor, launched in 1982, has been continuously collecting information 

about the earth’s surface since 1984. With a spatial resolution of 30 meters and blue, green, 

red, near-infrared and mid-infrared wavelength-specific bands, this sensor is well suited for 

inferring characteristics about changes in vegetation caused by fire. With more than 20 years 



 2

of data now available, Landsat offers uniquely rich temporal and spatial characteristics with 

which to evaluate post-fire ecological effects through time and over large areas.   

 

In fall of 2003 I was given my first Landsat TM scene of the Gila National Forest. Scars from 

fires in years preceding the image acquisition were visible in the image. It quickly dawned on 

me that a new type of fire atlas derived from satellite imagery (rather than paper maps of fire 

extent) could provide not just perimeters, but also information about the ecological effects of 

those fires. The idea of a “burn severity atlas” developed rapidly from there. Others, 

including Nate Benson and Carl Key of the National Park Service, had already begun 

pursuing this idea and had recently begun the National Monitoring Trends in Burn Severity 

Program (MTBS), which attempts to map all major fires in United States since 1984. 

 

Despite the abundance of satellite data now available from Landsat and other spaceborne 

sensors, a legacy of fire exclusion has left surprisingly few landscapes in the United States 

where fires have burned often enough and over large enough areas that studying burn 

severity patterns within a 20-year period makes any sense. In the southwestern US, the Gila 

Aldo Leopold Wilderness Complex (the Gila) is arguably the best. The area is large and 

remote with little residential development near the wilderness and National Forest 

boundaries. Elevations in the Gila range from 1400 to 3300 meters, supporting diverse 

vegetation groups ranging from grass and shrublands at the lowest elevations to spruce-fir 

forests at the highest elevations. Soils in the Gila are regionally simple but locally complex. 

The Gila National Forest, experiences frequent fires and has one of the most active  Wildland 

Fire Use programs nationwide during the last 20 years. Under the program, lightning-ignited 

fires have been managed to burn with minimal suppression. The Rincon Mountains, Grand 

Canyon and other areas in southwestern US have active WFU programs.   However, these 

areas are much smaller than the Gila. I’ve compared time series of Landsat images from the 

Gila NF and the Grand Canyon. Dozens of fires greater than 10,000 hectares (some as large 

as 50,000 ha) have burned in the Gila in the last twenty years. Of the approximately 50 fires 

that have burned in the Grand Canyon during the last 20 years, the largest fire is less than 

10,000 hectares. This rich history of fires in the Gila, many of which have burned over 

periods of weeks and months during the natural fire season have created a truly unique 
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natural experiment. Although the accuracy is unknown, the fire perimeters derived from 

satellite imagery are almost certainly more accurate than perimeters derived from traditional 

atlases, and reflect interactions of fire with vegetation, climate, weather and topography.   

 

Wildland Fire Use in the Gila has by most accounts been incredibly successful. Hundreds of 

thousands of hectares have burned since the program was implemented. Despite the overall 

success of this program, management of fire in the Gila sometimes clashes with other 

resource values. The Gila hosts several federally listed endangered species including the Gila 

trout (Onchorynchis gilidae). Four genetically distinct species of Gila trout live in streams in 

the Gila River and its tributaries and nowhere else on earth. Each species is replicated such 

that a genetic reservoir exists in case a severe disturbance like fire eradicates one population. 

In the last 20 years, several fires have caused post-fire debris flows that have wiped out some 

populations, and millions of dollars have been spent on emergency fish evacuations or on 

repopulation of streams where fish have been removed by fire. Despite the overall success of 

the Wildland Fire Use program in the Gila NF, important questions remain about how best to 

continue active burning while preserving and protecting endangered species like the Gila 

trout. In the longer term, we are wise to ask to what extent fire-induced habitat modifications 

(e.g. debris flows, woody debris accumulation) were an important component of the long-

term survival of the Gila trout. Where populations were connected and able to repopulate, 

fires would likely not have threatened the long-term survival of Gila trout. Today, however, 

we are forced to deal with the short-term implications of fire on Gila trout. Where are severe 

fires likely to occur? Are populations of Gila trout large enough and their habitat connected 

enough to survive some amount of fire-induced ash and debris flow associated with fire? 

How can we best protect remaining populations of these fish while continuing to allow fires 

to play their natural role? Answering these questions is critical to the long-term viability of 

the Gila trout as well as the success of a continuing Wildland Fire Use program on the Gila 

National Forest. 

 

My dissertation is composed of 5 chapters, broadly aimed at describing where on the 

landscape and under what climatic conditions severe fires are likely to occur. Each chapter 
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has been prepared as a manuscript intended for a specific journal. Therefore, the reader may 

find some formatting differences among the different chapters.  

 

Chapter 2 is a synthesis and review of remote sensing techniques for assessing post-fire 

effects. The idea for the chapter came from Dr. Alistair Smith and Penny Morgan, who along 

with Leigh Lentile and I, synthesized the research and wrotethis manuscript. It has already 

been published in the International Journal of Wildland Fire with Penny Morgan, Mike 

Falkowski, Pete Robichaud, Andrew Hudak, Nate Benson, Paul Gessler and Sarah Lewis as 

additional co-authors.  

 

The Landsat TM 5 sensor may be nearing the end of its life and has already long outlived its 

projected lifetime while a defective Landsat TM 7 sensor has limited utility for precise 

remote sensing analysis. Alternative data sources may be sought in the future that can 

supplement or replace Landsat. In chapter 3 of my dissertation I use four satellite sensors 

(Quickbird, ASTER, Landsat and MODIS) to infer burn severity on a portion of the Dry 

Lakes Fire that burned in New Mexico in 2003. This manuscript has now been submitted to 

the International Journal of Wildland Fire with Penny Morgan, Alistair Smith and Lee 

Vierling as co-authors.  

 

In Chapter 4 of my dissertation, I describe twenty-year temporal patterns of burn severity and 

their relationship to snow pack and precipitation on the Gila NF. This study is now published 

in the journal Geophysical Research Letters with Penny Morgan, Michael Crimmins, Kirk 

Steinhorst and Alistair Smith as co-authors. 

 

Chapter 5 is a follow-up study to chapter 4 and reflects my attempt to find a mechanism to 

support my conclusions from chapter 4. Here, I use a time series of Advanced Very High 

Resolution Radiometer data (AVHRR) to infer vegetation green-up patterns from 1989-2005. 

I then use multivariate statistical analyses to demonstrate the statistical relationships between 

patterns of vegetation green-up preceding and during the fire season (April-July) and the 

precipitation metrics described in Chapter 4. The AVHRR data used in this study are also 

significantly correlated with fire severity patterns in this study area. This is the first time that 
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relationships between annual and seasonal patterns of vegetation productivity have been 

directly linked to fire activity.  

 

In chapter 6, I focus on the topographic and vegetation controls on burn severity within the 

Gila NF.  Using variables derived from a Digital Elevation Model (DEM) and a Potential 

Vegetation Type (PVT) data layer developed specifically for the Gila NF by Keane et al. 

(2001), I describe the patterns of sever fire occurrence with respect to topography. I then use 

a machine-learning algorithm called Random Forests to predict severe fire occurrence from 

the same topographic variables. The findings from this chapter will be combined with work 

by hydrologists at the Rocky Mountain Research Station in Boise to develop a risk 

assessment map for Gila trout on the Gila NF. The resulting products will be integrated into a 

decision support tool that fire managers and wildlife biologists could use to make decisions 

about how to manage fires on the Gila NF. 

 

In the final chapter, I summarize the key findings from this work. I outline ongoing and 

future research that will follow from the work presented in this dissertation.  

 

The work presented here describes new patterns and processes relevant to the science and 

management of wildland fire. This is the first time that temporal trends in burn severity have 

been evaluated for so many different fires, highlighting several important climate variables 

that influence the occurrence of severe fire in this study area. Of potentially broad 

significance is the finding that alternative mechanisms besides warming spring temperatures 

and early snowmelt described by Westerling et al. (2006) may be partly responsible for the 

recent increase in fire activity in the southwestern US. The novel use of time series of 

AVHRR data highlights some of the mechanisms that, interacting with those climate 

variables influence the potential for severe fire occurrence. The strong patterns of burn 

severity relative to topography and vegetation described in chapter 6 compliment these 

findings, demonstrating the underlying “bottom up” influence of landscape and vegetation 

patterns that interact with climate to modulate fire extent and severity in this study area.     
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Abstract 
 
Space and airborne sensors have been used to map area burned, assess characteristics of 

active fires and characterize post-fire ecological effects. Confusion about fire intensity, fire 

severity, burn severity, and related terms can result in the potential misuse of the inferred 

information by land managers and remote sensing practitioners who require unambiguous 

remote sensing products for fire management. The objective of this paper is to provide a 

comprehensive review of current and potential remote sensing methods used to assess fire 

behavior and effects and ecological responses to fire. We clarify the terminology to facilitate 

development and interpretation of comprehensible and defensible remote-sensing products, 

present the potential and limitations of a variety of approaches for remotely measuring active 

fires and their post-fire ecological effects, and discuss challenges and future directions of 

fire-related remote sensing research. 

 

Extra Keywords: fire intensity, fire severity, burn severity, ecological change, fire 
perimeters, fire atlas, burned area, radiative energy, NBR, FRP, NDVI 
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1. Introduction 

 
Fire is an important ecosystem process that significantly impacts terrestrial, aquatic and 

atmospheric systems throughout the world. Over the past few decades, wildfires have 

received significant attention because of the wide range of ecological, economic, social and 

political values at stake. Additionally, fires impact a wide range of spatial and temporal 

scales, and stakeholders are only beginning to understand relationships between pattern, 

process and potential restorative measures.  

 

At the local scale, fire can stimulate soil microbial processes (Wells et al. 1979; Borchers and 

Perry 1990; Poth et al. 1999; Wan et al. 2001; Choromanska and DeLuca 2002), promote 

seed germination, seed production, and sprouting (Lyon and Stickney 1976; Lamont et al. 

1983; Hungerford and Babbitt 1987; Anderson and Romme 1991; Perez and Moreno 1998), 

and combust vegetation, ultimately altering the structure and composition of both soils and 

vegetation (Ryan and Noste 1985; Wyant et al. 1986; Ryan and Reinhardt 1988; McHugh 

and Kolb 2003).   

 

At the regional scale, fires may also affect the quantity and quality of water yield (Minshall 

et al. 2001; Spencer et al. 2003), accelerate erosion and sedimentation (Scott and Van Wyk 

1990; Robichaud et al. 2000; Ice et al. 2004) and result in a myriad of beneficial, neutral or 

detrimental consequences for aquatic systems (Gresswell 1999; Vieira et al. 2004). Wildfires 

are potentially hazardous to human life and property (Bradshaw 1988; Beebe and Omi 1993; 

Cohen and Butler 1998; Cohen 2000), and the economic costs of fire management and 

suppression in the United States have over the past two decades been among the highest on 

record.  Departure from the historical frequency, timing, extent and severity of some fires, 

particularly in the dry forests, has led to significant ecological and policy changes (Delasalla 

et al. 2004). Fire is also important in the creation and maintenance of landscape structure, 

composition, function and ecological integrity (Covington and Moore 1994; Morgan et al. 

2001), and can influence the rates and processes of ecological succession and encroachment.  

At local to regional scales, criteria pollutants (e.g. ozone, carbon monoxide, nitrogen dioxide, 
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sulphur dioxide, and particulate matter) emitted by fires impact air quality (Hardy et al. 

2001) and raise concern about risks to human health (Brauer 1999).  

 

At the global scale, fire emissions have direct and significant impacts on atmospheric and 

biogeochemical cycles and the Earth’s radiative budget (Crutzen and Andreae 1990; 

McNaughton et al. 1998; Andreae and Merlet 2001; Smith et al. 2005a). The influence of 

fire spans a wide range of temporal and spatial scales, and the interpretation of causal factors, 

fire effects and ecosystem response is a challenge to both research and management. 

 

These issues of scale and more practically, the size and inaccessible nature of many wildfires, 

make remotely sensed data an important and widely applied resource for fire science and 

management (Hardy et al. 1999). Space and airborne sensors have been used to assess 

environmental conditions before and during fires and to detect changes in post-fire spectral 

response (Table 1). Remotely sensed data have been used to detect active fires (Roy et al. 

1999; Ichoku et al. 2003), map fire extents at local (Parsons 2003; Holden et al. 2005), 

regional (Eva and Lambin 1998; Smith et al. 2002) and continental (Scholes et al. 1996) 

scales; estimate surface and crown fuel loading (Nelson et al. 1998; Means et al. 1999; 

Lefsky et al. 2002; Falkowski et al. 2005); assess active fire behavior (Kaufman et al. 1998; 

Wooster et al. 2003; Smith and Wooster 2005; Dennison et al. 2006, in press); examine post-

fire vegetation response (Turner et al. 1994; White et al. 1996; Diaz-Delgado et al. 2003); 

and identify areas where natural recovery may prove to be problematic (Bobbe et al. 2001; 

Ruiz-Gallardo et al. 2004). Multi-temporal remote sensing techniques have been effectively 

employed to assess and monitor landscape change in a rapid and cost effective manner. 

Remotely sensed data give researchers a means to quantify patterns of variation in space and 

time. The utility of these data depends on the scale of application. Coarse-scale maps of fire 

regimes based largely on remotely sensed biophysical data have been used for planning and 

prioritizing fuels treatments at regional and national levels, but may have limited local 

applicability (Loveland et al. 1991; Morgan et al. 1996; Hardy et al. 1999; Morgan et al. 

2001). Higher spatial-resolution remote sensing of spectral patterns before, during and after 

wildfire may facilitate prediction of areas likely to burn or experience uncharacteristic effects 
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when they burn, and assist with strategic decisions about fuels management before fires 

occur, suppression as fires burn, and post-fire rehabilitation efforts.  

 

Since the mid 1980s, numerous remote sensing techniques have been developed to assess 

how ‘severe’, in terms of ecological change, a fire is on both local and regional ecosystems. 

Early studies inferred fire-caused vegetation change from spectral changes measured by the 

satellite sensor, while more recent studies have sought to relate ecological measures to fire-

induced physical changes on the land surface (e.g., Milne 1986; Jakubauskas et al. 1990; 

White et al. 1996). When vegetation is burned there is, at the spatial resolution of most 

satellite sensors (pixel size > 30m), a drastic reduction in visible to near-infrared surface 

reflectance [i.e. 0.4 – 1.3 µm] associated with the charring and removal of vegetation (Eva 

and Lambin 1998; Trigg and Flasse 2000). At finer spatial resolutions (pixel size < 5m), the 

combustion of large quantities of wood (or other fuels) can in some cases lead to an increase 

in surface reflectance due to the deposition of white ash (Landmann 2003; Smith and Hudak 

2005; Smith et al. 2005b; Roy and Landmann 2005).  This is typically accompanied by a rise 

in short wave infrared reflectance [i.e. 1.6 –2.5 µm] and brightness temperatures, which is 

attributed to the combined effects of increased soil exposure, increased radiation absorption 

by charred vegetation, and decreased evapotranspiration relative to the pre-fire green 

vegetation (Chuvieco and Congalton 1988; Eva and Lambin 1998a,b; Stroppiana et al. 2003; 

Smith et al 2005b). The degree of post-fire change may vary depending on vegetation type, 

annual differences in growing season weather, and overall time since fire.  For this reason, 

stratification among vegetation types, comparison of images with similar vegetation 

phenology, and image differencing techniques including pre-, immediate-post, and one-year 

post-fire images have been recommended to assess fire effects and ecological change (White 

et al. 1996; Cocke et al. 2005; Hudak et al 2005). Further fire effects such as canopy 

mortality, ground charring and changes in soil color can be readily detected, provided sensors 

have adequate spatial and spectral resolution (Pereira and Setzer 1993; White et al. 1996). 

 

The observation of broad spectral changes due to burning has led to the use of a variety of 

spectral indices (combinations of different sensor bands), including the Normalized Burn 

Ratio (NBR), the difference in the Normalized Burn Ratio between pre- and post-fire images 
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(dNBR) and the Normalized Difference Vegetation Index (NDVI). NBR and dNBR are 

widely used to infer fire severity from remotely sensed data (Key and Benson 2002; Key and 

Benson 2005; van Wagtendonk et al. 2004; Smith et al. 2005b; Cocke et al. 2005; Roy et al. 

2006) and are commonly used to produce maps for Burned Area Emergency Response 

(BAER) teams (Parsons 2003). Other recent remote sensing research has focused upon the 

development of techniques used to remotely infer fire behavior and fuel combusted through 

the assessment of thermal infrared imagery (Kaufman et al. 1998; Wooster 2002; Riggan et 

al. 2004; Smith and Wooster 2005; Wooster et al. 2005; Roberts et al. 2005; Zhukov et al 

2006). 

 

The objective of this paper is to review current and potential remote sensing tools and 

techniques that can quantify and monitor fire-related processes that cause change in soil and 

vegetation. For information on the remote sensing of fuels and fire hazards, see Keane et al. 

(2001), Hardy (2005), and Tian et al. (2005). In this paper, we clarify the terminology to 

facilitate development and interpretation of comprehensible and defensible remote-sensing 

products, present the potential and limitations of a variety of approaches for remotely 

measuring active fires and their post-fire ecological effects, describe field assessment of 

surface change, and discuss management implications and future directions of fire-related 

remote sensing research. 

 

2. Fire and Fire Effects Terminology 

 

The terms fire intensity, fire severity and burn severity are three descriptors that exist on a 

temporal continuum associated with pre-fire conditions, active fire characteristics, and post-

fire ecosystem response (DeBano et al. 1998; Jain et al. 2004).  

 

Although remotely sensed imagery has been used to assess each of these descriptors, there 

remains a need to clarify linkages between remotely sensed measurements and the physical 

or ecological processes that each measure infers. Additionally, overlapping and inconsistent 

use of fire terminology has created a need to spell out the ecological meanings and 

implications of each term. For instance, the term “severity” is frequently used to describe the 
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magnitude of ecological change caused by fire. In the remote sensing literature, severity has 

been related to vegetation consumption (Conard et al. 2002; Miller and Yool 2002; 

Kasischke and Bruhwiler 2003; Zhang et al. 2003), white ash production (Landmann 2003; 

Smith and Hudak 2005), changes in surface reflectance (White et al. 1996; Key and Benson 

2002; Smith et al. 2005b), alteration of soil properties (Ketterings and Bigham 2000; Lewis 

et al. 2006); and long-term post-fire vegetation mortality and recovery (Patterson and Yool 

1998). In some cases, fire descriptors of intensity and severity are used interchangeably 

within the same document (e.g., White et al. 1996; Diaz-Delgado et al. 2003; Landmann 

2003), and exactly what is being measured is often unclear or largely inferential.  More often, 

however, severity is used very generally, without reference to a specific process (soil, 

hydrologic, vegetation) or vegetation strata (understory, overstory). In particular, the terms 

fire severity and burn severity are often confused and used interchangeably in both the 

ecological and remote sensing literature. Although this confusion has been highlighted by 

recent studies (e.g., Hardy 2005; Smith et al. 2005b), clarification of the different fire 

descriptors is needed. 

 

One of the sources of confusion arises due to where on the temporal gradient the fire severity 

and burn severity terms lie. Fire severity is usually associated with immediate post-fire 

measures (e.g. vegetation consumption, vegetation mortality, soil alteration), while burn 

severity relates to the amount of time necessary to return to pre-fire levels or function. For 

example, in grassland ecosystems fires typically consume large portions of aboveground 

biomass, which would be indicative of high fire severity. However, in these ecosystems 

grasses and forbs typically rejuvenate quickly, indicating low burn severity. It is apparent 

that although fire severity may refer to short-term effects more directly related to fire 

intensity, the overlap between fire severity and burn severity is inevitable. We will clarify 

each term and then propose adoption of more precise and descriptive terminology. 

 

2.1 Fire Descriptors 

 

Fire intensity is a description of fire behavior quantified by the temperature of, and heat 

released by, the flaming front of a fire (Whelan 1995; Neary et al. 1999; Morgan et al. 2001). 
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Fire intensity is measured by two factors: the rate of spread, calculated by the number of 

meters burned per second, and energy flux, the amount of kilowatts a fire generates per meter 

burned. Physical attributes used to quantify fire intensity include temperature, flame length 

duration and the emission of pyrogenic gases. Fire intensity and rate of spread are partly 

controlled by factors such as vegetation type (forests, shrubs, herbaceous plants), vegetation 

moisture content, weather (wind speed, atmospheric stability, and humidity) and topography 

(DeBano et al. 1998). Fire intensity can be measured by measuring kinetic temperature (via 

thermocouples), via thermal remote sensing systems, or by inferring observations of flame 

length and fire spread rate (Key and Benson 2002; Smith et al. 2005b; Dennison et al. 2006). 

Fire intensity is typically reported in kilojoules per second per meter.  

 

Fire severity integrates active fire characteristics and immediate post-fire effects on the local 

environment. Even though the fire intensity often influences fire severity (Key and Benson 

2002; van Wagtendonk et al. 2004), these phenomena are not always correlated (Hartford and 

Frandsen 1992; Neary et al. 1999; Miller and Yool 2002; Smith et al. 2005b). Fire severity 

differs from fire intensity by its focus on how much of the duff, logs, and other dense organic 

matter on the soil surface burns (Parsons 2003; Ice et al. 2004).  Fire behavior may be 

simultaneously influenced by several factors, resulting in high vertical and horizontal spatial 

heterogeneity of fire effects and subsequent ecological responses. Fire duration, which 

determines the amount of heat transferred to the soil and the amount of aboveground 

vegetation consumed, often has a greater impact on fire severity than the fire intensity (Neary 

et el. 1999). In turn, the nature of the fuels available for burning and fire duration determine 

the energy produced by the fire and are the contributing forces for many ecosystem fire 

effects (DeBano et al. 1998). For example, a high-intensity, fast-moving fire transfers less 

heat into the soil (i.e., most of the energy is dissipated horizontally and vertically via radiation 

or convection) than a low-intensity slow-moving (or smouldering) fire, and therefore leaves 

belowground process largely intact.. A high intensity fire of the former type may actually 

benefit the ecosystem by increasing the amount of available nutrients (Neary et al. 1999), and 

as such would be correctly described as low fire severity. In contrast, a low-intensity slow-

moving fire impacts above- and below-ground plant components, killing a majority of the 
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vegetation, and therefore might have a more immediate impact on ecosystem health, and as 

such would be correctly described as high fire severity.  

 

Burn severity incorporates both short and long-term post-fire effects on the local and regional 

environment. Burn severity is defined by the degree to which an ecosystem has changed due 

to the fire (Morgan et al. 2001; Key and Benson 2002; National Wildfire Coordinating Group 

2005).  Vegetation influences burn severity as biomass production often exceeds 

decomposition and some plants are specifically adapted to the characteristics of fires that 

commonly burn in these systems (Key 2005) (Fig. 1). Several aspects of burn severity can be 

quantified, but burn severity cannot be expressed as a single quantitative measure that relates 

to all resource impacts (DeBano et al. 1998; Robichaud et al. 2000). Relative magnitudes of 

burn severity are often expressed in terms of post-fire appearance of vegetation, litter, and 

soil. However, it is easier to measure what remains following fire than it is to know what was 

there before the fire. Although the physical manifestations of burn severity vary 

continuously, for practicality burn severity is often broadly defined and partitioned into 

discrete classes ranging from low (less severe) to high (more severe). Burn severity is 

typically assessed after a fire by measuring soil characteristics (char depth, organic matter 

loss, altered infiltration, and color) (Ryan and Noste 1985; DeBano et al. 1998; Neary et al. 

1999) and aboveground vegetation consumption, mortality, scorch and recovery (Morgan et 

al. 2001). Burn severity serves as a baseline with which other data layers may be integrated. 

 

Severe burns have long lasting ecological effects because they alter belowground processes 

(hydrologic, biogeochemical, microbial), which are essential to the health and sustainability 

of aboveground systems (Neary et al. 1999). Long-term ecological changes can potentially 

result from severe fires that remove aboveground overstory vegetation, even if impacts to 

belowground processes are minimal. Post-fire weather conditions can also influence severity, 

in particular when looking at vegetation change through time in relation to severity (Key 

2005). Remotely sensed measures of burn severity may reflect inter-annual phenological 

change of vegetation, as well as the interaction of longer-term climate patterns such as 

drought.  Image acquisition date, in relation to time of field data collection and time since 

fire, may be more important than type of imagery or index used to compare severity 
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measures. Hudak et al. (2004) attributed low correlations between field and remotely sensed 

measures of burn severity to post-fire wind and precipitation events that may have 

transported ash and soil off-site following fire in chaparral systems in southern California.   

 

Burn severity is not a direct measure, but a judgement that changes based on the context. It is 

likely that severity may vary depending on the issue or resource being addressed (e.g., 

vegetation mortality, soil erosion, soil nutrition etc.), leading Jain et al. (2004) to propose 

abandoning the categorical descriptions of low, moderate, and high severity, commonly used 

in the ecological and remote sensing literature. Burn severity classifications are often driven 

by objectives. For example, burn severity mapping is an important part of the analysis of US 

Burned Area Emergency Response (BAER) teams including emergency treatment 

specifications and identification of potential deleterious effects. Burn severity mapping is 

used in post-fire project planning and monitoring, by researchers exploring relationships 

between pre-, during, and post-fire characteristics and response, and, in some cases, as 

evidence in legal debates.  Considerable confusion surrounds definitions and interpretations 

of burn severity.  However, these terms are useful descriptors that are deeply entrenched in 

the nomenclature of fire managers and rehabilitation teams to describe post-wildfire effects 

in the United States. Thus wholesale abandonment is neither possible at this stage, nor 

advisable given the diverse array of users employing these descriptors. 

 

In the fire-behavior and fire-effects modelling communities, the terms first-order and 

second-order fire effects are often used, although these terms do not directly correspond to 

the descriptors of fire intensity, fire severity and burn severity. First-order fire effects 

include the direct and immediate fire effects on the environmental parameter of interest. First-

order fire effects such as plant injury and death, fuel consumption and smoke production are 

the direct result of the combustion process and, as such, are best described as active fire 

characteristics. Second-order fire effects result from the indirect effects of fire and other 

post-fire interactions such as weather and, as such, are best described as post-fire effects. 

Some important second-order fire effects are smoke dispersion, erosion, and vegetation 

succession which may be evident immediately to many decades after a fire (Reinhardt et al. 

2001). To non-fire modelers this jargon can be confusing as these terms do not implicitly 
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describe a temporal dimension, but rather suggest relative degrees of severity within a given 

parameter (e.g. degrees or ‘orders’ of soil char or biomass combustion within an area). 

Therefore, to assist in separating the different remote sensing studies that have been described 

as quantifying fire intensity, fire severity, and burn severity, this paper will henceforth refer to 

these fire descriptors as either ‘active fire characteristics’ or ‘post-fire effects’. The active 

fire characteristics include ‘immediate’ variables that can only be measured during the fire’s 

combustion (whether flaming or smoldering), while post-fire effects include short and long-

term effects that impact the environment following the passage of the fire. Following a brief 

description of the available satellite sensor systems, this paper will provide a review of how 

remotely sensed imagery has been used to monitor and evaluate these fire descriptors. 

 

2.2 Remote Sensing Instruments and Platforms 

 

Many different sensor platforms and instruments have been used to remotely map and 

monitor active fire characteristics and post-fire effects (Table 1) In terms of the remote 

sensing of active fire characteristics and post-fire effects, we can divide the available sensor 

systems into passive/active and then further into aerial/satellite sensors. The most commonly 

used type of active sensor being used to evaluate fire-related information is light detection 

and ranging (Lidar) systems. These provide information on the elevation (and thus relative 

height) of a surface by measuring the time taken for a pulse of laser light to journey between 

an  sensor and a surface. Lidar systems are predominately aerial-based and have widely used 

to characterize individual-tree and stand-level canopy structure (e.g., Means et al. 1999, 2000; 

Lefksy et al. 1999,  2005; Falkowski et al. 2006; Hudak et al. 2006), with limited studies 

directly evaluating fire fuels information (Seielstad and Queen 2003).  

 

The majority of remote sensing systems that have been used to infer active and post-fire 

characteristics have been passive sensors measuring the reflection or emission of 

electromagnetic radiation from surfaces. Multispectral airborne and satellite sensors use 

radiometers that are sensitive to narrow bandwidths (bands) of the electromagnetic spectrum. 

For example, the Landsat Thematic Mapper (TM) sensor has 6 bands that span visible to mid-

infrared wavelengths, and a thermal band that is sensitive to the surface brightness 
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temperature. Like many satellite sensors, the Landsat TM bandwidths were selected in part to 

maximize sensitivity to the dominant factors controlling the spectral reflectance properties of 

green vegetation.  

 

The application of aerial or satellite sensors depends greatly on the intended application. The 

data quality issues of most satellite sensor imagery are widely known and several software 

packages exist that can assist in their analysis. In contrast, aerial systems add a level of 

complexity with most images needing “fixes” to correct for the pitch, roll, and yaw of the 

aircraft. The advantages of aerial acquisitions are that imagery with very high spatial 

resolutions (<0.5m per pixel) can be acquired. More importantly, aerial systems have the 

potential to allow a ‘rapid response’ system to be implemented. Given flight clearance, most 

aerial systems can fly on demand and thus characterize specific fire-related processes in a 

timely manner. There is a clear ‘trade-off’ when comparing aerial and sensor acquisitions. 

Although the user is restricted by the imagery having both a specific pixel size and the sensor 

flying at specific times of day (and night), the sensor will always acquire the data even when 

aerial acquisitions are not permitted. 

 

3. Remote Assessment of Active Fire Characteristics 

 

Numerous measures have been applied to describe active fire characteristics within both the 

remote sensing and fire ecology literature (Table 2). The remote assessment of active fire 

characteristics can, however, be grouped into two main application branches:  

 

(i) The detection of actively burning areas using a combination of optical and thermal 

imagery, and 

(ii) The use of thermal imagery (airborne and satellite) to estimate the energy radiated from 

the fire as it burns. 

 

3.1 Detecting and Counting Active Fires 
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The accurate identification of fire events has been recognized by international research 

organizations, such as the International Geosphere and Biosphere program (IGBP), to be 

crucial in the development of a broader understanding of how fire extent and frequency 

impact global environmental processes (Giglio et al. 1999; Ichoku et al. 2003). Actively 

burning fires can be detected using thermal infrared bands (3.6 – 12 µm range) from coarse 

spatial resolution sensors such as the Advanced Very High Resolution Radiometer 

(AVHRR), the Along Track Scanning Radiometer (ATSR), or the Moderate Resolution 

Imaging Spectroradiometer (MODIS).  Thermal emissive power from fires is orders of 

magnitude more intense than from the surrounding background. Such high contrast allows 

active fires to be reliably detected even when the fire covers small fractions (for example < 

0.01%, or 1 ha of a 1 km2 area) of the pixel (Robinson 1991). Numerous algorithms for 

active fire detection have been developed (e.g. Kaufman et al. 1990; Justice et al. 1993, 

1996; Flasse and Ceccato 1996; Pozo et al. 1997; Fraser et al. 2000; Seielstad et al. 2002; 

Dennison et al. 2006, in press) and prior reviews of several of these methods have been 

presented by Li et al. (2001) and Ichoku et al. (2003).  

 

Broad-scale fire effects have been inferred from active fire images (Pozo et al. 1997; Roy et 

al. 1999; Fraser et al. 2000; Li et al. 2000a, b). Pozo et al. (1997) applied a technique in 

southeastern Spain in which the total area burned was calculated by measuring the total 

number of active fire pixels over the period of a fire event. A major limitation of such 

methods is that they only identify pixels containing active fires when the satellite passed 

overhead. The limited temporal coverage of most satellite sensors, (e.g., Landsat 5 

acquisitions occur about once every 16 days) likely results in major errors of omission, which 

are magnified by the effects of cloud cover (Pereira and Setzer 1996; Fraser et al. 2000). 

Such limitations have been addressed by incorporating active fire pixel detection techniques 

with methods employing spectral indices to detect the area burned in either neighboring 

pixels or the same pixels days after the active fire (Roy et al. 1999; Barbosa et al. 1999a,b; 

Fraser et al. 2000). Fraser et al. (2000) developed the automated Hotspot And NDVI 

Differencing Synergy (HANDS) technique for use in boreal forest environments. The 

HANDS technique combined the simple active-fire pixel method with a post-fire burned area 

mapping technique utilizing presumed post-fire decrease in surface near-infrared reflectance. 
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The relationship between burned areas from HANDS and Landsat TM has also been reported 

over a wide range of boreal fires in Canada (Fraser et al. 2004). Although these hotspot-

based techniques have been widely applied to data acquired from the mid-infrared channel 

(3.55-3.93 µm) of the AVHRR sensor (Kaufman et al. 1990; Justice et al. 1996; 

Randriambelo et al. 1998; Fraser et al. 2000), the availability of more thermal channels from 

the MODIS sensor increases the potential for such techniques (Kaufman et al. 1998; Justice 

et al. 2002). An added advantage of MODIS is that it is now available on two satellites 

allowing 2-4 daily (night and day) image acquisitions.  Considerable research is ongoing to 

develop applications of the freely-available MODIS products for detecting active fires and 

burned area.  

 

3.2 Estimating the Energy Radiated by a Fire 

 

The energy produced by a fire is lost to the environment through a combination of 

conduction, convection and radiation (Kaufman et al. 1998a).  Thermal infrared remote 

sensing research has focused on inferring information from the radiative component, as the 

convective and conductive components are difficult to directly quantify. The earliest research 

and development into using remote sensing to analyze the energy radiated by fires was 

performed in the late 1960s by the Fire Lab in Missoula, where a US Department of Defence 

sensor was modified and tested for fire detection (Wilson et al. 1971). Subsequent research 

has demonstrated that  thermal infrared remote sensing data can provide a useful measure of 

the rate of energy released from fire, termed the fire radiative power (FRP) (Kaufman et al. 

1998a; Wooster 2002; Wooster et al. 2003, 2005; Butler et al. 2004; Riggan et al. 2004; 

Ichoku and Kaufman 2005; Roberts et al. 2005; Smith and Wooster 2005). Simply stated, 

this method relies on the assumption that the amount of energy produced by combusting a 

quantity of mass X is half that emitted by burning a quantity of the same material of mass 

2X. Assuming that the proportions of energy emitted as conductive, convective and radiative 

are constant, the measure of the radiative energy released from burning biomass is indicative 

of the biomass combusted. If the combustion efficiency of the biomass is known, (as 

established through burn experiments), then the biomass burned to produce a measured 

quantity of heat can be calculated (Wooster 2002; Wooster et al. 2005).  
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FRP has been derived from spectral measurements made by the MODIS sensor, and is 

directly related to the rate of fuel combusted (Kaufman et al. 1998; Wooster et al. 2003). 

FRP for a given fire pixel from the MODIS 3.9µm band is defined as (Wooster et al. 2003): 

 

 

     FRP = Asamp[1.89 x 107 (LMIR,f – LMIR,bg)] *10-3   (1) 

 

 

where FRP is in kW; LMIR f and LMIR bg denote the radiance recorded in the MODIS MIR 

channel (W/m2/sr/µm) at the fire and background ‘non-fire’ pixels, respectively; Asamp is the 

MODIS ground sample area at the relevant scan angle of the observation. The middle 

infrared region of the electromagnetic spectrum is particularly suited to the FRP method, 

since the radiative energy component as given by the Planck function for temperatures 

consistent with wildfires (i.e. 1000-2000 K) is approximately ten times greater than the 

emittance of the Earth’s ambient surface in this wavelength region (Wooster et al. 2005). 

 

The integration of FRP over the lifetime of the fire provides a means to calculate the Fire 

Radiative Energy (FRE), which is the total energy radiated by the fire (i.e., the area under the 

FRP with time curve). FRE has been experimentally demonstrated to be directly proportional 

to the total amount of fuel combusted (Kaufman et al. 1996; Wooster 2002; Wooster et al. 

2005; Roberts et al. 2005). The underlying assumption of the FRP method is that if sufficient 

observations are made during the fire, it should be possible to well-characterize the FRP with 

time curve (e.g., see Roberts et al. 2005). Remote instantaneous measures of FRP can be 

produced using the MODIS ‘active fire product’. Apart from this product (i.e., MOD14), 

other sensor systems are being evaluated to characterize both FRP and FRE measures from 

wildfires. Wooster et al. (2003) used the Bi-directional InfraRed Detection (BIRD) sensor to 

measure FRE from Australian fires; Roberts et al. (2005) measured FRP with the Spinning 

Enhanced Visible and Infrared Imager (SEVIRI); and Wooster et al. (2005) used 4 km 

spatial-resolution GOES-8 imagery to detect MIR fire pixels. Although, MODIS affords a 

temporal resolution of >2 images per day, via both the TERRA and AQUA satellites, this 
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temporal sampling interval is only sufficient for a ‘snap-shot’ estimate of FRP. In contrast, 

research with both aerial systems (e.g. Riggan et al. 2004) and the geo-stationary SEVIRI 

satellite sensor (Roberts et al. 2005) have allowed near-continuous FRP measurements. 

 

FRP data from MODIS were recently used to compare energy radiated from boreal forest 

fires in Russia and in North America (Wooster and Zhang 2004). The Russian fires radiated 

considerably less energy and subsequently emitted fewer emissions than American fires, 

owing in part to a difference in dominant fire type. Fires in Russian boreal forests are 

typically driven by surface fuels and burn less fuel per unit area, in contrast with the more 

intense crown fires that burn more fuel per unit area in North America. Mottram et al (2005) 

supported these findings, by demonstrating that the observed FRP differences were not due to 

associated sensor effects. In a further application of FRP, Smith and Wooster (2005) in a 

study in African savannas, demonstrated that the FRP of backing fires was an order of 

magnitude lower than that observed in heading fires; a finding consistent with field measures 

of fire line intensity (Trollope et al. 1996). Therefore, FRP could potentially be used to 

remotely discern the fire type that burned an area.  Additionally, as the conductive 

component of the energy might be expected to impact post-fire processes, more research is 

needed to understand the relationships between FRP and impacts on soil, forest floor, and 

vegetation recovery.   

 

 

4. Remote Assessment of Post-Fire Effects 

 

The assessment of short and long-term fire effects on local, regional and global processes has 

been conducted using a wide range of in-situ and remote methods (Table 3). The application 

of remotely sensed imagery to monitor and assess the impacts of fire on local and regional 

environments can be broadly divided into:  

 

(i) Burned area and perimeter methods, and 

(ii) Methods that assess a surface change (cover, fuel, etc.) caused by the fire 
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4.1 Burned Areas, Fire Perimeters, and Spatial Heterogeneity  

 

The simplest and most common remote measure of post-fire effects is a map of the area 

burned. The raster nature of digital imagery naturally lends itself to burn area mapping. A 

fire perimeter map is a vector representation of the burn area boundary that can be rendered 

digitally from remotely sensed imagery or by moving along the burn area boundary on the 

ground with a global positioning system (GPS). Reliance on overhead imagery is increasing 

as it offers a birds-eye view of burned areas and therefore has a decided advantage over field 

fire perimeter maps, which often fail to capture the heterogeneity and patchiness of fires and 

fire effects. Yet field fire perimeter maps will remain important not only for validation 

purposes, but when the atmosphere is too cloudy or smoky (a problem minimized using 

infrared imagery) to obtain useable imagery, and when the remotely sensed data is not 

available when needed. “Real-time” data acquisition, however useful to map burned areas, is 

commonly constrained by logistical and economic factors.  More thorough reviews of the 

comparatively large body of burn area mapping via remote sensing literature have already 

been accomplished (e.g., Barbosa et al. 1999b; Pereira 2003), so here we will only note a few 

key research papers and previous reviews. 

  

Remote assessment of burned areas has been conducted using a wide variety of aerial and 

satellite sensors. Since the 1980s, the majority of techniques have been developed for data 

acquired from the Advanced Very High Resolution Radiometer (AVHRR) sensor, and as 

such were restricted to a limited number of reflectance and thermal bands (Flannigan and 

Vonder Harr 1986; Kaufman et al. 1990; Setzer and Periera 1991;  Kasichke and French 

1995; Fernandez et al. 1997; Razafimpanilo et al. 1997; Randriambelo et al. 1998; Barbosa 

et al. 1999; Fraser et al. 2000; Fuller and Falk 2001; Al-Rawi et al. 2001; Nielsen et al. 

2002). Although data from the AVHRR sensor is restricted by a relatively large pixel size 

(i.e., 1.1 km) global data have been obtained from a series of different satellites for over 

twenty years, and importantly, these data can be obtained at no cost. These data have enabled 

the long-term monitoring of large-scale fires in remote and isolated areas (e.g. African 

savannas and boreal regions). In more recent years, other sensors have been developed that 

provide a greater selection of bands.  
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These sensors, which have also been used to evaluate burned area, include the Advanced 

Long Track Scanning Radiometer (Eva and Lambin 1998a; Smith et al. 2002), MODIS (Roy 

et al. 2005), SPOT-VEGETATION (Stroppiana et al. 2002; Silva et al. 2003; Zhang et al. 

2003), and Landsat (Salvador et al. 2000; Russell-Smith et al. 2003; Holden et al. 2005). 

Several regional scale products also exist that apply tailor-made algorithms to various 

satellite sensors (i.e., GBA2000, GLOBSCAR, The MODIS burned area product, etc.). 

Essentially, until recently (e.g. MODIS on TERRA and AQUA), there was not a space-based 

system design specifically to “look” at terrestrial earth.  Previous to MODIS, most other 

sensor systems (e.g. AVHRR - an atmospheric mission), were opportunistic exploitations of 

band ratios for terrestrial products (e.g. NDVI). 

 

The vast majority of satellite-based burned area mapping studies use information on 

differences in spectral or thermal properties of a land surface before and after a fire (e.g. Eva 

and Lambin 1998a, b; Barbosa et al. 1999; Fraser et al. 2000; Fuller and Falk 2001; Nielsen 

et al. 2002). Novel spectral indices including the Burned Area Index (Chuvieco et al. 2002), 

a thermal variation of the Global Environmental Monitoring Index (Pereira 1999); different 

thermal variations of the VI-3 index (Barbosa et al. 1999); thermally enhanced variations of 

common indices  (Holden et al. 2005); and the Mid-infrared Bispectral Index (Trigg and 

Flasse 2001) have recently been developed and tested. A limited number of studies have also 

investigated the utility of principal components analysis (Richards and Jia 1999; Garcia-Haro 

et al. 2001; Hudak and Brockett 2004), texture analysis (Smith et al. 2002; Hann et al. 2003), 

spectral mixture analysis (Cochrane and Souza 1998; Sa et al. 2003), and neural networks 

(Al-Rawi et al. 2001). Although most studies do compare a suite of several methods within 

their particular study areas (e.g. Pereira 1999; Chuvieco et al. 2002; Holden et al. 2005), 

there still exists a need to assess how such methods work over the wide range of fire-affected 

environments. 

 

Remotely sensed data have been used to retrospectively produce fire history, frequency and 

perimeter information (Chuvieco and Congalton 1988; Salvador et al. 2000; Hudak and 

Brockett 2004, Holden et al. 2005), although the data availability can limit such approaches. 

Such data are of immediate use to land managers in the United States as a potential surrogate 
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for fire perimeter data, ‘digital fire polygon histories’ or ‘fire atlases’, which are typically 

collated after the fire (sometimes weeks, months or years later) using a combination of paper 

records, aerial photographs, and local experience (Morgan et al. 2001). Land management 

agencies in the United States including the National Park Service (NPS) and the United 

States Forest Service (USFS) have begun developing atlases of burned area (or fire atlases) 

from satellite imagery, field maps, and aerial photographs as part of fire management efforts. 

As yet, no standardized protocol has been developed for building digital fire perimeter layers, 

which may lead to questionable quality, accuracy and reproducibility of atlases developed 

from these data sources (Morgan et al. 2001).  

 

Fire atlases provide perspectives on the location and spatial distribution of fires on the 

landscape. Limitations include the relative lack of details on the spatial variation within fires, 

as well as the changes in mapping standards, methods, and recording over time (Morgan et 

al. 2001). The overall accuracy is largely unknown. Remote sensing has great potential to 

supplement existing information on fire regimes by enabling researchers to acquire data at 

broad spatial scales, in areas where fire atlases do not exist, and in previously inaccessible 

areas. However, only ~30 years of satellite images and ~70 years of aerial photographs are 

available now, and many people want to characterize fire regimes over much longer time 

intervals including those less influenced by land use.   

 

High to moderate spatial resolution (pixel sizes between 1 and 30 m) satellite sensors, such as 

IKONOS, SPOT, and Landsat, enable the assessment of the degree of heterogeneity within 

large and remote fires. Turner et al. (1994) used Landsat TM imagery to explore the effects 

of fire on landscape heterogeneity following the 1988 Yellowstone fires. Smaller patches (< 

1250 ha) were often more heterogeneous in fire effects, whereas larger patches were more 

homogenous in effects (Turner et al. 1994). The heterogeneity of fire effects in patches of 

various size, shape, and distance from living vegetation differentially impact species and 

influence successional trajectories (Pickett and White 1985; Turner et al. 1999). The fine-

grained pattern of living and dead vegetation in patches ranging from square meters to 

thousands of hectares has major implications for recovery processes. Fire effects on soil and 

vegetation recovery rates may vary according to the specific interactions between fire 
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behavior and available fuels (Ryan and Noste 1985; Agee 1993; Turner and Romme 1994; 

DeBano et al. 1998). Remote sensing has great potential for studying fine-scale heterogeneity 

in fire effects across large areas immediately, during, and following fires; such studies could 

help us understand the causes and consequences of spatial variability in active fire and fire 

effects.  

 

Remotely-sensed estimates of post-fire heterogeneity and spatial arrangement of burned 

patches have also been used to explore causal relationships (Rollins et al. 2001; Ruis-

Gallardo et al. 2004), to document rates of recovery (Turner et al. 1994; Lentile 2004) and to 

prioritize areas for fuels reduction (Hardy et al. 1998; Hardy et al. 1999) and post-fire 

rehabilitation (Parsons 2003). Variation in fire effects due to weather, topography, and 

vegetation type and structure occurs even within large fires (Eberhard and Woodward 1987; 

Turner et al. 1994), and heterogeneous or “mixed” effects occur at some scale in all fires. 

Remotely sensed data allow researchers to conduct multi-scale and spatially explicit analyses 

of fires relative to topography, pre-fire vegetation structure or composition, and land use. 

Rollins et al. (2001) found that the area burned in 20th century fires in the Gila/Aldo Leopold 

Wilderness Complex (New Mexico) and the Selway-Bitterroot Wilderness areas (Idaho and 

Montana) was influenced by elevation, drought, and land use.  Lentile (2004) found that pre-

fire vegetation as influenced by stand history and abiotic gradients was the best predictor of 

post-fire effects and subsequent vegetation recovery in ponderosa pine forests of the South 

Dakota Black Hills. Turner et al. (1997) found significant effects of burn severity on most 

biotic responses including seedling density and cover following the Yellowstone fires. 

However, geographic location, particularly as it related to broad-scale patterns of serotiny in 

lodgepole pine (Pinus contorta), was the most important variable influencing forest 

reestablishment and pathways of succession (Turner et al. 1997).  Post-fire tree regeneration 

is dependent on adequate seed dispersal and favorable microsite conditions, which are in turn 

related to competitive interactions at fine scales and landscape position (i.e., elevation, slope 

and aspect) at broad scales (Turner et al. 1994; Chappell and Agee 1996; Turner et al. 1997).  

Identification of factors influencing vegetation dynamics at multiple spatial scales will 

improve our understanding of how post-fire environmental heterogeneity relates to fuel 

accumulations and burn severity patterns in forested landscapes. 
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4.2 Remote Assessment of Surface Change 

 

The analysis of post-fire effects from satellite imagery is not a new concept. Hall et al. 

(1980) classified multi-temporal Landsat MSS data of tundra fires in northwestern Alaska 

into light, moderate and severe fires as defined by the abundance of live post-fire vegetation. 

Over the next twenty years, others assessed the correlation of satellite data with different 

ground-based inferences of fire severity relating to vegetation consumption (Milne 1986; 

Miller and Yool 2002) and mortality (Patterson and Yool 1998). 

 

Although the majority of remote assessments of post-fire effects have employed moderate 

spatial-resolution imagery from the Landsat sensor (30 m)  (e.g. Fiorella and Ripple 1993; 

Turner et al. 1994; Viedma et al. 1997), other sensors such as SPOT XS (Henry and Hope 

1998) and AVIRIS (Riańo et al. 2002) have also been used. Furthermore, the use of temporal 

series (Kushla and Ripple 1998; Henry and Hope 1998; Diaz-Delgado et al. 2003) and 

transformations (Henry and Yool 2002) are widespread. A wide range of remote sensing 

approaches have been applied across a diversity of fire regimes and environments including 

temperate coniferous stands in Oregon (Fiorella and Ripple 1993), chaparral vegetation in 

California (Henry and Hope 1998; Riańo et al. 2002), forested shrublands of southern Spain 

(Viedma et al. 1997), and coniferous forests of Yellowstone National Park (Turner et al. 

1994). 

 

The NDVI has been widely used to assess post-fire vegetation regrowth. This is appropriate 

as long as direct change in green vegetation cover is the main ecological process being 

measured. Several studies have applied NDVI and similar spectral indices to remotely assess 

post-fire effects (Fiorella and Ripple 1993; Henry and Hope 1998; Diaz-Delgado et al. 2003).  

 

Significant developments in the spectral analysis of post-fire effects were made by Ekstrand 

(1994), who used field data, aerial photographs, and Landsat bands 4 and 5 to assess the 

degree of defoliation in Norway spruce stands in Sweden following fire. White et al. (1996) 

used field data, post-fire aerial photographs, and Landsat data within a variety of vegetation 
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types in the Flathead National Forest and Glacier National Park, Montana to compare 

remotely-sensed measures of severity. However these techniques in general do not relate 

actual spectral reflectance or brightness temperature collected in-situ to changes in radiance 

or thermal emittance as measured by the satellite sensor. In contrast, the development of two 

spectral indices, namely the mid-infrared bispectral index (MIRBI) for burned savanna 

surface assessment (Trigg and Flasse 2001) and the normalized burn ratio (NBR) (Equation 

2) for ‘burn severity’ assessment of forested regions (Key and Benson 2002; Brewer et al. 

2005), incorporate information of the spectral changes at the surface to infer post-fire effects.  

    

    NBR = (ρ4 – ρ7) / (ρ4 + ρ7)   (2) 

 

Where, ρ4 and ρ7 are the surface spectral reflectances as measured in bands 4 (0.76 - 0.90 µm) 

and 7 (2.08 - 2.35 µm) of the Landsat Enhanced Thematic Mapper (ETM+) sensor. 

 

Through collection of the spectral reflectance of pre- and post-fire surfaces, both of these 

methods incorporate the observed decrease in spectral reflectance in the visible-mid infrared 

region with a corresponding increase in mid-infrared (2.2 µm) reflectance. Although MIRBI 

was developed purely for burned area assessment, NBR and dNBR are widely being used to 

assess landscape-scale post-fire effects in the USA (Key and Benson 2002; van Wagtendonk 

et al. 2004; Brewer et al. 2005; Cocke et al. 2005) and in southern African savannas (e.g., 

Smith et al. 2005b; Roy et al. 2005). The band ratio that is now commonly referred to as 

NBR was initially developed and used by Lopez-Garcia and Caselles (1991) using ratios of 

Landsat bands 4 and 7 to map burned areas in Spain. In addition to measuring burned area, 

NBR is used to infer the degree of post-fire ecological change.  

  

Van Wagtendonk et al. (2004) used the AVIRIS airborne hyperspectral sensor (a spectral 

instrument with 224 bands over the visible to mid-infrared range) to demonstrate that the 

largest spectral decrease in visible-near infrared reflectance between pre- and post-fire 

occurred at AVIRIS bands 47 (0.788 µm) and 60 (0.913 µm), while the largest spectral 

increase at mid-infrared wavelengths occurred at AVIRIS band 210 (2.370 µm). This research 

suggested that an improved NBR index could be used if imagery is available with these 
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wavelengths. In a similar fashion, Smith et al. (2005b) used ground-based spectroradiometer 

data in southern African savannahs to evaluate which Landsat spectral band ratios could best 

characterize fire severity, as defined by the duration of the fire at a point. Smith et al. (2005) 

demonstrated that simple ratios of the blue, green, or red bands with the Landsdat SWIR 

(band 7) band each outperformed NBR. Therefore, NBR may not be the optimal remote 

indicator of post-fire effects, particularly in grasslands and shrublands. Further research to 

evaluate other approaches is warranted. 

 

Others have sought to develop spectrally-derived post-fire effect metrics based upon the 

spectral reflectance of post-fire surfaces. The spectral reflectance of such surfaces can 

provide important insights into the degree of combustion completeness within the fire 

(McNaughton et al. 1998; Landmann 2003). Incomplete combustion produces residual 

carbon residue termed char or black ash (Robinson 1991; Trigg and Flasse 2000, Smith et al. 

2005a), while complete combustion produces incombustible mineral residue termed white 

ash (Landmann 2003; Smith et al. 2005b). The quantity of white mineral ash produced per 

unit area could therefore be considered a measure of fuel consumption (Landmann 2003; 

Smith and Hudak 2005; Roy and Landmann 2005).  

 

As stated earlier, in most environments and fire regimes, fires occur when the vegetation is 

either senesced or green and burning results in a net decrease in visible and near-infrared 

reflectance due to deposition of black char onto the surface (Robinson 1991; Eva and Lambin 

1998a). This assumption is not always valid as complete combustion of large woody debris 

or large quantities of other fuels can produce patches of white mineral ash (i.e., silica), which 

is highly reflective (i.e., > 50%) between 0.3 and 2.5 µm (Landmann 2003; Smith et al. 

2005b; Smith and Hudak 2005; Roy and Landmann 2005). In savannas, the post-fire surface 

reflectance typically decreases initially (< 20 minutes) as black ash replaces green vegetation, 

then increases when fires of long duration produce increasing quantities of white ash (Smith 

et al. 2005b; Roy and Landmann 2005). Smith et al. (2005b) demonstrated that in order for 

remotely sensed imagery to detect the spatial density of common white ash patches produced 

in woodland savanna fires, imagery with pixel sizes less than 5 m are needed and as such 

Landsat or imagery of similar spatial resolution (i.e., 15 to 60 m) are not suitable. The utility 
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of such a fine spatial resolution (i.e., 1-5 m) to detect patches of grey ash (which is simply a 

mixture of black and white ash) may be suitable in forested environments, where due to 

higher fuel loads the potential white ash patch density might be more significant (Smith et al. 

2005; Smith and Hudak 2005). Therefore, in addition to remote sensing producing coarse-

scale measures of area burned, very high spatial resolution imagery can potentially allow the 

remote assessment of more localized post-fire effects such as soil water repellency and 

vegetation mortality.  

 

5. Field Assessment of Active Fire and Post-Fire Effects 

  

The assessment of active fire and post-fire effects using remotely sensed data relies on a 

thorough understanding of what precise measure or process is being recorded on the ground.  

There are few, if any, consistent, quantifiable indicators of active and post-fire effects that are 

linked to remotely sensed data. Even ground-based indicators of fire effects are largely 

qualitative. Most studies have not incorporated scales of spatial variability in fire effects, thus 

limiting inferences that can be drawn from remotely sensed imagery. A lack of spatial context 

limits the confidence that can be placed in data of a particular resolution. Remote sensing has 

the potential to greatly increase the amount of information available to research and 

managers; however, it is still challenging to adequately characterize enough ground reference 

locations across the full range of variability in fire effects.  Traditional study designs are 

typically too coarse to account for the varying scales of spatial complexity of fire effects.  

Field sampling to verify and characterize remotely sensed data must include sampling across 

the full range of variability in topography and vegetation structure and composition, in a time 

frame that will allow comparison between data sets. Quantification of the spatial variability of 

active and post-fire effects will provide a better understanding of the relevant scales at which 

research questions can be addressed with remotely sensed data and facilitate more effective 

and accurate application and interpretation of these data. 

 

5.1 Field Measures of Active Fire Effects 

 

Field measures of active fire characteristics have traditionally included in-situ measures such 
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as fire line intensity, flame length, and rate of spread of the fire front (Byram 1959; Albini 

1976; Alexander 1982; Trollope and Potgieter 1985; Trollope et al. 1996), while more recent 

techniques have involved monitoring the temperature generated by the fire through the use of 

thermal infrared cameras (e.g. Riggan et al. 2004), spectroradiometers (Wooster 2002), heat 

sensitive crayons and paints (Hely et al. 2003a, b), and thermocouples (Stronach and 

McNaughton 1989; Stocks et al. 1996; Ventura et al. 1998; Molina and Llinares 2001; Smith 

et al. 2005b). In addition to instruments estimating fire thermal characteristics, other active 

fire characteristics can include assessment of trace gases within smoke plumes (Yokelson et 

al. 1996, 2003), which have important implications for regional air quality (Hardy et al. 

2001), and in-situ assessment of fuel combusted (Trollope et al. 1996; Smith et al. 2005a).   

 

 

The assessment of such parameters ideally requires unfettered access and timely (i.e., rapid 

response) measurements, both of which are often impractical during wildfires due to safety 

concerns. Remote locations of many fires make accessibility difficult. The application of 

remotely sensed optical and thermal imagery over large fires is a very important and 

necessary tool from the standpoint of both researchers and land resource managers.  

 

5.2 Field Measures of Post-fire Effects 

 

Field-based measures of fire effects have included an assessment of the change in soil color 

(Wells et al. 1979; Ryan and Noste 1985; DeBano et al. 1998; Neary et al. 1999); soil 

infiltration and hydrophobicity (DeBano 1981; Neary et al. 2004; Lewis et al. 2006); change 

in vegetation char and ash cover (Landmann 2003; Smith 2004); and amount of canopy 

scorch (Ryan and Reinhardt 1988; McHugh and Kolb 2003), tree scarring (Barrett et al. 

1997; Grissino-Meyer and Swetnam 2000; Lentile et al. 2005), and organic fuel consumption 

(Lenihan et al. 1988). In an attempt to integrate a variety of these different post-fire effect 

measures, Key and Benson (2005) developed the ground-based Composite Burn Index (CBI). 

The CBI is based on a visual assessment of the quantity of fuel consumed, the degree of soil 

charring and the degree of vegetation rejuvenation (van Wagtendonk et al. 2004). CBI was 

designed as a field-based validation of the post-fire NBR spectral index. Fire effects on 30 m 
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x 30 m sample plots in five strata (soils, understory vegetation, mid-canopy, overstory, and 

dominant overstory vegetation) are evaluated individually and later combined for an overall 

plot-level burn severity value. The CBI method is rapid but very subjective. 

 

 

6. Management Use of Remote Sensing Fire Effects Products 

 

Remote sensing has the potential to provide data to address pre-, active, and post-fire 

characteristics over broad spatial scales and remote areas. However, the utility of such data is 

determined by temporal availability, spectral and spatial resolution of data, ground-truthing, 

and accurate interpretation at appropriate scales. Additionally integral to the advancement of 

remote sensing science is the quantification of variables that relate reflected or emitted 

radiation to ground and canopy combustion processes.   

 

6.1 ‘Severity Classifications’ and Implications for Recovery 

 

The occurrence of areas with similar fire environments, behaviors, and effects have led to the 

use of ‘severity classes’ within both the ecological and remote sensing literature (Ryan and 

Noste 1985; DeBano et al. 1998; Patterson and Yool 1998; Robichaud et al. 2000; Isaev et 

al. 2002; Diaz-Delgado et al. 2003). Yet there is considerable variation in low, moderate, and 

high severity classifications across regions and vegetation types (Fig. 1). Additionally, such 

burn severity classes have been inconsistently characterized in the remote sensing literature 

(Table 4). Many studies have relied on Ryan and Noste’s (1985) field characterization of 

post-fire effects and consistent visual assessment of ground and canopy fire effects (White et 

al. 1996; Ruiz-Gallardo et al. 2004). This classification provided a physical description for 

assessing the heat impact on overstory and understory vegetation, fuels, litter and soils. This 

model has been particularly useful to classify remotely sensed data because the 

discriminating features are detectable from satellite data (White et al. 1996). However in 

forested environments, remotely-sensed burn severity maps are often highly correlated with 

fire effects on overstory vegetation and exhibit low correlations with ground and soil 

variables where the vegetation occludes the ground (Patterson and Yool 1998; Hudak et al. 
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2004).  Satellite imagery integrates changes in all parts of the forest, illuminating areas of 

low canopy closure, thus field assessment is necessary to verify which parts of the soil and 

vegetation strata are affected (White et al. 1996; Hudak et al. 2004; Cocke et al. 2005; Epting 

et al. 2005). 

 

The degree of post-fire change typically increases with increasing vegetation mortality and 

proportion of charred soil and vegetation, and is linked with long duration of soil heating. For 

example, high burn severity classes are attributed to areas with high quantities of reddened 

soil and charred fuels and vegetation, but high burn severity may differentially impact 

ecosystem function depending on the pre-fire environment and vegetation types. For 

example, high burn severity resulting in increased water repellency may be common in 

California chaparral systems, yet rare in Alaska black spruce (Picea mariana) forests due to 

major differences in pre-fire soil and forest floor conditions, vegetation characteristics, and 

the relative occurrence of hydrophobic conditions (Fig. 1). Fires of all sizes will have some 

very localized effects that could be classified as high severity, and heterogeneous mosaics of 

fire effects occur at some scale in all fires (Fig. 2).  The scale and homogeneity of fire effects 

is important ecologically. Often larger fires and large patches within fires are dominated by 

high severity components (Turner et al. 1994; Graham 2003). Hudak et al. (2004) suggested 

that high severity fires resulted in more spatially homogeneous fire effects on soil and 

vegetation than moderate or especially low severity fires, while Turner et al. (1994) found 

that large burns (~ 500-3700 ha) tended to have a greater percentage of crown fire and 

smaller percentages of light surface burns.  Such severely burned areas may be more 

vulnerable to invasive species and soil erosion and may not return to pre-fire conditions for 

extended time periods. Patch size and the spatial mosaic of severity exert a strong influence 

on vegetation and nutrient recovery. Extensive areas of high burn severity may have fewer 

resprouting individuals or surviving trees to provide seeds (Turner et al. 1999). Unburned or 

lightly burned patches within high severity regions may provide seed sources to increase 

rates of plant recovery. The post-fire environment may change greatly within one year, some 

aspects of which may be predictable while others may be more driven by local and regional 

weather. Thus, depending on the timing and extensiveness of the field data collection effort, 

it is possible, for example via geostatistical kriging techniques, to infer ecological processes 
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from remotely sensed landscape patterns of fire effects and use this information to guide 

post-fire planning decisions.  

 

6.2 Current Applications of Remote Sensing Fire Effects Products 

 

The USFS Remote Sensing Applications Center (RSAC) and the USGS EROS Data Center 

(EDC) provide satellite imagery and image-derived products for managing and monitoring 

wildfires. RSAC produces Burned Area Reflectance Classification (BARC) maps for use by 

Burned Area Emergency Response (BAER) teams to identify social, ecological and 

economic values at risk.  BARC products are based on dNBR values or, if pre-fire imagery is 

unavailable, then NBR values, from satellite imagery such as Landsat TM, Landsat Enhanced 

Thematic Mapper Plus (ETM+), SPOT, Multispectral (SPOT-Xi), and MODIS.  

 

BARC maps are made as soon as possible during a significant wildfire event. These 

preliminary maps of post-fire condition are assessed and modified by BAER teams to aid in 

planning and implementing erosion mitigation in severely burned areas. BARC maps 

measure satellite reflectance and may be used by BAER teams to develop burn severity 

maps. BAER teams are assigned to measure and map severity based on ground and soil 

characteristics rather than canopy vegetation (Miller and Yool 2002; Parsons and Orlemann 

2002; Lewis et al. 2006). However dNBR and NBR correlate more highly to vegetation 

attributes, especially those of dense upper canopy layers, rather than ground and soil 

attributes (Hudak et al. 2004).  

 

Post-fire maps may substantially vary depending on when and how burn severity is assessed 

and for what objectives (Fig. 3). In many cases, managers have abandoned traditional sketch 

maps based on ground and helicopter surveys and have become dependent on the Landsat 

sensor and its associated BARC products to provide short-term decision support.  There are 

varying levels of confidence associated with remote sensing products, and even very 

experienced managers need better initial ground validation and longer-term monitoring 

protocols to build confidence in these products. In a comparison of field validations of 

BARC maps, Bobbe et al. (2003) found the dNBR to be no more accurate than NBR for 
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indicating immediate post-fire effects. Some BAER teams have opted to use a combination 

of available imagery, existing GIS-based maps of topography and pre-fire forest condition, 

and local knowledge to guide post-fire assessments (Fig. 3). Severity assessments often fail 

to specifically identify whether vegetation, soil, or erosion potential was low, moderate or 

high, but have nonetheless been used to guide management activities such as post-fire timber 

harvest and reforestation activities. Often those other management activities would be better 

served with dNBR-based assessments using post-fire images taken one or two years post-fire 

accompanied by extensive ground-truthing (Cocke et al. 2005).  

 

Determining the scale appropriate for management decisions may help to streamline 

approaches to post-fire rehabilitation.  For example, it is often assumed that high burn 

severity classes are positively correlated with increasing soil water repellency (Doerr et al. 

2000). Many studies have shown that pre-fire soil texture, the amount and depth of litter 

cover, soil water, soil organic matter, and the temperature and residence time of the fire all 

affect the degree of soil modification during fires and the resulting soil water repellency 

(Giovannini and Lucchesi 1997; Doerr et al. 2000; Wondzell and King 2003).  Laes et al. 

(2004) attempted to use airborne high spatial/spectral resolution (4 m / 224 bands) 

hyperspectral imagery to identify surface water repellent soils over the Hayman fire in the 

summer of 2002. Hyperspectral imagery may have the potential to indirectly detect soil water 

repellency via detection of an ash signal in the soil (Lewis et al. 2006). Further study is 

needed to learn whether such high spatial and/or spectral resolution is needed to capture soil 

microsite heterogeneity, or if the resolution of 20 m SPOT-XI (4 bands) or 30-m Landsat-TM 

(6 bands) imagery may be adequate for BAER teams to identify large areas at risk for 

erosion, sedimentation, and landslide events. The acquisition of high spatial/spectral 

resolution data is comparatively expensive and logistically challenging, particularly if 

accomplished via aircraft in an active fire zone. Rapid and defensible delineation of large, 

severely burned areas with high potential for erosion could reduce the time necessary for 

BAER teams to conduct evaluations, improve recommendations for treatment, and decrease 

the amount of money spent on rehabilitation projects. 
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Remote sensors have the potential to be used for carbon budget investigations (Conard et al. 

2000). Fires release carbon that is stored in trees, shrubs, and herbaceous vegetation, litter, 

duff, and even the soil if the fire is intense and long-lasting. Vegetation recovery draws 

carbon back in from the atmosphere. The dNBR technique is currently being applied by 

researchers around Yosemite National Park, CA to estimate fire-use emissions and monitor 

air quality.  Other management applications of the dNBR include production of GIS-based 

fuel layers in Glacier National Park, MT and Grand Teton National Park, WY, as well as 

identification of extreme fire risk zones and propensity for post-fire erosion and landslides 

around the Salmon-Challis National Forest in Idaho. For more information, see 

http://www.nrmsc.usgs.gov/research/ndbr.htm and http://giscenter.isu.edu/research/  

 

7.0 Future Directions of Fire-Related Remote Sensing Research 

 

The influence of fire spans a wide range of temporal and spatial scales, and the interpretation 

of causal factors, fire effects, and ecological responses is a challenge to both research and 

management. As outlined in this review, current fire effects terminology is used 

inconsistently. However, simply classifying remotely sensed measures as either active or 

post-fire characteristics is difficult as the effects of fires vary temporally and with topography 

and vegetation, and multiple current and new sources of remote sensing data continue to 

accrue. Challenges remain in how to infer active and post-fire characteristics using remotely 

sensed data.   

 

Challenges 

 

Landscape-level ecological effects of fires are not well understood.  

 

Predicting where on the landscape fires are likely to cause severe short and long-term 

ecological effects and understanding why these effects vary are central questions in fire 

science and management.  Remote sensing can help us to characterize the fuels, vegetation, 

topography, fire effects and weather before, during and after fires. Doing so is critical to 

understanding which factors and which interactions between them are most important in 

http://www.nrmsc.usgs.gov/research/ndbr.htm
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influencing immediate and long-term fire effects at local, regional and global scales. For 

instance, low spatial resolution imagery (i.e., 0.25 – 1 km2 pixel size) can provide coarse-

scale maps of area burned; while high spatial resolution imagery (i.e., 1 – 5 m2 pixel size) can 

help provide information on the fine-scale spatial heterogeneity of post-fire effects (e.g., 

patches of white ash or soil char). In chapter 6 of this dissertation, I use topographic variables 

derived from a digital elevation model to predict the occurrence of severely burned areas 

inferred from Landsat satellite imagery in the Gila National Forest. For remotely measuring 

fuel combusted within a fire, an upper constraint can be produced by multiplying the mean 

fuel load with the broad measure of area burned, while detailed imagery can provide 

information on fine-scale patchiness that is not resolved in the coarse-resolution imagery. 

The accuracy of estimates of biomass burned will likely be improved by incorporating data 

from higher spatial resolution imagery. 

 

Studies linking active fire characteristics, post-fire effects and pre-fire stand conditions are 

limited.   

 

Direct measurement of fire behavior is difficult. More work is needed in this area to 

understand the dynamics of these three tightly interrelated factors. We need to expand 

remotely sensed systems that characterize real-time energy transfer, and, when possible, 

avoid attribution of retrospective causality. Mechanistic models based on an understanding of 

how energy transfer translates to fire effects and post-fire recovery is needed. For example, 

direct measurement of forest floor consumption and surface to canopy fire transition is of 

crucial value to forest managers for fire management planning.  We lack data that connect 

current stand and vegetation condition to fire behavior and ecological response. In particular, 

we need improved techniques to detect post-fire effects on the surface where residual canopy 

density is high or where fire consumes only litter (Patterson and Yool 1998; Holden et al. 

2005).  In these fires, the integration of ground-based and remote measures of active and 

post-fire effects is especially important.  

 

Remote sensing and field assessments are poorly integrated.  
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The NBR and NDVI indices have been widely used to measure fire-induced vegetation loss. 

However, these indices and others should be tested against field data (e.g., canopy scorch, 

tree mortality, ground char, fuels consumption, ash cover, etc.) across a variety of vegetation 

biomes and fire regimes to determine where they are most useful and what they actually 

measure in terms of post-fire ecological effects. For example, further studies comparing these 

indices to field data, such as CBI, could help us understand whether values of post-fire 

ecological change arise from fire effects on canopy, understory vegetation, or soil. 

Thoughtful combinations of field and remotely sensed data collection, interpretation, and 

analysis and appropriate application is important to increase confidence in the ability of 

remote sensing to address many applied questions and to streamline associated costs.   

 

Need to improve analysis at differing spatial and temporal scales.  

 

Incorporation of different data sources to refine remotely sensed measures of active fire and 

post-fire ecological measures would take advantage of the spatial and spectral resolution of 

different satellite sensors. There is a wide range of potential uses of different sensors and the 

appropriate technique and image data sources may depend on the objective of the study. For 

example, sensor requirements to assess post-fire re-sprouting of chaparral shrubs are likely 

different than those of managers trying to assess watershed-level erosion potential following 

wildfire near homes in southern California. While Landsat TM and ETM data are most 

commonly used to assess post-fire ecological effects in North America, application of 

alternative sensors (ASTER, MODIS, Quickbird, IKONOS, airborne hyperspectral sensors) 

with varying spectral, spatial, and temporal resolutions warrants further investigation. For 

example, once ASTER data are available for an area, post-fire tasking of the ASTER TERRA 

satellite sensor with higher spatial resolution than Landsat in the NIR wavelength bands 

could provide better information about post-fire effects. Furthermore, in comparison with the 

single short wave infrared (SWIR) band of Landsat that is used in NBR (i.e., Landsat band 

7), the ASTER sensor has five SWIR bands. These alternative SWIR bands (or alternative 

NBR variants) may vary in their effectiveness with soil type and other factors. Many units of 

the National Park Service (NPS) have purchased high spatial resolution Quickbird or 

IKONOS imagery as part of their inventory and monitoring efforts. These sensors may also 
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provide better information on the potential for fine-scale slope failure, regeneration capacity 

of vegetation post-burn, and the longer-term effects of fire on ecological integrity. In chapter 

3 of this dissertation, I use pre and post-fire  Quickbird and ASTER satellite images to assess 

burn severity on the 2003 Dry Lakes Fire in New Mexico. Additional research is needed to 

explore the potential value of airborne sensors that can be continuously tasked to study 

temporal, as well as high spatial and spectral variations.   

Traditional remote sensing platforms are limited to 2-dimensional data. 

The predominant availability of only 2-D satellite sensor data limits inferences about crown 

height, crown base height, and crown bulk density, all of which influence fire behavior, fire 

intensity and hence both fire and burn severity. The availability of light detection and ranging 

(lidar) systems, and their ability to accurately measure vegetation height, should facilitate 

studies that incorporate information from both two and three-dimensional datasets to improve 

estimates of post-fire effects and pre-fire fuel conditions. Lidar has particular potential for 

assessing crown bulk density, described as the foliage biomass divided by the crown volume, 

because it does not saturate at high biomass levels (Drake et al. 2002; Riaño et al. 2003). 

Crown bulk density has been regarded as one of the most critical variables for modeling 

crown fire behavior (Scott 1999), since where trees are dense, fire easily spreads from one 

tree to the other. Lidar is able to detect subtle differences in vertical structure (recording 

accuracy of 5-15 cm, Baltsavias 1999).  Pre-fire lidar can provide a 3-dimensional canopy 

fuels measurement that can be used to describe crown volume and structure. As such, lidar 

may allow the development of an improved metric for use in crown fire models, instead of 

the current reliance of models on crown bulk density. Some researchers have integrated 

multi-spectral and structural (i.e., Lidar) data to model canopy fuels (Hudak et al. 2002).  

Recommendations 

 

Scientists and managers use remote sensing to map, understand and predict the ecological 

effects of fire. Much has been learned; challenges remain. Our recommendations for 

increased effectiveness follow.   
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Use terminology consistently 

 

Jain et al. (2004) recommend that researchers simply report what they are actually measuring 

(be clear about level of inference in methods), identify the temporal and spatial scale that is 

being referenced, avoid categorical description (low, moderate, and high unless defined with 

range of observations), and define all terminology (active vs. post-fire effects).  We agree. 

Such an approach should enable scientists to communicate more effectively and managers 

who juggle a variety of resource objectives to make more informed decisions about where 

within the fire disturbance continuum to concentrate prevention, suppression, or mitigation 

efforts (Jain et al. 2004). If there is a need to categorize or group different measures, then we 

advocate limited use of the expressions fire intensity, fire severity and burn severity (due to, 

in many instances, to their clear overlap on the temporal gradient). Instead we propose that 

various processes associated with fire intensity and severity be evaluated purely in terms of 

either active fire characteristics or post-fire effects. As adopted within this review, active fire 

characteristics would be concerned with all timely measurements ‘during’ the fire (e.g. 

information on the heat generated by the fire, the fire duration, the immediate combustion of 

the biomass, and other ecosystem changes induced by the fire process), which could include 

the flaming, smouldering, or residual combustion stages. These are the direct, first-order fire 

effects (Reinhardt et al. 1997; Reinhardt et al. 2001). In contrast, post-fire effects would 

involve all measurements acquired after the fire has passed (e.g., soil charring, nutrient 

changes, surface spectral changes, vegetation response, etc). These are the indirect, second-

order fire effects (Reinhardt et al. 1997; Reinhardt et al. 2001).  
  

Quantify and validate metrics of post-fire effects 

 

There are no consistent indicators or classifications of post-fire effects (Morgan et al. 2001; 

Ryan 2002). Those that exist are largely qualitative and plot-based. Quantitative indicators of 

post-fire effects  are needed that encompass fire effects on both the overstory and the soil 

surface (Morgan et al. 2001). These indicators must be useful across a broad range of site 

conditions, readily mapped remotely or in the field and remotely, and linked to conditions 

representing pre-fire (e.g. fuels and forest structure), during fires (fire behavior, fuel 
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consumption and soil heating) and post-fire (vegetation response, soil erosion potential, and 

invasive species risk). A new generation of tools is needed to support strategic fire 

management before (fuels management), during (fire management), and after (rehabilitation) 

wildfires.  

 

With increased reliance on remote sensing, field validation data becomes even more 

important, but where and how the field data are collected (e.g., plot size, stratification) must 

be adapted to the spatial resolution of the sensor and the wide range of conditions represented 

in the imagery. However logical it may seem that higher spatial resolution will likely better 

represent the fine-scale heterogeneity found in most fires, this has not been proven.  

 

The remote sensing measure should be validated for each application environment by 

comparing it to equivalent surface processes or properties. For instance, concern has 

appropriately been raised about the widespread application of spectral index-based methods 

without establishing the validity and mechanistic relations between post-fire effects and such 

spectral indices across a variety of environmental conditions (Roy et al. 2005; Smith et al. 

2005b). For example, the NDVI index applied to satellite imagery effectively provides a 

measure of the greenness of each pixel. In the case of post-fire assessment, an equivalent 

surface measure would include an average measure of green vegetation cover within a 

corresponding area of interest on the ground. Likewise if a change in NDVI is used to assess 

differences between pre- and post-fire environments, an equivalent surface measure could be 

the change in green vegetation cover before and following the fire.  A mid-scale assessment 

such as that obtained from an airborne sensor could provide a better quantitative 

understanding of pattern and process relationships. 

 

Validation of dNBR should be conducted in a wide range of environments to ensure that the 

adopted range of dNBR values, as cited by Key and Benson (2002) and commonly used in 

post-fire assessment studies, are valid for those environment, or that a process be 

recommended for local calibration. The authors of the dNBR technique never intended the 

burn severity class break values developed for fires in Glacier National Park, MT (i.e., the 

location of the original dNBR study) to be universal thresholds (cf. Key and Benson 2005).  
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Importantly, the seven levels of dNBR proposed by Key and Benson (2002) are only valid in 

other environments if the changes in the surface properties that occur in the environment of 

interest are similar to those observed within Glacier National Park. When considering the 

wide variation of different fuel conditions and fire regimes, this is unlikely. The solution is to 

follow the original methodology used by Key and Benson (2002). For each environment of 

interest make local field measurements of the CBI over a range of post-fire conditions. The 

CBI methods are described in FIREMON (Lutes et al 2006). Then, correlate the dNBR for the 

same locations with the CBI values measured in the field, and use that relationship to identify 

the thresholds between burn severity classes (e.g. Key and Benson 2002; van Wagtendonk et 

al. 2004; Cocke et al. 2005)., Rather than then using the Glacier National Park dNBR ranges 

to classify the satellite imagery, the CBI field measure could be used to set locally meaningful 

dNBR ranges by providing for each separate environment of interest the dNBR ranges 

associated with fixed ranges of CBI values (e.g., Epting et al. 2005). Using the same 

thresholds of dNBR between severity classes in all environments avoids the assumption of the 

same relative degree of post-fire ecological change.  The intent of the CBI was to be 

sufficiently robust to accommodate most vegetation communities.  The CBI may require 

some minor refinements in some communities, but these refinements remain within the 

conceptual framework of the CBI (cf. Key and Benson 2005).  For example, in Alaska, tundra 

tussocks dominated by sedges, grasses, low shrubs and mosses are treated as heavy fuel. For 

each environment this recalibration should be conducted at a consistent and available spatial 

scale (e.g., the 30-m scale of the Landsat TM sensor) as van Wagdentonk et al. (2004) 

illustrated that the relationship between CBI and dNBR for a single environment is dependent 

on the spatial scale of the remote sensing instrument.  This variation of post-inferred fire 

effects with satellite sensor pixel size has further been highlighted by Key (2005).  

 

Synthesize knowledge about fire patterns over time and space 

 

The causes and consequences of spatial variability in fire effects is one of the largely 

unexplored frontiers of information. Research needs include a better understanding of how 

post-fire effects and spatial variability are related to the pre-fire fuels and topography, pre-
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fire climate and active fire weather, vegetation structure and composition, and land use. 

Recognizing this need, a multi-agency project, Monitoring Trends in Burn Severity (MTBS), 

sponsored by the Wildland Fire Leadership Council, has been tasked to generate burn 

severity data, maps, and reports for all large historical and current fires 1984 

(http://www.nps.gov/applications/digest). These data will provide a baseline for monitoring 

the recovery of burned landscapes and a framework to address highly relevant fire and other 

natural resource management questions.  Knowledge relating to when and where various fuel 

treatments and fire suppression efforts are likely to be effective will greatly assist managers 

in prioritizing and making strategic decisions.   

 

 

Link remotely sensed measures to the fire process.  

 

Mechanistically linking surface processes to imagery is the goal of remote sensing science. 

As such the characteristics and scale of both the patterns and the inferred processes must be 

clearly defined. Remote sensing data may represent many interacting processes. For example, 

processes such as soil water infiltration may be spatially variable at fine spatial scales (e.g., 

sub-meter and sub-surface), whereas the imagery used to view the process may be too coarse 

to detect sub-pixel variation of the process. The methodological approach must be 

transparent, repeatable, and robust if we are to compare results from one geographical area to 

another or among sensors.  Additionally, it is challenging to deal with fine-scale pattern when 

assigning an overall severity class to a pixel, stand (Fig. 1), or landscape (Fig. 2-3).   

 

On such approach is to measure the fraction of a specific cover type present within an area at 

both the field plot and satellite pixel scales. A traditional field interpretation of severity was 

the assessment of “green, brown, and black” as indicators of low, moderate, high severity. 

This simplistic protocol has a direct parallel to the remote sensing method of spectral mixture 

analysis (SMA), which can allow the measurement of the fractional cover within each 

separate pixel (Drake and White 1991; Wessman et al. 1997; Drake et al. 1999; Vafeidis and 

Drake 2005). SMA can be applied to commonly available multispectral satellite imagery. 

Moderate spatial-resolution satellite sensors, such as Landsat (30-m pixel size), however, are 
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not of adequate spatial resolution to accurately capture the fine-scale soil char or white-ash 

fractions or their distribution patterns across the landscape (Smith et al. 2005; Smith and 

Hudak, 2005). Therefore, we propose that SMA research only be used to evaluate the 

fractional cover of unburned (green), scorched (brown), bare soil, and charred (black) 

vegetation; as these measures are analogous to the traditional field ‘severity’ indicators. 

Evaluation of such fractions provide a link between what we can interpret from satellite 

imagery and what effects have occurred on the ground. Further, as fractions are inherently 

scalable, SMA allows a truly mechanistic link between field and remote sensing measures. 

 

Until we can understand underlying processes and link them directly to remotely sensed 

measures, we are doomed to developing empirical relationships for many different 

environments. Fire effects are often “symptoms” of the impact to an underlying process 

which has been affected by fire. Many fire effects are driven by the heat pulse below the soil 

surface and subsequent impacts on belowground processes, in particular nutrient cycling and 

soil water infiltration.  Understanding how post-fire effects relate to pre-fire conditions 

(forest structure and fuels) and fire behavior will facilitate the development of improved tools 

for predicting and mapping the degree of ecosystem changed induced by the fire process 

(e.g., heat penetrating soil, consumption of organic materials, change in soil color). This 

information can lead to improved understanding of the role of fire in creating conditions that 

drive sustainable ecosystem processes, structures, and functions, and in turn to quantitative 

measures that will improve the utility and interpretability of remote sensing assessments.  
 

Develop and test novel remote sensing methods  

 

Few remote sensing research studies have actually collected spectral reflectance and thermal 

information from pre- and post-fire surfaces. Although such data has been collected in 

African savannas (e.g., Trigg and Flasse 2000; Landmann 2003; Smith et al. 2005b) and in 

early NBR research in North America (e.g., Key and Benson 2002), a lack of post-fire 

spectral data exists over the multitude of other fire regimes. This lack of data is problematic 

as several remote sensing methods rely on recalibration within each new application 

environment. Failure to collect these needed data could result in use of methods that are not 
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calibrated for a given biome. Further to the lack of site-dependent spectral data, the majority 

of current studies assessing the extent of area burned or the degree of ecological change with 

Landsat TM data do not use all the data provided to them by the sensor. Namely, thermal 

infrared is commonly discarded, but can provide useful hindsight into the cover of exposed 

soils and the lack of evapotranspiration (from the removal of vegetation). 

 

Improve estimates of local and regional fire emissions.  

 

Currently fire emission estimates for use in global change research generally rely on the 

parameterization of a simple model, in which the total biomass combusted (and gases 

emitted) are calculated through the multiplication of the area burned by the pre-fire fuel load, 

and by the proportion of fuel combusted within the fire (Kashiscke and Bruhwiler 2003; 

Smith et al. 2005a). Such an approach relies on localized information of the fuel and fire 

conditions extrapolated over the extent of area burned. Within the global change community 

this approach is known to exhibit considerable uncertainties (Andreae and Merlet 2001; 

Kashiscke and Bruhwiler 2003; French et al. 2004), and only the area burned is particularly 

suited to measurement via satellite sensors. In some studies the proportion of fuel combusted 

over very large areas (e.g., Russian boreal forests) has been produced through ‘educated 

guesses’ of the likely distribution of fires to consume fixed percentages of the fuel load (e.g., 

Conard et al. 2002; Zhang et al. 2004), which in part might explain the significant 

discrepancy in carbon emissions estimates between Siberia and North America (Wooster and 

Zhang 2004). Clearly, emission estimates produced using such approaches are not ideal, but 

to date this has been ‘the best tool available for the task’. This review has highlighted other 

research efforts, such as the use of the FRP methodology (e.g. Wooster et al. 2003; Ichoku 

and Kaufman 2005; Roberts et al. 2005; Smith and Wooster 2005), which might allow 

(provided sufficient temporal resolution is available) improvements to the above model.    

 

Work with managers to determine the scale of operations and thus, appropriate sensors (and 

resolutions) to address applied questions 
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The limitations to remote sensing and associated barriers to more widespread use may 

include costs, user acceptability, and technical problems. The benefits (expediency, coverage, 

and reliability of results) must outweigh the technical and logistical costs (costs of 

equipment, human training and field data collection). Users must overcome the technology 

curve associated with the acquisition and processing of large remotely-sensed datasets.  In 

some cases, there are time constraints to the use of remotely sensed data. Fire managers need 

timely and often real-time answers, not loads of data to process. Researchers can help 

develop protocols for processing data, and can partner with managers to provide data and 

interpretations, but their efforts must be sufficiently timely and completed without interfering 

with the operations of the fire command. Managers are tasked to focus on fuels treatment and 

fire management in the Wildland Urban Interface, but they may know relatively little about 

the effectiveness of management activities there. Researchers need to develop remote sensing 

products and tools that can address questions that are directly applicable to these highly 

visible and vulnerable areas. Managers also need standardized procedures for updating 

vegetation and fuels maps as fires occur, monitoring the effects of post-fire rehabilitation 

treatments, and modelling post-fire succession. End users must have a firm understanding of 

the consequences of data use, yet have high confidence in data and products.  Users must also 

accept that there are inherent problems with satellites and aircrafts, such as time intervals 

between images, clouds obscuring the imagery, topographic relief, surface variations existing 

at a scale that the imagery is unable to detect, etc.  

 

8. Conclusions  

 

When combined with field data, remote sensing can be very helpful in mapping and 

analyzing both active fire characteristics and post-fire effects. Unfortunately, the inconsistent 

use of fire descriptors, including fire intensity, fire severity and burn severity, confuse 

measurement and interpretation of field and remotely sensed fire effects. The use of 

qualitative terms such as fire and burn severity has limited utility given the highly variable 

nature of fire behavior and subsequent effects and the dynamic aspect of post-fire recovery. 

Fire is a stochastic, spatially complex process that is influenced by a multitude of interacting 

factors, making generalizations from one fire to the next difficult (Morgan et al. 2001) unless 
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we understand the underlying processes. Using consistent terminology is an important step in 

developing a better understanding of the causes and consequences of spatial variability of fire 

effects. 

 

Remote sensing has great potential for scientists and managers seeking to map, understand, 

predict and assess the ecological effects of fires. In addition to these current applications, 

remote sensing has great potential for detecting and quantifying local and regional fire 

emissions to improve estimates of fire emissions for use in studies of both air quality and 

global climate change. Atmospheric emissions from fire increasingly limit the use of 

prescribed fire, especially near urban areas, which are often in need of burning as part of 

restoration and fuels reduction treatments. Global climate change research has focused 

attention on carbon storage, release and sequestration. Remotely sensed data are useful for 

quantifying carbon released by fire, and potentially for estimating increases in vegetation 

growth and carbon sequestration post-fire. Remote sensing has made great strides in terms of 

providing data to address operational and applied research questions, beyond the scope and 

feasibility that ground-based studies can provide.   
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Table 1. Remote Sensing Systems Relevant to Fire Detection and Monitoring  

Sensor Acronym   Temporal Spatial  VIS-NIR TIR 
+ Additional Web Resources Resolution Resolution (km)   Bands (µm) Bands (µm) 
       
AATSR1   2 days  1.00  0.56, 0.66, 0.86  3.7, 11, 12 
Website: http://www.le.ac.uk/ph/research/eos/aatsr/   1.6 
 
ALI2    16 days  0.010-0.09 0.44, 0.48, 0.56           - 
        0.64, 0.79, 0.87  
Website: http://eo1.gsfc.nasa.gov/Technology/ALIhome1.htm  1.25, 1.65, 2.23  
     
ASTER3   16 days  0.015-0.09 0.56, 0.66, 0.82 8.3, 8.65, 9.1 
        1.65, 2.17, 2.21 10.6, 11.3 
Website: http://asterweb.jpl.nasa.gov/    2.26, 2.33, 2.34 
 
ATSR4    3 days  1.00  0.55, 0.67, 0.87  3.7, 10.8, 12 
http://www.atsr.rl.ac.uk/      1.6 
 
AVHRR5   4 daily  1.10  0.63, 0.91, 1.61 3.74, 11, 12 
http://www.nesdis.noaa.gov/ 
 
HSRS6      0.37    3.8, 8.9 
http://www.itc.nl/research/products/sensordb/getsen.aspx?name=HSRS 
 
Hyperion   16 days  0.03  [424 Bands: 0.38-2.5 µm] 
http://eo1.gsfc.nasa.gov/technology/hyperion.html  
 
IKONOS   3 days  0.001-0.004 0.48, 0.55, 0.67 
http://www.spaceimaging.com/      0.81 
 
IRS7-1A,B   22 days  0.036-0.072 0.55, 0.65, 0.83 
IRS7-1B,C   24 days  0.023-0.188 
http://www.isro.org/       
 
Landsat 5,7   16 days  0.015-0.09 0.48, 0.56, 0.66 11.5 
http://landsat.gsfc.nasa.gov/      0.85, 1.65, 2.17 
 
MODIS8   4 daily  0.25-1.0  19 bands  16 bands 
http://modis.gsfc.nasa.gov/ 
 
QuickBIRD   1-5 days  0.001-0.004 0.48, 0.56, 0.66 
http://directory.eoportal.org/pres_QUICKBIRD2.html   0.83 
 
VEGETATION   1 daily  1.15  0.55, 0.65, 0.84 
http://www.spot-vegetation.com/      1.62 
1Advanced Along Track Scanning Radiometer 2 Advanced Land Imager 3 Advanced Spaceborne
Thermal Emission and Reflection Radiometer 4 Along Track Scanning Radiometer 5 Advanced Very
High Resolution Radiometer 6 Hot Spot Recognition Sensor System 7 Indian Remote Sensing 8

Moderate Resolution Imaging Spectroradiometer 
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Table 2 Selected Examples of Field and Remote Measures of Active Fire Characteristics 

racteristic Description  Type of Measure   Example Reference(s)  

e length and height  Heat sensitive objects        Hely et al.  (2003) 
   Direct observation       Stocks et al.  (1996) 
   Video 

 duration   Thermocouples        McNaughton et al.  (1998) 
            Smith et al.  (2005b) 

 temperature   Heat sensitive paint or ceramics      Hely et al.  (2003)  
   Thermocouples        McNaughton et al.  (1998)
   TIR1 cameras and imagery       Riggan et al.  (2004) 
        

grated temperature with time Thermocouples        McNaughton et al.  (1998) 
            Smith et al.  (2005b)  

 of Spread   Thermocouples        Smith et al.  (2005b) 
   Visual records/stop watches      Stocks et al.  (1996) 
   Video 

ct pyrogenic emissions Gas analyzers        Andreae et al.  (1996)  
   Fourier transform IR2 spectroscopy      Yokelson et al.  (2003) 
            Yokelson et al.  (1996) 

l Combusted   Forest fuel and duff combustion      Ottmar and Sandberg (2003)
   In-situ fire fuel sampling       Smith et al.  (2005a)  
   Change in laser profiling data  n/a  
   Fire radiative power/energy      Kaufman et al.  (1998)  
            Wooster (2002) 

 energy output  Fire line intensity        Byram (1959) 
            Trollope et al.  (1996) 
            Smith and Wooster (2005) 
   Fire radiative power/energy      Kaufman et al.  (1998) 
            Wooster et al.  (2003, 2005)
            Roberts et al. (2005) 

ermal Infrared 
rared 
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Table 3. Selected Examples of Field and Remote Measures of Post-Fire Effects 

 
Characteristic Description  How Measured   Example References  
 
 
Char and Ash cover   In-situ measurements  Smith et al.  (2005b) 
    Aerial photographs  Smith and Hudak (2005) 
    VIS-MIR1 sensor imagery  Landmann (2003) 
 
Surface Temperature Changes In-situ measurements  Trigg and Flasse (2000) 
    Thermal Infrared imagery  Kaufman et al.  (1998) 
 
Surface Reflectance Changes In-situ measurements  Trigg and Flasse (2000) 
    VIS-MIR sensor imagery  Fuller and Falk (2001) 
 
Area Burned and Fire Perimeters In-Situ records   Eva and Lambin (1998a) 
    VIS-MIR sensor imagery  Pereira (1999) 
     
Vegetation Consumption  Field    Lenihan et al. (1988); Cocke et al. (2005)
    VIS-MIR sensor imagery  Hall (1980); Miller and Yool (2002) 
         
Vegetation Mortality  Field    Wyant et al. (1986); Cocke et al. (2005
    VIS-MIR sensor imagery  Patterson and Yool (2002) 
 
Vegetation Recovery  Field    Lyon and Stickney (1976); 
        Anderson and Romme (1991);  
        Turner et al. (1997); Lentile (2004) 
    Changes in multi-date imagery Henry and Hope (1998); 
        Diaz-Delgado et al. (2003) 
 
Canopy Scorch   Field    Ryan and Reinhardt (1988); 
        McHugh and Kolb (2003) 
 
Soil Charring   In-situ measurements  DeBano et al. 1979; Lewis et al. (2006) 
    Hyperspectral Imagery  Laes  et al. (2004) 
     
Soil Water Repellency  In-situ measurements  Lewis et al. (2006); Doerr et al. (2000) 
    Hyperspectral Imagery   
 
Atmospheric Chemistry Changes Atmospheric Sounders  Spichtinger et al.  (2001) 
 
1visible, mid-infrared    
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Table 4. Selected Examples of Approaches that Remotely Assess Degree of Post-fire Change 
 

Approach to Divide Classes of Post-fire Effects     # of Classes  Reference(s) 
 
Number fine branches remaining on woody plants  7  Diaz-Delgado et al.  (2003) 
  
Complete and partial stand mortality   2  Isaev et al.  (2002)  
 
Weighted carbon storage in different fuel components 3 Zhang et al.  (2003) 
        Conard et al.  (2002) 
        Conard and Ivanova (1997) 
 
USFS fire classification rules (c.f Cotrell 1989)  4  Patterson and Yool (1998)  
- degree of canopy and soil organic matter consumption  
 
Fuel consumption and proportion of grey ash endmember 2 Landmann (2003) 
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Figure 1. Low, moderate, and high ‘burn severity’ sites in Californian chaparral, Montanan mixed-conifer forests, and Alaskan black spruce forests. Burn 
severity classified via consistent visual assessment of ground and canopy fire effects. 
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Figure 2. Landscape scale heterogeneity following fires. 
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a) b)

c) d)

 
 
Figure 3 a) Pre-fire Landsat 7 image (7-4-3 false-color composite) acquired on August 18, 1999; b) 
Post-fire Landsat image 7 image (7-4-3 false-color composite) acquired on Sept. 14, 2000; c) Burn 
severity map produced for the Jasper fire in the South Dakota Black Hills from images in a and b 
according to dNBR methods (Key and Benson 2005); d) Burn severity map produced by the BAER 
team for the Jasper fire using a single date post-fire Landsat image and GIS-based maps of 
topography and pre-fire forest condition. 
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Abstract 

Methods of remotely measuring burn severity are needed to evaluate the ecological and 

environmental impacts of large, remote wildland fires. The uncertain future of the Landsat 

program highlights the need to evaluate alternative sensors for characterizing post-fire 

effects. We compared pre- and post-burn imagery from four satellite sensors with varying 

spatial-resolutions: Quickbird Multi-spectral, the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER), Landsat Thematic Mapper (TM), and the Moderate 

Resolution Imaging Spectroradiometer (MODIS), using a subset of the 2003 Dry Lakes Fire 

in the Gila Wilderness, NM.  Where spectrally feasible, burn severity was evaluated using 

the differenced Enhanced Vegetation Index (dEVI), differenced Normalized Difference 

Vegetation Index (dNDVI) and the differenced Normalized Burn Ratio (dNBR). We use 55 

Composite Burn Index (CBI) plots to assess burn severity on the ground.  Both the dEVI 

derived from Quickbird and the ASTER-derived dNBR showed similar or slightly improved 

correlations over the dNBR derived from Landsat TM data (r2 = 0.82, 0.84, and 0.78, 

respectively). The relatively coarse resolution MODIS-derived NDVI image was weakly 

correlated with ground data (r2 = 0.38). Our results suggest that moderately high-resolution 

satellite sensors like Quickbird and ASTER have potential for providing accurate information 

about burn severity. Future research should further develop stronger links between higher 

resolution satellite data and burn severity across a range of environments.  

 

Keywords: ASTER, Quickbird, Landsat, MODIS, Fire, Burn Severity 
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Introduction 

Recent large fires in the western United States have highlighted the need to better understand 

the consequences and extent of severe fire events. Because fires are large and often occur in 

remote areas, air and space-borne sensors are needed to measure both active fire behavior 

and post-fire effects.  Because fire patterns are inherently spatially heterogeneous (Morgan et 

al. 2001), remote assessments of this heterogeneity can aid in the understanding of post-fire 

ecological trends and restoration priorities.   

 

A variety of remote sensing techniques have been developed to assess post-fire ecological 

change across a range of environments. See Lentile et al.  (2006) for a comprehensive 

review.  Methods such as the normalized burn ratio (NBR) and the Normalized Difference 

Vegetation Index (NDVI) have been widely applied to Landsat TM imagery and ground-

based spectral reflectance data to infer burn severity (Benson and Key 1999; Key and Benson 

2005, to be published; Roy, Yin et al. 2005; Smith, Wooster et al. 2005a; Van Wagtendonk, 

Root et al. 2004). Forest structural characteristics that influence post-fire effects vary at 

scales finer than 30 m and satellite sensors with higher spatial resolution (i.e. < 30x30 m 

pixel sizes) have potential for increasing the accuracy and precision of such remotely sensed 

estimates. Van Wagtendonk et al. (2004) evaluated NBR derived from both Landsat and 

AVIRIS imagery, but did not investigate spatial scaling issues. Several commercially 

available satellite sensors have yet to be evaluated for their ability to infer post-fire 

ecological effects. Such an assessment would inform the future selection of satellite sensors 

for assessing the broad-scale impacts of fires on the environment. 

 

 Landsat TM and Enhanced TM (ETM+) imagery is frequently used to evaluate the effects of 

fire on the environment (Lewis, Wu et al. 2006; Miller and Yool 2002). (See table 4 for 

Landsat TM sensor specifications). However, given the recent failure of the Landsat 5 sensor 

and the malfunction in the Landsat 7 sensor, alternative data sources will likely be sought in 

the future.  Data from a variety of satellite sensors are now readily available at little or no 

cost.  The MODIS sensor (Justice 1998), mounted on both the AQUA and TERRA satellites, 

has 16 available bands in the visible (VIS) to short-wave infrared (SWIR) and may acquire 

up to 4 images of a given site per day. With relatively large pixel sizes (250 m) in the VIS 
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and near infrared (NIR) and even larger pixels in the SWIR (i.e. 500-1000m) compared to the 

30 m resolution of Landsat TM, MODIS cannot be expected to capture the moderate- or fine-

scale variations of post-fire ecological effects given the heterogeneity of most fires. 

However, given its low cost, relatively simple processing, high temporal resolution, and wide 

use in numerous broad-scale fire effects studies (Roy, Yin et al. 2005; Smith, Wooster et al. 

2005b), MODIS data merit evaluation for their potential applicability to understanding fire 

effects across the landscape.  

 

The ASTER sensor is also housed aboard NASA’s TERRA satellite (see sensor 

specifications in Table 2). The ASTER sensor has been used to investigate a wide variety of 

scientific issues including measurement of canopy fuel biomass (Falkowski, Gessler et al. 

2005), moisture content (Toomey and Vierling, 2005) and  geological mapping (Rowan and 

Mars 2003), in addition to several applications highlighted in a recent special issue of the 

journal Remote Sensing of Environment (Gillespie, Abrams et al. 2005). ASTER exhibits a 

moderately high spatial resolution in the VIS and NIR wavelengths (15 m), with 30-m pixels 

available in the six SWIR bands (Table 2). Relative to Landsat TM imagery, the ASTER 

sensor therefore has potential for improved measurement of post-fire ecological effects.  

 

The Quickbird sensor, owned and operated by Digital Globe Inc. (Longmont, CO), features 

the highest spatial resolution of any civilian satellite-borne sensor, with 0.6 m and 2.4 m 

panchromatic and multispectral pixel sizes, respectively (Table 3). While Quickbird imagery 

is relatively expensive ($28 to 54/km2), the fine-scale resolution of this sensor might allow 

ecologically meaningful assessment of post-fire effects over large spatial extents while 

retaining great spatial detail. Researchers are currently investigating the ability of the 

Quickbird sensor to detect post-fire exotic weed invasions (Hudak, pers. comm.) and to 

differentiate between understory and overstory post-fire effects. Furthermore, the Quickbird 

sensor may be manually pointed from the ground and at additional expense can be given 

priority tasking, therefore enabling some flexibility with respect to its image acquisition 

frequency during and after wildfire.   
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The objective of this case study is to assess the utility of the four aforementioned satellite 

sensors (Quickbird, ASTER, Landsat, and MODIS) to derive information relating to burn 

severity for the Dry Lakes fire that burned mixed conifer forests and woodlands in New 

Mexico in 2003. We hope to provide information that will assist scientists and managers 

tasked with mapping burn severity to select and analyze satellite sensor data.  

 

Methods 

 

Study Area and Landcover Data 

Gila Wilderness 

The study area was located in the northern portion of the 230,800 ha Gila Wilderness, New 

Mexico (Figure 1) and is described in detail by Holden et al. (2005). The mean elevation is 

2500 m and this region is very dry, receiving on average 34 cm of rain annually (Sheppard, 

Comrie et al. 2002). The Gila Wilderness was grazed extensively until the 1950’s but has 

never been logged. Lightning ignited several fires in the wilderness in June 2003, which 

formed what was later called the Dry Lakes Fire Complex (DLF). The Dry Lakes fire was 

managed under Wildland Fire Use (WFU), a program implemented by the Gila National 

Forest in 1975 that allows naturally ignited fires to burn where no human lives or structures 

are threatened and resources are available to suppress the fire in the event it spreads beyond a 

pre-defined boundary. More than 49,000 ha had burned by the time rains extinguished the 

fire in early August, the largest recorded wildfire in New Mexico. Previously acquired 

Quickbird imagery (13 May 2003) and a matching post-fire scene that coincided with a 

portion of the Dry Lakes fire (19 May 2004) delineated the spatial extent of our work, and 

allowed us to study a 2,600-ha area of the fire in mid-elevation (2500 m) ponderosa pine 

forests in the north-central portion of the Gila Wilderness.  

 

Image Processing and Analysis 

Multi-temporal satellite imagery from Quickbird (multi-spectral product), ASTER, Landsat 

TM, and MODIS were acquired for a 26 km2 portion of the DLF (Figure 1). Because our 

analyses were restricted to the extent of the Quickbird imagery, all other imagery was subset 

to match these data in order to enable comparative analysis.   
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Quickbird scenes (standard processing levels) were converted from at-sensor radiance to 

reflectance using equations provided by the Landsat imagery users guide (LPSO 1998) and 

adapted for IKONOS imagery following Fleming (2003). Because Quickbird band spectral 

response functions are nearly identical to the IKONOS imagery (Rangaswamy 2003),  mean 

solar exoatmospheric irradiances (ESUN) values from Fleming (2003) were used to process 

the Quickbird imagery. The 2003 pre-fire Quickbird scene was georegistered to a digital 

orthophotoquad (DOQ) using image-to-image registration in ENVI 4.0 software (RSI, 

Boulder, CO; RMSE = 0.56 pixels). The post-fire 2004 scene was then georeferenced to the 

2003 Quickbird scene. Concerns about topographic influence on the accuracy of 

georectification were minor, due to the relatively flat mesa tops that characterize this study 

area.  

 

Pre- and post-fire ASTER level 1B images (16 May 2003 and 19 June 2004) were imported 

into the ERDAS Imagine (Leica 2004) image processing software. The 2003 image was 

georeferenced to a digital orthophotoquad (DOQ). The 2004 image was then georeferenced 

to the 2003 image. Both images were then converted to top-of-atmosphere reflectance. The 

ASTER images were converted to at-sensor reflectance using ESUN values calculated by 

convolving the ASTER spectral response functions with the Exoatmopsheric Solar Irradiance 

(Table 2). 

 

Pre and post-fire Landsat TM scenes (15 June 2002 and 20 June 2004) were processed by the 

EROS data center (Sioux Falls, SD) as part of the national Monitoring Trends in Burn 

Severity (MTBS) project. Both scenes were terrain corrected and converted to at-sensor 

reflectance (by convolving the spectral response functions with exoatmospheric solar 

irradiance (ESUN) values (LPSO 1998).  

 

Pre- and post-fire MODIS scenes (13 June 2003 and 19 June 2004) were imported into ENVI 

4.0 software and georeferenced using the sensor-specific MODIS reprojection tool   

(http://edcdaac.usgs.gov/landdaac/tools/modis/index.asp). The MODIS data were then 

converted into at-sensor radiance using the gain and offset parameters within the MODIS 
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header file. Because images from each sensor were retrospective and our study area is in a 

remote, dry, high-elevation environment, we did not perform any atmospheric correction. 

 

Several spectral indices were calculated for each satellite sensor and then differenced 

between pre- and post-fire scenes to detect fire-caused changes in vegetation (Table 5). The 

Normalized difference vegetation index (NDVI) (Rouse, Haas et al. 1974) and enhanced 

vegetation index (EVI) (Chen, Vierling et al. 2004; Huete, Didan et al. 2002; Miura, Huete et 

al. 2001) were calculated for Quickbird and Landsat imagery to facilitate direct comparisons 

among sensors. The EVI could not be calculated with the ASTER sensor because it does not 

detect blue wavelength radiation. We chose not to calculate the EVI or NBR using MODIS 

data because the required rescaling to 500-m resolution would provide too coarse a scale to 

be useful for burn severity mapping.  

 

The Normalized Burn Ratio and differenced Normalized Burn Ratio (dNBR) (Key and 

Benson 1999) were calculated for the Landsat and ASTER imagery. Separate NBR images 

were created for the ASTER images using each of the six SWIR bands (Table 2). Differenced 

NBR (dNBR) images were then created for both the Landsat and ASTER data products by 

subtracting post-fire NBR image from the NBR for the pre-fire image and multiplying by 

1000.  

 

Field Data Collection 

Burn severity was measured on the ground in May and June 2004 (1-year post-fire) using the 

Composite Burn Index (CBI) (Key and Benson 2002). We sampled 55 CBI plots randomly 

located within homogeneous (> 150 x 150 m) patches of unburned, low, moderate, moderate-

high and high severity areas of the Dry Lakes Fire. Plot sampling was stratified using a 23 

October 2003 post-fire Landsat TM NBR image. The CBI is a relatively rapid method of 

measuring post-fire effects, and includes soil, understory and overstory strata. Several 

characteristics are measured or estimated within each stratum and then combined to give an 

overall CBI score from 0 to 3 (unburned to severely burned). Despite the qualitative nature of 

several CBI measures, some measures (e.g. crown scorch, torch) are measurable and 

repeatable. Others, like fuel consumption, depend on the observer. Having spent the previous 
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summer  collecting forest structure and fuel data in the areas described in this study, we felt it 

appropriate to include these measures.  

 

Data Analysis 

We compared the severity detection capabilities of each sensor with 55 CBI plots using linear 

regression techniques. Severity estimates from the Quickbird dEVI and dNDVI image were 

calculated for the center pixel, and the mean of 3x3, 6x6 (approximate size of 1 ASTER 

pixel) and 12x12 (approximate size of 1 Landsat pixel) pixel groups. Standard errors were 

calculated for 12x12 pixel groups in order to represent the variability among pixels within 

each plot. Severity estimates for each ASTER dNBR image were calculated for a single 

(15x15m) pixel. Regression plots of CBI and imagery data were clearly non-linear. We fit 

second order polynomial functions, selected because of the non-linear appearance of the data, 

to the data and calculated  regression coefficients and coefficients of determination (R2) 

values.  

 

Results and Discussion 

Coefficients of determination among vegetation indices and CBI data are presented in Table 

1. The EVI derived from means of 12x12 pixel groups from Quickbird imagery explained a 

high degree of CBI plot data variance (R2 = 0.82, Figure 2) and outperformed the NDVI (R2 

= 0.76, Figure 3). There was substantial variation among pixels within a 12x12 pixel group, 

yet the coefficients of determination remained high (R2=0.68) between CBI and Quickbird 

EVI data even when the area of analysis was decreased by 75%, from 12x12 to 6x6 pixels in 

size  (Figures 2 and 3).  

 

The dNDVI was weakly but significantly correlated between ASTER imagery and CBI plot 

data (R2 = 0.55, Table 1). The ASTER-derived dNBR was well correlated with CBI data, 

(Figure 4). There was slight variability (R2 values ranged from 0.75 to 0.84) in the 

performance of dNBR indices derived from the six ASTER SWIR bands, with band 9 

showing the strongest correlation with CBI data (Figure 4).  
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Both the ASTER-derived dNBR and Quickbird-derived dEVI performed slightly better than 

dNBR derived from Landsat TM data based on correlations with ground data (R2 = 0.84, 

0.82; 0.78 respectively, Table 1). This result bodes well for the future use of these sensors for 

measuring post-fire ecological effects, now that the future of the Landsat program is in 

question.  

 

The improved correlation between Quickbird severity estimates and CBI data with 

aggregation to larger spatial scales suggests that shadow effects, variability in vegetation 

structure (open vs. closed canopy) and variability in post-fire ecological effects at small 

spatial scales may influence the effectiveness of this fine spatial resolution sensor. Because 

our study design did not incorporate this spatial variability into our plot sampling, we are 

unable to meaningfully evaluate the potential causes of variation between pixels.  Once the 

Quickbird data were aggregated to a 6x6 pixel size, the heterogeneity seemed to match well 

with the heterogeneity captured by the CBI plot data, as evidenced by a 0.68 coefficient of 

determination.  When the remote sensing scale of analysis was at the level of 3x3 or a single 

pixel of Quickbird data, the correlations were much lower (Figure 2).     

 

The dEVI performed slightly better than the dNDVI for the Quickbird imagery, but dEVI 

performed poorly when calculated using Landsat data (R2 with CBI = 0.03, Table 1). This 

suggests that corrections for canopy background effects in the dEVI may help account in 

some way for the within-pixel variability of the Quickbird data. In addition, correlations 

between Quickbird-derived dEVI and ground data were clearly linear. Previous studies have 

shown that the EVI is sensitive to within-canopy shading (Chen et al. 2004; Chen et al. 

2005). While our data are inconclusive, the relationship between the dEVI and ground-based 

measures, as well as other spectral indices, warrants further study.  

 

Relationships between Landsat dNBR and CBI fire severity measures in this (figure 5) and in 

previous studies were all non-linear (Cocke, Fule et al. 2005; Van Wagtendonk, Root et al. 

2004). With the exception of the dEVI derived from Quickbird imagery, we observed the 

same non-linear relationship between severity estimates from each sensor and CBI data. 

There are several possible explanations for this apparent relationship. One is that beyond 
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some threshold level of severity (e.g. the majority of tree canopies consumed), the 

concomitant changes in surface spectral radiance may limit the sensitivity of spectral 

vegetation indices used to discriminate among levels of fire-caused ecological effects. For 

example, where fires are “moderately severe” in ponderosa pine forests, a fire may scorch 

(heat-induced leaf death) all overstory trees without actually consuming the needles. Because 

the photosynthetically active tissue in tree crowns is lost beyond this level of severity, post-

fire spectral data may not indicate such differences, despite the ecologically meaningfully 

role scorched needles play in reducing post-fire erosion (Pannkuk and Robichaud 2003). 

Another possible explanation is that one year post-fire vegetation response might vary 

depending on the condition of the vegetation before the fire, and subsequent post-fire 

response. Rapid green-up of understory vegetation one year post-fire in an area that burned 

“severely” according to satellite imagery and CBI plot data might contribute to variation in 

correlations between ground and imagery data. Alternatively, Miller and Thode (2007) 

suggest that the dNBR may be sensitive to differences in post-fire soil characteristics while 

the CBI reaches a maximum once all aboveground vegetation has been removed, resulting in 

variable dNBR values at maximum CBI plot values of 3.0.  

 

The ASTER sensor proved effective for deriving burn severity. While each of the six dNBR 

images correlated relatively well with the CBI data, Band 9 performed slightly better. Van 

Wagtendonk and Key (2004) identify AVIRIS channel 210 (2.37 um) as showing the greatest 

positive response in areas that burned severely. While this channel lies just beyond the range 

of the Landsat TM band 7, it corresponds to the ASTER band 9 (2.36-2.43 um). The slightly 

improved performance of the ASTER band 9 and its correspondence with the AVIRIS 

channel suggests that the ASTER data may indeed improve estimates of severity in some 

situations.  

 

The MODIS-derived dNDVI did not correlate well with ground data (R2=0.38, Figure 6). 

This was expected given the relatively poor spatial resolution of this sensor. Because the Gila 

Wilderness has remained unlogged and portions of our study area burned several times in the 

20th century, much of this fire was likely less severe than other wildfires burning in the 

Southwestern US. In addition, the small size of our study area (2600 ha) may have limited 
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the usefulness of the MODIS data. Nelson et al. (in press) found that 500-m MODIS data 

performed poorly relative to Landsat, but improved with fire size and where fires were 

predominantly in vegetation that typically burns with high severity fires.  While MODIS data 

are clearly useless in situations where relatively fine-scale information is needed, they might 

still be useful for mapping coarse-scale post-fire ecological effects across large fire events. 

 

Measuring fire-induced vegetation change in ponderosa pine forests poses special challenges, 

particularly where fires burn on the ground without significantly altering the canopy of the 

largest trees, those that occupy dominant and codominant positions in the forest canopy 

(Holden, Smith et al. 2005). Fires could theoretically burn slowly below the canopy, altering 

soil properties and causing severe ecological changes that would go undetected by sensors 

that integrate vegetation-dominated change into a single signal. Very high-resolution sensors 

such as Quickbird (and perhaps IKONOS, due to its similar spectral and spatial 

characteristics) may be able differentiate between understory and overstory effects.  

However, the high cost of such data may limit its widespread application in post-fire severity 

analyses. Creative partnerships and cooperative agreements between private and public 

organizations are necessary to ensure the affordability of these commercial data for future 

operational use.  

 

The timing of image selection when dealing with issues of vegetation change and recovery 

are also particularly important for ecosystems in this region of the world.  Annual 

precipitation often displays a bimodal distribution in the southwestern US, with snow and 

rain falling in the winter and summer, and monsoon storms bringing additional rain in the 

late summer and early fall. The quantity and extent of snow and rainfall are highly variable in 

both seasons, and likely influence the amount of understory vegetation growth each year. 

Therefore, depending on the year, peak vegetation green-up could occur in either the late 

spring or fall. Because post-fire vegetation recovery is an important factor associated with 

burn severity, reflecting both damage to vegetation and soils, the timing of image acquisition 

and field data collection may influence the perceived post-fire vegetation recovery. Due to 

this and other factors, the results presented in this case study should be treated as a first step 
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towards understanding the relationship between burn severity and spectral reflectance as 

measured at a variety of spatial scales in conifer-dominated landscapes.   

 

Conclusions 

Relatively new satellite sensors like ASTER, Quickbird and IKONOS clearly have potential 

for mapping burn severity using remote sensing. The low cost and improved spectral and 

spatial resolution of the ASTER sensor over Landsat TM data warrant further testing at other 

post-fire sites, particularly where effects of fire on soil properties and varying soil types are 

of interest. Very high resolution Quickbird data were well correlated with ground-based 

estimates of burn severity and may have potential for improving assessments of burn 

severity, despite the lack of available mid-infrared bands. The non-linear trends in 

relationships between CBI measures and sensor-derived severity estimates suggest that 

spatial scaling may be an issue when relating CBI data to remotely sensed data, and warrants 

further study. In contrast to other indices, the EVI derived from Quickbird imagery showed a 

linear relationship to ground data. The MODIS sensor poorly predicted burn severity, 

probably due to its poor spatial resolution. These results indicate that several alternative data 

sources may be useful for inferring burn severity in this era of limited data availability from 

the Landsat family of sensors.   
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Figure 1. Dry Lakes Fire Complex perimeter (48,800 ha) within the Gila Aldo Leopold 
Wilderness Area, New Mexico (Left) and the 2600 ha-ha area used for analyses. Plot 
locations are indicated by dots.  
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Figure 2. Quickbird dNDVI values for the mean of a 12x12 pixel area (a), for the mean of a 
6x6 pixel area (b), the mean of a 3x3 pixel area (c), and a single pixel (d) correlated with CBI 
plot data 
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Figure 3. Quickbird dEVI values for (a) 12x12 pixel mean, (b) 12x12 pixel mean ±1 standard 
deviation, (c) 9x9 pixel mean, (d) 6x6 pixel mean, (e) 3x3 pixel mean, and (f) single pixel 
correlated with CBI plot data. 
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Figure 4. ASTER dNBR values for each of six SWIR bands correlated with CBI plot data: 
(a)  SWIR band 4, (b) SWIR band 5, (c) SWIR band 6, (d) SWIR band 7, (e) SWIR band 8, 
and (f) SWIR band 9. 
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Figure 5. Landsat TM-derived dNBR (left) and dNDVI (right) correlated with CBI data. 
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Figure 6. MODIS 250-m NDVI correlated with CBI data 
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Table 1. Coefficients of determination (R2 values) between satellite-derived indices and CBI 
data. ASTER band numbers represent the SWIR bands used to calculate the dNBR and dEVI. 
 

Sensor    Spectral Index   S

Quickbird       dNDVI  
Quickbird       dEVI  
ASTER (B9)       dNDVI  
ASTER (B9)       dNBR  
Landsat TM       dNBR  
Landsat TM       dNDVI  
Landsat TM       dEVI  
MODIS       dNDVI  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. ASTER sensor bands, band
production of the ASTER ESUN val
http://www.cnrhome.uidaho.edu/def
 
 

ASTER Band         Wavelength (n

VNIR_Band 1            0.52-0.60     
VNIR_Band 2            0.63-0.69     
VNIR  Band 3N         0.76-0.86     
SWIR Band  3B         0.76-0.86     
SWIR Band 4             1.60-1.70     
SWIR Band 5             2.145-2.185 
SWIR Band 6             2.185-2.225 
SWIR Band 7             2.235-2.285 
SWIR Band 8             2.295-2.365 
SWIR Band 9             2.36-2.43     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

patial Resolution     R2

2.4 m                     0.76                
2.4 m                     0.82    
15 m                      0.55 
15 m                      0.84 
30 m                      0.78 
30 m                      0.79 
30 m                      0.03 
30 m                      0.38 
 wavelengths and ESUN Values. A guide outlining the 
ues is available online at: 
ault.aspx?pid=85984 

 

m)      Resolution ESUN 

            15m           1845.99                
            15m           1555.74     
            15m           1119.47 
            30m      Not typically used 
            30m             231.25   
            30m               79.81 
            30m               74.99      
            30m               68.66 
            30m               59.74 
            30m               56.92  
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Table 4. Landsat sensor bands characteristics. 
Landsat Band   Wavelength (um) Resolution  ESUN 
VNIR_Band 1 0.45-0.52 30m 1845.99 
VNIR_Band 2 0.52-0.60 30m 1555.74 
VNIR  Band 3 0.76-0.90 30m 1119.47 
SWIR Band 4 1.60-1.70 30m 231.25 
SWIR Band 5 1.55-1.75 30m 79.81 
SWIR Band 6   10.4-12.5 30m 74.99 
 
 
 
 
 
 
 

 
Table 3. Quickbird Multispectral sensor characteristics. 
Sensor Band      Wavelength (um) Resolution  ESUN 
VNIR_(blue) 0.45-0.52 2.4m 1939.4 
VNIR_(green) 0.52-0.60 2.4m 1847.4 
VNIR  (red) 0.63-0.69 2.4m 1536.4 
NIR 0.76-0.90 2.4m 1147.8 
 
 
Table 5. Spectral indices and the equations used to calculate each index.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Method                           Equation                         Reference 

                                

NDVI                          ( ) ( )
( ) ( )redNIR

redNIR

λρλρ
λρλρ

+
−                     Rouse et al. (1974) 

 

NBR                           ( ) ( )
( ) ( )SWIRNIR

SWIRNIR

λρλρ
λρλρ

+
−                  Key and Benson (2002) 

 

EVI*                G ( ) ( )
( ) ( ) ( ) LCC blueredNIR

redNIR

+−+
−

λλρλρ
λρλρ

21
   Muira et al. (2001) 

*Values of G = 2.5, L = 1, C1 = 6 and C2 = 7.5 suggested by Huete et al. (1997) were used in 
this study, where G is a gain factor, C1 and C2 are aerosol adjustment factors and L is a 
canopy background adjustment factor. 
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Abstract 

Despite a widely noted increase in the severity of recent western wildfires, this trend has 

never been quantified. A twenty-year series of Landsat TM satellite imagery for all forest 

fires on the 1.4 million ha Gila National Forest suggests that an increases in area burned and 

area burned severely from 1984-2004 are well correlated with timing and intensity of rain 

events during the fire season. Winter precipitation was marginally correlated with burn 

severity, but only in high-elevation forest types. These results suggest the importance of 

within-season precipitation over snow pack in modulating recent wildfire size and severity in 

mid-elevation southwestern forests.   
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Introduction 

Wildfires burned more than 3.9 million hectares in the United States in 2006, the largest area 

since records began in 1960, highlighting a recent trend toward increasing fire activity in the 

western US (www.nifc.gov). Despite a widely perceived increase in the severity (generally 

defined as the magnitude of ecological change caused by a fire) of fires in the western US, 

actual burn severity trends and their association with regional and global climate patterns 

remain unknown. Understanding the causes and consequences of severe fires is particularly 

important in the southwestern US, where disruption of natural fire cycles in dry forests and 

land use change have altered their structure and resulting fire behavior and effects [Allen, et 

al., 2002; Covington, 2000]. Severe, stand-replacing fires may lead to high post-fire erosion 

[Cannon and Reneau, 2000], alter ecosystem function and are difficult to manage or suppress 

[Pyne, et al., 1996].  

 

Numerous studies have described general relationships between regional climate patterns and 

historical fire extent in the western US. Dendroecological studies of surface fire regimes in 

dry pine forests in the northern Rocky Mountains and the southwestern US have noted that 

small fires occur during regionally wet years [Heyerdahl, et al., 2002; Schoennagel, et al., 

2004]. However, historically, wet winters and springs followed by dry years may have 

increased fine fuel production necessary to carry large fires [Swetnam and Betancourt, 1998; 

Swetnam and Betancourt, 1990]. More recently, fire occurrence databases have been used to 

establish links among early, warm spring temperatures, timing of snow melt and the recent 

increase in fire activity in the western US [Westerling, et al., 2006].  

 

In the southwestern United States, weather patterns vary widely across annual and multi-

decadal time scales and strongly influence the southwestern US fire season. Multi-year to 

interdecadal regional drought have been shown to be associated with the El Niño Southern 

Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) from the 1900’s to present 

[McCabe and Dettinger, 1999; McCabe, et al., 2004]. Based on these historical patterns, 

climatologists predict that alignment of the negative (La Niña) phase of the ENSO and a 

positive phase of the PDO may create a prolonged period of intense drought in the 

southwestern US [McCabe, et al., 2004]. Climate models predict increasing aridity across the 
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southwestern US as global climate warming alters patterns of the North American monsoon 

[Seager, et al., 2007]. Both of these studies highlight serious implications for fire activity in 

the Southwestern US. However, we lack a thorough understanding of the role of natural 

climate variability as well as the potential role of current and future climate change on fire 

activity in this region.  

 

Here, we present the first temporal analysis of satellite-derived trends in burn severity for 

114 fires and 195,600 ha burned within 1.4 million ha encompassing the Gila Aldo Leopold 

Wilderness Complex and surrounding National Forest. This un-logged wilderness area has 

been ungrazed for the last 60 years and is an ideal area in which to study fire patterns, where 

many large, naturally ignited fires have been allowed to burn with a minimum of 

management or suppression activities. The term burn severity has been used to describe a 

variety of post-fire ecological effects, and can therefore be misleading [Lentile, et al., 2006]. 

We define severity specifically as the magnitude of change in overstory vegetation measured 

one year after a fire relative to the pre-burn conditions. 

 

This unique data set provides spatially explicit information about fire perimeters and the 

post-fire ecological effects within burned areas. Importantly, this data can be combined with 

archives of seasonal weather patterns to understand linkages between intra-annual climate 

and fire. We compared annual area burned and area burned within each severity class with 

snow pack and precipitation metrics from a snow pack telemetry (SNOTEL) site and a daily 

surface climate station located within the Gila National Forest. Three measures of April-July 

15th precipitation were extracted from daily climate data: The total number of days without 

precipitation (TNR), the maximum consecutive days without precipitation (MNR) and the 

cumulative precipitation (PCP), and three, six and twelve month instrumental Palmer 

Drought Severity Index data [Cook, et al., 2004]. 

 

Methods  

A time series (1984-2004) of summer Landsat 5 Thematic Mapper (TM) satellite images 

were used to create burn severity maps for all fires greater than 40 ha on the Gila National 

Forest, NM (Figure 1). Hundreds of fires have burned as wildland fire use (WFU) fires in the 
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Gila Aldo Leopold Wilderness Complex, New Mexico (GALWC) and surrounding National 

Forest since the program was implemented there in 1974. Pre and post-fire satellite images 

for 114 fires (total area burned = 195,600 ha) were processed using the Relative Differenced 

Normalized Burn Ratio [Miller and Thode, in press]. The RdNBR is a variant of the 

Differenced Normalized Burn Ratio [Key and Benson, 2006], devised to improve 

performance in open vegetation types by dividing the dNBR by a pre-fire NBR value. 

Perimeters of each fire were manually digitized using both the RDNBR index image and the 

reflectance-corrected Landsat images.  

 

109 ground-based Composite Burn Index (CBI) plots [Key and Benson, 2006] were collected 

in 2004 on the 2003 Dry Lakes Fire Complex in the Gila Wilderness. The CBI is a measure 

that combines 27 ocular estimates, including overstory and understory vegetation 

consumption, scorch and fuel consumption. We refined our final CBI estimates for each plot 

by removing several measures (e.g. change in soil color) that were too subjective to be 

accurately estimated post-fire. Correlations between ground plots and the RDNBR image of 

that fire were used to define severity thresholds for all fires from 1984-2004 on the Gila 

National Forest. RDNBR index images for each fire were classified into 4 classes (very low, 

low, moderate and high severity), which were used in subsequent analyses. A classification 

of “severe” was assigned to areas where 75% or more of overstory vegetation was removed. 

 

Instrumental Palmer Drought Severity Index (PDSI) data [Cook, et al., 2004] and historical 

precipitation data from the Gila Hot Springs climate station  (Elevation 1768 m; central to 

areas where most fires have occurred) were obtained from the National Climate Data Center 

(www.ncdc.noaa.gov). Daily precipitation data from each station were used to calculate the 

total number of days without rain (TNR), the maximum consecutive number of days without 

rain (MNR) and total precipitation (PCP) from 1st April to 15th July from 1984-2004. Snow 

water equivalent data from February-April (SWE) were obtained from the Lookout Mountain 

snow pack telemetry (SNOTEL) site located within the Gila National Forest.  

 

http://www.ncdc.noaa.gov/
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Data Analysis 

Multiple analysis of variance (MANOVA) was used to evaluate the influence of climate 

variables on total area burned in each burn severity class. Area burned as very low, low, 

moderate and high severity was calculated from classified burn severity maps for all fires by 

year. Residuals of burn severity data were normally distributed. Area burned in each severity 

class was treated as a multivariate response variable. TNR, MNR, PCP, SWE and three 

month, six month and annual instrumental Palmer Drought Severity Index data were used as 

independent variables. Potential Vegetation Type (PVT), defined as the dominant vegetation 

expected at a site after long periods without any disturbance, was included as an independent 

variable [Keane, et al., 2001]. Akaike Information Criteria (AIC) methods were used to 

select statistical models that best explained variation in area burned in each severity class 

[Akaike, 1974]. Canonical analysis was used to evaluate the relationship between the original 

dependent variables and the canonical variates.  

 

Results 

Total area burned and total area burned severely increase over the 20-year period for which 

imagery are available (figure 2). This trend is best explained by variability in the frequency 

and intensity of springtime rain events (figure 3). Area severely burned each year is well 

correlated with TNR and MNR, which together explain 63% of the variability. Linear models 

of area severely burned within individual Potential Vegetation Types (PVT) show that SWE 

is only a marginally significant predictor in upper elevation spruce-fir forest types (p = 

0.055) and mixed conifer forest types (p = 0.062) but not in lower elevation Douglas-fir, 

ponderosa pine, and Pinyon-juniper vegetation types.  

 

Discussion and Conclusions 

Variability in timing and intensity of precipitation (days without rain and maximum 

consecutive days without rain) during the fire season in the southwestern US strongly 

influences the extent and severity of fires across the Gila NF. Canonical analysis reveals that 

while the significance of TNR, (a measure that describes the overall dryness of the spring and 

early summer fire season) is related to area burned in all severity classes (including the very 

low and low burn severity classes which contain more than 90% of the area burned), MNR is 



 98

related mainly to area burned severely. This intuitive result suggests that longer rain-free 

periods may increase the likelihood that a fire will burn as a high severity crown fire, a 

reflection of increasingly dry live and dead fuels.  

 

While snow-pack is a significant variable in statistical models, univariate analysis of extent 

and severity within the individual vegetation types reveal that snow pack in this study only 

marginally influences fire extent and severity in upper elevation (Spruce-fir and Mixed 

conifer) forest types but lacks significance in other forest types. SNOTEL station data shows 

that snow rarely persists after March below 2600 m, where most fires in this area have 

occurred, suggesting that burning in mid-elevation ponderosa pine and pinyon-juniper 

vegetation types during the last 20 years occurred independently of winter precipitation. This 

is most likely due to the climatologically warm and dry conditions that persist across the 

region each spring [Sheppard, et al., 2002]. Winter precipitation patterns across the 

Southwest are known to be influenced by the El Niño -Southern Oscillation with the cold 

phase (La Niña) favoring drier-than-average conditions while the warm phase (El Niño) 

favors wetter-than-average conditions [Sheppard, et al., 2002]. Several dry winters 

associated with La Niña events followed by increased burning in spruce-fir and mixed-

conifer forest types are observed within the study period, but the overall relationship between 

winter precipitation and fire extent and severity is very weak.  

 

The causes and consequences of stand-replacing wildfires have been the subject of intense 

scientific and political debate. Such high severity fires were thought to have been relatively 

uncommon historically in ponderosa pine forests of the southwestern US, which cover 29% 

of the area burned during the 20 years included in this study. Land management and climatic 

trends have both been proposed to explain the recent increase in fire severity in the western 

United States [Running, 2006; Westerling, et al., 2006]. Our results suggest that an 

alternative mechanism to early snowmelt may play a role in the observed trend toward larger 

more severe fires in ponderosa pine forests of the southwestern US. Our analysis of fire 

season precipitation patterns shows increasingly dry springs during last 20 years, including 

an increase in the total and consecutive number of days without rain, which provide longe 

periods of weather favorable for fire activity. Whether this variability is associated with 
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trends in the Pacific Decadal Observation (PDO) [Mantua, et al., 1997], Pacific and Atlantic 

SST teleconnections, or shifting precipitation patterns associated with global climate 

warming [Seager, et al., 2007] is unclear. However, precipitation records from the last 

century show similar increases in spring precipitation variability during past dry periods, 

suggesting that the localized variability in precipitation observed here might be a cyclical 

phenomenon related to regional and global climate patterns. Controls on transitional 

springtime and early summer precipitation patterns in this region require further study. 

 

I speculate that the recent trends in fire activity described in our study reflect the changes that 

fire regime have undergone across much of the southwestern US. Prior to suppression and 

exclusion, fires burned synchronously across extensive areas of the Southwest. Given 

consecutive years of regionally widespread fire activity, lack of fine fuels would have 

become the primary factor limiting fire spread. While the importance of antecedent climate 

on fine fuel production and fire activity will vary by vegetation type, dry pine forests in the 

Southwest today are generally not fuel limited. With tens of millions of acres unburned for 

decades, fine fuels are abundant. Some dense forests with thick layers of needles and duff no 

longer maintain grassy understories and hence do not produce abundant fine fuels in response 

to wet antecedent conditions. Only dry fuels and ignition are necessary for fires to burn under 

these conditions. Given these changes, it seems likely that precipitation rather than fine fuels 

and biomass production now influence fire activity in dry pine forests in the Southwestern 

US. Further research to evaluate to which the degree to which patterns in spring season 

dryness observed during the last 20 years can be observed in the tree ring record and fire-scar 

chronologies may provide additional insights on this relationship. Similar analyses of burn 

severity time series data for other large wilderness areas will elucidate the extent to which 

recent climate warming versus natural climatic variability may be influencing recent burn 

severity in the western US. 
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Figure 1. Burn severity atlas of 114 fires and 195,600 ha burned (1984-2004) on the Gila 
National Forest. Outer perimeter delineates the Gila NF boundary, inner perimeter the Gila 
and Aldo Leopold wilderness complex. 
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Figure 2. Annual area burned as severe grouped by Potential Vegetation Type (upper graph) 
and total area burned in all severity classes (lower graph). The dotted lines represents the 
maximum number of consecutive rain-free days and the total rain free days  from April-July 
15th.  
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Figure 3. Annual, 5 and 10 year running average maximum number of consecutive days 
without rain (bottom line) and total number of days without rain (top line) from April-July 
15th for Gila Hot Springs (1958-2005). 
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CHAPTER 5 
 
Fire Season Precipitation Variability and Green-Up (1989-2005) Across a Vegetation 
Gradient in the Gila Wilderness, New Mexico, USA  
 
Zachary A. Holden and Penelope Morgan 
 
 

Abstract 

I compared annual patterns of spring green-up from 1989-2005 inferred from 1-km2 AVHRR 

Normalized Difference Vegetation Index (NDVI) data with spring precipitation metrics that 

are correlated with patterns of fire extent and severity in the Gila Wilderness, NM. For each 

of the 17 years, I extracted three different NDVI values (17 April, 29 May, and 9 July) 

corresponding to the peak fire season in the Southwest for five sites that varied by vegetation 

type and 20th-century fire frequency. Annual NDVI values were significantly correlated with 

snow water equivalent (SWE), maximum consecutive days without rain from 1 April to 15 

July (MNR) and total April-June precipitation (PCP) (canonical correlation = 0.80 – 0.88). In 

the three sites dominated by ponderosa pine, spring NDVI was strongly correlated with 

SWE, PCP and MNR, with most of the strength of that relationship driven by MNR. In 

spruce-fir forests, only SWE and MNR were significant model variables, with SWE strongly 

correlated with 17 April NDVI, likely reflecting delayed green-up due to persistent snow 

pack at higher elevations. Annual area burned by burn severity class inferred from Landsat-

derived Relative differenced Normalized Burn Ratio (RdNBR) was also significantly 

correlated with these same NDVI variables (canonical correlation = 0.57). Two principal 

components explain 89% of variability in NDVI. Principal component scores were well 

correlated with both SWE and MNR, supporting the canonical analysis results. The first 

principal component, which describes spring and early summer productivity was negatively 

correlated with both February and May maximum average temperatures, suggesting that 

warm spring temperatures could influence vegetation productivity by increasing 

evapotranspiration and soil water loss rates that would could intensify fire activity preceding 

the arrival of summer monsoon rains. I conclude that that precipitation patterns drive 

vegetation productivity and drying, thus influencing burn severity, and thus support the 

results of our previous study (Holden et al. 2007 and chapter four of this dissertation) 
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suggesting that fire season precipitation patterns are an important driver of fire extent and 

severity in mid-elevation ponderosa pine forests in this study area.  
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Introduction 

Temporal patterns of precipitation and topography determine the occurrence of species and 

plant communities globally (Holridge 1947, Whittaker and Niering 1975). Precipitation 

limits vegetation productivity in semi-arid ecosystems and interacts with temperature, solar 

radiation and wind to regulate moisture content in leaf litter and dead woody biomass, or 

fuels. The amount of fuel available to burn is, in turn, a major factor in determining fire rate 

of spread and intensity (Rothermel 1972). Thus, global and regional climate entrain the 

weather patterns that, interacting with topography and vegetation, largely determine fire 

behavior and as a consequence, post-fire ecological effects.  

 

Our knowledge of historical fire occurrence comes mainly from tree rings and historical fire 

perimeter data or “fire atlases”. Patterns of fire occurrence across the western United States 

derived from extensive fire scar records have been linked to oscillations in Atlantic and 

Pacific sea surface temperatures (Kitzberger et al. 2007). In the southwestern US, years with 

widespread fire were dry year and followed wet years, a pattern that was associated with the 

El Niño Southern Oscillation (Swetnam and Betancourt 1990). However, these patterns 

explain only about 30-35% of the year-to-year variation in fire occurrence (Swetnam and 

Betancourt 1990). Fire atlases, while shorter in temporal depth, provide spatially explicit 

information about fire extent during the last century (Rollins et al. 2001). These data sets 

have been used to identify climate drivers associated with regionally synchronous fire years 

in the US Northern Rockies (Morgan et al. in press). Fire atlases of fire extent and severity 

inferred from differenced Normalized Burn Ratio have been used to assess fire patterns 

relative to precipitation (Holden et al. 2007). 

 

The number and size of fires in the western US has increased in recent decades, a trend that 

has been attributed to warm springs, longer fire seasons, and land management (Westerling et 

al. 2006), and perhaps to human-induced climate change (Running 2006). In the 

southwestern United States, the increased size and severity of recent forest fires has been 

attributed to both recent drought and changes in the stand structure and fuel loading resulting 

from land use change and fire exclusion (Covington 2000). In a recent analysis of twenty-

year satellite-derived fire extent and severity patterns in the Gila National Forest, we 



 107

observed a strong relationship of total area burned and area burned severely with patterns of 

precipitation during the fire season (Holden et al. 2007; Chapter four of this dissertation), 

suggesting that in addition to inter-annual variation in spring temperatures, within-season 

precipitation influences fire activity in the Southwest. Our objective was to explore patterns 

of vegetation productivity across the growing season as inferred from low-spatial resolution 

(1 km) Advanced Very High Resolution Radiometer (AVHRR) data. We hypothesized that 

patterns of spring precipitation analyzed in our earlier study would be reflected in the 

patterns of spring and early summer green-up inferred from time series of NDVI data, and 

that these could support our inferences about the mechanisms linking fire activity to 

precipitation.  

  

Methods 

Study Area 

Data for this study are remotely sampled from within the 230,208-ha Gila Wilderness area, 

New Mexico within the Gila National Forest (Figure 1). I chose wilderness sites for our 

analysis because they are less influenced by logging, grazing, and fire suppression than sites 

outside designated wilderness areas. I wanted to avoid sampling in areas where stand-

replacing fires might alter green-up patterns. Approximately 60% of the wilderness area 

burned during this time period restricted sampling to only a few areas and making 

randomized pixel selection difficult. I selected AVHRR pixel groups from within unburned 

areas of pure Spruce-fir, ponderosa pine/Douglas-fir and pinyon-juniper Potential Vegetation 

Types (PVT). The number of pixels sampled at each site varied depending on the amount of 

contiguous unburned area available a given PVT.  PVT is a classification of biophysical 

settings named for the vegetation expected at a site after long periods without disturbance 

(Keane et al. 2000, Keane et al. 2001). Ponderosa-pine/Douglas-fir sites included three mesa 

tops within the Gila Wilderness that vary by 20th-century fire history and stand structure 

(Table 1). The open ponderosa pine site (denoted open PIPO in figure 2) is known to have 

burned at least once during the mid-century (1946) and then again in 1993 and 2003. I 

consider this site a reference area (Stephens and Fulé 2005) with tree densities approaching 

those of pre-Euro-American settlement forests. The moderate density site (denoted Mod. 

Open PIPO in figure 2) burned in 1979 and 1993, and it has a moderately open stand 
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structure. I hypothesized that the understory vegetation in areas with relatively open tree 

canopies would be more detectable via a two-dimensional satellite sensor and would respond 

noticeably to minor precipitation events, and that this would be reflected in the NDVI 

response. A third area (denoted Dense PIPO in figure 2) is unburned since at least 1900 and 

has a dense overstory structure and very little understory vegetation. Abolt (1996) described 

fire histories of upper-elevation forests in the Gila Wilderness; she found 300-year old 

Douglas-fir and spruce trees with no signs of recent fire. Our field sampling within this site 

in 2004 confirmed the absence of recent fires. I analyzed time (1984-2004) series of Landsat 

TM satellite images and visually confirmed that neither the spruce-fir nor the pinyon-juniper 

sites burned during the time period of this analysis. Average tree density and 20th century fire 

occurrence for all five sampled sites are listed in table 1.  

 

Satellite Imagery Data 

Data for this study comes from a 1989-2005 1-km2AVHRR Normalized Difference 

Vegetation Index (NDVI) time series (Eidenshink 1992). Annual AVHRR series are 

comprised of 26 bi-weekly image composites. Image selection for composites and smoothing 

to reduce noise associated with cloud cover and sensor noise are described in detail by Swets 

et al (1999). The NDVI is calculated as a ratio of the difference and sum of AVHRR channel 

1 (0.58-0.68 µm) and channel 2 (0.725-1.10 µm) and is sensitive to both structural (e.g. leaf 

area) and physiochemical (e.g. chlorophyll content) characteristics of vegetation (Penuelas et 

al. 1994). At coarse scales, the NDVI has been described as a measure of gross 

photosynthesis (Goetz et al. 2005). AVHRR and similar data sets have been used to link 

NDVI and precipitation patterns (Wang et al. 2003), drought-induced declines in  vegetation 

cover (Brashears et al. 2005) and variable response of non-native vegetation to precipitation 

(Bradley and Mustard 2005). 

 

Data Analysis  

I selected NDVI at three dates chosen to reflect the green-up patterns during the period of 

peak fire activity in our study area (Figure 2). I sought to select dates for analysis of NDVI 

that captured variation in spring green-up patterns in as few variables as possible, thus 

avoiding multi-colinearity and model over fitting. Initially, I selected maximum spring peaks 
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and troughs of NDVI. However, during wet years, there were no distinct spring peaks in 

NDVI. Instead, I chose three NDVI values using fixed dates (17 April, 29 May, and 9 July) 

that approximately captured the time period within which most fires have occurred during the 

time period of the study (data not shown). I selected 9 July to represent late spring conditions 

preceding the summer monsoon, with 17 April and 29 May dates selected to capture the 

general pattern of green-up during the spring. The significant autocorrelation between 

consecutive NDVI dates is strong enough (r2 >0.70) that these fixed dates should 

approximately capture the overall pattern during the fire season.   

 

Snow Water Equivalent data (SWE) was obtained from the Lookout Mountain SNOTEL 

station (Elevation 2560 meters). Precipitation and temperature variables used in our analysis 

were calculated using daily weather recorded at the Gila Hot Springs climate station 

(Elevation 1738 meters) (www.ncdc.noaa.gov). These included the maximum consecutive 

rain-free days (MNR) and total days (TNR) without rain from 1 April to 15 July, annual 

precipitation and average monthly maximum and minimum temperatures. Both stations are 

centrally located to our study sites (Figure 1). Additional predictor variables included in 

multivariate models included the Keetch-Byram Drought Index (Keetch and Byram 1968) 

and the Energy Release Component (ERC) (Cohen and Deming 1985) which were calculated 

from Remote Automated Weather Station data (RAWS), also from the Gila Hot Springs 

station. These metrics are part of the National Fire Danger Rating System and are commonly 

used to infer fuel moisture for predicting fire behavior. PVT was used as a stratifying 

variable.  

 

Multivariate analysis of variance (MANOVA) was used to test for significant relationships 

between NDVI (3 dates for each of 17 years) and predictor variables. Akaike Information 

Criteria (AIC) methods were used to select significant model variables (Akaike 1974). The 

AIC penalizes models for including additional variables and hence helps avoid over-fitting. I 

performed separate statistical analyses within each individual vegetation type in order to 

understand the relative contribution of each predictor variable. I then used canonical analysis 

to further explore the relationships. Canonical analysis searches for linear relationships 

between two sets of variables (Johnson and Wichern 2002) and describes the strength of that 
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relationship in terms of a canonical correlation value that approximates a correlation 

coefficient. In what is termed “canonical structure analysis”, the relationships between the 

canonical variates and the individual variables used for analysis can be further broken down 

and used to interpret which individual dependent and independent variables explain most of 

the variation observed.  

 

I also applied Principal Components Analysis (PCA) across the 26 NDVI dates across the 17 

years. This reduced the data to two principal components (PCs) that captured 89% of the 

variability in the AVHRR time series. Correlation analysis was then used to identify 

relationships between each PC and the temperature and precipitation variables described 

above.  

 

Once I observed a significant relationship between the NDVI and predictor variables, it was 

logical to revisit our data on fire extent by burn severity class for this area (Holden et al. 

2007) in order to validate the link between burn severity and climate-driven vegetation 

patterns. Area burned by severity class for all fires on the Gila NF from 1989-2004 was used 

as response variables. As I have described elsewhere (Holden et al. 2007; chapter four of this 

dissertation), I used relative differenced Normalized Burn Ratio (Miller and Thode 2007) 

calculated from multi-temporal Landsat-derived images  for all fires greater then 

approximately 40 ha to infer annual area burned in each of four burn severity classes: very 

low, low moderate and high burn severity with “severe” defined as having greater than 75% 

overstory tree canopy volume loss one year post-fire and a Composite Burn Index  value 

greater than 2.2 (Holden et al. 2007). 

 

Results  

Spring NDVI was strongly correlated with precipitation metrics across all vegetation types 

with canonical correlations ranging from 0.80 at the pinyon-juniper site to 0.88 at the 

unburned ponderosa pine site (Table 1). SWE, PCP, MNR and PVT are significant predictors 

of NDVI (Table 2). Green-up within the spruce-fir forest type is best explained by SWE, and 

the strength of that correlation is due primarily to early (17 April) NDVI (Table 3). In the 

three ponderosa pine sites, variability in NDVI patterns is driven mainly by MNR and 
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secondarily by SWE and PCP. NDVI on 9 July was significantly correlated with the average 

June Energy Release Component (R2 = 0.43). Declines in NDVI prior to the arrival of 

monsoon rains are strongly related to the length of the rain-free period (MNR) (Table 3). The 

MNR was also well correlated with the ERC (R2 = 0.53). Burn severity is significantly 

correlated with NDVI at all three fire-season dates analyzed (Canonical correlation = 0.57). 

Burn severity is most highly correlated with the 29 May and 9 July NDVI (Table 5).  

 

PCA yielded two significant principal components that explained 89% of the variability in 

the annual AVHRRR green-up patterns. I interpreted the first principal component as spring 

and summer productivity. It was positively correlated with February SWE, negatively 

correlated with February maximum average temperatures and negatively correlated with 

maximum rain-free days from April-June (table 6). This first principal component was also 

well correlated with May maximum average temperatures. The second principal component, 

which I interpret as seasonal dryness, was well correlated with annual precipitation, the 

Palmer Drought Severity Index, KBDI and ERC (Table 6).  

 

Discussion 

Our study suggests that patterns of precipitation timing and intensity during the spring and 

early summer, when most wildfires in this region occur, strongly influence vegetation green-

up patterns in mid-elevation forests. SWE, total precipitation from April to June and the 

consecutive number of rain-free days from 1 April to 15 July explain 64 to77% of the 

variability in NDVI during the April to July fire season (Table 1). The decline in NDVI that 

is often observed prior to the onset of summer monsoon rains suggests that water stress 

during this typically dry period causes a decline in vegetation productivity. Whether the loss 

of greenness is a result of senescing understory vegetation, needle loss or a decline in 

photosynthetic activity is unknown. Regardless, the drying of surface fuels and increased 

surface fuel loadings associated with such a decline, in the absence of wetting rains, would 

indirectly influence potential fire activity.  

 

PCA results are similar tothe canonical analysis results described above. The first principal 

component, which explains 79% of the variation in annual NDVI patterns, is well correlated 
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with both SWE and MNR, and it is negatively correlated with February maximum average 

temperatures, supporting the conclusions of Westerling et al. (2006) suggesting that warm 

springs and early snowmelt lengthens the fire season. However, the first principal component 

is also significantly correlated with May maximum temperatures. This result suggests that 

warm spring temperatures during a period when snow has already melted may also influence 

fire activity in the Southwest by increasing evaoptranspiration and fuel drying rates that 

would in turn decrease live fuel moistures and intensify fire activity preceding the arrival of 

summer monsoon rains.  

 

Past studies of climate-fire linkages in the southwestern US have tended to emphasize the 

importance of interannual variation in moisture. Regionally extensive fires occurred when 

dry years followed wet winters (Swetnam and Betancourt 1990). Increasing fire activity 

during the last 34 years in the western US has been attributed to warm springs, although this 

relationship was much weaker in the southwestern US than the northern Rockies (Westerling 

et al. 2006). Our results suggest that weather patterns within the fire season strongly 

influence fire activity in our study area. Certainly, in warm springs, there is less snow and it 

disappears earlier, and so fuel drying starts early. Saturated, large diameter logs can become 

extremely dry within 60 days at 26 degrees C and 15% relative humidity (data predicted from 

equations in (Cohen and Deming 1985) (data not shown here). While lack of snow will 

compound the effects of dry springs, if there is a long enough period without rain after the 

snow is gone, vegetation and logs will be dry enough to fuel fires.  

 

Precipitation during the spring and early summer could also directly influence fire activity by 

slowing the rate of spread of actively burning fires. Even minor precipitation events would 

bring increased relative humidity, lower air temperatures and cloud cover that would reduce 

the fire intensity and rate of spread. The maximum number of days without rain (MNR) is 

also an indicator of when monsoon rains arrive. A rain-free period that extends into July 

would indicate the delayed arrival of summer storms. These storms are often intense and 

bring large amounts of precipitation that that would likely diminish or even extinguish 

actively burning fires. A delay in their arrival would allow fires to continue burning in an 

already dry period, likely with increased intensity. I note that while NDVI is correlated with 
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annual burn severity (canonical correlation = 0.57; table 5) the relationship between 

precipitation and NDVI is much stronger (canonical correlation = 0.80-0.88) with as much as 

77% of the variability in NDVI explained by snow and precipitation patterns. The relative 

strength in the relationship between these variables supports the idea that precipitation 

patterns, and in particular the MNR, may influence fire patterns directly by slowing or 

extinguishing actively burning fires.  

 

Vegetation green-up is often bimodal in the Southwest (Figure 2), reflecting bimodal 

precipitation (Sheppard et al. 2002). During the 17-year AVHRR time series, seven years 

show a pattern of rapid green-up in the early spring followed by a period of slowed growth or 

decline leading up to onset of summer monsoon storms that typically begin during the first 

week of July. However, green-up patterns vary considerably between years. During very wet 

years like 1992 (Figure 2) patterns of green-up become uni-modal, with no significant 

decline in productivity or senescence prior to the arrival of the summer monsoon. While fall 

is generally considered to be the peak green period in the Southwest, several of the 17 years, 

e.g. 1991 in figure 2, had peak green-up in the spring exceeding the fall. These patterns 

highlight the considerable variability in precipitation patterns in the Southwest during this 

17-year record.  

   

MNR is a strong predictor variable of fire season NDVI in the pinyon-juniper, open and 

moderately open ponderosa pine sites (table 3), supporting our working hypothesis that open-

canopy forests with abundant understory vegetation are more strongly coupled to (and hence 

more strongly correlated statistically) with precipitation patterns. This pattern suggests that 

the understory vegetation component at these sites, which are likely to fluctuate more within 

the season, may be responding to spring and early summer water stress, or that this is simply 

more detectable in open than in closed-canopy sites. In a concurrent study using stable 

oxygen isotope data extracted from tree rings at these sites, understory vegetation influenced 

the water sources used by ponderosa pine trees, with trees in open forests using deeper water 

than the closed-canopy, unburned sites (Heward et al. in preparation). It is impossible to test 

specific hypotheses on the dynamic competitive interactions between the understory and 

overstory vegetation components retrospectively and at the coarse resolution used in this 
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analysis. However, it is interesting to speculate as to the reason for the observed differences 

between these sites. One possibility is that dense forest stands with overall higher NDVI 

values are less resilient to stress than open stands or they respond more strongly to water 

stress than trees in more open sites. Increased canopy interception in closed-canopy sites 

might limit or slow the acquisition of water after a long dry period in the spring. 

Alternatively, increased investment in surface roots at sites where little understory vegetation 

is present to compete for surface water could result in surface root mortality during a dry 

period that would be followed by a subsequent loss in foliar biomass, once soil moisture is 

regained. I can’t rule out the possibility that this weak statistical pattern is simply an artifact 

of sensor variations, or that spatial extent of individual precipitation events varies across our 

study sites and is reflected in minor differences in green-up patterns between sites.  

 

While there is considerable uncertainty in the future climate in the southwestern US climate, 

most atmospheric circulation models predict regional drying associated with global climate 

change (Seager et al. 2007). Recent studies have shown rapid and sudden vegetation loss in 

response to drought in the Southwest (Breshears et al. 2005), supporting the theory of 

thresholds in vegetation-climate systems. Systems approaching limits to those thresholds, 

like chaotic and complex systems, would be sensitive to minor perturbations. As such, I 

suggest that it may be important to separate and understand seasonal components of the 

Southwest climate system. Although the spring has typically been ignored in Southwest 

because it is generally dry, during this 17-year period we see years with as much as 15 cm 

and as little as 1 cm of rain falling from April to June. This spring and early summer period 

could very well act as a tipping point or trigger, whereby significant ecological changes are 

fomented by series of cumulative stressors, for example fires following dry warm winters 

coupled with dry springs.  

Study Limitations 

Coarse-scale AVHRR data are useful for inferring coarse scale green up patterns. However, 

sensor malfunction and sensor degradation over the lifetime of these sensors likely introduce 

errors at certain  dates and years. Efforts to eliminate cloud contamination (Swets et al 1999) 

and relatively clear skies in the Southwest should minimize cloud effects. The local scale of 

this analysis limits the inferences I can draw about the influence of precipitation and 
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snowpack to our study area. Finally, I used weather data from two stations located at 

different elevations and relative locations to our sample sites. I used SNOTEL station data in 

order to capture the influence of snowpack on green up but also on reflectance patterns 

caused by snow albedo effects. Gila Hot Springs station data was used because we were 

interested in validating the maximum rain-free interval metric used in our previous study 

(Holden et al. 2007; Chapter four of this dissertation). However, analysis of the same rain-

free interval metric extracted from the Lookout Mountain SNOTEL site showed weaker (r2 = 

0.32), but still significant relationships with the AVHRR data.   

 

Conclusions 

Our study shows strong relationships between patterns of spring and early summer green-up 

inferred from AVHRR time series data and precipitation patterns during that same period. 

This relationship demonstrates an important potential link between precipitation patterns, 

their influence on green-up patterns preceding and during the fire season, and the resulting 

fire activity for this study area. It is still unclear to what extent the patterns we have observed 

in the Gila NF are a localized rather than regional phenomenon. However, these results 

support the conclusion that recent increases in the size and severity of fires in our study area 

and perhaps the Southwest are driven by seasonal climate patterns, in particular dry periods 

in the spring corresponding to periods when fire activity is usually at its peak. In the future, 

we plan to evaluate these patterns at multiple sites across this area of the US.  
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Figure 1. Gila Aldo Leopold Wilderness Complex stratified by Potential Vegetation Type 
(PVT). AVHRR sample locations are denoted by squares. Weather information was drawn 
from the Lookout SNOTEL station and from the weather records from Gila Hot Springs.  
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Figure 2. NDVI derived from AVHRR satellite imagery for four different years, selected to 
represent some of the dominant green-up patterns observed in the 17-year time series. 
Vertical lines indicate the dates used in analysis. Shading denotes the period of peak fire 
activity in this study area. Arrows indicate NDVI dates used in statistical analyses. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Correlation between NDVI and precipitation for 17 years (1989-2005) for five different 
sites, each characterized by different vegetation types.  
Study Area 1st 

Canonical 
Correlate   

Squared 
Canonical 
Correlate 

# 1-km2 
AVHRR 
Pixels 

Fire  
occurrence  

Avg (1 SD) 
 trees/ha 

Pinyon Juniper 0.80 0.64 6 unburned NA 
Open PIPO 0.80 0.64 6 1946;1993;2003 170 (75) 
Mod. Open PIPO 0.84 0.71 6 1979;1985;1993 400 (270) 
Dense PIPO  0.88 0.77 2 unburned 600 (400) 
Spruce-fir 0.85 0.73 4 unburned 1100 (NA) 
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Table 2. AIC for selected MANOVA models.
MODEL AIC ∆AIC 
Y ~ SWE + PCP  + MNR                   1251 357 
Y ~ SWE + VEG    933 39 
Y ~ ERC + KB + VEG 929 35 
Y ~ SWE + PCP + VEG 911 17 
Y ~ SWE + PCP + MNR  + VEG   894 0 
 
 
 

ble 3. Canonical structure results by vegetation type, showing the relative correlations between the 
st canonical weight and the original model variables. Larger values indicate stronger relative 
ength in overall relationships between groups of response and predictor variables. SWE is the 
ongest predictor in the spruce-fir forest type. MNR is the strongest predictor variable in all open 
opy sites. 

Pinyon-
Juniper 

Open PIPO Mod. Open 
PIPO

Dense 
PIPO

Spruce-fir 

 April 0.49 0.28 0.38 0.02 0.86 
 May  0.99 0.96 0.37 0.93 0.24 
uly 0.50 0.69 0.56 0.77 0.39 
E 0.80 0.41 0.45 0.47 0.97 

P 0.27 0.29 0.73 0.36 0.38 
NR -0.82 -0.75 -0.88 -0.64 -0.53 

le 4. Multivariate model results with annual area burned within 4 burn severity classes with site 
a stratifying variable and NDVI variables as predictor variables.  
riable Df Pillai approx F num Df den Df Pr(>F) 
PVT 6 0.41 1.96 24 408 0.0048 

 April 1 0.09 2.46 4 99 0.049 
 May 1 0.31 11.20 4 99 <0.0001 
uly 1 0.14 4.10 4 99 0.0043 



 122

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Canonical analysis results for NDVI metrics and annual area 
burned within four burn severity classes. One canonical variate was 
statistically significant (shown in bold). Canonical structures describe 
the influence of the original variable on the overall correlation 
between the two sets of variables. 
Canonical Analysis  1st Can.Var. 2nd Can. Var. 
Canonical Correlation 0.57  0.38 
Sq. Can. Correlation 0.32  0.15 
Canonical Structures 
17 April 0.26 0.48 
29 May -0.78 0.14 
9 July -0.77 0.63 
Very low severity 0.10 0.86 
Low severity 0.56 0.69 
Moderate severity 0.59 0.78 
High severity 0.35 0.80 

 
 
 

 
 
 
Table 6. Correlations (R2) between principal component scores and statistically significant (p 
< 0.05) precipitation and temperature variables. The proportion of variance explained by each 
principal component is shown in parentheses.  
 

PC1 (79%) PC2 (10%) 
SWE in Feb. 0.59 - 
SWE in Mar.  0.47  
Feb. Max. Temp. 0.39  
Annual Precipitation  0.39 
MNR -0.42  
6-month PDSI  -0.32 
KBDI (June avg)  0.46 
ERC (June avg.)  0.44 
May Max. Temp. -0.40  
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CHAPTER 6 

 
Twenty-Year (1984-2004) Severe Fire Occurrence Across Vegetation and Topographic 
Gradients in a Large Southwestern US Wilderness Area 
 

Zachary A. Holden, Penelope Morgan 
 

Abstract 

Using a burn severity atlas derived from multi-temporal Landsat TM satellite imagery and 

differenced Relative Normalized Burn Ratio (RdNBR) images, we describe patterns of 

severe fire occurrence for 20 years (1984-2004) with respect to Potential Vegetation Type 

(PVT) and topography (elevation, aspect, slope, solar radiation, heat load index and wetness). 

In 20 years, 11% (152,874 ha) of the 1.4 million-ha Gila National Forest burned, and 10% of 

that burned severely (>75% of tree canopy removed), mainly in upper elevation mixed-

conifer and spruce-fir forest PVTs. When all PVTs were analyzed together, severe fire 

occurred more frequently at higher elevations and on north-facing, steep slopes. Based upon 

regression Tree analyses within drier pinyon-juniper, ponderosa pine and Douglas-fir PVTs, 

severe fire occurrence was associated with north-facing slopes, higher wetness index and 

lower heat load index values. We suggest that moisture limitations on productivity in the 

southwestern US interact with topography to influence vegetation density and fuel 

production that in turn influence burn severity. Within higher-elevation spruce-fir forest 

types, where the season for burning is often short due to persistent snow pack and cool 

temperatures, severe fire was more common at locally warmer, drier sites with higher heat 

load index values and drier aspects. Using the Random Forest algorithm with 14 topographic 

predictor variables, we predict the occurrence of severely burned pixels with a classification 

error rate of 17.3% and 38.3% for RdNBR grids classified as severe vs. not severe (two 

classes) or as low, moderate and high severity (three classes), respectively. In this area, there 

are strong bottom up (topographic) controls on severe fire occurrence. The strong 

predictability of burn severity based on topographic variables demonstrates the strength of 

vegetation-topography coupling in this semi-arid wilderness area. This analysis approach has 

potential as a tool for identifying potential areas for fuels treatment designed to alter fire 

severity. 
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Introduction 

As a keystone disturbance process, fire influences local, regional and global processes (Agee 

1993). In recent decades, fires have burned millions of hectares in the western US and cost 

billions of dollars to contain and suppress (www.nifc.gov), likely reflecting both a legacy of 

fire exclusion and climate (Westerling et al. 2006). While it is widely believed that recent 

fires are increasingly severe, and the severity of some individual fires have been well 

documented (Odion et al. 2004, Lentile et al. 2006b), we lack understanding of the patterns 

of burn severity from many fires across gradients of vegetation and topography through time. 

The term “burn severity” can describe a variety of post-fire effects (Lentile et al. 2006a). 

Throughout this study, I refer to burn severity as the changes in overstory vegetation from 

pre-fire to one year post-fire. Severe, stand-replacing fires are difficult to suppress, and they 

can be ecologically significant when they lead to debris flows (Cannon and Reneau 2000), 

accelerated soil erosion (Pannkuk and Robichaud 2003) and changes in dominant vegetation 

type post-fire (Savage and Mast 2005). In this study, I sought to understand where severe 

fires are likely to occur across the landscape and how patterns of burn severity vary with 

vegetation and topography, two of the biophysical drivers of fire regimes. Accurately 

assessing post-fire ecological effects and predicting where severe fires are likely to occur has 

great relevance to resource managers tasked with reducing surface and canopy fuel loads 

through thinning, fuel reduction and prescribed burning.  

 

Topography, vegetation and climate interact in complex ways to influence fire extent and fire 

frequency across a range of spatial scales (Stephens 2001, Rollins et al. 2002), but we lack 

understanding of their interacting influence on fire severity. Paleoecological data suggest that 

fire extent and vegetation types have varied with past climate variability (Whitlock et al. 

2003), and Pierce et al. (2005) linked Holocene warming to severe, stand-replacing fires in 

dry pine forests in Idaho. Decades of fire exclusion have altered stand structure and surface 

fuels loads, likely contributing to fire regime changes in forests that once burned frequently 

(Covington and Moore 1994, Moore et al. 2004). While much is known about historical 

trends in fire frequency, spatial patterns of burn severity over time are poorly understood (see 

further discussion in recent review of burn severity by Lentile et al. (2006a) and Chapter 2 of 

this dissertation).  
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Several authors have recentlyevaluated relationships between severe fire, vegetation and 

topography for individual large fire events. Odion et al. (2004) described patterns  of severe 

fire occurrence within a large fire in central Oregon. Lentile et al. (2006b) used hundreds of 

field measurements and remote sensing to evaluate the relative influence of stand structure 

and topography on severe fire occurrence within the 2000 Jasper Fire in the Black Hills of 

South Dakota. Alexander et al. (2006) examined the occurrence of severely burned areas 

within two fires in northern California and southern Oregon.  Rogan and Yool (2001) used 

satellite imagery to map burn severity for two fires in the southwestern US. Lentile et al. 

(Submitted), Lewis et al. (2008), and Hudak et al. (2008) analyzed the vegetation response 

and soil effects of burn severity in the field and from multiple remote sensing tools from 

eight fires in Alaska, California and Montana. No single study has encompassed burn 

severity from many fires at once burning over decades. The objective of this study was to 

evaluate 20 years of satellite-derived burn severity patterns with respect to topography and 

Potential Vegetation Type (PVT) across the Gila National Forest (Gila NF). Most of the fires 

(90 of 114 fires and more than 80% of the area burned) I analyze occurred within the Gila 

Aldo Leopold Wilderness Complex (GALWC), under near natural conditions. Within the 

wilderness, naturally ignited fires are often managed under the Wildland Fire Use program 

adopted there in 1974. Pioneering fire management efforts in the GALWC have made it a 

model for wilderness fire management in the United States (Burke 2004). I take advantage of 

this rich history of large fires that burn during the natural fire season and with relatively little 

influence of roads, grazing, and logging to examine broad-scale patterns of severe fire 

occurrence and their association with vegetation and topography.  

 

Methods 

Study Area  
My research focused on the 1.4 million-ha Gila National Forest in New Mexico, USA 

(Figure 1). This area encompasses diverse landforms and topography. Many of the fires 

included in this study burned in the central and northern portion of the Gila Wilderness, 

where extensive stands of ponderosa pine and mesic ponderosa pine-Douglas-fir forests grow 

on broad, flat mesas. These forests transition into mixed-conifer and spruce-fir forests to the 
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north, where the Mogollon Mountains rise to an elevation of 3200 meters. Steep, rugged 

terrain dominates the Diablo and Pinos Altos ranges to the south. Precipitation in our study 

area is bimodal, occurring mainly in the winter, and following a typically dry period in the 

spring, as monsoon rain storms that begin, on average, in the first week of July (Sheppard et 

al. 2002). Lighting is frequent at mid and upper elevations in our study area (Rollins 2001). 

 

Burn Severity Atlas Construction and Analysis 

A digital burn severity atlas including all fires > 40 ha in area that occurred 1984-2004 was 

created for the Gila National Forest using pre and post-fire Landsat images provided by the 

Monitoring Trends in Burn Severity (MTBS) project (http://fsgeodata.fs.fed.us/mtbs/. All 

images were terrain corrected and converted to reflectance following protocols developed as 

part the MTBS program. Pre- and post-fire spring scenes (15 May – 15 July) in the Gila NF 

were processed using the Relative Differenced Normalized Burn Ratio (RdNBR) (Miller and 

Thode 2007). The RdNBR is a variant of the dNBR, a spectral index first developed by 

Lopez Garcia et al. (1991) to map burned areas and then later used by Key and Benson 

(2002) to assess post-fire effects. Relative to dNBR, the RdNBR showed stronger and more 

linear correlations with field data from our study and is appropriate given the prevalence of 

open-canopy vegetation in our study area. 

 

Each fire was manually digitized on-screen using a combination of images. Digital fire 

perimeter databases (also called a fire atlas or a digital polygon fire history (Gibson 2006), 

produced by the GIS analyst on the Gila National Forest were used to identify names and 

dates of major fires. Landsat bands 7:4:1 color composite and RdNBR images created for 

each fire were then used to verify the location of fires documented in the fire perimeter 

database and to locate additional smaller fires visible on the imagery but not in the fire 

perimeter databases. The resulting perimeters were then used to subset the RdNBR for each 

fire in the ARCINFO GIS software package (v. 9.2; ESRI, Inc. 2005). More than 40,000 

hectares burned for a second or third time during the time period of our study. Inclusion of 

recently reburned areas could confound our overall interpretation of burn severity patterns. 

Therefore, I excluded these data from this analysis by assigning those cells the RdNBR value 
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of the first fire occurrence.  Burn severity patterns within reburned areas are potentially of 

great interest and will be presented in a separate manuscript.  

 

Field Data Collection 
Burn severity on the ground was measured using 30-m diameter CBI (composite burn index) 

plots (www.frames.nbii.gov) collected between 20 May 2004 and 20 July 2004. Within the 

2003 Dry Lakes Fire perimeter, 109 sampling points were randomly located and stratified by 

burn severity using a 23 October 2003 post-fire Landsat TM-derived Normalized Burn Ratio 

(NBR) image. Applying the CBI in the field post-fire requires an ocular assessment of the 

degree of change in soil and vegetation strata as a result of the fire. While this required 

judgment, I was confident in our estimates after spending three months collecting fuels, 

understory vegetation and forest structure data within the burned area the previous year. The 

CBI is a useful tool for rapidly assessing post-fire change and relating that change to 

reflected radiation detected by a satellite sensor. I removed two CBI measures from final CBI 

estimates (change in species composition, change in soil color) because they were difficult to 

objectively quantify in the field. I also removed estimates of medium and large-diameter fuel 

consumption and bole char height because we felt they were unlikely to be detectable by the 

Landsat sensor. These estimates were collected in the field but removed from the final CBI 

values that were used to validate our satellite imagery. Comparison of scatter plots using both 

the full and modified CBI values showed that the removal of these variables had little overall 

effect on the final CBI measure (data not shown).  

 

Burn severity images for each fire were classified into 4 severity classes (unchanged, low, 

moderate, high), with breakpoints for each severity class defined based on CBI data. Post-fire 

ecological effects occur along a continuum, making classifications of burn severity data 

somewhat arbitrary. However, doing so simplifies data analysis and interpretation. I 

classified “severe” pixels as burned areas where more than 75% of prefire overstory tree 

foliage volume was black or red post-fire, corresponding to a CBI value of 2.2 (RdNBR = 

665). Scatter plots of RdNBR and the CBI stratified by PVT showed no patterns of 

separation. Therefore, the same threshold was applied across all vegetation types. I selected 

this slightly conservative threshold to account for delayed tree mortality expected several 
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years post-fire (Harrington 1990). Because we lack field data on burn severity for previous 

fires, CBI data from this one 2003 fire were used to set thresholds for all burns in the 20-year 

record. However, based upon our comparison of pre- and post-fire high resolution digital 

aerial photographs we suggest that for three fires through time (1993; 1996; 1997), fire-

created canopy openings in ponderosa pine, Douglas-fir and mixed-conifer forests are 

mapped with a high degree of accuracy when this threshold is applied to earlier fires (data 

not shown).  

 

Data Analysis 

We used fifteen different predictor variables in all analyses. PVT is a classification of 

biophysical setting named for the vegetation that would occur at a site after long periods 

without disturbance. We used a PVT classification developed by Keane et al. (2000) for the 

Gila National Forest based on extensive ground validation. Fourteen predictor variables were 

derived from a 30-meter digital elevation model (Table 1). These included slope and aspect, 

elevation, Heat Load Index (McCune and Keon 2002), solar radiation, Compound 

Topographic Index (Moore et al. 1993), elevation relief ratio (ERR) and roughness 

(ROUGH) indices calculated with 3 x 3 and 15 x 15 pixel window sizes. Grids describing hill 

slope position (HSP) and cross-slope and down-slope curvature (PROCRV; PLNCRV) were 

also included. All variables were classified using equal interval breaks for Bayesian 

conditional probabilities. An unclassified cosine-transformed slope and aspect grid (SAT; 

McCune 2002) was used in regression tree and Random Forest models. Solar radiation (total 

direct and diffuse from April-July) was derived using slope, aspect and elevation grids in the 

Solar Analyst Extension for ArcView 3.3 (ESRI, Inc. 2002).    

 

We used three methods to analyze patterns of severe fire occurrence with respect to 

vegetation and topography. First, relationships between single predictor variables and severe 

fire occurrence were graphed and assessed using Bayesian conditional probabilities in the 

Bayes extension for Arcview 3.3 (ESRI Inc. 2002) (Aspinall 1992, 2000). Conditional 

probabilities quantify the likelihood of severe fire occurring with respect to each predictor 

variable given the proportion of that variable within the total area burned. I calculated 
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conditional probabilities for eight classified topographic variables individually using a binary 

(severe vs. other burned) grid of total burned area as the response.  

 

Second, I used Classification and Regression Tree analyses (CART) (Breiman et al. 1984) to 

explore the relationships between burn severity, vegetation and topography. Classification 

and regression trees search for splits among groups of predictor variables that minimize 

residual error at each node or split (Breiman et al. 1984). This analysis method is suited to 

classified and continuous variables and large data sets, requires no assumptions about data 

independence, and is robust to the spatial autocorrelation inherent in both the response and 

predictor variables. We used continuous (i.e. unclassified) RdNBR data for all fires as a 

response variable and Potential Vegetation Type (PVT) as a vegetation layer (Keane et al. 

2000).  

 

I used a variant of Classification and Regression Trees called Random Forests (Breiman 

2002) to assess the ability of landscape variables to predict severe fire occurrence (Breiman 

2002). Random Forests implements a bootstrapping procedure whereby approximately 60% 

of the data are used in a classification tree with the remaining data used as a validation data 

set (termed the “out of box sample”). The Random Forest algorithm creates bootstrapped 

samples of thousands of classification trees. Binary splits at each node of the trees are 

bootstrapped as well, with random sets of predictor variables used in different combinations 

to select strong variable splits. This method is computationally very intensive, but has 

yielded robust predictions across a variety of applications (Prasad et al. 2006, Rehfeldt et al. 

2006). The random selection of variables eliminates problems associated with co-linearity 

and spatial autocorrelation that plague other statistical modeling techniques. We applied the 

Random Forest algorithm using RdNBR data classified into two classes (severely burned vs. 

other) and into three classes (low, moderate and high burn severity classes). We used fifteen 

topographic variable derived from a 30 m digital Elevation Model (Table 1). We ran Random 

Forest for all PVTs combined, with PVT as a predictor variable and then for individual 

PVTs. The low proportion of severe compared to other severity class pixels within the drier 

PVT’s initially led to slight over-prediction. To account for this bias, we used a stratified 

random sampling routine to select more balanced proportions of each severity class. Model 
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outputs were compared using varying numbers of output trees. The models appeared to 

stabilize after 1000 trees, and final trees models were run with 2000 trees, and four variables 

evaluated at each split within each tree.   

 

Results   

The RdNBR was a good predictor of CBI field measurements (r2 = 0.78; Figure 2). In 

contrast with other studies that have used the dNBR to predict CBI values, (e.g. (Van 

Wagtendonk et al. 2004, Alexander et al. 2006) relationships between the CBI and RdNBR 

were linear.  Of the 1.4 million-ha Gila National Forest, 152,874 (about 11%) burned 1984-

2004, and 10% of the burned area was burned severely (Table 2). The percentage of area 

burned with low, moderate and high severity varied among vegetation types (Table 2). The 

upper elevation spruce-fir and mixed-conifer forests PVTs had the highest proportion of the 

area burned severely (Table 2). Severely burned areas occurred disproportionately on north- 

and northeast-facing slopes (azimuth 315-360 and 0-90o), on steep slopes (>16%), and where 

solar radiation values were low to moderate (99 to 113 kWH/m2) (Figure 3a-d) and at high 

elevations (Figure 3g). Severe fire was more common where heat load (HLI) was were either 

very low or very high (Figure 3f). Severe fire was also associated with low CTI values and 

high slope position values (Figure 3e and 3h), likely reflecting the tendency for severe fire to 

occur at the crest of hills.   

 

Within the pinyon-juniper PVT severe fire occurs more frequently on north-facing aspects, 

with low heat load index and solar radiation values and in areas with high CTI values (Figure 

4). Within the ponderosa pine and Douglas-fir PVT, severe fires were also more likely to 

occur at cooler, wetter sites (Figure 5). However, slope was a dominant splitting variable 

within these vegetation types, reflecting the large amount of area burned on flat mesas in the 

north-central part of the wilderness. Within spruce-fir and mixed conifer PVTs, severe fire 

occurred at high elevations and on dry, south-facing aspects (Figures 6 and 7).  

 

Classification accuracy of Random Forest models on all PVTs combined was 82% and 62% 

for two and three burn severity classes, respectively (Table 3). With the exception of the 
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spruce-fir PVT, classification accuracy decreased slightly across a gradient from dry 

(Pinyon-Juniper) to wet (mixed-conifer) PVT’s (Table 3).  

 
 
Discussion  

Burn severity and topography influence site productivity and vegetation occurrence 

(Whitaker and Niering 1975). Forest ecosystem productivity in the southwestern US is 

primarily water-limited (Chapin et al. 2002), and topographic factors like elevation, slope 

aspect and compound topographic index (CTI) influence biomass production and fuel 

accumulation rates (Whitaker and Niering 1975). Even slight increases in effective moisture 

can lead to significant changes in vegetation structure. For example, Douglas-fir encroaches 

on slightly north-facing slopes and ponderosa pine establishes at mesic sites within areas 

dominated by pinyon and juniper.  This pattern appears to shift in upper elevation mixed-

conifer and spruce-fir forest types, where increased solar insolation and heat load index 

values, factors that would increase evapotranspiration and drying of surface fuels, are 

associated with increasing burn severity. This general pattern is supported by Random Forest 

model results. Classification accuracies are highest for dry vegetation types and decrease 

across a gradient from dry to moist sites. Classification accuracy then increases significantly 

within the highest elevation spruce-fir forests.  

 

Winter precipitation combined with the timing and intensity of precipitation events during 

the fire season influences green-up patterns in our study area, with the length of the dry 

period preceding summer monsoon rains influencing fire occurrence, presumably by 

affecting vegetation productivity and stress (Holden et. al in preparation). Combined with 

temperature, relative humidity and the timing and intensity of monsoon rains, these 

precipitation variables should largely determine fuel moistures and the length of the burning 

window during the fire season, which in turn influences fire extent and severity (Holden et al. 

2007). The length of this window is shorter at higher elevations, where snow pack delays 

early season green-up. Within the drier PVTs at lower elevation, spring precipitation patterns 

influence the peak and subsequent decline of green-up preceding monsoon rainstorms 

(Holden et al. in preparation). We speculate that these patterns are reflected in the patterns of 

severe fire occurrence in this landscape. At lower elevations, dry PVTs have a long window 
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within which burning is possible. At locally wet and more productive sites, higher vegetation 

density and fuel accumulation means that the effects of fire will be more severe (greater 

change pre- to post-fire). Given the relatively short burn window within high elevation, 

mesic vegetation types, extremely cool, wet areas (e.g. those at high elevation, north-facing 

slopes) may not have experienced ignition when conditions were favorable for burning 

during this study period. In contrast, fuels on dry and relatively warm south-facing slopes 

within these cool sites will dry earlier and thus be ready for burning should ignition occur.   

 

The strength of the relationships between severe fire occurrence and topographic variables 

presumably also reflect the influence of topography on fire behavior. Slope aspect position 

influences the type of vegetation that will occur on a site as well as drying rates of live and 

dead fuel moistures, directly influencing fire intensity when fire occurs. Slope steepness is 

know to directly influence fire rate of spread (Rothermel 1972). Other topographic features 

like landform curvature and topographic complexity (described by variables like the 

Elevation Relief Ratio (ERR) and topographic Roughness (ROUGH)) may exert more subtle 

influences on fire behavior by influencing microclimate, wind patterns or the length of wind-

driven fire runs. They also reflect soil development and water holding capacity.  

 

Taken together, these results and our analyses of climate and vegetation green up patterns 

support the theory of hierarchical controls on fire regimes (Heyerdahl et al. 2001). The strong 

relationship between topography and burn severity reflects the “bottom up” control of burn 

severity occurrence and the tight coupling of climate, topography and vegetation in this semi-

arid region, where moisture limits vegetation production. The limited human influence on the 

fuels and vegetation in the majority of fires that burned within the wilderness have allowed 

these fire-vegetation-topography interactions to play out for decades. Random Forest 

predictions decrease in their classification accuracy from dry to moist vegetation types (table 

3), which suggests that vegetation-topographic coupling and its influence on fire behavior 

breaks down in wetter vegetation types. Fires were suppressed aggressively for many years, 

even within the Gila Wilderness. As elsewhere, however, the effects of fire exclusion are are 

less significant in terms of altering fire regimes in wet, less frequently burned sites than in 

drier, frequently burned forests (Brown 2004, Noss et al. 2006). We hypothesize that the 
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relative amount of change in vegetation accumulation within drier vegetation types in the 

absence of recent fires would have been greater in dry forests than in upper elevation PVTs, 

where historically, fires were less frequent (Abolt 1996).  

 

Patterns of severe fire occurrence inferred from only twenty years of data should be 

interpreted cautiously. We have not accounted for the influence of vegetation structure, 

which influences burn severity here (Holden 2005). Although some of the fire years included 

in this study were very wet (e.g. 1984-1987) and others were very dry (e.g. 2002), we can’t 

assume that these data encompass the range of possible fire-vegetation interactions. We also 

note the potential significance of fire origin and direction of travel in this wilderness area. 

For example, because most WFU fires during the last 20 years have started in central 

portions of the Gila Wilderness and spread to the north, many north-facing slopes 

experienced backing fires. We observed in the field many north-facing slopes at mid-

elevations dominated by ponderosa pine and Douglas-fir forest types that had experienced 

surface fires at least once during the last 20 years, despite relatively dense stands and young 

understory Douglas-fir tree encroachment. When these north-facing slopes finally 

experienced a fire that began outside the wilderness and spread to the south, many of them 

burned as stand-replacing fires (Holden, personal observation). We can’t rule out the 

possibility that wind direction and other aspects of weather and fuels not evaluated here may 

also be responsible for the fire severity patterns observed within mixed-conifer and spruce-fir 

forest types.  

 

Implications for Management 

One impetus for this analysis was concern about the impacts of fires in the Gila on 

endangered Gila trout populations (Oncorhynchus gilae). Debris flows following fires in 

1995, 2002 and 2003 severely impacted or extirpated several local populations (Probst and 

Monzingo, personal communication). The predictive capabilities of landscape and 

topographic variables alone, without data on pre-fire surface fuel loading and forest structure, 

and without during-fire weather, was 83% overall, and slightly higher within individual 

PVT’s. Using imputation techniques, we will use the Random Forest model results to predict 

the probability of severe fire occurrence in unburned areas and identify areas with high 
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probabilities of burning severely. The resulting prediction map will be combined with 

analysis of debris flow and fish extinction probability models and then incorporated into a 

decision support model in order to predict and map risks of fish extinction. This product 

could then be integrated into the fire management decision-making process.  

  

Much of fuels management is focused on altering fire severity via mechanical treatments and 

prescribed burning. Current interest in the influence of past treatments on the behavior and 

severity of recent fires reflects the uncertainty about their effectiveness. It is unclear how 

broadly the results from our study extend to other areas of the Southwest, and it is likely that 

other land uses like logging and grazing will have altered the vegetation-topography 

interactions in some places, confounding the resulting burn severity patterns where 

subsequent fires have occurred. Further evaluation of burn severity-topography interactions 

across a range of environments and vegetation types will be necessary to understand how 

these patterns vary across space and varying land use histories. Interpreting burn severity 

from satellite data, for hundreds of fires across a range of environments and climatic 

conditions will greatly enhance our understanding of why and where fires burn severely. 

Such analyses will help us to strategically target fuels and fire management. They may also 

help us better understand the climate and weather conditions under which fire management 

options like Wildland Fire Use may or may not be appropriate. 

 

Understanding the complex interactions among fire, vegetation, topography, climate, and 

land use is critical to predicting how fire regimes will change in response to climate and 

future land use (Morgan et al. 2001). Our current understanding of burn severity as an aspect 

of fire regimes is mainly theoretical or based on anecdotal evidence and case studies from a 

few fires. This study is the first to evaluate these patterns across multiple fires over multiple 

years. Through the Monitoring Trends in Burn Severity (MTBS) project 

(http://fsgeodata.fs.fed.us/mtbs), data similar to ours will be available nationwide for 

thousands of fires. The data will be immensely valuable for understanding burn severity to 

complement our growing understanding of how fire extent and occurrence are linked to 

climate.  
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Figure 1. Burn severity atlases (1984-2004) for the 1.4 million-ha Gila National Forest in 
New Mexico. Fires varied in burn severity (shaded polygons, 114 fires burned 152,800 ha).as 
interpreted from Landsat satellite imagery using the Relative differenced Normalized Burn 
Ratio (RdNBR). Solid dark line is the Gila NF boundary. Dotted inner line denotes the Gila 
and Aldo Leopold Wilderness Complex boundary. 
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igure 2. Modified Composite Burn Index (CBI) from 109 field plots vs. the differenced 
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F
Relative Normalized Burn Ratio (RdNBR) collected on the 2003 Dry Lakes Fire, New 
Mexico. Data were collected between 20 May 2004 and 20July 2004, 1 year after the 20
fire. Dashed lines show threshold between “moderate” and “severe” burn severity classes 
(CBI = 2.2; RdNBR = 665).  
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Figure 3. Bayesian conditional probability of severe fire occurrence for  (a) Potential 
Vegetation Type (b) aspect class (c) slope class (d) cumulative April-June solar radiation 
class (e) Compound Topographic Index class (f) Heat Load Index class (g) Elevation class 
and (h) slope position class. Black bars indicate percentage of total area burned within a class 
that was classified severe. Grey bars show percentage of area in all other burn severity 
classes. Black bars higher than gray bars for an individual class indicate a higher proportion 
of severe fire occurring in that class relative to the total area that was burned.  
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Figure 4. Regression tree showing severe fire occurrence within the pinyon-juniper Potential 
Vegetation Type. Terminal node values are average unclassified RdNBR values. Variables to 
the left of each split are “less than” the indicated value and those to the right “greater than” 
that value.   
 
 

 
Figure 5. Regression tree showing severe fire occurrence within the combined ponderosa 
pine and Douglas-fir Potential Vegetation Types. Terminal node values are average 
unclassified RdNBR values. Variables to the left of each split are “less than” the indicated 
value and those to the right “greater than” that value. 
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Figure 6. Regression tree of burn severity within the Mixed-conifer Potential Vegetation 
Type. Terminal node values are average unclassified RdNBR values. Variables to the left of 
each split are “less than” the indicated value and those to the right “greater than” that value. 
 

 
Figure 7. Regression tree showing severe fire occurrence within the spruce-fir Potential 
Vegetation Type. Terminal node values are average unclassified RdNBR values. Variables to 
the left of each split are “less than” the indicated value and those to the right “greater than” 
that value. 
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Table 1. Predictor variables included in Random Forest models. 
Variable Description Reference  
PVT Potential Vegetation Type Keane 2001 
ELEV Elevation (meters)  
SAT Transformed slope/aspect Stage 1976 
CTI Compound Topographic Index Moore et al. 1993 
HLI Heat Load Index McCune and Keon 2002 
SLPPOST Relative Slope Position Unknown 
SOLAR Solar Radiation (April-July) Fu and Rich 1999 
PLNCRV Down-slope curvature Pike and Wilson 1971 
PROCRV Cross-slope curvature  Pike and Wilson 1971 
DISS3 Modified dissection coefficient (3x3) Pike and Wilson 1971 
ROUGH15 Topographic Roughness (3x3) Riley 1999 
ROUGH27 Topographic Roughness (15x15) Riley 1999 
ERR3 Elevation Relief Ratio (3x3) Evans 1972 
ERR15 Elevation Relief Ratio (15x15) Evans 1972 
HSP Hierarchical Slope Position Unknown 
 
 
 
Table 2. Area burned by burn severity class (RdNBR) within each Potential Vegetation Type (PVT) 
on the Gila NF (1984-2004). Only fires >40 ha in size are included. Percentages are of the area 
burned within each PVT. Of the 1.4 million ha on the Gila National Forest, 11% (152,874 ha) burned 
at least once within the PVTs listed.  
 
 
 
 
 
 
 
 
 
 
 
 
 

PVT 
% of PVT 
in Study 

Area 
Low % Moderate % High % Area 

burned (ha)

Sparse veg. 10 1030 62 4540 27 1809 11 16609
Pinyon-juniper 39 18856 75 4937 20 1242 5 25034
Ponderosa pine 19 33412 74 9467 21 2085 5 44965
Douglas-fir 7 24223 67 8417 23 3757 10 36397
Mixed-conifer 4 10917 55 4774 24 4043 20 19733
Spruce-Fir 1 1625 49 705 21 962 29 3292
Riparian 1 3388 50 2692 39 764 11 6844
Area burned  102,680 67 35,532 23 14,661 10 152,874
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Table 3. Classification error rates and important predictor variables from Random Forest for 
all PVTs and each PVT analyzed separately using a 2-class (high vs. other burn severity) and 
3-class (low, moderate, high severity) RdNBR grid. See Table 1 for abbreviations.  
 
        Classification Error  
      Severity classification  
PVT 2 Class 3 Class Important variables 
All PVTs 17.3% 38.3% ELEV, SAT, ROUGH27, HSP 
Spruce-fir 11.8% 23.7% ELEV, HSP, ERR15, ROUGH27 
Mixed-conifer 21.8% 39.7% ELEV ROUGH27, HSP, SAT 
Douglas-fir  19.9% 38.3% ELEV ROUGH27, HSP, SAT 
Ponderosa pine 18.7% 36.3% ELEV, ROUGH27, HSP, SAT 
Pinyon-juniper 16.9% 34.3% ELEV, HLI, ROUGH27, HSP 
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CHAPTER 7 

 

CONCLUSIONS 

 

The broad aim of this dissertation was to identify where on the landscape and under what 

climatic conditions fires are likely to burn severely on the Gila National Forest. Analysis of 

twenty-year temporal and spatial burn severity patterns yielded new insights into factors 

influencing burn severity in this study area. To address the question of where on the 

landscape fires are likely to burn severely, I used fourteen topographic indices derived from a 

30-meter digital elevation model to predict the occurrence of severe fire relative to 

topography. In the first study to evaluate burn severity patterns across many fires from 

multiple years, I found that vegetation, topography and burn severity appear to be tightly 

coupled within this largely wilderness-dominated study area. Severe fires were more likely to 

occur at locally wet and cool sites, such as north-facing slopes and where solar radiation is 

low. These results suggest that in the semi-arid southwestern US, where water limits 

vegetation productivity and hence fuel production, topography exerts a strong “bottom up” 

control on burn severity. Topography alone predicts more than 80% of the variability in 

severe fire occurrence, without information about fuels or forest structure.  

 

Using the Random Forest model developed in chapter 6 of this dissertation, I will use 

imputation techniques to assign severe fire probabilities to 30-meter grid cells across the Gila 

National Forest. Colleagues will then integrate this severe fire prediction layer into a decision 

support system tool designed to assess the risks to fish of post-fire erosion and debris flow. 

The output from this model will be used to produce a risk assessment map for managers on 

the Gila National Forest. We anticipate that this will be a product that fire managers and 

wildlife biologists will find useful in making decisions about how to manage fires (e.g. 

whether to allow them to burn as WFU fires, whether to suppress all or part of the fires, or 

whether to do prescribed burning under conditions that would limit future fire severity). The 

predictability of severe fire occurrence based on topography must be tested in more areas 

across a range of vegetation types. However, our analysis approach using the Random Forest 

algorithm could prove to be a useful tool with which to identify areas for treatment (e.g. 
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thinning and prescribed burning) in order to reduce the intensity and severity of future 

wildfires. 

 

To address the question of when (in terms of climate) severe fires are likely to occur, I used 

data from a snow pack telemetry (SNOTEL) site and a local climate station to examine how 

climate variables have influenced fire extent and fire severity during this 20-year period. This 

is the first study to evaluate links between climate, weather and satellite-derived burn 

severity patterns. Based upon my results, I suggest that both snowpack and precipitation 

variability during the fire season influence fire extent and fire severity. Historical fire 

patterns have been linked to antecedent (winter) precipitation driven largely by the El Nino 

Southern Oscillation (ENSO). While it is clear that overall dryness will increase fire season 

severity, this study is the first to show that even short, dry windows occuring during a 

typically warm, dry period in the region can be sufficient to increase fire severity.  

 

Analysis of relationships between annual precipitation patterns and area burned within four 

fire severity classes described in chapter four of this dissertation showed a strong relationship 

between severe fire activity and the length of rain-free-periods from April to July, a period of 

peak fire activity in the southwestern US. I explored the significance of this rain-free period 

as a potential ecological and climatic variable using a 17-year AVHRR NDVI time-series. 

Patterns of vegetation productivity across the growing season often show a bi-modal pattern, 

with a distinct decline in productivity in late spring and early summer. I hypothesized that 

this decline would at least partially be explained by the length of rain free periods. Several 

analysis methods showed strong relationships between annual NDVI patterns and the length 

of rain free-periods from April to July, supporting the results of chapter four and suggesting 

that the length of dry periods in the spring influences both live and dead fuel moistures and 

hence the likelihood of severe fire. 

 

The analyses presented in this dissertation contribute new knowledge to our understanding of 

fire-climate relationships in the southwestern US, and raise questions about current and 

historical climate patterns in the region. Recent studies have implicated both warm 

springs(Westerling et al. 2006) and natural sea surface temperature oscillations (Kitzberger et 
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al. 2007) as drivers of recent and historical fire activity in the western US. Spring in the 

Southwest is a period of transition from Pacific ocean-dominated winter climate patterns to 

summer monsoon patterns influenced by the tropical cyclonic activity in the Gulf of Mexico 

(Sheppard et al. 2002). This raises an important question: is the length of spring dry periods a 

distinct climatic feature linked with oceanic or atmospheric patterns, or is it simply an artifact 

of regional drought in the Southwest? My hypothesis is that springtime dry periods described 

in our study may be one  mechanism driving periods of increased historical fire activity in the 

Southwest. I believe it is possible to reconstruct spring dryness using dendroecological 

techniques. In the future, I hope to evaluate whether false ring formation in ponderosa pine 

trees correspond to years where we observe long rain-free periods as well as decreases in 

AVHRR-derived NDVI prior to the arrival of monsoon rains. Reconstructions of spring dry 

periods and comparisons with historical fire scar databases may provide new insights into 

historical controls on fire activity in the Southwest. Further, the sub-regional variability in 

the Southwest has been largely ignored in scientific research. Sub-regional analyses of 

precipitation, AVHRR green-up patterns and fire severity in different areas of the Southwest 

will help us to understand the relative importance of natural climate variability and global 

climate change on precipitation in the Southwest, and this has tremendous implications for 

fire extent and severity.  

 

The goal of this dissertation was to identify the climate and topographic drivers of burn 

severity over a twenty-year period in a large southwestern wilderness area. The local scale of 

this analysis limits our ability to draw inferences to other areas of the southwestern US. 

However, my findings raise interesting questions about the causes and consequences of 

recent trends in fire severity in the western US and should therefore be examined elsewhere.  

While there is currently a strong consensus that climate change is occurring, surprisingly 

little is known about the climate and topographic factors that influence severe fire occurrence 

in the western United States. In ongoing work that is based, in part, on my dissertation, I and 

a team of research scientists are using databases assembled by the Monitoring Trends in Burn 

Severity Project, we have begun analyzing climate-burn severity relationships across the 

interior western US. These analyses will tell us the extent which the patterns described in this 

dissertation are local rather than regional phenomenon, and are likely to yield new insights 
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into the current increasing trends in fire activity that have been observed across the western 

US. Similarly, we lack knowledge about burn severity patterns relative to vegetation and 

topography for most areas of the US and the world. Fire ecology as a science will benefit 

from further exploration of burn severity patterns relative to vegetation type. Predicting burn 

severity occurrence also has great relevance to how we manage fire in the future. With plant 

species ranges predicted to shift with climate change, important decisions have to be made 

about when to let fires burn and where to apply thinning and prescribed burning treatments in 

order to mitigate wildfire effects. The research presented in this dissertation contributes new 

knowledge and applications that may ultimately help in making those decisions.  
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