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Abstract 

Fire researchers and resource managers are dependent upon accurate, spatially-explicit forest structure information to support the 
application of forest fire behavior models. In particular, reliable estimates of several critical forest canopy structure metrics, including canopy 
bulk density, canopy height, canopy ntel weight, and canopy base height, are required to accurately map the spatial distribution of canopy 
fuels and model fire behavior over the landscape. The use of airborne laser scanning (LIDAR), a high-resolution active remote sensing 
technology, provides for accurate and efficient measurement of three-dimensional forest structure over extensive areas. In this sntdy, 
regression analysis was used to develop predictive models relating a variety of LIDAR-based metrics to the canopy fuel parameters estimated 
from inventory data collected at plots established within stands of varying condition within Capitol State Forest, in western Washington State. 
Strong relationships between LIDAR-derived metrics and field-based fuel estimates were found for all parameters [sqrt(crown nlel weight): 
R2=0.86; In(crown bulk density): R2=0.84; canopy base height: R2=0.77; canopy height: R2=0.98). A cross-validation procedure was used to 
assess the reliability of these models. LIDAR-based fuel prediction models can be used to develop maps of critical canopy nlel parameters 
over forest areas in the Pacific Northwest. 
© 2004 Elsevier Inc. All rights reserved. 

Ke)'1l'ords: Airborne laser scanning; Canopy fuels; Remote sensing; Forestry; Mapping 

1. Introduction 

The use of remote sensing for the acquisition of accurate, 
spatially-explicit estimates of canopy height, canopy base 
height, canopy bulk density, and total canopy fuel weight 
would significantly improve the data layer creation process 
for wildfire simulation models such as FARSITE (Finney, 
1998). Previously, these data layers [typically formatted as 
GIS (Geographic Information System) coverages] were 

generated using the output from stand-level growth models 
such as the Forest Vegetation Simulator (FVS), which use a 
tree list to drive the simulations (Wykoff et aI., 1982; Teck 
et aI., 1996). Since the stand-level estimates generated from 
these models are (typically) based upon a relatively limited 
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inventory of stand attributes, they will be subject to 
sampling error and will be unable to capture variability in 
stand structure at fine spatial scales over the landscape. If 
canopy structure metrics could be accurately estimated 
using high-resolution remotely-sensed data, the application 
of fire spread models to landscapes would be significantly 
improved, resulting in an increased efficacy of fuel manage­
ment programs in general. 

The emergence of a new generation of active, high­
resolution remote sensing systems has the potential to allow 
for more accurate and efficient estimation of canopy fuel 
characteristics over extensive areas offorest. In particular, the 
capability of active infrared laser scanning (L1DAR) systems 
to acquire direct, three-dimensional measurements of canopy 

structure could significantly improve estimates of the 
quantity and distribution of canopy biomass and fuels. 
Previous studies have shown that LIDAR can be used to 
estimate a variety of forest inventory parameters, including 
biomass, stem volume, stand height, basal area, and stand 
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Fig. I. Orthophoto of Capitol State Forest study area in Washington State (UTM coordinate system). Location and sizc of field plots arc shown in white 
(courtesy of \Vashing1on State Department of Narural Resources, Resource Mapping Section). 

density (Naesset, 1997a, 1997b; Means et aI., 2000). A study 
in Norway developed an approach to estimate Lorey's height, 
crown lengths, and heights to crown base for plots in spruce­
pine forest using height quantile estimators (Naesset & 
Okland, 2002). A recent study canied out in Switzerland used 
a K-means clustering algorithm to measure individual tree 
crown dimensions for forest fire risk assessment (Morsdorfet 
aI., 2004). A recent study presented a methodology for 
estimating crown fuel parameters at individual tree and plot 
levels in an intensively managed, homogeneous Scots pine 
forest with little tmderstory due to thinning (Riano et aI., 
2004). However, it is unclear how well this procedure works 
in stands with a more complex structure. While preliminary 
results from a study investigating the use of airborne L1DAR 
fOr estimation of canopy fuel parameters in stands with 
complex structure have been previously reported, there was 
no model validation carried out to assess the reliability of the 
models (Andersen et aI., 2004). In this paper, we present and 
evaluate an approach to estimating several critical canopy 
fuel metrics, including canopy fuel weight, canopy bulk 
density, canopy base height, and canopy height, using high­
density, multiple-return L1DAR data collected over a Pacific 
Northwest conifer forest. 

2. Study area 

The study area for this investigation was a 5.2 km2 area 
within Capitol State Forest, Washington State, USA. This 
forest is primarily composed of coniferous Douglas-fir 
(Pseudotsuga menziesii) and western hemlock (Tsuga heter­
ophylla), and, to a lesser degree, hardwoods such as red alder 
(Alnus rubra) and maple (AceI' spp.). The extent of the study 

area is shown in Fig. I. This site is the location of an ongoing 
experimental silvicultural trial, and contains coniferous 
commercial forest stands of varying age and density (Curtis 
et aI., 2004). An extensive, high-accuracy topographjc survey 
was conducted throughout the area to enable rigorous 
evaluation of a variety of technologies relevant to precision 
forest management, including high-resolution remote sensing 
and terrestrial geopositioning systems. 

A total of 101 fixed area field inventory plots were 
established over a range ofstand conditions in 1999 and 2003 
(see Fig. I). Plot sizes ranged from 0.02 to 0.2 ha. Measure­
ments acquired at each plot included species and diameter at 
breast height (DBH) for all trees greater than 14.2 em in 
diameter. In addition, total height and height-to-base-of-live­
crown were measured on a representative selection of trees 
over the range of diameters using a hand-held laser range­
finder. A detailed description of the plot measurement 
protocol can be found in a previous report (Chapter 3, Curtis 
et aI., 2004). The data from this selection were used to build 
regression models for estimating height and crown ratio for 
all trees within the inventory plots. 

3. Lidar data 

High-density LIDAR data were acquired over the study 
area with a 5MB TopEye l system mounted on a helicopter 
platform in March, 1999. The system settings and flight 
parameters are shown in Table I. The vendor provided raw 
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Table I 
LlDAR data specifications 

Flying height 200 m 
Flying speed 25 m1s 

Swath width 70 m 

Forward till 8' 
Laser pulse density 3.5 pulses/m2 

Laser pulse rate 7000 Hz 

, 
lidar data consisting of XYZ coordinates, off-nadir angle, 
and intensity for all LIDAR returns within the area. In 
addition, the vendor provided a "filtered ground" data set 
consisting of points presumed to be measurements of the 
terrain surface, identified via a proprietary filtering algo­
rithm. These filtered ground returns were used to generate a 
1.52 m digital telTain model (DTM). Comparison with 
check points collected in a high-accuracy topographic 
survey showed that the DTM had a mean error of 0.22 
with a standard deviation of 0.24 m (Reutebuch et a!., 
2003). The LIDAR system collected up to four returns from 
each laser pulse, and all returns were used in this paper. The 
elevations of the LIDAR measurements were converted to 
heights by subtracting off the elevation of the underlying 
terrain (given by the DTM). 

4. Field-based fuel estimates 

Field-based estimates of canopy fuels were generated 
using the methodology developed for the Fire and Fuels 
Extension to the Forest Yegetation Simulator (FFE-FYS) by 
Scott and Reinhardt (Beukema et a!., 1997; Scott & 
Reinhardt, 200 I). In this approach, the crown fuel weight 
for each tree is estimated using the equations developed by 
Brown and Johnson (1976), where stem diameter is the 
primary predictor variable. These equations generate esti­
mates of the total dry weight of live and dead material for 
each individual tree crown, and provide a break-down of the 
propOJ1ion of the total crown weight that is associated with 
foliage and different size classes of branchwood. According 
to the methodology of Scott and Reinhardt, crown fuels are 
defined as foliage and fme branchwood (50% of the 0 to 6 
mm diameter branchwood). These crown weight equations 
can then be used to generate total crown fuel weight 
estimates for each tree in a plot given a tree list with 
information including species, diameter at breast height 
(DSl-I), crown ratio, and crown class. It should be noted that 
since crown class was not collected for all plots used in this 
study, crown weight was not adjusted for relative position of 
the tree within the stand. 

In the context of Scott and Reinhardt's methodology, it is 
assumed that the crown material on each tree crown is 
evenly distributed vertically along a crown's length. In order 
to generate an aggregate measure of canopy bulk density at 
the plot level, the fuel weight for all trees within the plot are 
summed at 0.3048-m increments from the ground to the top 

of the tallest tree. The canopy bulk density is then defined as 
the maximum 4.6 m running mean of crown fuel density 
within the plot. Following Scott and Reinhardt (2001), 
canopy base height is calculated as the lowest height at 
which the canopy fuel density exceeds a critical threshold 
(0.011 kg/m\ Analogously, canopy height is defined as the 
highest height at which the canopy fuel density is greater 
than 0.011 kg/m3

. Using this methodology, estimates of 
canopy fuel weight, canopy bulk density, canopy base 
height, and canopy height were generated for each plot 
within the study area. An example of the canopy bulk 
density distribution and fuel parameter estimates for an 
inventory plot in the dense, mature Douglas-fir canopy unit 
is shown in Fig. 2. 

5. Lidar-based fuel estimates 

In an earlier study, Naesset and Bjerknes (200 I) used a 
limited number of LIDAR-based predictor variables, includ­
ing the maximum (hm"x), mean (h mo"I1), and coefficient of 
variation (CY) of the LIDAR heights, several quantile-based 
metrics describing the LIDAR height distribution [25th 
(11 25), 50th (h 50), 75th (11 75 ), and 90th (11 90) percentile 
heights], and a canopy density metric (D; percentage of first 
returns within the canopy) to estimate tree heights and stem 
density within young stands in Norway. It was expected that 
this pool of potential independent variables will collectively 
provide a concise description of canopy structure within the 
plot area, and therefore could also be used to estimate other 
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Fig. 2. Estimation of fuel parameters at inventory plot within dense, mature 
Douglas-fir canopy unit, Capitol Forest study area. 



444 H-E. Andersen el al. / Remote Sensing o/Environment 94 (2005) 441-449 

structural metrics such as canopy fuel weight, canopy bulk 
density, canopy base height, and canopy height. A program 
was written in IDL (Research Systems Inc. Interactive Data 
Language) for extraction of the LlDAR data within each plot 
area and calculation of these metrics from the distribution of 
LlDAR heights. This list of plot-level LlDAR metrics was 
then merged with the plot-level field-based canopy fuel 
estimates in a single text file and imp0l1ed into R (http:// 
www.r-project.orgl), a statistical software package. Stepwise 
regression and all-subsets variable selection procedures were 
used within R to identify possible models for estimating each 
dependent variable, where an emphasis was placed upon 
developing parsimonious models containing a limited 
number of independent variables. A leave-one-out cross­
validation procedure was used to assess the predictive value 
of each regression model, through a comparison of the root­
mean-squared prediction error (or root-mean-square-error 
for cross-validation, denoted as RMSEcy ) and the standard 
error of the regression, denoted as RMSE (Michaelsen, 
1987). In this context, RMSEcy is equivalent to the root­
mean of the well-known PRESS statistic (sum of squares of 
predicted residuals; Neter et a!., 1996). A close agreement 
between RMSEcy and RMSE indicates that the regression 
model is not overfitting the data and has good predictive 
value. 

6. Results 

6.1. Canopy fite! weight 

Residual plots for canopy fuel weight prediction indi­
cated that a square root transfonnation of canopy fuel 
weight was appropriate to meet the assumptions of linear 

o 
<0 

'0 
'b 

0 (h oo~ 0 
0 

o 0 0 <9 
0000 0 0 0

°00 0 

00 

0 
0 9;,°0 

o 
o 

o 0 

~ 

o 0 0 

l!) 

'";­

::::: 
'" 0

E 
0, C)i 

00 

~ 
0' 0 

.c
'en 
c 
Q) 

l!) 

C)i 
0 

°0°0°0, 

,.°0 

0 
~ 0 
:0 
co 0 
>­
0­

0 

0 
c 
ro 
0 

l!) 

0 
C 'If' 

U 0 
Qj 
i.L 1 ~o 

l!)

1""'-+---,-----.----,-----,-,----,----r' 
-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 

Predicted In (Canopy Bulk Density ( kg/m3 
)) 

Fig. 4. Field-measured versus predicted (log-transformed) canopy bulk 
density (R2~0,84; P-value <0.0001). Line shows 1:1 relationship. 

regression. The model identified via regression analysis for 
estimating canopy fuel weight took the following [01111: 

Jcanopy fuel weight = 22.7 + (2.9)h 25 + ( - l.7)h9o 

+ (106.6)D 

where D is the fraction of LIDAR first returns from the 
canopy (above 2 m in height). 

This model had a coefficient of determination (R 2) of 
0.86. It should be noted that in this context the coefficient 
of detennination represents the percentage of variability 
explained by the regression relationship in the linearized 
space resulting from the transformation, not in the 
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Fig. 6. Field-measured versus predicted canopy height (R 2=0.98; P-value 
<0.000 I). Line shows I: I relationship. 

original scale, so this measure should be interpreted with 
caution. A scatterplot of the field-based versus predicted 
LIDAR-based plot-level measures of (transformed) canopy 
[llel weight is shown in Fig. 3. The RMSE for this 
regression model was 11.1, and the RMSEcv was 11.5 (in 
transformed units). 

6.2. Canopy bulk density 

A logarithmic transform of canopy bulk density was used 
to stabilize the variance and account for the nonlinearity 

5.1900 x 10' 

5.1895 x 10" 

5.1890 x 10' 

evident in the residual plot. The model identified via 
regression analysis for estimating canopy bulk density took 
the following form: 

In (canopy bulk density) = - 4.3 + (3.2)l1cv + (0.02)h lO 

+ (0.13)h 25 + (- 0.12)h90 

+ (2.4)D 

This model had a coefficient of determination of 0.84. 
A scatterplot of the field-based versus predicted LlDAR­
based plot-level measures of (log-transformed) canopy 
bulk density is shown in Fig. 4. The RMSE for this 
regression model was 0.27, and the RMSEcv from cross­
validation was 0.29. 

6.3. Canopy base height 

The final model identified via regression analysis for 
estimating canopy base height took the following form: 

Canopy base height = 3.2 + (19.3 )hcv + (0.7)h25 

+(2.0)1150 + (- 1.8)h75 + (- 8.8)D 

This model had a coefficient of determination of 0.77. 
A scatterplot of the field-based versus predicted (LIDAR­
based) plot-level measures of canopy base height is 
shown in Fig. 5. The RMSE for this regression model 
was 3.9 111, and the RMSEcv from cross-validation was 
4.1 111. 

Canopy Height (m) 
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Fig. 7. Canopy height map (30-m resolution). Capitol Forest study area. 
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Fig. 8. Canopy fuel weight map (30-m resolution), Capitol Forest study area. 

6.4. Canopy height 

The final model identified VIa regression analysis for 
estimating canopy height took the following form: 

Canopy height = 2.8 + (0.25)hmax + (0.25)h25 

+ ( - 1.0)h50 + (1.5)h75 + (3.5)D 

This model had a coefficient of determination of 0.98. A 
scatterplot of the field-based versus predicted LIDAR-based 

plot-level measures of canopy height is shown ,in Fig. 6. The 
RMSE for this regression model was 1.3 m, and the 
RJ\.1SEcy from cross-validation was 1.5 m. 

6.5. Mapping canopy filets 

After regression models have been developed to establish 
a functional relationship between the LIDAR data and the 
canopy fuel measures, these equations can be used to 

5.1900x 10' 

5.1895 X 10' 

5.1890 x 10' 

4.865 x 1O~ 4.870 x 10~ 4.875 X 10' 4.880 x 10~ 4.890 X 105 

Canopy Bulk Density (kg/m3 ) 

4.885 x 10~ 

0.00 0.05 0.09 014 0.19 0.23 0.28 

Fig. 9. Canopy bulk density map (30-m resolution), Capitol Forest study area. 
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Fig. I D. Canopy base height map (3D-m resolution), Capitol Forest study area. Areas with no canopy vegetation prcsent arc shown in whitc.
 

generate maps of canopy fi.leJ distributions over the entire 
extent of the LIDAR data coverage. These maps represent 
spatially-explicit data layers that can be used as direct inputs 
into fire behavior models to support the analysis of fire risk 
and the implementation of fuel mitigation programs. Figs. 
7-10 show maps of canopy height, canopy fuel weight, 
canopy bulk density, and canopy base height over the 
Capitol Forest study area, with measurements provided at a 
30 x 30 m grid cell resolution. 

7. Discussion 

The results of this study indicate that LIDAR can be used 
to generate accurate estimates of critical canopy fuel metrics, 
including canopy fuel weight, canopy bulk density, canopy 
base height, and canopy height. It appears that the LlDAR­
based forest metrics, based upon the height distribution of 
LIDAR measurements, capture structural information related 
to quantitative canopy fuel characteristics. Results of the 
cross-validation procedure, as well as qualitative assessment 
of the canopy fuel maps, indicate that the models have 
reasonable predictive value over the extent of the study area. 

There are a number of possible sources for the 
discrepancy between the LlDAR-based metric within a 
plot area and the model-based estimate generated from a 
tree list. First, crown base heights and tree heights for 
many of the trees were not directly measured in the field 
but were estimated using regression models. This could 
possibly introduce a significant source of variability into 
the field-based canopy fuel estimates. Second, defining 

canopy base height and stand height as a threshold value 
of crown bulk density makes this metric highly sensitivc 
to the modeling assumptions related to how fuels are 
vertically distributed within a tree crown. Even small 
deviations from the assumed uniform distribution of fi.tels 
along the length of the crown for several trees in the plot 
could have a large effect on the estimate of canopy base 
height and canopy height. Edge effects could also lead to 
significant differences between the LIDAR- and field­
based estimates. The field-based canopy fuel estimates do 
not account for the spatial position of tree crowns within 
the plot, and therefore the crown fuel estimates are 
calculated for the entire crown associated with each stem 
falling in the plot, even if a large proportion of the crown 
is located outside of the plot area. In contrast, the LIDAR 
data extracted for a given plot include only measurements 
of canopy materials that were located within the plot area. 
Edge effects are likely more pronounced in less dense 
stands and where plot sizes are smaller. Conversely, we 
would expect edge effects be less important in stands 
with a more even and uniform closed canopy. 

Another possible reason for a discrepancy between 
LIDAR and field-based estimates is the nature of laser 
scanner data. LIDAR data represent measurements of all 
canopy components, including foliage, branches, and stems. 
Furthermore, the relative frequency of stem and large branch 
measurements increases with a lower stem density, since 
more laser pulses are able to penetrate through canopy 
openings. However, in the context of canopy fuels analysis, 
stems and large branches are not considered fuel. This may 
lead to a negative bias in the LlDAR estimate of canopy 
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base height in less dense stands when compared to the field­
based estimates. 

When implementing the regression-based approach to 
mapping canopy fuel variables as described here, it is critical 
to acquire field data over the full range of stand types present 
in the area to be mapped. Estimates offuel variables in areas 
with different stand structures from those sampled are 
extrapolations outside the domain of the field data and are 
unreliable. This is particularly evident in the case of 
estimating canopy bulk density (Fig. 9) and canopy base 
height (Fig. 10), where the estimates are reasonable within 
stands where field data were collected, but are dubious in 
areas outside of these sampled stand types (i.e., clearcuts, 
very young stands). It should also be noted that the variability 
in stand structures present within the Capitol Forest stlldy 
area is not necessarily representative of natural structural 
variability within Pacific Northwest forests. For example, 
many of the plots used in this analysis were established in a 
heavily thinned unit, where many residual trees were taller 
than 45 m, yet the fuel loading was quite low due to the low 
residual stem density (40 trees per hectare). Therefore, the 
regression models developed in this paper are meant to 
demonstrate the potential ofthis methodology for canopy fuel 
estimation, and do not necessarily reflect fundamental 
physical relationships between lidar distributions and bio­
physical properties of natural stands. 

8. Conclusions 

The results of this study indicate that LIDAR can be used 
to estimate canopy fuel metrics efficiently and accurately 
over an extensive area within a Pacific Northwest conifer 
forest. Canopy fuel estimates based upon the distribution of 
LIDAR height measurements can be used to generate maps 
that provide a spatially-explicit description of the distribution 
of canopy fuels over the landscape. These maps (or GIS 
coverages) can serve as a direct input into a fire-behavior 
model such as FARSITE, potentially enabling a more realistic 
and accurate prediction of fire spread and intensity. 

In the fllture, this methodology will be applied to LfDAR 
data collected in different stand types, including a fire-prone 
site in eastem Washington State. A more rigorous model 
validation procedure will be carried out to assess the general 
applicability of these models in different forest types and with 
LIDAR data acquired from different systems and at different 
densities. It is likely that a more extensive pool ofexplanatory 
variables will be developed to improve our understanding of 
the structural relationships between the distribution of 
LIDAR measurements and canopy fuel characteristics. 
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